
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 9, Number 1, January 1996

BOTT’S FORMULA AND ENUMERATIVE GEOMETRY

GEIR ELLINGSRUD AND STEIN ARILD STRØMME

Dedicated to the memory of Alf Bjørn Aure, 1955–1994

1. Introduction

One way to approach enumerative problems is to find a suitable complete pa-
rameter space for the objects that one wants to count, and express the locus of
objects satisfying given conditions as a certain zero-cycle on the parameter space.
For this method to yield an explicit numerical answer, one needs in particular to
be able to evaluate the degree of a given zero-dimensional cycle class. This is
possible in principle whenever the numerical intersection ring (cycles modulo nu-
merical equivalence) of the parameter space is known, say in terms of generators
and relations.

Many parameter spaces carry natural actions of algebraic tori, in particular those
coming from projective enumerative problems. In 1967, Bott [6] gave a residue
formula that allows one to express the degree of certain zero-cycles on a smooth
complete variety with an action of an algebraic torus in terms of local contributions
supported on the components of the fixpoint set. These components tend to have
much simpler structure than the whole space; indeed, in many interesting cases,
including all the examples of the present paper, the fixpoints are actually isolated.

We show in this note how Bott’s formula can be effectively used to attack some
enumerative problems, even in cases where the rational cohomology ring structure
of the parameter space is not known.

Our first set of applications is the computation of the numbers of twisted cubic
curves (Theorems 1.1 and 1.2) and elliptic quartic curves (Theorem 1.3) contained
in a general complete intersection and satisfying suitable Schubert conditions. The
parameter spaces in question are suitable components of the Hilbert scheme param-
eterizing these curves. These components are smooth, by the work of Piene and
Schlessinger [31] in the case of cubics, and Avritzer and Vainsencher [3] in the case
of elliptic quartics.

The second set of applications is based on the Hilbert scheme of zero-dimensional
subschemes of P2, which again is smooth by Fogarty’s work [17]. These applications
deal with the degree of the variety of sums of powers of linear forms in three variables
(Theorem 1.4) and Darboux curves (Theorem 1.5).
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1.1. Main results. The first theorem deals with the number of twisted cubics on
a general Calabi-Yau threefold which is a complete intersection in some projective
space. There are exactly five types of such threefolds: the quintic in P4, the
complete intersections (3, 3) and (2, 4) in P5, the complete intersection (2, 2, 3) in
P6 and finally (2, 2, 2, 2) in P7.

Theorem 1.1. For the general complete intersection Calabi-Yau threefolds, the
numbers of twisted cubic curves they contain are given by the following table:

Type of complete intersection 5 4, 2 3, 3 3, 2, 2 2, 2, 2, 2

Number of twisted cubics 317206375 15655168 6424326 1611504 416256

In the case of a general quintic in P4, the number of rational curves of any
degree was predicted by Candelas et al. in [7], and the cubic case was verified by
the authors in [16]. In [27] Libgober and Teitelbaum predicted the corresponding
numbers for the other Calabi-Yau complete intersections. Our results are all in
correspondence with their predictions.

Greene, Morrison, and Plesser [19] have also predicted certain numbers of ratio-
nal curves on higher dimensional Calabi Yau hypersurfaces. Katz [21] has verified
these numbers for lines and conics for hypersurfaces of dimension up to 10. The
methods of the present paper have allowed us to verify the following numbers. All
but the last one, N1,1,1,1

3 (8), have been confirmed by D. Morrison (private commu-
nication) to be consistent with [19].

Theorem 1.2. For a general hypersurface W of degree n+1 in Pn (n ≤ 8) and for
a partition λ = (λ1 ≥ · · · ≥ λm > 0) of n− 4, the number Nλ

3 (n) of twisted cubics
on W which meet m general linear subspaces of codimensions λ1 + 1, . . . , λm + 1
respectively is given as follows:

n λ Nλ
3 (n) n λ Nλ

3 (n)

4 317206375 7 1, 1, 1 12197109744970010814464

5 1 6255156277440 8 4 897560654227562339370036

6 2 30528671745480104 8 3, 1 17873898563070361396216980

6 1, 1 222548537108926490 8 2, 2 33815935806268253433549768

7 3 154090254047541417984 8 2, 1, 1 174633921378662035929052320

7 2, 1 2000750410187341381632 8 1, 1, 1, 1 957208127608222375829677128

The number N1,1,1,1
3 (8) is not related to mirror symmetry as far as we know;

Greene et al. get numbers only for partitions with at most 3 parts. Our methods
also yield other numbers not predicted (so far!) by physics methods: for example,
there are 1345851984605831119032336 twisted cubics contained in a general nonic
hypersurface in P7 (not a Calabi-Yau manifold).

A similar method can be used to compute the number of elliptic quartic curves
on general Calabi-Yau complete intersections. Here are the results for some hyper-
surfaces, which we state without proof:

Theorem 1.3. The number of quartic curves of arithmetic genus 1 on a general
hypersurface of degree n+ 1 in Pn are for 4 ≤ n ≤ 13 given by the following table.
These curves are all smooth.
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n Smooth elliptic quartics on a general hypersurface of degree n+ 1 in Pn

4 3718024750

5 387176346729900

6 81545482364153841075

7 26070644171652863075560960

8 12578051423036414381787519707655

9 8760858604226734657834823089352310000

10 8562156492484448592316222733927180351143552

11 11447911791501360069250820471811603020708611018752

12 20498612221082029813903827233942127541022477928303274152

13 48249485834889092561505032612701767175955799366431126942036480

This computation uses the description given in [3] of the irreducible component
of the Hilbert scheme of P3 parameterizing smooth elliptic quartics. This Hilbert
scheme component can be constructed from the Grassmannian of pencils of quadrics
by two explicit blowups with smooth centers, and one may identify the fixpoints
for the natural action of a torus in a manner analogous to what we carry out for
twisted cubics in this paper. For another related construction, see [28], which treats
curves in a weighted projective space.

The number of elliptic quartics on the general quintic threefold was predicted
by Bershadsky et al. [5]. Their number, 3721431625, includes singular quartics
of geometric genus 1. These are all plane binodal quartics, and their number is
1185∗2875 = 3406875 by [35]. Thus the count of [5] is compatible with the number
above.

Recently, Kontsevich [24] has developed a technique for computing numbers
of rational curves of any degree, using the stack of stable maps rather than the
Hilbert scheme as a parameter space. He also uses Bott’s formula, but things get
more complicated than in the present paper because of the presence of non-isolated
fixpoints in the stack of stable maps.

The next theorem deals with plane curves of degree n whose equation can be
expressed as a sum of r powers of linear forms. Let PS(r, n) be the correspond-
ing subvariety of Pn(n+3)/2. Then PS(r, n) is the r-th secant variety of the n-th
Veronese imbedding of P2. Let p(r, n) be the number of ways a form corresponding
to a general element of PS(r, n) can be written as a sum of r n-th powers if this
number is finite, and 0 otherwise. The last case occurs if and only if dim(PS(r, n))
is less than the expected 3r− 1. We don’t know of an example where p(r, n) > 1 if
PS(r, n) is a proper subvariety. If p(r, n) = 1, then p(r, n′) = 1 for all n′ ≥ n. It is
easy to see that p(2, n) = 1 for n ≥ 3.

Theorem 1.4. Assume that n ≥ r − 1 and 2 ≤ r ≤ 8. Then p(r, n) times the
degree of PS(r, n) is sr(n), where

2 s2(n) =n4 − 10n2 + 15n− 6,

3! s3(n) =n6 − 30n4 + 45n3 + 206n2 − 576n+ 384,

4! s4(n) =n8 − 60n6 + 90n5 + 1160n4 − 3204n3 − 5349n2 + 26586n− 23760,
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5! s5(n) =n10 − 100n8 + 150n7 + 3680n6 − 10260n5− 52985n4 +

224130n3 + 127344n2 − 1500480n+ 1664640,

6! s6(n) =n12 − 150n10 + 225n9 + 8890n8 − 25020n7 − 244995n6 + 1013490n5

+ 2681974n4− 17302635n3 + 1583400n2 + 101094660n− 134190000,

7! s7(n) =n14 − 210n12 + 315n11 + 18214n10 − 51660n9 − 802935n8

+ 3318210n7 + 17619994n6− 102712365n5− 136396680n4

+ 1498337820n3− 872582544n2− 7941265920n+ 12360418560,

8! s8(n) =n16 − 280n14 + 420n13 + 33376n12 − 95256n11 − 2134846n10

+ 8858220n9 + 75709144n8− 427552020n7− 1332406600n6

+ 11132416680n5 + 5108998089n4− 145109970684n3

+ [144763373916n2 + 713178632880n− 1286736675840.

For example, s5(4) = 0; this corresponds to the classical but non-obvious fact
that not all ternary quartics are sums of five fourth powers. (Those that are are
called Clebsch quartics; they form a hypersurface of degree 6, see [11] or [30].)

Note in particular that s3(3) = 4. It is classically known that PS(3, 3) is indeed
a hypersurface of degree 4; its equation is the so-called S-invariant [32]. It follows
that p(3, 3) = 1, and hence that p(3, n) = 1 for n ≥ 3. (Aluffi and Faber [1, p. 182]
have obtained the formula for s3(n) using a completely different method.)

Only the first few of these polynomials are reducible: sr(r − 1) = 0 for r ≤ 5,
but the higher sr in the table are irreducible over Q.

Note that the formulas of the theorem are not valid unless n ≥ r − 1. For
example, a general quintic is uniquely expressible as a sum of seven fifth powers
(cfr. the references in [30]), while s7(5) is negative.

The final application is quite similar. A Darboux curve is a plane curve of
degree n circumscribing a complete (n+1)-gon (this terminology extends that used
in [4]). This means that there are distinct lines L0, . . . , Ln such that C contains all
intersection points Li ∩Lj for i < j. Equivalently, there are linear forms `0, . . . , `n
such that the curve is the divisor of zeroes of the rational section

∑n
i=0 `

−1
i of

OP2(−1). Let D(n) be the closure in Pn(n+3)/2 of the locus of Darboux curves.
Let p(n) be the number of inscribed (n + 1)-gons in a general Darboux curve, if
finite, and 0 otherwise.

Theorem 1.5. For n = 5, 6, 7, 8, 9, the product of p(n) and the degree of the
Darboux locus D(n) is 2540, 583020, 99951390, 16059395240, 2598958192572, respec-
tively.

We have no guess as to what p(n) is; it might well be 1 for n ≥ 5. It is always
positive for n ≥ 5 by an argument of Barth’s [4]. For n ≤ 4 it is 0. For n ≤ 3, all
curves are Darboux. For n = 4, Darboux curves are Lüroth quartics, and form a
degree 54 hypersurface [29, 26, 34].

2. Bott’s formula

Let X be a smooth complete variety of dimension n, and assume that there
is given an algebraic action of the multiplicative group C∗ on X such that the
fixpoint set F is finite. Let E be an equivariant vector bundle of rank r over X , and
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let p(c1, . . . , cr) be a weighted homogenous polynomial of degree n with rational
coefficients, where the variable ci has degree i. Bott’s original formula [6] expressed
the degree of the zero-cycle p(c1(E), . . . , cr(E)) ∈ H2n(X,Q) purely in terms of
data given by the representations induced by E and the tangent bundle TX in the
fixpoints of the action.

Later, Atiyah and Bott [2] gave a more general formula, in the language of
equivariant cohomology. Its usefulness in our context is mainly that it allows the
input of Chern classes of several equivariant bundles at once. Without going into
the theory of equivariant cohomology, we will give here an interpretation of the
formula which is essentially contained in the work of Carrell and Lieberman [8, 9].

To explain this, first note that the C∗ action on X induces, by differentiation,
a global vector field ξ ∈ H0(X,TX), and furthermore, the fixpoint set F is exactly
the zero locus of ξ. Hence the Koszul complex on the map ξ∨ : ΩX → OX is a
locally free resolution of OF . For i ≥ 0, denote by Bi the cokernel of the Koszul
map Ωi+1

X → ΩiX . It is well known that Hj(X,ΩiX) vanishes for i 6= j, see e.g. [8].
Hence there are natural exact sequences for all i:

0→ Hi(X,ΩiX)
pi−→ Hi(X,Bi)

ri−→ Hi+1(X,Bi+1)→ 0.

In particular, there are natural maps qi = ri−1 ◦ · · · ◦ r0 : H0(F,OF )→ Hi(X,Bi).

Definition 2.1. Let f : F → C be a function and c ∈ Hi(X,ΩiX) a non-zero
cohomology class. We say that f represents c if qi(f) = pi(c).

For each i ≥ −1, put Ai = ker qi+1. Then

0 = A−1 ⊆ C = A0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ An = H0(F,OF )

is a filtration by sub-vector spaces of the ring of complex-valued functions on F .
The filtration has the property that AiAj ⊆ Ai+j , and the associated graded ring⊕
Ai/Ai−1 is naturally isomorphic to the cohomology ring

H∗(X,C) '
⊕

Hi(X,ΩiX).

(In [9], the filtration is constructed as coming from one of the spectral sequences
associated to hypercohomology of the Koszul complex above.)

An interesting aspect of this is that cohomology classes can be represented as
functions on the fixpoint set. The representation is unique up to addition of func-
tions coming from cohomology classes of lower degree (i.e., lower codimension).
Since the algebra of functions on a finite set is rather straightforward, this gives
an efficient way to evaluate zero-cycles, provided that 1) we know how to describe
a function representing a given class, and 2) we have an explicit formula for the
composite linear map

εX : H0(OF )
qn−→ Hn(X,ΩnX)

resX−−−→
'

C.

These issues are addressed in the theorem below.
Let E be an equivariant vector bundle of rank r on X . In each fixpoint x ∈ F

the fiber of E splits as a direct sum of one-dimensional representations of C∗; let
τ1(E , x), . . . , τr(E , x) denote the corresponding weights, and for all integers k ≥ 0,
let σk(E , x) ∈ Z be the k-th elementary symmetric function in the τi(E , x).

Theorem 2.2. Let the notation and terminology be as above. Then

(1) The k-th Chern class ck(E) ∈ Hk(X,ΩkX) of E can be represented by the
function x 7→ σk(E , x).
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(2) For a function f : F → C, we have

εX(f) =
∑
x∈F

f(x)

σn(TX , x)
.

Proof. See [2, equation 3.8], and [9].

Note that the function σk(E ,−) depends on the choice of a C∗-linearisation of
the bundle E , whereas the Chern class ck(E) it represents does not.

3. Twisted cubics

Let Hilb3t+1
Pn be the Hilbert scheme parameterizing subschemes of Pn (n ≥ 3)

with Hilbert polynomial 3t + 1, and let Hn denote the irreducible component of
Hilb3t+1

Pn containing the twisted cubic curves. Recall from [31] that H3 is smooth
and projective of dimension 12. Any curve corresponding to a point of Hn spans a
unique 3-space, hence Hn admits a fibration

Φ: Hn → G(3, n)(3.1)

over the Grassmannian of 3-planes in Pn, with fiber H3. It follows that Hn is
smooth and projective of dimension 4n.

There is a universal subscheme C ⊂ Hn × Pn. For a closed point x ∈ Hn, we
denote by Cx the corresponding cubic curve, i.e., the fiber of C over x. Also, let
Ix ⊆ OPn be its ideal sheaf. By the classification of the curves of Hn (see below),
it is easy to see that

H1(Pn, Ix(d)) = H1(Cx,OCx(d)) = 0 for all d ≥ 1 and for all x ∈ Hn.

(3.2)

For a subscheme W ⊆ Pn, denote by HW ⊆ Hn the closed subscheme param-
eterizing twisted cubics contained in W . There is a natural scheme structure on
HW as the intersection of Hn with the Hilbert scheme of W . If Cx ⊆ W is a
Cohen-Macaulay twisted cubic, then locally at x ∈ Hn, the scheme HW is simply
the Hilbert scheme of W .

Our goal is to compute the cycle class of HW in A∗(Hn) in the case that W is
a general complete intersection in Pn. In particular, we want its cardinality if it is
finite, and its Gromov-Witten invariants (see below) if it has positive dimension.

For each integer d we define a sheaf Ed on Hn by

Ed = p1∗(OC ⊗ p∗2OPn(d)),(3.3)

where p1 and p2 are the two projections of Hn ×Pn. If d ≥ 1, then the vanishing
of the first cohomology groups (3.2) implies by standard base change theory [20]
that Ed is locally free of rank 3d + 1, and moreover that there are surjections
ρ : H0(OPn(d))Hn → Ed of vector bundles on Hn. In particular, for all x ∈ Hn,
there is a natural isomorphism

Ed(x)
'−→ H0(Cx,OCx(d)).(3.4)

A homogenous form F ∈ H0(OPn(d)) induces a global section ρ(F ) of Ed over
Hn, and the evaluation of this section at a point x corresponds under the identifi-
cation (3.4) to the restriction of F to the curve Cx. Hence the zero locus of ρ(F )
corresponds to the set of curves Cx contained in the hypersurface V (F ).
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More generally, in the case of an intersection V (F1, . . . , Fp) in Pn of p hypersur-
faces, the section (ρ(F1), . . . , ρ(Fp)) of E = Ed1 ⊕ · · · ⊕ Edp vanishes exactly on the
points corresponding to twisted cubics contained in V (F1, . . . , Fp).

Proposition 3.1. Let W ⊆ Pn be the complete intersection of p general hyper-
surfaces in Pn of degrees d1, . . . , dp respectively. Assume that

∑
i(3di + 1) = 4n.

Then the number of twisted cubic curves contained in W is finite and equals∫
Hn

c4n(Ed1 ⊕ · · · ⊕ Edp).

These cubics are all smooth.

Proof. By the considerations above, the bundle E = Ed1 ⊕ · · · ⊕ Edp is a quotient
bundle of the trivial bundle

⊕
H0(OPn(di))Hn . Hence Kleiman’s Bertini theorem

[23] implies that the zero scheme of the section (ρ(F1), . . . , ρ(Fp)) is nonsingular
and of codimension rank(E). Since rank(E) = dim(Hn), the number of points is
finite and given by the top Chern class.

3.1. Gromov-Witten numbers. More generally, assume that W is as in Propo-
sition 3.1, except that we only assume an inequality

∑
i(3di + 1) ≤ 4n instead of

the equality. The top Chern class of E still represents the locus Hn(W ) of twisted
cubics contained in W , although there are infinitely many of them if the inequality
is strict. One may assign finite numbers to this family by imposing Schubert con-
ditions. For this purpose say that a Schubert condition on a curve is the condition
that it intersect a given linear subspace of Pn. If the subspace has codimension
c+1, then the corresponding Schubert condition is of codimension c (corresponding
to the class γc below).

Definition 3.2. Let W be a general complete intersection in Pn of p hypersurfaces
of degrees d1, . . . , dp respectively. Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λm > 0) be a partition
of 4n −

∑p
i=1(3di + 1), and let P1, . . . , Pm be general linear subspaces such that

codimPi = λi + 1. The number of twisted cubics on W meeting all the Pi is called
the λ-th Gromov-Witten number of the family of twisted cubic curves on W , and
is denoted by Nλ

3 (W ).

Remark 3.3. This is a slight variation on the definition used in [21], and differs
from that by a factor of 3 (resp. 9) for partitions with 2 (resp. 1) parts. In [21] only
partitions of length at most three are considered, as these numbers are the ones
that have been predicted by mirror symmetry computations (when W is Calabi-
Yau). We have used the term Gromov-Witten number rather than Gromov-Witten
invariant, as the latter term is now being used in a more sophisticated sense [25].

Let h denote the hyperplane class of Pn as well as its pullback to Hn×Pn, and
let [C] ∈ A∗(Hn × Pn) be the cycle class of the universal curve C. If P ⊆ Pn is a
linear subspace of codimension c+ 1 ≥ 2, then C ∩Hn × P projects birationally to
its image under the first projection, which is the locus of curves meeting P . Hence
the class of the locus of curves meeting P is p1∗(h

c+1[C]). For simplicity, we give
this class a special notation:

Notation. For a natural number c, let γc = p1∗(h
c+1[C]) ∈ Ac(Hn).

Proposition 3.4. Let W ⊆ Pn be the complete intersection of p general hypersur-
faces in Pn of degrees d1, . . . , dp respectively. Assume that

∑
i(3di + 1) ≤ 4n, and
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let λ = (λ1 ≥ λ2 ≥ · · · ≥ λm > 0) be a partition of 4n−
∑p
i=1(3di + 1). Then

Nλ
3 (W ) =

∫
Hn

ctop(Ed1 ⊕ · · · ⊕ Edp) ·
m∏
i=1

γλi .

Furthermore, if P1, . . . , Pm are general linear subspaces such that codimPi = λi+1,
then the Nλ

3 (W ) twisted cubics on W which meets each Pi are all smooth.

Proof. Similar to the proof of Proposition 3.1.

For later use, we want to express the classes γi in terms of Chern classes of the
bundles Ed.

Proposition 3.5. Let ai = ci(E1), bi = ci(E2), ci = ci(E3), and di = ci(E4). Then
we have the following formulas for the γc:

γ0 = 3,

γ1 = 5a1 − 14b1 + 13c1 − 4d1,

γ2 = 3a2
1 − 9a1b1 + 9a1c1 − 3a1d1 − 3b21 + 9b1c1

− 3b1d1 − 6c21 + 3c1d1 + a2 − 3b2 + 3c2 − d2,

γ3 = 3a3
1 − 9a2

1b1 + 9a2
1c1 − 3a2

1d1 − 3a1b
2
1 + 9a1b1c1

− 3a1b1d1 − 6a1c
2
1 + 3a1c1d1 − 4a1a2 − 3a1b2 + 3a1c2 − a1d2

+ 14a2b1 − 13a2c1 + 4a2d1 + 3a3,

γ4 = 3a4
1 − 9a3

1b1 + 9a3
1c1 − 3a3

1d1 − 3a2
1b

2
1

+ 9a2
1b1c1 − 3a2

1b1d1 − 6a2
1c

2
1 + 3a2

1c1d1 − 7a2
1a2

− 3a2
1b2 + 3a2

1c2 − a2
1d2 + 23a1a2b1 − 22a1a2c1 + 7a1a2d1

+ 3a2b
2
1 − 9a2b1c1 + 3a2b1d1 + 6a2c

2
1 − 3a2c1d1 + 8a1a3

− a2
2 + 3a2b2 − 3a2c2 + a2d2 − 14a3b1 + 13a3c1 − 4a3d1 − 3a4.

Proof. Let π : B = P(E1) → Hn. The natural surjection ρ : H0(OPn(1))Hn → E1
induces a closed imbedding B ⊆ Hn × Pn over Hn. Over a closed point x of Hn,
the fiber of B is just the P3 spanned by Cx. So the universal curve C is actually a
codimension 2 subscheme of B. It follows by the projection formula that

γc = π∗(τ
c+1[C]B) ∈ Ac(Hn),

where [C]B denotes the class of C in A2(B), and τ ∈ A1(B) is the first Chern class
of the tautological quotient line bundle on B. The formulas of the proposition
now follow by straightforward computation (for example using [22]) from the next
lemma.

Lemma 3.6. The class of C in B is

[C]B = 3τ2 + (−4d1 + 2a1 − 14b1 + 13c1)τ

+ 3c1d1 + 4a2 − 3b2 + 3c2 − d2 − 2a2
1

+ 5a1b1 − 4a1c1 + a1d1 − 3b21 + 9b1c1 − 3b1d1 − 6c21.
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Proof. Let i : C → B be the inclusion. Then [C]B equals the degree 2 part of the
Chern character of the OB-module i∗OC(`τ), for any integer `. For ` = 4, there is
a canonical Beilinson type resolution of i∗OC(4τ):

0→ π∗E1 ⊗ Ω3
B/Hn

(3τ)→ π∗E2 ⊗ Ω2
B/Hn

(2τ)→ π∗E3 ⊗ Ω1
B/Hn

(τ)→ π∗E4.
(3.5)

Using this it is a straightforward exercise (again using [22]) to compute the Chern
character of i∗OC in terms of τ and the Chern classes of the En.

3.2. Coarse classification of twisted cubics. We divide the curves Cx for x ∈
H3 into two groups, according to whether they are Cohen-Macaulay or not.

A locally Cohen-Macaulay twisted cubic curve Cx is also arithmetically Cohen-
Macaulay, and its ideal is given by the vanishing of the 2 × 2 minors of a 3 × 2
matrix α with linear coefficients. There is a resolution of OCx :

K• : 0 −→ F ⊗OP3(−3)
α−→ E ⊗OP3(−2)

∧2αt−−−→ OP3 ,(3.6)

where F and E are vector spaces of dimensions 2 and 3 respectively. Intrinsically,

E =H0(P3, Ix(2)) ⊆ H0(OP3(2)),(3.7)

F = Ker(E ⊗H0(OP3(1))
mult−−−→ H0(OP3(3))).(3.8)

Lemma 3.7. Let Cx be Cohen-Macaulay, and let E and F be as above. Then there
is a functorial exact sequence:

0 −→ C→ End(F )⊕End(E)→ Hom(F,E)⊗H0(OP3(1))→ TH3(x)→ 0.

(3.9)

Proof. Recall the canonical identification TH3(x) = HomP3(Ix,OCx). The sequence
now follows from consideration of the total complex associated to the double com-
plex HomP3(K•,K•).

Next let us consider the curves Cx for x ∈ H3 which are not Cohen-Macaulay.
By [31], these are projectively equivalent to a curve with ideal generated by the
net of quadrics x0(x0, x1, x2) plus a cubic form q, which can be taken to be of the
form q = Ax2

1 +Bx1x2 +Cx2
2, with A, B, and C linear forms in C[x1, x2, x3]. If we

furthermore impose the conditions that B is a scalar multiple of x3, then the cubic
q is unique up to scalar. (See [16].)

Let Y ⊆ H3 be the locus of non-Cohen-Macaulay curves, and denote by I the
5-dimensional incidence correspondence {(p,H) ∈ P3 × P3∗ | p ∈ H}. By the
above, the quadratic part of Ix for x ∈ Y gives rise to a point of I. This gives a
morphism

g : Y → I,(3.10)

and again from the above it is clear that this makes Y a P6-bundle over I. Hence
Y is a divisor on H3, and it is clear how to compute the tangent spaces TY (x). To
get hold of TH3(x), we need to identify the normal direction of Y in H3.

For this, let Cx be the curve above, and consider the family Ct of Cohen-
Macaulay curves given for t 6= 0 by the matrix

αt =

 0 −x0

x0 0
−x1 x2

+ t

C B
0 A
0 0

 .(3.11)
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Then

det

 x1

αt −x2

0

 = t(Ax2
1 +Bx1x2 + Cx2

2) = tq,(3.12)

which implies that limt→0 Ct =Cx. The tangent vector ξ∈TH3(x) = Hom(Ix,OCx)
corresponding to this one-parameter family has this effect on the quadratic equa-
tions:

ξ(x2
0) = Bx0, ξ(x0x1) = −Bx1 − Cx2, ξ(x0x2) = Ax1.(3.13)

In particular, ξ 6= 0. (This argument actually shows that the blowup of the space
of determinantal nets of quadrics along the locus of degenerate nets maps isomor-
phically onto H3, cf. [13]).

3.3. The torus action. Consider the natural action of GL(n+1) on Pn. It induces
an action on Hn and on the bundles Ed for d ≥ 1. Let T ⊆ GL(n+1) be a maximal
torus, and let (x0, . . . , xn) be homogeneous coordinates on Pn in which the action
of T is diagonal. A point x ∈ Hn is fixed by T if and only if the corresponding
curve Cx is invariant under T , i.e., t(Cx) = Cx for any t ∈ T . This is easily seen to
be the case if and only if the graded ideal of Cx is generated by monomials in the
xi. In particular, the fixpoints are isolated.

We will identify all the fixpoints x ∈ Hn, and for each of them we will compute
the representation on the tangent space THn(x). The tangent space of the Hilbert
scheme is Hom(Ix,Ox), but special care must be taken at the points where Hn

meets another component of the Hilbert scheme. At these points, THn(x) is a
proper subspace of Hom(Ix,Ox).

By the choice of the coordinates (x0, . . . , xn), there are characters λi on T such
that for any t ∈ T we have t.xi = λi(t)xi. The characters λi generate the represen-
tation ring of T , i.e., if W is any finite dimensional representation of T we may, by
a slight abuse of notation, write W =

∑
ap0,...,pnλ

p0

0 λ
p1

1 · · ·λpnn , where the pi and
ap0,...,pn are integers.

Recall (3.1) the morphism Φ : Hn → G(3, n) which maps a point x ∈ Hn to
the 3-space spanned by the corresponding curve Cx. This morphism clearly is
GL(n + 1) equivariant, and its fibers are all isomorphic to H3. If Cx is invariant
under T , then so is its linear span. Hence up to a permutation of the variables, we
may assume that it is given by the equations x4 = · · · = xn = 0, so that x0, . . . , x3

are coordinates on the P3 ⊆ Pn corresponding to Φ(x). The torus T acts on P3

through the four-dimensional quotient torus T3 of T with character group spanned
by λ0, . . . , λ3.

The tangent space of Hn at a fixpoint x decomposes as a direct sum

THn(x) = TH3(x) ⊕ TG(3,n)(Φ(x)),(3.14)

and it is well known that

TG(3,n)(Φ(x)) = Hom(H0(IP3/Pn(1)), H0(OP3(1))) =
3∑
j=0

n∑
i=4

λjλ
−1
i .

(3.15)

Hence we need to study the tangent space of H3 = Φ−1Φ(x).
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Proposition 3.8. Any fixpoint of T3 in H3 is projectively equivalent to one of the
following, where the first four are Cohen-Macaulay and the last four are not :

(1) (x0x1, x1x2, x2x3), (5) (x2
0, x0x1, x0x2, x1x2x3),

(2) (x0x1, x1x2, x0x2), (6) (x2
0, x0x1, x0x2, x1x

2
2),

(3) (x0x1, x
2
2, x0x2), (7) (x2

0, x0x1, x0x2, x
2
2x3),

(4) (x2
0, x0x1, x

2
1), (8) (x2

0, x0x1, x0x2, x
3
2).

Proof. The action of T3 on P3 has the four coordinate points as its fixpoints, and the
only one-dimensional orbits are the six lines of the coordinate tetrahedron. Hence
any curve invariant under T3 must be supported on these lines. If Cx ∈ H3 is Cohen-
Macaulay and T3-fixed, it is connected, has no embedded points and is not plane.
Hence there are only four possibilities: (1) the union of three distinct coordinate
lines, two of which are disjoint, (2) the union of three concurrent coordinate lines,
(3) a coordinate line doubled in a coordinate plane plus a second line intersecting the
first but not contained in the plane, and finally (4) the full first-order neighborhood
of a coordinate line.

If x ∈ Y T3 , then by the description of the curves in Y we may assume that the
quadratic part of the ideal is (x2

0, x0x1, x0x2), meaning that Cx is a cubic plane
curve in the plane x0 = 0 which is singular in P = (0, 0, 0, 1) plus an embedded
point supported at P but not contained in the plane. For the cubic we have these
possibilities: (5) the three coordinate lines, (6) one double coordinate line through P
plus another simple line passing through P , (7) one double coordinate line through
P plus another simple line not passing through P , and (8) one coordinate line
through P tripled in the plane.

Remark 3.9. There are several fixpoints of each isomorphism class; in fact it is easy
to verify by permuting the variables that in a given P3 the numbers of fixpoints of
the types 1 through 8 are 12, 4, 24, 6, 12, 24, 24, 24, respectively. This is consistent
with the fact that the (even) Betti numbers of H3 are 1, 2, 6, 10, 16, 19, 22, 19, 16,
10, 6, 2, 1, so that the Euler characteristic of H3 is 130, see [13].

Proposition 3.10. Let x be one of the fixpoints 1–4. Then the representation on
the tangent space TH3(x) is given by

TH3(x) = Hom(F,E) ⊗ (λ0 + λ1 + λ2 + λ3)− End(E)− End(F ) + 1,

where the representations E and F are given in the following table:

Type Ix E F

(1) (x0x1, x1x2, x2x3) λ0λ1 + λ1λ2 + λ2λ3 λ0λ1λ2 + λ1λ2λ3

(2) (x0x1, x1x2, x0x2) λ0λ1 + λ1λ2 + λ0λ2 2λ0λ1λ2

(3) (x0x1, x
2
2, x0x2) λ0λ1 + λ2

2 + λ0λ2 λ0λ1λ2 + λ0λ
2
2

(4) (x2
0, x0x1, x

2
1) λ2

0 + λ0λ1 + λ2
1 λ0λ

2
1 + λ2

0λ1

Proof. Follows from Lemma 3.7, and the fact that E and F are equivariantly given
by (3.7) and (3.8).
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Proposition 3.11. Let x be one of the fixpoints 5–8. Let µ be the character of the
minimal cubic generator, i.e., λ1λ2λ3, λ1λ

2
2, λ2

2λ3, and λ3
2, respectively, and let

A =λ−1
0 (λ1 + λ2 + λ3) + λ3(λ−1

1 + λ−1
2 ),

B =λ3
1 + λ2

1λ2 + λ2
1λ3 + λ1λ

2
2 + λ1λ2λ3 + λ3

2 + λ2
2λ3.

Then the tangent space of H3 at x is given by

TH3(x) = A+ µ−1(B − µ) + (λ0λ1λ2)−1µ.

Proof. Let β = g(x) ∈ I be as in §3.3. In fact, all types 5–8 lie over the same fixpoint
β. The first term, A in the sum above, is easily seen to be the representation on
the tangent space TI(β). Now g : Y → I is a projective bundle, and the fiber
g−1(β) is the projective space associated to the vector space of cubic forms in
(x1, x2)2C[x1, x2, x3]. The representation on this vector space is B, and the second
term of the formula of the proposition is the representation on Tg−1β(x). Thus
the first two terms make up TY (x). The last term, (λ0λ1λ2)−1µ, is the character
on NY/H3

(x). This can be seen from equations (3.13): by checking each case, one

verifies that the normal vector ξ is semi-invariant with character (λ0λ1λ2)−1 times
the character of the cubic form q.

3.4. The computation. Let us briefly describe the actual computation, carried
out using “Maple” [10], of the numbers in the introduction. Hn has a natural torus
action with isolated fixpoints. By what we have done in the last section, we can
construct a list of all the fixpoints of Hn; there are 130

(
n+1

4

)
of these. For each of

them we compute the corresponding tangent space representation, by (3.14) and
Propositions 3.10 and 3.11.

A consequence of the fact that all fixpoints are isolated is that none of the tangent
spaces contain the trivial one-dimensional representation. Choose a one-parameter
subgroup ψ : C∗ → T of the torus T , such that all the induced weights of the
tangent space at each fixpoint are non-zero. This is possible since we only need to
avoid a finite number of hyperplanes in the lattice of one-parameter subgroups of T .
For example, we may choose ψ in such a way that the weights of the homogeneous
coordinates x0, . . . , xn are 1, w, w2, . . . , wn for a sufficiently large integer w. In our
computations (for n ≤ 8) we used instead weights taken from the sequence 4, 11,
17, 32, 55, 95, 160, 267, 441, but any choice that will not produce a division by
zero will do.

Since all the tangent weights of the C∗ action on Hn so obtained are non-trivial,
it follows that this action has the same fixpoints as the action of T , hence a finite
number.

By Proposition 3.4, we need to evaluate the class

δ = ctop(Ed1 ⊕ · · · ⊕ Edp) ·
m∏
i=1

γλi ∈ A4n(Hn).

Note that the isomorphism (3.4) is equivariant. Clearly H0(OCx(d)) is spanned
by all monomials of degree d not divisible by any monomial generator of Ix. Thus
we know all the representations Ed(x) for all fixpoints x ∈ Hn.

By Proposition 3.5, δ is a polynomial p(. . . , ck(Ed), . . . ) in the Chern classes of
the equivariant vector bundles Ed. To find a function f on the fixpoint set which rep-
resents δ, simply replace each occurance ck(Ed) by the localized equivariant Chern
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class σk(Ed,−), i.e., put f = p(. . . , σk(Ed,−), . . . ). Then the class is evaluated by
the formula in Theorem 2.2 (2).

4. The Hilbert scheme of points in the plane

Let V be a three-dimensional vector space over C and let P(V ) be the asso-
ciated projective plane of rank-1 quotients of V . Denote by Hr = HilbrP(V ) the

Hilbert scheme parameterizing length-r subschemes of P(V ). There is a universal
subscheme Z ⊆ Hr × P(V ). We will use similar notational conventions as in §3:
for example, if x ∈ Hr, the corresponding subscheme of P2 is denoted Zx, its ideal
sheaf Ix, etc. As in (3.3), for any integer n let

En = p1∗(OZ ⊗ p∗2OP(V )(n)),(4.1)

where p1 and p2 are the two projections of Hr ×P(V ). Since Z is finite over Hr,
all base change maps

En(x)
'−→ H0(Zx,OZx(n)).(4.2)

are isomorphisms. In particular, En is a rank-r vector bundle on Hr. Denote by L
the line bundle

L =
∧r
E0 ⊗

∧r
E∨−1.(4.3)

Then L corresponds to the divisor on Hr corresponding to subschemes Z meeting
a given line. We are going to compute integrals of the form∫

Hr

s2r(En ⊗L⊗m)(4.4)

for small values of r. Afterwards we will give interpretations of some of these
numbers in terms of degrees of power sum and Darboux loci in the system P(SnV )
of plane curves of degree n in the dual projective plane P(V ∨).

As usual, we start by identifing all the fixpoints and tangent space representations
for a suitable torus action. This has been carried out in more detail in [14]; the
following simpler presentation is sufficient for the present purpose.

As in §3.3, let T ⊆ GL(V ) be a maximal torus and let x0, x1, x2 be a basis
of V diagonalizing T under the natural linear action. The eigenvalue of xi is
a character λi of T . We identify characters with one-dimensional representations,
hence the representation ring of T with the ring of Laurent polynomials in λ0, λ1, λ2.
For example, the natural representation on the vector space V ∨ can be written
λ−1

0 + λ−1
1 + λ−1

2 .
Fixpoints of Hr can be described in terms of partitions, i.e., integer sequences

b = {br}r≥0 weakly decreasing to zero. Let |b| =
∑
r≥0 br. The diagram of a

partition b is the set D(b) = {(r, s) ∈ Z2
≥0 | s < br} of cardinality |b|. A tripartition

is a triple B = (b(0), b(1), b(2)) of partitions; put |B| =
∑
i |b(i)|, the number being

partitioned. The n-th diagram Dn(B) of a tripartition B = (b(0), b(1), b(2)) is defined
for n ≥ |B| as follows: Letting the index i be counted modulo 3, we put

Di
n(B) = {(n0, n1, n2) ∈ Z3 | n0 + n1 + n2 = n and (ni+1, ni+2) ∈ D(b(i))}

and Dn(B) = D0
n(B) ∪ D1

n(B) ∪ D2
n(B). Intuitively, the diagram Dn(B) lives in

an equilateral triangle with corners (n, 0, 0), (0, n, 0), and (0, 0, n), and originating
from the i-th corner there is a (slanted) copy of D(b(i)). When n ≥ |B|, these don’t
overlap. As n grows, the shape and size of the three parts of Dn(B) stay the same,
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whereas the area separating them grows. We may also define Dn(B) for integers
n < r by the same formula as above, but where the union is taken in the sense of
multisets, i.e., some elements might have multiplicities 2 or even 3. For n < r the
diagram Dn(B) may also stick out of the triangle referred to above.

A fixpoint x ∈ Hr corresponds to a length-r subscheme Zx ⊆ P(V ) defined by a
monomial ideal. Fix an integer n ≥ r and consider the set

Dn(Zx) = {(n0, n1, n2) ∈ Z3
≥0 |

∑
i

ni = n and
∏

xnii /∈ H0(P(V ), Ix(n))}.

This set is the n-th diagram of a tripartition B of r, the three constituent partitions
corresponding to the parts of Zx supported in the three fixpoints of P(V ). Con-
versely, starting with a tripartition of r, we may obviously construct a monomial
ideal of colength r in such a way that we get an inverse of the construction above.
Hence there is a natural bijection between HT

r and the set of tripartitions of r.
In terms of representations, it follows from the above that for a fixpoint x cor-

responding to the tripartition B = (b(0), b(1), b(2)), we have

En(x) = H0(OZx(n)) =
∑

(n0,n1,n2)∈Dn(B)

∏
λnii .(4.5)

For n < r, the summation index needs to be interpreted as running through the
multiset Dn(B). The representation on L in the same fixpoint is

L(x) =
∏

λ
|b(i)|
i .(4.6)

For n ≥ r, we also have the following formula for In := H0(P(V ), Ix(n)) in the
representation ring:

In = SnV −H0(OZx).

To compute the tangent space representation, we use a trick that is often useful
even in higher dimensions: functorial free resolutions. The tangent space of Hr in
x is canonically isomorphic to Ext1(Ix, Ix). Fix an integer n ≥ r + 2. Then there
is a canonical resolution of locally free OP(V )-modules

K• : 0→ K2 → K1 → K0

of Ix(n), where Kp = ΩpP(V )(p)⊗ In−p. As in (3.5), this is a special case of Beilin-

son’s spectral sequence. T acts on K•. Let S• be the total complex associated
to the double complex HomP2(K•,K•). Then the i-th cohomology group of S• is
Exti(Ix(n), Ix(n)) = Exti(Ix, Ix) for i = 0, 1, 2 [15, Lemma 2.2]. For i = 0 this
is C (with trivial action) and for i = 2 it is zero. Using the canonical identifica-

tions Hom(Ωp(p),Ωq(q)) =
∧p−q

V ∨, we end up with the following formula for the

tangent space representation in terms of the data of the tripartition B:

THr(x) = 1− (
2∑
i=0

(−1)i Exti(Ix, Ix))(4.7)

= 1− (S0 − S1 + S2)
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= 1− (Hom(In, In) + Hom(In−1, In−1) + Hom(In−2, In−2))

+ (λ−1
0 + λ−1

1 + λ−1
2 )(Hom(In−1, In) + Hom(In−2, In−1))

− (λ−1
0 λ−1

1 + λ−1
1 λ−1

2 + λ−1
2 λ−1

0 ) Hom(In−2, In)

Here are the computational results on the Hilbert scheme which will be used in
the following applications:

Proposition 4.1. Let En be as in (4.1). For 2 ≤ r ≤ 8, we have∫
Hr

s2r(En) = sr(n),

where sr(n) are as in Theorem 1.4.

Proposition 4.2. Let E−1 and L be as in (4.1) and (4.3). For r = 2, 3, 4, 5, 6, 7,
8, 9, 10, we have∫
Hr

s2r(E−1 ⊗L) = 0, 0, 0, 0, 2540, 583020, 99951390, 16059395240, 2598958192572.

Proof. For both propositions, apply Bott’s formula. The one-parameter subgroup
of T such that the λi have weights 0,1,19 will work. The contribution at each
fixpoint is given by (4.5), (4.6), and (4.7). Generate all fixpoints and perform the
summation using e.g. [10].

Remark 4.3. There is no difficulty in principle to evaluate (4.4) directly with sym-
bolic values of both n and m, for given values of r. For example, for r = 3, the
result is (n6 +24n5m+252n4m2 +1344n3m3 +3780n2m4 +5040nm5 +2520m6−
30n4−432n3m−2520n2m2−6048nm3−5040m4 +45n3 +504n2m+2268nm2 +
3024m3 + 206n2 + 1200nm+ 1512m2 − 576n− 1728m+ 384)/6. However, with
given computer resources, one gets further the fewer variables one needs. On a
midrange workstation, we could do this integral up to r = 5.

Remark 4.4. Tyurin and Tikhomirov [33] and Le Potier have shown that Propo-
sition 4.2 implies that the Donaldson polynomial q17(P2) = 2540. It may also be
deduced from the proposition that q21(P2) = 233208; see [33] or our forthcoming
joint paper with J. Le Potier.

4.1. Power sum varieties of plane curves. Closed points of P(SnV ) correspond
naturally to curves of degree n in the dual projective plane P(V ∨). In particular,
points of P(V ) correspond to lines in P(V ∨), soHr = HilbrP(V ) is a compactification
of the set of unordered r-tuples of linear forms modulo scalars.

Let r and n be given integers. Let U(r, n) be the set of pairs ({L1, . . . , Lr}, C)
where the Li ⊆ P(V ∨) are lines in general position, and C is a curve with equation
of the form

∑r
i=1 ai`

n
i ∈ SnV , where `i ∈ V ∨ is an equation of Li. Then the power

sum variety PS(r, n) is the closure of the image of U(r, n) in P(SnV ) under the
projection onto the last factor. To compute the degree of the image times the degree
p(r, n) of the map U(r, n)→ PS(r, n), we need to find a workable compactification
of U(r, n).

Recall from (4.1) the rank-r vector bundle En on Hr. It comes naturally with a
morphism SnVHr → En, which is surjective if n ≥ r−1. Now consider the projective
bundle over Hr:

P(En) ⊆ P(SnV )×Hr.(4.8)
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It is easy to verify that P(En) contains U(r, n) as an open subset. It follows that
p(r, n) times the degree of PS(r, n) is given by the self-intersection of the pullback
to P(En) of OP(SnV )(1). This is

∫
P(En)

c1(OP(En)(1))3r−1, and pushing it forward to

the Hilbert scheme, we get, almost by definition,
∫
Hr
s2r(En) [18, Ch. 3]. Together

with Proposition 4.1, this proves Theorem 1.4.

4.2. Darboux curves. These curves are also defined in terms of linear forms, and
we may take Hn+1 as a parameter space for the variety of complete (n + 1)-gons.
For a length-(n + 1) subscheme Z ⊆ P(V ), put E = H0(OZ(−1)) = H1(IZ(−1))
and F = H1(IZ). The multiplication map V ⊗ E → F gives rise to a bundle map
over the dual plane P(V ∨):

m : EP(V ∨)(−1)→ FP(V ∨).

If Z consists of n + 1 points in general position, the degeneration locus D(Z)
corresponds to the set of bisecant lines to Z, i.e., the singular locus of the associated
(n+1)-gon. The Eagon-Northcott resolution of D(Z) gives the following short exact
sequence:

0→ F∨P(V ∨)(−1)→ E∨P(V ∨) → L⊗C ID(Z)(n)→ 0,

showing that there is a natural surjection

SnV
∨ → H0(P(V ∨), ID(Z)(n))∨ ' H0(Z,OZ(−1))⊗ L.

Here L is the one-dimensional vector space det(F )⊗ det(E)−1.
Globalizing this construction over Hn+1 gives a natural map

p : SnVHn+1 → E−1 ⊗L
such that the closure of the image of the induced rational map P(E−1 ⊗ L) →
P(SnV ) is the Darboux locus D(n). By the lemma below, this rational map is
actually a morphism. Thus we may argue as in the power sum case and find that
p(n) times the degree of D(n) is

∫
P(E−1⊗L)

c1(O(1))3n+2 =
∫
Hn+1

s2n+2(E−1 ⊗ L).

This together with Proposition 4.2 implies Theorem 1.5.

Lemma 4.5. The bundle map p : SnVHn+1 → E−1 ⊗L over Hn+1 is surjective.

Proof. Assume the contrary. Since the support of the cokernel is closed and GL(V )-
invariant, there exists a subscheme Z in Supp Coker(p) which is supported in one
point. Without loss of generality we may assume that Z is supported in the point
x1 = x2 = 0.

Let E and F be as above, and let K ⊆ E be a subspace of codimension 1. For
a linear form ` ∈ V , let m` : E → F be multiplication by `. The assumption that
p is not surjective means that K can be chosen such that the determinant of the
restriction of m` to K is 0 for all ` ∈ V .

Multiplication by x0 induces an isomorphism E = H0(OZ(−1)) ' H0(OZ) '
C[x, y]/IZ , where x = x1/x0 and y = x2/x0. Under these identifications, if ` =
1− ax− by is the image of a general linear form, the kernel of m` is generated by
1/`.

Consider the set S consisting of all such elements `−1, with a, b ∈ C. The series
expansion `−1 = 1+(ax+by)+(ax+by)2+· · · shows that S generates C[x, y]/(x, y)m

as a vector space for all m ≥ 0. Indeed, a hyperplane Wm ⊆ C[x, y]/(x, y)m

containing the image of S would, by induction on m, dominate C[x, y]/(x, y)m−1.
Hence Wm could not contain (x, y)m−1/(x, y)m. But the closure of the image of
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S in C[x, y]/(x, y)m contains (ax + by)m−1 for all a, b ∈ C, hence its linear span
contains (x, y)m−1/(x, y)m, so this is a contradiction.

Since (x, y)m ⊆ IZ for m large, it follows that S generates OZ and hence E as
a vector space. Now for an ` such that `−1 /∈ K, the restriction of m` to K will be
an isomorphism. This leads to the desired contradiction.

5. Discussion

How general is the strategy of using Bott’s formula in enumerative geometry,
as outlined in these examples? The first necessary condition is probably a torus
action, although Bott’s formula is valid in a more general situation: a vector field
with zeros and vector bundles acted on by the vector field. It seems to us, though,
that the cases where one stands a chance of analysing the local behaviour of bundles
near all zeroes of such a field are those where both the vector field and its action
on the vector bundles are “natural” in some sense. If there are parameter spaces
with natural flows on them, not necessarily coming from torus actions, presumably
Bott’s formula could be useful.

It is not necessary that the fixpoints be isolated in order for the method to give
results. Kontsevich’s work [24] is a significant example of this. Another natural
candidate for Bott’s formula is the moduli spaces of semistable torsionfree sheaves
on P2. These admit torus actions, but not all fixpoints are isolated. One can still
control the structure of the fixpoint components, however. This may hopefully be
used for computing Donaldson polynomials of the projective plane, at least in some
cases.

A more serious obstacle to the use of Bott’s formula is the presence of singularities
in the parameter space. For example, all components of the Hilbert scheme of Pn

admit torus actions with isolated fixpoints, but they are almost all singular. The
main non-trivial exceptions are actually the ones treated in the present paper.
On the other hand, singularities present inherent problems for most enumerative
approaches, especially if a natural resolution of singularities is hard to find.

For all examples in this paper, one needs a computer to actually perform the te-
dious computations. We mentioned already that the number of fixpoints in the case
of twisted cubics in Pn is 130

(
n+1

4

)
. For the Hilbert scheme of length-8 subschemes

of P2, the corresponding number is 810. From the point of view of computer effi-
ciency, there are some advantages to the use of Bott’s formula in contrast to trying
to work symbolically with generators and relations in cohomology, as for example
in [16] or [22]. First of all, the method works even if we don’t know all relations,
as is the case for the Hilbert scheme of the plane, for example. But the main
advantage is perhaps that Bott’s formula is not excessively hungry for computer
resources. It is often straightforward to make a loop over all the fixpoints. The
computation for each fixpoint is fairly simple, and the result to remember is just
a rational number. This means that the computer memory needed does not grow
much with the number of fixpoints, although of course the number of CPU cycles
does. For example, most of the numbers of elliptic quartics were computed on a
modest notebook computer, running for several days.

Finally, Bott’s formula has a nice error-detecting feature, which is an important
practical consideration: If your computer program actually produces an integer
rather than just a rational number, chances are good that the program is correct!
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