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CAT(-1)-SPACES, DIVERGENCE GROUPS
AND THEIR COMMENSURATORS

M. BURGER AND S. MOZES

0. INTRODUCTION

A CAT(—1)-space is a metric geodesic space in which every geodesic triangle is
thinner than its associated comparison triangle in the hyperbolic plane ([B], [Bri-
Hal, [Gr]). The CAT(—1)-property is one among many possible generalizations
to singular spaces of the notion of negative curvature. Important examples of
CAT(—1)-spaces include Riemannian manifolds of sectional curvature k¥ < —1 and
their convex subsets ([B-G-S]), metric trees and piecewise hyperbolic cell complexes
([Mou],[Dal,[Hag],[Be 1],[Be 2],[B-Br]).

In this paper we establish certain superrigidity results for isometric actions of a
group A on a CAT(—1)-space in the following two settings:

A. The group A is a subgroup of a locally compact group G with I' < A <
ComgT, where T' < G is a sufficiently large discrete subgroup and ComgIl' = {g €
G : g7'T'g and T share a subgroup of finite index} is the commensurator of I' in G.

B. The group A is an irreducible lattice in G :=[]\_; Ga(ka), where each G,
is a semisimple algebraic group defined over a local field k..

The issues addressed in this paper are motivated on one hand by earlier work of
G.A. Margulis ([Ma]) dealing with the linear representation theory of A, where in
case A, G is a semisimple group and I" < GG a lattice, and on the other hand by the
results of Lubotzky, Mozes and Zimmer ([L-M-Z]) concerning isometric actions of
A on trees, where I' < A < ComgI', G is the group of automorphisms of a regular
tree and I' < G is a lattice.

Our approach to establishing superrigidity results is based on ergodic theoretic
methods developed by Margulis ([Mal,[Zi 3],[A’C-B]). In this context, the following
notion of boundary of a locally compact group I' will be useful: let B be a standard
Borel space on which I' acts by Borel automorphisms preserving a o-finite measure
class .

Definition. (B, p) is a weak I'-boundary if
(1) for any continuous affine action of I" on a separable locally convex space E and
any I'-invariant compact convex subset A C F, there exists a py-measurable
I'-equivariant map ¢ : B — A;
(2) the diagonal I'-action on (B X B, u x u) is ergodic.
The pair (B, u) is called a I'-boundary if condition (1) is replaced by
(1") the I'-action on (B, y) is amenable.
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When T is a closed subgroup of a locally compact group G, we say that a (weak)
I-boundary (B, i) is a (weak) (G, I')-boundary, if the I'-action extends to a measure
class preserving Borel G-action.

Let now Y be a proper CAT(—1)-space, that is, a CAT(—1)-space in which all
closed balls are compact. In particular, its group of isometries Is(Y') is locally
compact, second countable and Y admits an Is(Y)-equivariant compactification
Y := Y UY(00), where Y(c0) is the visual boundary of Y. A subgroup A < Is(Y)
acts c-minimally on Y if Y is the only nonempty A-invariant closed convex subset
of Y and a subgroup H < Is(Y) is called elementary if it admits an invariant subset
A C Y consisting of one or two points.

Theorem 0.1. Let T" be a discrete subgroup of a locally compact second countable
group G and A < G with T' < A < ComgI'. We assume that there exists a pair
(B, 1) which is a weak (G,T")-boundary for any subgroup of finite index T < T'. Let
Y be a proper CAT(—1)-space and 7 : A — Is(Y') a homomorphism such that w(A)
acts c-minimally on'Y and w(T) is not elementary. Then m extends to a continuous
homomorphism

Text : A — Is(Y) .

While it is true that the Poisson boundary of an “étalée” measure on a locally
compact group I' is an amenable ergodic I'-space (see [Zi 2]) we do not know whether
I" always admits a weak I'-boundary in our sense. Thus an important part of
our paper is devoted to the construction of pairs I' < G which admit a weak
boundary. This is carried out in the following setting: I' is a discrete subgroup of
the group of isometries Is(X) of a proper CAT(—1)-space X, G = Comypg x)I" and
we assume that I is a divergence group (see 6.3). The notion of a divergence group
is borrowed from Patterson—Sullivan theory of Kleinian groups ([Ni],[Pa],[Su]; see
also [Bou],[Co],[Co-Pal],[Ka]) which we generalize to CAT(—1)-spaces in Sections
1 and 6. As a consequence we obtain for every divergence group I' < Is(X) a
canonical measure class on X (00), the Patterson-Sullivan measure class (see 6.3,
definition) for which the following result holds.

Theorem 0.2. Let X be a proper CAT(—1)-space, T' < Is(X) a discrete divergence
group and G = Comygx)I.
(1) The Patterson-Sullivan measure class p on X(oo) is G-invariant and
(X (00), ) is a weak (G,T")-boundary for any subgroup of finite index T" < T.
(2) Let Y be a proper CAT(—1)-space and © : ' — Is(Y) a homomorphism
such that ©(T') is not elementary. Then there exists a unique T'-equivariant
measurable map ¢ : X(00) — Y (00) and it takes almost all its values in the
limit set Ly of m(I).

Remark. Tt follows from [Ad 2], that when Y is at most of exponential growth, the
action of any closed subgroup of Is(Y) on Y (00) is universally amenable. In this
case, Theorem 0.2 implies that (X (c0), u) is a (G, T')-boundary.

Corollary 0.3. Let X,Y be proper CAT(—1)-spaces, I' < Is(X) a discrete diver-
gence group, A < Is(X) a subgroup such thatT' < A < Comyyx)I" and m: A — Is(Y))
a homomorphism such that w(A) acts c-minimally and w(T') is not elementary. Then
7w extends to a continuous homomorphism

Toxt : A — Is(Y) .
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As examples of situations to which the above results apply we mention

(1) T < G is a lattice where G is a connected semisimple Lie group without
compact factors. When I is irreducible, the group ComgI' is nondiscrete if and
only if T' is arithmetic, in which case ComgI is dense in G ([Ma]).

(2) T < Aut 7 is a uniform tree lattice, that is, 7 is a locally finite tree and I'\T
is a finite graph. According to [Li], Comp ¢ 71 is dense in Aut 7 (see 8.1).

(3) T < Aut 74 is the fundamental group of the Cayley graph of the free abelian
group on two generators. Then I' is a divergence group whose commensurator is
dense in Aut 73 (see 7.5 and 8.2).

(4) T < Aut 7 is the fundamental group of the graph of groups (see 7.4 and 8.3)

Cy Ca (C2)?  (Co)®
{e} Co (C2)?

Again, I is a divergence group whose commensurator is dense in Aut 7.

Next we consider actions of irreducible lattices in higher rank semisimple Lie
groups on proper CAT(—1)-spaces. As a consequence of uniqueness results con-
cerning certain boundary maps (see Section 3) and Margulis’ factor theorem we
obtain

Theorem 0.4. Let I' be an irreducible lattice in G = [[,_, Ga(ka), where Gy is a
simply connected, kq-almost simple, kq-isotropic group and Y »_, ranky G > 2.
Let Y be a proper CAT(—1)-space and w : T' — Is(Y') a homomorphism such that
m(T) is not elementary and acts c-minimally on'Y. Then 7 extends to a continuous
homomorphism mext : G — Is(Y') which factors via a proper homomorphism of some
ko -rank one factor of G.

Corollary 0.5. Let T be an irreducible lattice in G = []\_, Ga(ka), where G4 is a
simply connected, kq-almost simple, kq-isotropic group and ranky Go > 2 for every
1< a<mn. LetY be a proper CAT(—1)-space such that Is(Y') has finite critical
exponent, and w : T' — Is(Y') a homomorphism. Then there exists a w(T")-fized point
mnY.

Remark. When G = G(R) (n = 1) and Y is a proper geodesic hyperbolic metric
space with at most exponential growth, Corollary 0.5 is due to S. Adams ([Ad 2],
Theorem 11.2).

This paper is organized as follows.

In Sections 1 and 6 we develop the Patterson-Sullivan theory for a closed sub-
group G < Is(X), where X is a proper CAT(—1)-space, and prove Theorem 0.2
in Section 6. In Section 2 we construct an Is(X)-equivariant center of mass map,
which associates a point in X to every positive measure p on X (oco) whose sup-
port contains at least three points. In Section 3 we establish uniqueness results for
I'-equivariant measurable maps defined on a weak I'-boundary with values in the
space of compact subsets of X (c0). In Section 4 we prove Theorem 0.1, while in
Section 5 we prove Theorem 0.4 and Corollary 0.5. Sections 7 and 8 are devoted to
the construction of divergence groups I' < Is(X) with dense commensurator, where
X is a locally finite tree.

1. PATTERSON’S CONSTRUCTION, AMENABILITY

1.1. Let X be a proper metric space, i.e. closed balls are compact. The group
Is(X) of isometries of X endowed with compact—open topology is locally compact
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and second countable. It acts on X with closed orbits and compact stabilizers.
Moreover, Is(X)\ X endowed with quotient distance is again proper.

The horofunction compactification X of X is the closure of the image of the
injective map

X — C(X)) ~

x— [dy] ,

where C(X) is the space of continuous functions on X with topology of uniform
convergence on compactas, C'(X)/ ~ is its quotient by the subspace of constant
functions and d, : X — R is the distance function to z € X (see [B-G-S], §3.1).
The action of Is(X) on X extends to a continuous action on X by homeo-
morphisms. For ¢ € X(o0) := X\X, any representative 8¢ € C(X) is called a
horofunction based at £. Observe that Be(x,y) = B¢(z) — Be(y) is independent of
the chosen representative J¢. Alternatively, (£, x,y) — Be(x,y) is the continuous
extension to X (00) x X x X of the function (z, z,y) — B, (x,y) = d(z, z) —d(y, 2).

1.2. Definitions. For a positive Radon measure m on X, the number

6 :=1inf{s € [0,00] : / e @Y dm(y) < 400}
b's

is independent of x € X and we call it the critical exponent of m. Observe that
6 may be infinite. The critical exponent é¢ of a closed subgroup G < Is(X) is by
definition the critical exponent of a positive G-invariant measure supported on a
G-orbit in X. Equivalently:

b¢ = inf{s € [0, 0] : / e @9 dg < 4o}
G

An o-dimensional density for a closed subgroup G < Is(X) is a continuous G-

equivariant map
p:X — MT(X(0))

T iy

such that

dpia (§) —aBg(
=e By v yeX .
dpy ()

1.3. A straightforward generalization of a construction due to Patterson (see [Pal)
leads to the result that any closed subgroup G < Is(X) of finite critical exponent &
has a 6-dimensional density. We now turn to the main points of the construction.

Proposition 1.1. Let m be a positive Radon measure on X, 6 its critical exponent,
and G :={g € Is(X) : gom = m}. Assume m(X) = +oo and 6 < +oo. Then there
exists a 6-dimensional density x — p, for G such that

supp p, C Supp mNX(x), Ve X .
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Lemma 1.2 ([Pa]). Let p be a positive Radon measure on [0,00) and assume
that its critical exponent 6 is finite and positive. Then there exists a continuous
increasing function h : Ry — Ry such that

(a) the integral [ e™'h(e')du(t) converges for s > 6 and diverges at s = 6§;

(b) ¥V e >0, 3ty such that ¥V t > tg and s > 1 h(st) < t¢h(s).

The proof given in [Pa] for p purely atomic goes over verbatim to the general
case.

Given a measure m on X satisfying the hypothesis of Proposition1.1, we define
for s > 6, z,20 € X, ( € X:

- o5z, (ed(LC)) -dm(¢)
= fX o—sd(@o,9) (ed(mo)y)) dm(y) s

(%) d,u&z(o :

where h = 1 if 6 = 0 and, if 6 > 0, h is the function associated by Lemma 1.2 to
the direct image of m via the proper map

X —  [0,00)
¢ — d(=o,0) .

Using the properties of h, one verifies that the family of G-equivariant continuous
maps -
X — Mt (X)

X [— ,Us,m

, 60<s<6+1,

is equicontinuous and uniformly bounded on compact sets. This family is therefore

relatively compact in the space of continuous maps C(X, MT(X)) endowed with

the topology of uniform convergence on compact sets. It follows from Lemma 1.2(a)

that any accumulation point  — p, of this family takes its values in M1 (X (00)).
We have for z,y € X and s > ¢:

d:us,r(<> _ e—sBC(m,y) . h(d(%,C))

(s4) Clla’6)

dpts,y(C) h(d(y,¢))

The function ¢ — % extends continuously to X and its value on X (c0) is
1 (Lemma 1.2(b)). The family of functions

X ——R
CI—>€_SB<($7y)7 6§ S S 6+17

is compact. It follows then from (xx) that any accumulation point z +— pu, of the
family {x — ps 5 : 6 <s <6+ 1} satisfies ‘;ZZ—ES = e~ 9B:(@v) and is therefore a
0-dimensional density for G.

1.4. Let G < Is(X) be a closed subgroup with finite critical exponent ¢. Fix a
left Haar measure dg on G, let m be its direct image via the orbital map G — X,
g — g%, and T — gz, s > 0, the corresponding family of maps defined in 1.3
(). Let © — p, be some limit density of the above family and p its measure class.
Then we have
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Proposition 1.3. For any compact metric space P on which G acts continuously,
there exists a p-measurable G-equivariant map

¢ : X(00) = MY(P) .

Proof. The diagonal action of G on X x P is continuous and the G-orbits in X x P
are closed with compact stabilizers. Fix pg € P and let m be the direct image of dg
via the orbital map G — X x P, g — g(zo,po). For s >6, 2 € X, (€ X,p € P,
define:

—sd(w C)h( d(x,¢ )dm(c p)

[y —sd(zo,y) | (ed(roy)dm( )

Let m, : MT(X x P)—-M Jr( ) be the continuous G-equivariant map induced by
the projection 7 : X x P — X. Observe that m, (Jts,0) = ps,- We may assume that
for some sequence s,, — 8, the sequence {x — ps, » : n € N} converges to  — py
and that {x — [is, . : n € N} converges to a continuous G-equivariant map

dfis, (¢, p) =

X — M (X(c0) x P)
T — flg

with m, (fi) = pz, V @ € X. One verifies, as in the proof of Proposition1.1, that

dﬁm(ﬁ,p) —6B¢(
2B T — o7 0Be@y) vy gy e X, (€,p) € X(00) X P
dpiy (&, p) Y (€.p) € X(o0)

In particular,
d(g+1)(&:P) _ _spe
S e Belen) v g e G

Fix z € X. Since . (fiz) = p, there is a measurable map ¢ : X (00) — M(P)
such that for all ¢ € C(X(o0) x P):

/ B(E,p)dfin (€,D) = /X n© /P BEP)dP(E) (D) -

For all g € G we have

/ dji (€)™ 0Be(m0) / B(E.p)d(E)(p)
X (o0) P
- / D&, p)e B om D) i, (6, p) = / (g€, gp)dfia (£, p)
_ / 1o (€) / (gé. gp)dp(E) (p)
X (c0) P
_ / dytg (€)o7 / B(E gp)dp(g ™€) (p) -
X (o0) P

Applying this to (£, p) = 11(§)¥2(p), we get

/w )dp(& /w gp)de(g1€)(p)

and hence ¢ is G-equivariant. Q.E.D.

As an immediate consequence of Proposition 1.3, we have
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Corollary 1.4. For any continuous affine action of G on a locally convex separable
space E and any compact conver G-invariant subset A C E, there exists a pi-
measurable G-equivariant map ¢ : X (00) — A.

We refer to [Ad 1], Theorem 5.1, for related results on the amenability of the
action of a hyperbolic group on its boundary.

Lemma 1.5. Let X be a proper metric space and G < Is(X) a closed subgroup
with finite critical exponent 6. Then, for any closed subgroup H < G we have
o < d¢.

Proof. Let dg, resp. dh, be left invariant Haar measures on G, resp. H, and
q : G — (0,00) a continuous function such that q(gh) = q(9)Ac(h)Am(h)™1,
g € G, h € H, where Ag, resp. Ap, are the modular functions of G, resp. H.
Then (see [Re]) there is a G-quasi-invariant positive Radon measure 1 on G/H such

that
/G f(g)dg = /G ) /H a(gh) f(gh)dh

for any positive measurable function f. Using this formula one verifies for s > dg:

—5 T, T . — —s “lrx
[t nag= [ au@ao)dale™) [ e an
G G/H H

In particular, fH e~sd(hg™ " =.2) g is finite for some g, hence s > 6p. Q.E.D.

Proposition 1.6. Let X be a proper CAT(—1)-space and G < Is(X) a closed
subgroup with finite critical exponent. For every £ € X(00), the closed subgroup
Stabg (&) is amenable.

Proof. Fix a base point p € X and fix a choice of horofunctions 3,, n € X (00), such
that 8,(p) = 0. Let H < Stabg(§) be the kernel of the continuous homomorphism
X¢ : Stabg(€) — R defined by

Be(gx) — Pe(x) = xe(9), V& € X, g € Stabg(£) -

Since R is abelian and H is closed normal, it suffices to show that H is amenable.
Let m be an H-invariant measure supported on the orbit H - p C X. If m is finite,
then, since Stabg(p) is compact, H admits a finite Haar measure and hence is
compact. Assume m(X) = +oo. We claim that supp m N X (co0) = {£}. Since
supp m is unbounded and contained in H - p we have

0 # X (c0) NEUpp m C X (00) N B 1(0) .

For z € B¢ 1(0), a computation shows that the Gromov scalar product of z and &
w.r.t. p equals

(= O = 5d(z.1)

Therefore, if n € ﬁgl(O) N X (c0), we have

(n-&)p =+
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and hence n = &, which proves the claim. Let P be a compact metric space on
which H acts continuously. Since H has finite critical exponent (Lemma 1.5), it
follows from Propositions 1.1 and 1.3 that there exists an H-equivariant measurable
map ¢ : {{} — MY(P), and therefore an H-invariant probability measure on P.
Q.E.D.

Remark. The product X = [0, 00) x H? with Riemannian metric (dt)? + e‘mdy%lz,
where H? denotes the upper half-plane, is a CAT(—1)-space on which SL(2, R) acts
isometrically, fixing a point in X (c0).

Proposition 1.7. Let X be a proper geodesic space such that Is(X)\X is compact.
Then Is(X) has finite critical exponent.

Proof. Fix zg € X, D > 0 such that J,c; 9B(20, D —2) = X and F' C G finite
such that J,cp 9B(z0, D —2) D S(zo, D).

For every € X with d(xo,x) > D there exists g € F such that for all h € Uy :=
{¢' € G:d(g'zo, gx0) < 1}, d(hzo,z) < d(x,2)—1. Indeed, the point p € S(zg, D)
on the geodesic segment joining xo to x verifies d(gzo,p) < D — 2 for some g € F.
This implies d(gxo,x) < d(zg,z) — 2 and hence d(hxzg,z) < d(xg,x) — 1, for all
heU,.

Fix R > 0 such that h='B(zo,D) C B(zo,R), Vh € U := Ugyer Ug. For
f € LYG) and F € L'(X,m) define

[ F(r) = /G F(g)F(g™ " x)dm(g) .

where m denotes a Haar measure on G and m the corresponding G-invariant mea-
sure on G -xg C X. For n € N, set

Jn(T) == XU * ... % XU * XB(a0,R) (T)
and « = minger m(Uy). We claim that

folx) > a™, VaeB(xzg,R+n).
By induction on n, the case n = 0 is obvious. Now fix n > 1. For every z €
B(zg, R+n)\B(xg, D) there is g € F such that d(hxg,r) < d(zg,z)—1 < R+n—1
for all h € U,; and hence f,—1(h™'z) > o™~ !. For x € B(x,D) and h € U,

h=lz € B(xo, R) and therefore f,,_1(h~1z) > a™~!. For x € B(xg, R+ n) we have
therefore

fo(z) = /GXu(h)fn_1(h_1$)dm(x) >a-a"l=a".

The above claim now implies
o"m(B(zo, R+ n)) < /fn(x)dﬁ(z) =m(U)" - m(B(zo, R))

which shows that T" — m(B(z,T)) has a finite rate of exponential growth and,
hence, the critical exponent of Is(X) is finite. Q.E.D.
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2. CENTER OF MASS

Let Y be a proper CAT(—1)-space, Is(Y') its group of isometries and M (Y (o0))
the space of positive measures on Y (co) whose support contains at least three
points. In this section we prove

Proposition 2.1. There is an Is(Y)-equivariant map
Cm: M (Y(0)) — Y,

whose restriction to any Is(Y)-orbit in My (Y (00)) is continuous.

We begin by considering the action of Is(Y) on F,,Y (00) := {S C Y(c0) : |S| =
n}. The space F,Y(c0) being an open subset in the space of all unordered n-
tuples of points of Y (c0) inherits a locally compact topology for which Is(Y') acts
continuously. For S € F,,Y(c0) and y € Y, define

FS(:U) = Z d(ya [g,y]),

E,ves
EFv

where d(y, [£,v]) is the distance from y to the geodesic [¢, V] connecting £ to v. For
all g € Is(Y) and S € F,,Y (c0), we have Fyg = Fgog.

Lemma 2.2. For n > 3, the group 1s(Y') acts on F,Y (00) with closed orbits and
compact stabilizers.

Proof. We observe first that for n > 3 and K C F,Y(c0) a compact subset, the

continuous function
KxY — R

(S,y) +— Fs(y)

is proper. To show the lemma, it suffices to show that given S € F,Y (c0)
and a sequence (gn)nen in Is(Y) with lim, . g,S = T for some T € F,Y (00),
the sequence (gn)nen is relatively compact. Let A = min{Fr(y) : y € Y}, V
a compact neighborhood of T in F,Y(c0) and N such that g,S € V for all
n > N. Since {(g.5,y) : Fy,s5(y) < A+ 1} is relatively compact in V' x Y, the
set U,,»n 9n 1 F5 ([0, A + 1]) is relatively compact and hence (g, )nen is relatively
compact. Q.E.D.

Lemma 2.3 (Compare with [Ful, [L-M-Z]). (a) Let u, v be probability measures on
Y (c0) and (gn)nen a nonrelatively compact sequence in Is(Y') such that

lim g, *pu=v.
n—oo

Then the support of v has at most two points.
(b) M3 (Y (0)) is open in M (Y (c0)). The action of Is(Y) on M3 (Y (00)) has
closed orbits and compact stabilizers.

Proof. (a) Without loss of generality we may assume that (g, ),+n tends to infinity.
Suppose that the support of v contains more than two points. This would imply
that there exist three distinct points & € Y (o0), 1 < i < 3, and three distinct
points ¢; € Y (o) such that for some subsequence (hp)nen Of (gn)nen we have
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limy, 00 h - ¢ = &; for 1 <4 < 3. This however implies that the sequence (hy)nen
is bounded (Lemma 2.2) which is a contradiction.
(b) follows from (a). Q.E.D.

We observe now that if C' : M3 (Y (00)) — Y is any Is(Y)-equivariant map, its
restriction to any Is(Y')-orbit is continuous. Indeed, by Lemma 2.3(b), the orbital
maps

Is(Y)/Stab(v) — Is(Y)-v
Is(Y)/Stab(C(v)) — Is(Y)-C(v), ve M (Y(0)),
are homeomorphisms, C is Is(Y')-equivariant, and Stab(v) C Stab(C(v)).

We turn now to the construction of such a map.

A. For a bounded subset E C Y we let ct(E) denote the center of the unique
closed ball of minimal radius containing F.

B. For a finite subset S C Y (c0) with |S| > 3, the function Fyg is proper convex
and MinFs := {y € Y : Fg(y) = inf Fg} is therefore nonvoid bounded convex and
closed. Set ¢(S) := ct(MinFy).

Given now pu € M;(Y(oo)) a purely atomic measure and a1 > ... > a, > ...
the sequence of positive values taken by the function p — u(p), the set p, :={p €
Y (o0) : u(p) > as} C Y(oo) is finite and contains at least three points. We define
Cmp) i= c{py).

C. To a probability measure p on Y (00) we associate the convex function (Comp.
[Zi2])

Fuly) == / Bo(y)dp(p) ,
Y (00)
where 3 : Y (00) x Y — R is a fixed horofunction with 8,(p) = 0 for all p € Y (00),
and p is a fixed point in Y.

Lemma 2.4. Assume that p(p) < 3 for all p € Y(oc0). Then F, is a proper
function.

Proof. Since F), is convex, it suffices to show that for any geodesic ray r : [0, 00) —
Y starting at p, limy—.oc F,(r(t)) = +00. Set £ = r(+00) and define for R € N

V(R) :={peY(0):Bp(r(t+s)) —Bs(r(t)) >s—1,YVt>R, Vs>0}.

For every p # £ the geodesics [p, {] and r are asymptotic and therefore

Yo} = J V(R).

ReN

Since p(£) < %, there exists R € N with u(V(R)) > 3. We have then, for t > R
and s > 0,

B, (r(t + 5)) — Fu(r(t) = /V o [ 9) B0 ()
+ / Bo(r(t + 5)) — Bo(r(£))] dia(p)
Y (c0)\V(R)

(s = Du(V(R)) — 5 - u(Y(0)\V(R))

>
Z2u(V(R) —1)s—1,
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which shows that lim; .o F),(r(t)) = +o0. Q.E.D.

For a measure p satisfying the hypothesis of Lemma 2.4, the set Min F,, =
{y € Y : F,(y) = inf F,,} is therefore nonvoid, convex and compact. Observe
that, for g € Is(Y), the functions Fy,, and F,og~" differ by a constant and hence
Min Fy,, = g(Min F,).

Proof of Proposition 2.1. For € M3 (Y (00)), let u = pia + pup be the decomposi-
tion of u into its purely atomic part 4 and nonatomic part pp.

If up = 0, we set Cm(u) := Cm(ua) as defined in B. If up # 0, the measure
v=up/up(Y(c0)) satisfies the hypothesis of Lemma 2.4 and we define

Cm(u) = ct(Min F,) .

Q.E.D.

Corollary 2.5. Let Y be a proper CAT(—1)-space.
(1) A subgroup H < Is(Y') is elementary if and only if there exists an H-invariant
probability measure on Y (00).
(2) A closed subgroup H < Is(Y') with 6y = 0 is elementary.
(3) Assume that Is(Y') has finite critical exponent. A closed subgroup H < Is(Y)
is amenable if and only if it is elementary.

Proof. (1) If H is elementary, there exists A C Y, an H-invariant subset with
1 <|Al <2. IfANY # 0, then H is compact and hence fixes a probability measure
on Y (c0). If A C Y(c0), then [A[7! 37, _ A &, is an H-invariant probability measure
on Y (oo). Conversely, let u € M!(Y(c0)) be an invariant probability measure.
Then, either | supp p| < 2 and H is elementary or u € M3 (Y (00)) and H fixes
Cm(p) € Y (Proposition 2.1).

(2) Proposition 1.1 implies that there exists a 0-dimensional density for H and
hence an H-invariant probability measure on Y (c0); so H is elementary by (1).

(3) If H is amenable, it fixes a probability measure on Y (c0) and is therefore
elementary. If H is elementary, it contains a normal subgroup of index at most 2
which fixes a point in Y. It follows then from Proposition 1.6 that H is amenable.
Q.E.D.

3. BOUNDARY MAPS

3.1. Given a proper CAT(—1)-space X, a subgroup G < Is(X) and z € X, the
set G-z N X (oc0) is independent of 2 € X; it is the limit set Lg of G. If G does
not fix a point in X (co), any nonvoid G-invariant closed subset A C X (c0) verifies
A D Lg and therefore G acts minimally on Lg ([Gh-H], 8.8§3, Proposition 25).
In particular, for any closed nonvoid convex G-invariant subset C' C X, one has
C(0) D Lg and the G-action on Co(Lg) C X, the closed convex hull of Lg, is
therefore c-minimal. One has the inclusion L5 C Co(Lg)(o0); we do not know if
equality holds in general (see however [Bow]).

Let now I' be a countable group acting by Borel automorphisms on a standard
Borel space B, preserving a o-finite measure class p, and let 7 : I' — Is(X) be a
homomorphism. Denote by K (X (00)) the space of closed subsets of X (c0) endowed
with the Hausdorff topology.
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Proposition 3.1. Assume that the diagonal I'-action on (B x B, x ) is ergodic
and that ©(T') does not fix a point in X. Let F: B — K(X(00)) be a I'-equivariant
measurable map. Then, either F(b) D Ly for a.e. b € B, or |[F(b)] =1 for a.e.
beB.

Corollary 3.2. Assume that the diagonal T-action on (B X B,u X u) is ergodic
and that w(T) is nonelementary. Then any T'-equivariant measurable map

®: B — M (X(0))

takes almost all its values in the subset of Dirac measures. In particular, there
erists at most one I'-equivariant measurable map

v: B — X(00) .

3.2. We begin with the following observation: for &1,&2,£3,&4 € X (00) with & #
§iv1, 1 < i < 4, where {5 = &, the quantity [§1,82,83,8] = (&1 - §2)a —
(&2 - &3)z + (&3 - &4)x — (&4 - &1)x is well defined and independent of x € X and
hence one has [g&1, g€2, 93, 9€4] = [£1,£2,83,84), V g € Is(X). Given two closed
subsets F, F» C X (00), containing each at least two points, the quantity

h(Fy, Fy) := min{|[£1,62,83,&4]| 1 &1, & € F1, &,8 € Fa, & # i1}
is finite and h(gF1, gF») = h(F1, Fy) V g € Is(X).

Proof of Proposition 3.1. Assume that there is { € X (o0) such that Be := {b€ B :
F(b) # &} has measure 0. Since I' is countable, we can find a I'-invariant subset
E C B of full measure such that F'(b) 5 £ for all b € E. The closed 7(T')-invariant
subset (), F(b) C X (o0) is then nonvoid and hence contains Ly (see 3.1).

Assume now that Be has positive measure for every £ € X(oc0) and |F(b)| > 2
for a.e. b € B. We wish to obtain a contradiction. Let r be the essential value of
the T-invariant measurable function B x B — R, (b,b") — h(F(b), F(V)).

Since 7(T") does not fix a point in X, the limit set L)y contains at least two
points; in particular there exists v € I' such that 7 () is hyperbolic (see [Gr], 8.1.A).
Let &4, resp. £_, denote the attractive, resp. repelling, fixed point of 7() in X (c0).
We claim that for every (b,b') € Be, X Be_, limy, oo h(F(b), w(y)"F(b")) = +00.

Indeed, fix € X; since £, ¢ F(b) there is a neighborhood Vj of £ such that

C:=sup{(& &)z : &1 € Vo, & € F(b)} < +o0.

For n € N, let V,, C Vi be a neighborhood of &4 such that (& - &), > n for
all &,& € V,,. Since F(V') ZF £_, there exists kg > 0 such that for all k& > ko,
7(y)*F(b') C V,. The definition of h implies then h(F(b), w(7)*F(b)) > n — 2¢,
which proves the claim.

For S := {(b,0') € Bx B : h(F(b), F(b')) > r + 1}, the claim implies

U (6,’7_")5 > B£+ X B§7 .
n>0

Since B¢, X Be_ has positive measure, S must have positive measure, contradicting
the definition of r. Therefore |F'(b)| =1 for a.e. b € B. Q.E.D.
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Proof of Corollary 3.2. Composing ® with the Borel map supp: M (X (c0)) —
K (X (00)), which to every probability measure associates its support (see [A’C-B],
section 4), we obtain a I'-equivariant measurable map F : B — K(X(c0)). If
|F'(b)] > 1 for a.e. b€ B, then F'(b) D Ly for a.e. b € B (Proposition 3.1).
Since 7(I") is nonelementary, |£ry| > 3 and hence ® takes almost all its values in
M2}(X(c0)). Composing ® with the center of mass map (see Lemma 2.3 (b)) and
Proposition 2.1), we obtain a I'-equivariant measurable map f : B — X. Let d be
the essential value of the I'-invariant measurable function (b,0") — d(f(b), f(¥')).
There exist b € B and a I'-invariant subset £ C B of full measure, such that
d(f), f(t') =d, Vb € E. Hence {f(t/) : b/ € E} is a n(I')-invariant bounded
subset of X, which contradicts the assumption that 7(T") is nonelementary. This
shows |F(b)| = 1 for a.e. b € B and hence ® takes almost all its values in the
subset of Dirac measures. If ¢1,¢9 : B — X(00) are I'-equivariant measurable
maps, ®(b) := %6%(1,) + %6472(6) must be a Dirac measure for a.e. b € B, hence
p1 = P2 a.e. Q.E.D.

4. SUPERRIGIDITY FOR COMMENSURATORS

In this section we prove Theorem 0.1. The main ingredients in its proof are the
uniqueness results (Corollary 3.2) of §3 and the general Proposition4.1 below. This
proposition will also be used in the proof of Theorem 0.4.

Proposition 4.1. Let G be a locally compact, second countable group, B a standard
Borel space, and G x B — B a Borel action preserving a o-finite measure class (.
Let A < G be a dense subgroup, Y a proper CAT(—1)-space and w : A — Is(Y)
a homomorphism such that w(A) is nonelementary and acts c-minimally on Y.
Assume that there exists a A-equivariant measurable map ¢ : B — Y (o0). Then w
extends continuously to G.

Remark 4.2. We begin with the following general observation which will again be
needed in the proof of Theorem 0.4. Let (S,m) be a o-finite measure space and
F(S, M'(Y (00))) the space of measurable maps from S to M'(Y(c0)), endowed
with the topology of convergence in measure. This space is metrizable complete,
and from the Is(Y)-action on M!(Y (c0)), one obtains a continuous Is(Y)-action on
F(S, M*(Y (c0)). Clearly, the set

Fy:={f e F(S,M' (Y(x))):{s€S: f(s) € M3(Y(00))} has positive measure}

is an open subset of F(S,M!(Y(c0))). Moreover, since the Is(Y)-orbits in
M3 (Y (00)) are closed and have compact stabilizers, the same holds for the Is(Y)-
orbits in F3. In particular, for every f € F3, the orbital map induces a homeomor-
phism

Is(Y)/Stab(f) — Is(Y).f C F3 .

Proof of Proposition 4.1. Observe first that it is sufficient to prove the proposition
in the case where A is countable. Let now « be a probability measure in the class of
. Since supp ¢« (g«a) = supp p.« for all g € G and since 7(A) is nonelementary,
we have ¢, (g.a) € M3 (Y (c0)) for all g € G. The map

®: G — F(G, M3(Y(c0)))

defined by ®(g)(¢’) := ¢«(gg.), g,9' € G, is measurable and A-equivariant. It
follows then from Remark 4.2 and the fact that A acts ergodically on G, that the



70 M. BURGER AND S. MOZES

essential image of ® is contained in one Is(Y)-orbit. Hence, there exists go such
that for almost all g € G: ®(gog) € Is(Y).P(go). Observe that the stabilizer of
®(go) in Is(Y) is trivial. Indeed, for h € Is(Y) with h®(go) = P(go), we have:
ho«(gog«a) = px(gogs) for a.e. g € G. In particular there exists g1 € G such that
for all A € A, hr(A)rp(g150) = T(N)x¢(g1+). Hence h fixes pointwise the m(A)-
orbit in Y of Cm(p.(g1.)) and its closed convex hull; since w(A) acts c-minimally,
the latter coincides with Y. Hence h = e.

We obtain in this way a well-defined measurable map 7 : G — Is(Y"), such that
for a.e. g € G: ®(gog) = 7(9)P(go). Using Fubini’s theorem one shows that
T is a measurable homomorphism and therefore coincides a.e. with a continuous
homomorphism 7 : G — Is(Y). The A-equivariance of ® implies then that g —
7(gg *g90) gives the continuous extension of 7 to G. Q.E.D.

Proof of Theorem 0.1. Since (B, pu) is a weak (G,T')-boundary, there exists a T'-
equivariant measurable map ¢ : B — M!(Y (c0)) which takes almost all its values
in the subset of Dirac measures (Corollary 3.2), thus providing a I'-equivariant
measurable map ¢ : B — Y (00).

For A € A, the maps ¢ and m(A\)~!opo\ are both equivariant w.r.t. the subgroup
A7ITANT which is of finite index in I'. The assumption that any subgroup of finite
index in T" acts ergodically on B x B and Corollary 3.2 imply then that ¢(b) =
7(A)"tp(Ab) for a.e. b € B and all A € A. Tt follows then from Proposition4.1 that
7 extends continuously to A. Q.E.D.

5. LATTICES IN HIGHER RANK GROUPS AND CAT(—1)-SPACES

In this section we prove Theorem 0.4. An ingredient in its proof is the deter-
mination of Furstenberg boundaries of G(k), where G is a reductive group defined
over a local field k. These results (Proposition 5.1, Corollary 5.2) are well known
when k = R, C (see [Fu], §4); for ease of reference, we have included proofs valid
for arbitrary local fields. Now we fix some notations used throughout this section.

For a connected reductive group G defined over k, let S denote a maximal k-split
torus of G, yW := N(S)/Z(S) the Weyl group relative to k, P a minimal parabolic
k-subgroup containing Z;(S), P~ the opposite parabolic k-subgroup containing
Zc(S) and U (resp. U~) the unipotent radical of P (resp. P~). Let @ be the set
of roots of G w.r.t. S, which we assume given the ordering such that P is associated
to ,®T, and let A be the corresponding set of simple roots.

Proposition 5.1. Let G be a connected reductive group defined over a local field
k and Q@ < G a parabolic k-subgroup. The homogeneous space G(k)/Q(k) is a
Furstenberg boundary of G(k).

Proof. We may assume @ D P. Let u be a G(k)-quasi-invariant probability measure
on G(k)/P(k) and v its direct image on G(k)/Q(k) via the canonical projection
map. It suffices to show that p can be contracted to a Dirac mass. Indeed, this
implies that v can be contracted to a Dirac mass and, since supp v = G(k)/Q(k),
that every probability measure on G(k)/Q(k) can be contracted to a Dirac mass
(see [Az], Lemmall. 11).

Let
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be the Bruhat decomposition of G(k) and o € ;W the longest element. It follows
from [Bo] (Corollary 21.28 and Theorem 21.26) that U(k)oP(k) is open and dense
in G(k). One concludes, using [Ber-Ze], 6.15, Theorem A, that the orbit map
Ulkk) — G(k)/P(k)
u —  uoP(k)
identifies U (k) with an open dense subset V of G(k)/P(k).

Fix ¢ € S(k) such that |a(t)] <1V « € A. For any eigenvalue A of Ad(t)|Licu,
we have then || < 1. It follows then from the existence of an S-equivariant
k-isomorphism of algebraic varieties U — Lie(U) (foll. from [Bo-Ti], Theorem
4.15, and [Bo-Sp], Corollary 9.12, see [Ma], Proposition 1.3.3 (1)) that Int(¢) acts
contracting on U(k) and hence lim, oot} ply = (V) - 65p(1)-

It remains to show that the u-measure of the complement of V' is zero, or what
amounts to the same, that the Haar measure of U(k)wP (k) is zero for all w # o.

Fix w € yW, 1@, = {a € 1 ®F : w™l(a) < 0}, 1Py = {@ € x@T : w™ () > 0}
and let U!, U, be the unipotent subgroups of U associated resp. to p®.,, rP,.
Then U = U, - U,, and we have w™ U, w C U™, w™'U,w C U (see [Bo], 21.14).
Set U/ := w™tU! w so that w™ U (k)wP(k) = U (k) - P(k). The map

U=(k) x P(k) — U~(k)-P(k) C G(k)
(ﬂv p) — u-p
is a homeomorphism onto the open dense subset U~ (k) - P(k) and in these coordi-
nates the restriction to U~ (k) P(k) of the Haar measure of G(k) is du x dp where du
is a left-invariant Haar measure on U~ (k) and dp a right invariant Haar measure
on P(k).

If now U(k)wP(k) has positive Haar measure, then U/ (k) - P(k) has positive
dux dp measure and hence by Fubini’s theorem, U/ (k) is a closed subgroup of U~ (k)
of positive du measure. In particular, U (k) is open in U~ (k) and so is U]} (k)P(k)
in U~ (k)P(k). The later set being open in G(k), we deduce that U(k)wP(k) is
open in G(k) and hence, since U(k)oP(k) is open dense, we must have w = o.
Q.E.D.

Corollary 5.2. Let G be a connected reductive group defined over a local field
k, @ a parabolic k-subgroup and p a G(k)-quasi-invariant probability measure on
G(k)/Q(k). The map P : L*(G(k)/Q(k), n) — C(G(k)), defined by Pf(g) :=
fG(k)/Q(k) flgz)du(z), is injective.
Proof. Since G(k)/Q(k) is a Furstenberg boundary, the map P restricted to the
subspace of continuous functions is injective.

Let f € L*(u) with Pf = 0. For all h € G(k) and F € Cyo(G(k)) a continuous
function of compact support, we have:

/ dyu(z) / f(gha)F(g)dg = / Pf(g)F(gh™")dg =0 .
G(k)/Q(k) G(k) G(k)

Here dg denotes a right-invariant Haar measure on G(k). Since G(k) acts transi-
tively on G(k)/Q(k), the function

up(r) = f(gz)F(g)dg
G(k)

is continuous and the above equality reads Purp = 0. Hence up = 0 for all F' €
Coo(G(k)) and therefore f = 0. Q.E.D.
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Lemma 5.3. Let G be a connected, simply connected, almost k-simple group and
H a locally compact second countable group. Any nontrivial continuous homomor-
phism 7 : G(k) — H is proper.

Proof. Assume that 7 is not proper. In particular, rank;G > 1. Let S’ := {t €
Sk) : Jat)] < 1,V a € A} and M a compact subgroup such that G(k) =
MS'M (see [Ma], I. Theorem 2.2.1 and references therein). Since 7 is not proper,
there exists a sequence (¢, )nen in S, leaving every compact subset of S’, and such
that h := lim, . 7(t,) € H exists. Passing to a subsequence, we may assume
lim, o a(t,) = 0 for some a € A. Hence, there exists v € U, u # e with
lim,, . thut, ' = e and hence e = lim, o, w(t,ut, ) = h=im(u)h. This implies
that Ker 7 is not in the center of G(k) and therefore Ker 7 D G(k)™ = G(k) (see
[Til]). Q.E.D.

Lemma 5.4. Let G be a connected k-almost simple group with rankyG > 2, P a
minimal parabolic k-subgroup and Q1, Q2 proper standard parabolic k-subgroups of

G. Then G(k) # Q1(k) - Q2(k).

Proof. Assume G(k) = Q1(k)-Q2(k). Writing g = q1¢2 = ¢5-¢; with ¢;, ¢; € Qi(k),
we have for the unipotent radical R,Q; of Qi: gR.Q19™ " = ¢hR.Q1q'5" C Qa,
since R,Q1 C Qo; similarly gR, Q29" C Q1.

Hence g[R,Q1(k) N R.Q2(k)]g™ C Q1(k)NQ2(k) for all g € G(k). Let V; C A
be the proper subset of simple roots corresponding to @; and take a; € A\V;.
Since 1 ® is irreducible there exists a root v € ,®T containing oy + ag, in particular
v & [Vi] U [Va] and hence U,)(k) C RuQi(k) N R.Q2(k) (see [Bo], 21.11, for
the definition of U(,)). The normal subgroup of G(k) generated by U,)(k) is
therefore contained in Q1 (k) N Q2(k); in particular G(k)™ C Q1(k) N Q2(k). This
is a contradiction. Q.E.D.

Proof of Theorem 0.4. For o, 1 < a < n, we fix a minimal k,-parabolic subgroup
P, of G, and a maximal k,-split torus S, in P,. In this proof a subgroup @ <
G =[1o_; Ga(ky) is called standard parabolic if @ = [[L_; Qua(ka), where Qq
is a standard k,-parabolic subgroup of G,. Let L) C Y(co) denote the limit
set of w(T'), @ be a standard parabolic subgroup of G, assume that there exists
a I'-equivariant measurable map ¢ : G/Q — Ly and let R < G be a standard
parabolic subgroup with R # G. Let z¢g := eQ € G/Q and ug be an R-quasi-
invariant probability measure supported on Rxg C G/Q.

Claim 1. For almost every g € G, the restriction of ¢ to gRxzg coincides g.jig-a.e.
with a continuous map ¢, and either

(a) ¢g(gRzg) = ¢(gzq) for a.e. g € G, or
(b) wy(gRrq) = L) for ae. g € G.

Let T, C S, be a kq-split torus such that L, := Zg_ (Ty) is a kq-Levi subgroup of
Ro;yset T:=[[o_, To(ka) and L :=[[_, La(ka). Then Lo, NQ, is a kq-parabolic
subgroup of L, ([Bo], 21.13(i)), Lxg = Rz and L/LNQ is a Furstenberg boundary
of L (see Proposition 5.1). Hence, since L/LNQ is L-equivariantly homeomorphic to
Lzq ([Ber-Ze], 6.15, Theorem A), Lz is a Furstenberg boundary of L. Composing
o with the measure class preserving map:

Gx(R/RNQ) — G/Q
(g,7) V> grazq
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and applying Fubini’s theorem, we deduce that for a.e. g € GG the restriction of ¢
to gRxg is g«pr-measurable. Thus we may define for a.e. g € G:

(5.1) D(g)(0) := pu(gilipr), LE€L,
F(g) := supp@x«(g«r)-

Since pr is R-quasi-invariant, (5.2) defines a I'-equivariant measurable map

Since 7w(T") is nonelementary, acts c-minimally on Y and T acts ergodically on
G/R x G/R, Proposition 3.1 implies that either

(a) F(g) is a point for a.e. g € G, or

(b) F(g) = Lyr) for ae. g€ G.
In the first case, the restriction of ¢ to gRxzq is g«ftr-a.e. constant for a.e. g € G
and case (a) of the claim is proved.

Assume that the second case occurs. In particular we have ®(g)(¢) € M3 (Y (o))

for a.e. g € G and every £ € L. Since L = Z(T) and T C L N Q, the subgroup T
acts trivially on Rzg = Lzg and (5.1) defines a I'-equivariant measurable map

®:G/T — F(L, Mj(Y(0))) .

Since R # G, at least one of the tori T, is of positive dimension and hence T is
noncompact. Since I' is an irreducible lattice it acts therefore ergodically on G /T
since the orbits of Is(Y) in F(L, M1(Y (c0))) are locally closed (see Remark4.2),
we conclude that the essential image of ® is in one Is(Y")-orbit.

In particular, for a.e. g € G, there is £y € L such that for a.e. £ € L, there is
74(£) € Is(Y') with

(5:3) D(glol) = 74()@(glo) -
Let g € G and ¢,¢y € L be such that (5.3) holds. For all f € C(Y (o)) and all

{1 € L we have therefore

| Jlelgbotha))dur(z) = | f(r(O)plglotrz))dpir (@) -

Since Lz is a Furstenberg boundary of L, Corollary 5.2 implies

flp(glotz)) = f(rq()p(glor))
for all f € C(Y(00)) and a.e. € Lzg. Since C(Y (c0)) is separable, we obtain
(5.4) o(glolx) = 14(L)p(glox) for ae. x € Lxg .

In particular, since F'(g) = Ly and 7(I') acts c-minimally on Y, 7,(¢) € Is(Y) is
uniquely determined by (5.4).

In this way we obtain for a.e. ¢ € G a measurable map 7, : L — Is(Y") which,
in view of (5.4), is a measurable homomorphism. Therefore, 7, coincides a.e. with
a continuous homomorphism and hence, since L acts transitively on Rzg, the
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restriction of ¢ to gRxg coincides a.e. with a continuous map ¢,. In particular
F(g) = p4(gRrq) and hence ¢,(gRrq) = L. This proves Claim 1.

Now, since G/P is a (G,T')-boundary and «(I") is nonelementary, one obtains,
using Corollary 3.2, the compactness and I'-invariance of L), a I'-equivariant
measurable map

Y:G/P— Ly .

Let a := ¥, (vp), where vp is a G-quasi-invariant probability measure on G/P.
Since 7(I") acts minimally on £ 1y, we have suppa = L (1. According to Margulis’
factor theorem ([Ma], IV Theorem 2.11) there exists Q < G, a standard parabolic
subgroup, and

©:G/Q — L),

a bi-measurable bijection of the measure spaces (G/Q,vq), (Lrr), ), such that
popr and ¢ coincide almost everywhere, where pr : G/P — G/Q is the canonical
projection. Moreover @) # G since 7(T") is nonelementary.

Claim 2. For any standard parabolic subgroup R < G with R # G we have
either RC Qor R-Q =G.

We apply Claim 1 to @ and ¢. In case (a), the restriction of ¢ to gRxq is
g« ur-almost everywhere constant for a.e. g € G. Since ¢ is injective, this implies
that g.pur is a Dirac mass for a.e. g € G and hence R C Q. In case (b), p(9Rzq)
has full a-measure in Lr(r) for a.e. g € G and hence Rxq has full vg-measure in
G/Q. The complement of Rzg in G/ being open, we must have Rrg = G/Q and
hence R-@Q = G. This proves Claim 2.

It follows from Claim 2 that @ is a proper maximal standard parabolic subgroup
of G. We may therefore assume @ = Q1 (k1) x [[_yGa(ka), where Q1 is a proper
maximal standard kj-parabolic subgroup of GG;. Assume that rankg, G; > 2 and
take R; a proper standard ki-parabolic subgroup of G; with Ry ¢ Q. For R :=
Ri(k1) x [1h_y Ga(ka) we have then R ¢ @Q and (see Lemma 5.4) R-Q # G,
contradicting Claim 2.

Hence ranky, G1 = 1 and, since >, _, ranky G, > 2, we must have n > 2. In
particular A := pr;(I"), where pr; : G — G1(k1) denotes projection on the first
factor, is a dense subgroup of Gy (k7).

Identifying G/Q with G1(k1)/Q1(k1), the I'-equivariance of ¢ : G1(k1)/Q1(k1)
— Y (00) reads: ¢(pri(y)z) = w(vy)p(z) for a.e. x € Gi(k1)/Q1(k1) and every
v € T'. Since the essential image of ¢ is L (r), a(pry (7)) := 7(7) gives a well-defined
homomorphism « : A — Is(Y) with respect to which ¢ is equivariant. Since A
is dense in G1(k1) and a(A) = 7(T') is nonelementary and acts c-minimally on Y,
Proposition4.1 implies that « extends continuously to G1(k;) and hence is proper
(Lemma 5.3). Q.E.D.
Proof of Corollary 0.5. It suffices to show that m is amenable. Indeed, since I'
has property (T) this implies that 7(T") is compact and therefore fixes a point in
Y. If n(T) is not amenable, Corollary 2.5(3) implies that 7(I") is not elementary
and hence (see 3.1) acts c-minimally on Co(Lry) C Y, the closed convex hull of
L. It follows then from Theorem 0.4 that there exists o with rank,, K Go = 1,
which contradicts the assumptions. Q.E.D.
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6. DIVERGENCE GROUPS

6.1. In this section we develop the part of Patterson—Sullivan theory for divergence
groups acting on proper CAT(—1)-spaces needed in the proof of Theorem 0.2. As
the proofs are almost the same as in the case of groups acting on hyperbolic spaces,
we only indicate the modifications needed in order to treat the general case. The
main results are stated in 6.3.

6.2. Definitions. (a) Conical limit set: let X be a proper CAT(—1)-space, X (c0)
its ideal boundary, G < Is(X) a closed subgroup and 7 : X — G\ X the projection
map. A point £ € X (00) is a conical limit point of G, if for some (and hence any)
geodesic ray r : [0,00) — X with r(c0) = &, the map mor : [0,00) — G\X is not
proper. The set Cg of conical limit points of G is a G-invariant Borel subset of
X (00).

(b) Geodesic flow: (compare [Bou], §2.8) the set

gX :={c: R — X, cis an isometry}

endowed with the distance

o0 ol
dy(c1,c2) = / der (), ex(t)) S dt

—0o0

is a proper metric space on which Is(X) acts by isometries. Observe that the
subgroup of Is(X) consisting of the isometries acting trivially on gX is compact.
The geodesic flow is the R-action on gX defined by gc(s) := ¢(s+1t). It commutes
with the action of Is(X). The fibers of the surjective Is(X)-equivariant map

V:gX — X(o0)x X(o0)\diag
¢ —  (e(=09),¢(+00))

are the g4-orbits in gX. Each of these fibers carries therefore a canonical arc-length
measure. Given a closed subgroup G < Is(X) and an a-dimensional density u for
G, one verifies that the measure

dpz (€) ® dpg(n)

o—20(E1)a n X(oco) x X(oco),

where (€ - 1), denotes Gromov’s scalar product, is independent of x and hence
invariant under the diagonal G-action. Combined with arc length measure on the
fibers of the map V', one gets a G-invariant measure m,, on gX which is also geodesic
flow invariant. At this point we recall:

Lemma 6.1. Let Y be a proper metric space, G < Is(Y) a closed unimodular
subgroup and m a G-invariant Radon measure on'Y . Given a Haar measure dg on
G, there is a unique Radon measure m on G\Y such that

/G A /G blgy)dg = /Y di(yyi(y), b € LY. ) .

We denote by m,, the geodesic flow invariant measure on G\gX associated to
m,, using the above lemma.
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6.3. Statements.

Theorem 6.2 (Hopf dichotomy). Let G < Is(X) be a nonelementary closed uni-
modular subgroup and v an a-dimensional density for G. Then the action of the
geodesic flow on (G\gX,m,) is either completely dissipative or completely recur-

rent. In the latter case, o = g and v is, up to scaling, the unique 6g-dimensional
density of G.

We recall that a continuous measure preserving action of R on a locally compact
measure space (Z,m) is
(a) completely recurrent if, for almost every z € Z, the map

0,00) — Z
t —— g2

is not proper;

(b) conservative if there exists a positive L'-function X\ : Z — (0, 00) such that
fooo Agtz) dt = 400 for almost every z € Z;

(¢) completely dissipative if, for almost every z € Z, the map

0,0) — Z
t —— gz

is proper.

Definition. A divergence group is a nonelementary closed unimodular subgroup
G < Is(X) of finite critical exponent, for which there exists a dg-dimensional den-
sity 4 such that the geodesic flow on (G\gX,m,) is completely recurrent. For
a divergence group G we call Patterson—Sullivan density the (essentially) unique
dg-dimensional density of G (see Theorem 6.2).

Theorem 6.3. Let G < Is(X) be a nonelementary closed unimodular subgroup and
v an a-dimensional density. The following properties of the action of the geodesic
flow on (G\gX,m,) are equivalent:

(1) it is completely recurrent;

(2) it is conservative;

(3) it is ergodic.

For completeness we state the following result without proof. In the case of
hyperbolic spaces it is due to Sullivan (see [Ni], Theorem 8.2.3, and [Su]); its proof
may be adapted to the general case.

Theorem 6.4. For a closed unimodular nonelementary subgroup G < Is(X) the
following properties are equivalent:

(1) G is a divergence group;

(2) ba < +oo and [ e~ bcd@9v)dg = 400 for some (and hence any) x,y € X.

Corollary 6.5. (1) Let G1 < G2 < Is(X) be closed nonelementary subgroups such
that G2 /Gy carries a finite Go-invariant measure. Then G1 is a divergence group
if and only if Ga is a divergence group. In this case, 6, = 6g, and the Patterson—
Sullivan densities of G1 and Go coincide up to a scaling factor.
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(2) Assume that Is(X)\X is compact. Then any nonelementary lattice T' <
Is(X) is a divergence group.

(3) Let T' < Is(X) be a discrete divergence group, p its Patterson—Sullivan
density and ComT the commensurator of T in Is(X). There exists a continuous
homomorphism

X : ComI" — R

such that pe., = x(¢)cspty, V¢ € ComT, V x € X.

Proof of Corollary 6.5. (1) Let G < G2 < Is(X) be closed nonelementary sub-
groups such that G2/G; carries a Go-invariant measure and let = : Gi\gX —
G2\gX be the projection map.

If G is a divergence group and p its Patterson—Sullivan density, the associated
measure 777, on gX induces measures m;, on G1\gX and m, on G2\gX such that

(+) /G @ /G o it = /G LACHE

for all ¢» € L'(G1\gX,m],). Now the action of the geodesic flow on Ga\gX is
conservative (Theorem6.3). If X is a function on G3\gX as in the definition of
conservativity, it follows from (x) that Aem € L' (G1\gX,m],) and the geodesic
flow is therefore conservative on (Gl\gX , mL) Hence G is a divergence group. It
follows from the uniqueness statement in Theorem 6.2 that ¢, = dg, and p is also
the Patterson—Sullivan density of Gj.

Assume that G is a divergence group and p its Patterson—Sullivan density. One
verifies that

T dg g, prga
G2/G1

is a d¢g,-dimensional density for G2 > G;. Hence, by Theorem 6.2,
/ dg 95 ' pige = A play, YV €X |

where A > 0 is some constant. Therefore p is a g, -dimensional density of G2. The
recurrence of g on (G1\gX, m,) implies the recurrence of ¢g; on (G2\gX, m,).
Hence (9 is divergence; this implies 6@, = 0, and that u is the Patterson—-Sullivan
density of Gs.

(2) By Proposition 1.7, Is(X) has finite critical exponent § and by Proposition 1.1
there exists a §-dimensional density p for Is(X). Since Is(X)\gX is compact, m,, is
finite and hence the geodesic flow is recurrent. Hence Is(X) is a divergence group
and assertion (2) now follows from assertion (1).

(3) Let T' < Is(X) be a discrete divergence group. Observe that, since I is
nonelementary, any subgroup I" of finite index is nonelementary as well and hence
a divergence group by assertion (1). Let 6 be the critical exponent of T', u the
Patterson—Sullivan density of I' and ¢ € Com I'. Then, * — p, and z — ¢, piee
are 6-dimensional densities of I' N ¢~ !T'c and hence (assertion (1)) there exists
x(c) > 0 such that ¢ per = x(c)pz, V@ € X. Clearly the map ¢ — x(c) is
a homomorphism.
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Since x — p, is continuous, the homomorphism x : Com I' — R?% is continuous
as well and hence extends to Com I'. Finally, the continuous maps ¢ — ¢ fics

and © — x(c)p, defined on Com IT' coincide on Com I' and hence on Com T
Q.ED

Proof of Theorem 0.2. (1) Let  be the Patterson—Sullivan measure class on X (00).
Corollary 6.5(3) implies that G preserves p and Corollary6.5(1) implies that the
diagonal action on (X (00) x X (00),u X ) of any finite index subgroup IV < T is
ergodic. Corollary 1.4 and the uniqueness assertion in Theorem 6.2 imply then that
(X (00), 1) is a weak I'-boundary.

(2) follows from Corollary 3.2 and the fact that (X (c0), 1) is a weak I'-boundary.
Q.ED.

6.4. The rest of this section is devoted to the proof of Theorems 6.2 and 6.3.

For z,y € X and R > 0, S(z,y,R) C X(o0) denotes the set of endpoints of
geodesic rays starting at # and meeting B(y, R). The next lemma follows from
Sullivan’s shadowing technique. For a proof, see [Ni], Theorem 4.3.2.

Lemma 6.6. Let G < Is(X) be a nonelementary closed subgroup, v an a-dimen-
sional density of G and © € X. Then there are constants R,c1,co,k > 0 such

that
_ valS(a. g2, R))

A S T adlagn =2

for all g € G with d(x,gx) > k .

In the above lemma, the hypothesis that G is nonelementary is used to exclude
the case where v, is a single atom. Observe that it follows from this lemma that
no conical point is an atom of v,.

Lemma 6.7. Let G < Is(X) be a nonelementary closed subgroup and v an -
dimensional density for G. Then 6g < a.

Proof. Let R,c1,co,k > 0 be as in Lemma 6.6. For N € N, N > k and € > 0,
Lemma 6.6 implies

/ e—(a+e)d(gw,w)dg
N<d(gz,z)<N+1

(*) < Cl_le_EN V&t(s(xvgxaR))dg

~[V<d(gw7w)<N+1

—te [ ang [ Xo(€)dg.
X (o0) N<d(gz,x)<N+1

where x4 denotes the characteristic function of S(z, gz, R). Now observe that there
is a constant ¢ > 0 such that, for all g,h € G with |d(gz,x) — d(hx,z)| < 1 and
S(z, gz, R) N S(x, hz, R) # 0, we have d(gx,hz) < c¢. Hence (*) is bounded by
e~ Nert 1 (X (00)) - Jx 1dg, where K = {k € G d(kz,z) < c}. Summing over
N e N, we get a+ ¢ > 6g, V € > 0 and the lemma is proved. Q.E.D.

Corollary 6.8. LetT' < Is(X) be a discrete subgroup and T'y, < T, n € N, a family
of mnonelementary subgroups such that I'y, C T'yy1, and J,,cnTn =T'. Then

61‘ = lim 6Fn .

n—oo
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Proof. We may assume that the sequence (ér, )nen is bounded. Fix x € X and
choose for every n a ér, -dimensional density pu,, for I';,, such that p,, , is probability.
Let o < ér be the limit of the increasing sequence (ér, )nen (see Lemma 1.5) and
pu € M'(X(00)) an accumulation point of the sequence (fin,z)nen. Since I' is the
increasing union of (I'y,)nen, we have d(y.p) (&) = e~ *Ber®2)qy(¢), vV v € T. The
formula dp, (¢) = e~ *BeW:2) dy(¢) defines an a-dimensional density for T and hence
a > 6¢ by Lemma 6.7. Q.E.D.

Lemma 6.9. Let G < Is(X) be a nonelementary closed subgroup, v an a-dimen-
sional density for G, Cq the set of conical points of G and A C Cg a G-invariant
measurable subset. Then, either vy(A) =0 or vy (A) = v,(X(0)).

For a proof see [Ni], Theorem 4.4.4.

Lemma 6.10. Let G < Is(X) be a nonelementary closed subgroup and v an a-
dimensional density for G with v,(Cg) > 0. Then

/ e—ad(gm7w)dg: +00,
G

in particular a < dq.

Proof. Assume that [ e~ @d92:8)dg < 400. Let € > 0 and K C G compact such

that
/ e~z gy < ¢
G\K

Let K, C Kn41, n € N, be a sequence of compact subsets of G such that G =
U,eny Kn- Observe that

CG: U ﬂ U S(zangj\m

NeNneN \g¢K,

Choose N € N such that

VI(CG)
Vg ﬂ US(x,gx,N) > 5

neN g¢ K,

We may take K large enough such that by Lemma 6.6
c3 o (S(w, gw, N +1)) < e ™% v g ¢ K .
Hence

/ de(g)/ ngS(m,gw,N+l)(€) < cg-€.
X (00) G\K

Set U :={h € G : d(z, hz) < 1}.

Observe that, for every £ € ), cy (UggKn S(z, gz, N)), there is g ¢ K such that
gU C G\K and ¢ € S(z,gux, N+1),V u € U. This implies fG\K XS(z,92,N+1)(§)dg
> fU du and hence

/du-l/g; ﬂ U S(z, gx,N) < o€
U

neN \g¢K,
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which implies v, (Cg) = 0 and proves the lemma. Q.E.D.

Proof of Theorem 6.2. If m, is not completely dissipative, then v, gives positive
measure to the set C of conical points and hence, by Lemma 6.9, gives full measure
to Cg. This implies that the geodesic flow is completely recurrent on (G\gX,m, ).
If this is the case, then v gives full measure to Cs and hence a = 6 by Lemmas
6.7 and 6.10.

If 1 is any dg-conformal density, then pu+ v gives positive mass to C and hence,
by Lemma 6.9, full mass to Cg. Furthermore, by Lemma 6.9, v, 4+ u, and v, are
ergodic and hence coincide up to a constant: p, = ¢(x) - v, ¥V € X. Since

dual€) _ da(e)
dfiy &) dvy ) 7

the function x — ¢(x) is constant. Q.E.D.

Proof of Theorem 6.3. We concentrate on the implication (1) = (2). Once a
function A : G\gX — (0,00) with suitable properties has been constructed, the
proof of the implication (2) = (3) is verbatim Hopf’s argument (see [Hol], [Ho2]).

Lemma 6.11. Let Y be a proper metric space, G < Is(Y) a closed unimodular
subgroup, m a G-invariant positive measure on'Y and m the corresponding measure
on G\Y. For the critical exponents b, 6m of M, m respectively, we have

Om < b7 -

Proof. Let d denote distance on Y, dg quotient distance on G\Y, 7 : ¥ — G\Y
the projection map and Bg(z, R) a ball of radius R with respect to the metric dg.
We may assume that d7 < 4+o00. Observe that, for y € Y fixed,

logm(B(y, R))
7 .
Fix a Haar measure dg on G and choose T finite such that the set
U:={g9€G:dlgy.y) <T}

has measure at least 1. Observe that V g € U : gB(y,R) C B(y,R+T). If F
denotes the characteristic function of B(y, R+ T'), we have then

67 = lims
m = i sup

/G FgQ)dg > 1, ¥ ¢ € By, R) .

Since m(B(y, R)) = Bg(n(y), R), we get

m(Bo(n(y). R)) < /G 4 /G F(g¢)dg
- /Y din(Q)F(C) = m(B(y, R+ T)) .
Hence 6,, < 6. Q.E.D

Now let X be a proper CAT (—1)-space, G < Is(X) a closed subgroup, v an
a-dimensional density for G, m,, m, the corresponding measures on gX, G\gX
respectively and dg the quotient distance on G\gX. Fix ¢y € G\gX and define,
for 3 > 2a, A(c) = e~Pdaleoe),
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Lemma 6.12. (1) 65, < 2a and A € LY (G\gX,m,).
(2) There is a constant K > 0 such that, for all ¢, € G\gX with dg(c,d’) <1,

A
' () _ 1‘ < K -dg(e,d) .
(3) Assume that the geodesic flow on (G\gX,m,) is completely recurrent. Then

/ AMgie)dt = 400, Vce G\gX .
0

Proof. (1) Recall that for all ¢1, ¢ € gX
(*) d(c1(0),¢2(0)) < dg(c1, ca) < d(e1(0),¢2(0)) 42

(see [Bou], Proposition 2.8.1).

Now fix ¢y € gX and R > 0. If dg(co, ¢) < R, then d(co(0),¢(0)) < R and hence
(c(=00), ¢(+00))eo(0) < R+ C, where C' is some constant depending only on X.
Hence

o, (Bleo, B) < 2R - 00 Ly, ) (X (00))? |

which implies 67, < 2a. The second assertion in (1) follows then from Lemma
6.11.

(2) follows from the fact that dg is a distance.

(3) Let ¢ € gX project on a recurrent point in G\gX. It follows from (x) that,
for T > 0 fixed, if g:c € B(co, R), then gys ¢ € B(co, R+T+2), Vs €[0,T]. Since
¢ projects to a recurrent point, there exist ¢, — 400 and h,, € G such that

g+, ¢ € hy,B(co, R)
and hence g, +s ¢ € hyB(co, R+ T+ 2), Vs € [0,T].

Since A has a positive lower bound on every compact set in G\gX, we deduce

that

/ Agie)dt = 400 .
0
Q.E.D.

7. DIVERGENCE GROUPS ACTING ON TREES

In this section, we apply the results of Section 6 to the case of groups acting on
locally finite trees in order to obtain examples of divergence groups. Notations and
notions pertaining to graph theory are taken from Serre [Se].

7.1. Let T = (X,Y) be alocally finite tree, where X is the set of vertices and Y the
set of edges. On the geometric realization T of 7 there is a unique proper CAT(—1)
distance d for which all geometric edges have length 1 and whose restriction to X C
T coincides with the combinatorial distance. Every automorphism ¢ € Aut 7 =
Is(X) extends canonically to an isometry gext € Is(T') of T' and we have Aut 7 =
Is(T) except when 7T is the 2-regular tree 75. Every path « : Path,, — 7 without
backtracking (geodesic) extends to a geodesic aext : [0,n] — T, and for n = oo this
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extension gives an Aut 7 equivariant identification between 7 (c0), the set of ends
of T, and T(o0). For a group G acting by automorphisms on 7, the restriction
from T to X provides a bijection between a-dimensional conformal densities T —
M™(T(00)) for G and a-dimensional conformal densities X — M (7 (00)) for G.
Let g7 denote the space of geodesics a : 7o — 7, with Z-action defined by

gn)e(m) :=cn+m), meV(T)=7Z, n€Z.

The map g7 — g7, ¢ — Cext, gives then an Aut 7-equivariant identification be-
tween the R-action constructed from the time one suspension of the Z-action on
g7, and the R-action given by the geodesic flow on g7'. In particular, the geodesic
flow on G\gT is the time one suspension of the Z-action on G\g7, which we will
also call the geodesic flow. If g : X — M™T(7(c0)) is a conformal density for
G, lext its extension to 1', and m,,, resp. LT the corresponding measures on
G\g7, resp. G\gT, then complete recurrence (resp. ergodicity) of the Z-action on
(G\g7T,m,,) is equivalent to complete recurrence (resp. ergodicity) of the geodesic
flow on (G\gT, m”ext)' In particular, the results of Section 6 apply to the Z-action
on (G\g7,my).

7.2. For a locally finite tree T = (X,Y), let S(7 (00)) denote the space of locally
constant functions on 7 (oo0) and S(7 (00))* its dual space. For o € C, an a-
dimensional distribution is a map

i X = S(T(0))"

which satisfies 11, (p) = py (e *B@Y) YV 2.y € X,V ¢ € S(T(c0)). Here B(z,y)
denotes the extension to 7 (co) of the function X — R, z — d(x,2) — d(y, ) (see
1.1). For g € Aut 7 and p an a-dimensional distribution,

(g*,u)m = g_l,ugm reX,

defines an action of Aut 7 on the space D, of a-dimensional distributions. For a €
R, this action preserves D, the real cone of positive a-dimensional distributions.
Given H < Aut 7, a closed subgroup, we observe that the subset (D) of H-fixed
vectors in DY coincides with the set of a-dimensional densities for H.

We define the following linear maps:

(&) @ : Do — C(Y), Qu(y) = Ho(y)(Xs(y)), Where Xy(y) is the characteristic
function of the set s(y) C 7 (o0) consisting of all geodesic rays r : Pathoe — T
having y as initial edge.

(b) R:C(Y) — C(Y), RF(y) = >_ F(y'), where the sum is over all edges 3’
satisfying o(y’) = t(y) and ¢y’ £ 7.

The linear maps R and ) are Aut7 -equivariant and () takes its values in

E,:= {F € C(Y): RF = ¢"F)
sending D} into E} :={F € E,, F(Y) C [0,00]} .

Proposition 7.1. Q : D, — E, is an Aut 7 -equivariant isomorphism of vector
spaces. In particular, for any subgroup G < Aut 7, Q) induces a bijection between
the set of a-dimensional densities for G and the set of G-invariant vectors in EY .

Proof. To verify injectivity, let u € D, * € X and y € Y with d(o(y),z) + 1 =
d(t(y), ). Then we have pz(Xsy)) = € " Uoy) (Xs(y)), Where n = d(o(y),z). In
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particular, if Qu = 0 we have pu, = 0V x € X. To obtain an inverse to @, define
for F € E,, and z,y as above:

MI(Xs(y)) = e—naF(y) .

With these definitions one has y € D, and Qu = F' . Q.E.D.

Now we formulate some consequences of Proposition 7.1 in the context of graphs
of groups. Let A = (A, A) be a locally compact graph of groups. By this we mean
that A = (V, E) is a locally finite connected graph, for every v € V and e € E
the groups A, and A, are compact and the monomorphisms a. : A. — Ay are
continuous with image ac(A.) of finite index i4(e) in Ay. Fixing a basepoint

a, € V, the universal covering 7 = (A, a,) is a locally finite tree and the image
G of the homomorphism 71 (A, a,) — Aut7 is a closed subgroup of Aut7. Let
7 : T — A denote the canonical projection and Gy = {g € Aut7 : mo g = w} the
associated full group [Ba].

By definition, G' and G have the same orbits in Y, hence ES = ES and (using
Proposition 7.1) DS = ’Dg . In particular, any a-dimensional density for G is an
a-dimensional density for G/.

The Aut 7 -equivariant operator R : C(Y) — C(Y) induces an operator R :
C(FE) — C(F) whose matrix r : E x F — N is given by

iA(eg) if t(el) = 0(62), el 75 €2,
Tei,ea = iA(BQ) -1 ife; =ey,
0 otherwise

and @ induces therefore a bijection
(DH)E = (DF)%r — Ff .= {F e R(E), RF = ¢“F, F >0} .

It follows then from Lemma 6.7, that if G is nonelementary, its critical exponent
dc, can be computed by the formula

bg, =min{a >0: Fl #0}.

f
According to [Ba-Ku|, G is unimodular if and only if G is unimodular if and
only if the edge indexed graph (A,i4) is unimodular. The homogeneous space
Gf/G being compact, it follows from Corollary 2.5(1) that if G is unimodular it
is nonelementary if and only if G is nonelementary. Using Corollary 6.5(1) and 7.1,
this implies that G is a divergence group if and only if G is a divergence group.
According to [Ba], 7 and 7 : 7 — A only depend on the edge indexed graph (A4,i4);
in the sequel we will therefore call a locally finite edge indexed graph divergence if
Gy is a divergence group.

7.3. In this subsection we show that the Z-action on Gf\g 7 is isomorphic to a sub-
shift and, that via this isomorphism, invariant measures coming from a-dimensional
densities of Gy correspond to certain Markov measures associated to elements of
F.F. Concerning the Z-action on G\g7 we mention that, even if G is discrete and
G\T finite, this Z-action need not be a finitely presented system.
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We will use the following basic constructions:

(a) To an edge indexed graph (B,ig) we associate the oriented line graph
LT(B,ig) whose set of vertices is E = F(B), the set of edges of B, and
whose set of positive edges is

{(e1,e2) € E x E : t(e1) = o(ez2) and if ey =e7, then ip(es) > 1} .
(b) To an oriented graph a™t, we associate the shift space
Sq+ ={c:7T," — a*, morphism of oriented graphs}
with Z-action defined by
g(n)c(@):=cli+n), n€Z, it €Z, c € Sq+ .

Here T;‘ is the 2-regular oriented tree, that is, its set of vertices is Z and its set
of positive edges is {[i,i + 1] : i € Z}. For yi1,...,yn, a sequence of consecutive
vertices of a path in a™, one defines the cylinder

Cyr, - yyn) ={c: T, —at:cli)=y, 1<i<n}.

The family of cylinders is a basis of open sets for a topology on S,+ which is locally
compact if a™ is locally finite.

In the sequel we use the following basic transitivity property of the full group
Gy.

Lemma 7.2. Given y1,ya edges of T satisfying o(y1) = o(y2) and w(y1) = 7(y2),
there exists g € Gy such that gyn = y2 and g is the identity on the connected
component of T\{y1,y2} containing o(y1).

This lemma follows immediately from the description of 7 = (A, ag) in terms of
the edge indexed graph (A,i4) given in [Ba].

The coding of the Z-action on Gf\g7 is now obtained as follows. The map
97 — Sc+(1), which to every geodesic ¢ : 7o — 7 associates the morphism
d T, — LY(T) defined by ¢(i) := c([i,i + 1]), is an Aut7 and Z-equivariant
homeomorphism. The projection @ : 7 — A induces then a morphism 7T :
LY(T) — L1(A,i4) and, using Lemma 7.2, a Z-equivariant homeomorphism

G\gT — Sct(a,ia) -

We assume now that Gy is unimodular and fix a Haar measure m on Gy. For
every path in LT (A4,i4) with vertex sequence y1,... , ¥y, choose §1,... ,Jn a lifted
path in £7(7) and let Ky, . g, be its stabilizer in Gy. This is an open com-
pact subgroup of Gy and, since Gy is unimodular, its measure only depends on
Yi,.-- ,Yn. Define

My, yn) = (K ) -

We have, using Lemma 7.2:

(*) m(yh s 7yn) _ m(yn—lyn> _ { 1/7;A(yn) if Yn—1 7& yna

mygnn) ) L ia) =1 i ya1 =7,
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Toa>0and F € F(j we associate the shift invariant measure
+
mp € M™(Sc+(a,ia))

whose value on cylinders is given by

me(Cly) = D,
- e—oz(n—l)
e (Clone ) = I

Using the fact that RF = e*F and (x), one verifies that mp is Markov. Further-
more, for 1 € (DF)¢, the measures m, € MT(G\gT) and mq, € M (Sc+(4,i4))
correspond to each other via the identification Gf\g7 — Sr+(A,is)- In particular,
the total mass of m,, equals

Z %,whereF—Qu.
yek

7.4. We apply the preceding discussion to the edge indexed graph (4,i4):

We assume that b > 2, not all a;’s are 1 and P(X) := > p | (ax — 1)vg_1 X" has
positive radius of convergence R, where vy = ag ... a.

Proposition 7.3. (1) The critical exponent § of (A,ia) is given by the formulas:
(a) if P(R) > 725, then P(e™?%) = ;1o |
(b) if P(R) < 715, thene ™ =R .
(2) (A,ia) is divergent if and only if P(R) > 7L in which case the Patterson-

Sullivan measure is finite if and only if P'(e=?%) < 4-o0.

Proof. Fix a € R. The equation RF = e“F, F € R(E), is equivalent to

(1) e“Fl(e;) = Feiy1) + (a; —1)F(€;), i > 1;
(2) eaF(Ei) = ai_lF(Ei_l), 7 Z 2 N
(3) e F (1) = (b—1)F(ey) .

First we observe that F'(e;) = 0 implies F' = 0. Hence we may assume F(e;) = 1.
Equations (2) and (3) imply then:

(4) F(&)=e%b—1) and F(;) =e 7 v;_1(b—1), j>2.
Putting this into equation (1) we obtain

(5) e F(ej1) =1—(b—1) > e (ar - vy .

J
k=1
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We conclude that for every a € R, there is a unique solution of RF = e*F with
F(e1) =1 and, using (5), that this solution is in F; if and only if P(e™2%) < 15 .
Since § = min{a > 0: F} # (0)} (see 7.2), we get assertion (1).

Let F' € F(;Ir and mp € M™ (S’E+(A7iA)) be the associated shift invariant measure.
Observe that ¢ € Sg+(a,4,) is not recurrent if and only if there exists k € Z with
g(k)e €,>1 C(e1,... ,en). The definition of mp and equation (5) imply

mp | [ eler,... .en) | = lim F(&1)F(e,)e” " D?

n—oo
n>1

=e(b—1)[1—(b—1)P(e*)] .

The measure of the set of nonrecurrent points is therefore 0 if and only if P(R) >

77 (see assertion (1)). The first assertion in (2) follows then from Theorem 6.3.
For the second part, one uses the explicit formulas (4), (5) and the formula for the

total mass of mpg in 7.3. Q.E.D.

7.5. Cayley graphs and their fundamental group. Let 7, = (X,Y) be the
k-regular tree, k > 3, I' < Aut 7} a subgroup acting freely without inversion on
Tk, i an a-dimensional density for I' and ¢, () := pz(75(c0)). Then ¢, € R(X)
is I'-invariant and an eigenfunction of the operator T'F(z) := 3_,,)_, F(t(y)), of
eigenvalue A = (k — 1)e™® + e®. On the set of vertices V of the quotient graph
C := I'\"J}, one defines a random walk with transition probabilities P, (z1,z2) =
Ao (x1)/pu(ze) if T1,29 € V are adjacent and P,(x1,x2) = 0 otherwise. Let
m,, be the geodesic flow invariant measure on I'\g 7j, associated to p.

Theorem 7.4 [Co-Pa2]. If a > Lin(k — 1), the random walk defined by P, is
recurrent if and only if the geodesic flow on (I'\g T, m,) is ergodic.

We apply this to C = Cay(®, S), the Cayley graph of a finitely generated group
®, with respect to a finite generating set S, satisfying S = S~!, e ¢ S and k :=
|S| > 3. Let p be the Patterson—Sullivan density for Aut 7%, in particular we have
a=/{In(k—1)and p,(xr) =1V x € X. It follows from [Va] that P, is recurrent if
and only if @ is a finite extension of (e), Z, or Z?, and in this case the above theorem
implies that I' = 71 (C) is a divergence group. Conversely, assume that T' = 71 (C)
is a divergence group with critical exponent § and Patterson—Sullivan density v.
Let N be the fundamental group of the finite graph ®\C, in particular, " is normal
in N and N/T' & &. Corollary6.5(3) implies that there exists a homomorphism
X : N — R% such that v, ., = x(n)n.«vy, Vo € V and n € N. In particular,
¢, € R(®) verifies ¢, (ny) = x(n)p, () and the equation T, (e) = Ay, (e) implies

that

Zx(s) =A=(k—1)e°+¢°.

ses
We have (k — 1)e™® +€® < k for 6 € [0,¢n(k — 1)}, hence >, ¢ x(s) < k. Since
S = S~1, this implies x = 1 and hence § = 0 or § = ¢n(k—1). The condition k > 3
implies that I' is free nonabelian and hence § > 0 by Corollary 2.5, which shows
6 = ¢n(k —1). Since x = 1, v is the Patterson—Sullivan density of N and since
N\ Aut 7, is compact, Corollary 6.5(1) implies that v equals the Patterson—Sullivan
density p of Aut 7. Theorem 7.4 implies then that P, is recurrent and therefore
[Va] @ is a finite extension of e, Z or Z2?. We obtain therefore
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Corollary 7.5. Let C = Cay(®,S) be the Cayley graph of a finitely generated group
® with respect to a finite generating set S satisfying S = S~ F e and |S| > 3. Then
I'=m(C) < AutTjg| is a divergence group if and only if ® is a finite extension of
(€), Z or Z2.

8. EXAMPLES

8.1. Let T be a locally finite tree and I' < Aut 7 a uniform lattice; when |7 (c0)| >
2, I' is nonelementary and hence a divergence group, furthermore, by a result of
Liu [Li] Comp, 7D is dense in Aut 7. The latter result was shown earlier by Bass
and Kulkarni [Ba-Ku] for a regular tree 7.

8.2. Let 'y < Aut T4 be the fundamental group of the Cayley graph of Z¢ w.r.t.
the standard generators. We know that I'y is a divergence group precisely when
d = 2 (Corollary 7.5); T'y is not a lattice in Aut To4.

Proposition 8.1. The commensurator of I'gq is dense in Aut Toq4.
This result is an immediate consequence of

Proposition 8.2. Let T be a locally finite tree and T' < Aut(7T) a subgroup acting
freely on T. Let Z = T'\T be the quotient graph, @ : T — Z the covering map.
Assume that for every pair of edges ey,es in T having a common vertex, if there
exists g € Aut 7 such that ge; = ea and ges = ey, then there exists h € Aut Z such
that hmt(e1) = w(ea2) and hr(ez) = w(e1). Then CompyurD contains the subgroup
of Aut T generated by all the vertex stabilizers.

Proof. Tt suffices to show that given any pair of equivalent edges e1,es in 7 as in
the proposition and a finite subtree F' C 7 which contains the edges e, eq at its
boundary, i.e., such that the vertices t(e;), i = 1,2, are terminal vertices of F', then
there exists an element ¢ € Coma,ut7 [ such that its restriction to F is ¢|p = 7,
where 7 : F' — F satisfies 7|p\ (e, ,e,} = id, T(€1) = €2 and 7(e2) = e1.

One obtains such an element ¢ by constructing an appropriate finite graph W
together with two covering maps ¢; : W — Z so that if we let 7y : 7 — W be a
covering map satisfying m = @1 o my, then @g o Ty = 1 o T o 7. Denote by f;
the edge m(e;). Let Wy be the graph obtained by taking two copies Z(1), Z(2) of
Z and replacing the copies of the edges f1, fo by edges going between the graphs
ZM and Z®). Le., we omit fi(j), i=1,2, j = 1,2, and have new edges él(-j) such
that o(&") = o(f{")), t(&") = t(f”). o(&”) = o(f*)). and 1(&(?) = t(f{"),
i =1,2. Note that the graph W may fail to be connected. In this case we will take
Wi to be the connected component containing the vertex o(él(-l)). We continue the
description as in the case where the original W is connected, in the second case
one should just ignore the parts referring to vertices and edges which happen to lie
in the second connected component. Let wgl) : Wi — Z be the natural covering
map and h € Aut Z be the isometry interchanging f; and fs. Using h we define a
covering map wél) : Wi — Z as follows:

(a) Vertices and edges of Z(1) are mapped via the original identification between
ZW and Z.

(b) Vertices and edges of Z(?) are mapped via composition of the original iden-
tification with the isometry h.
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(¢) The edges él(-j) are mapped by: égl) — fa, ég) — f1, é§2> — fi1, ég) — fa.
The pair of finite covering maps gpgl), wél) : W1 — Z induces an element c; in the
commensurator of I' which interchange the edges e; and es and fixes all other edges
e such that o(e) = o(e;). In order to obtain an element which stabilizes also the
rest of the edges and vertices in the finite subtree F', we proceed by constructing
new finite coverings wgk), wgk) Wy — Z,k=1,2,..., N, inducing elements of the
commensurator interchanging e; and es and each fixes a larger and larger part of F'.
Each graph Wy, will be constructed by adding a copy of Z to Wi, and modifying

certain pair edges. Assume that we already constructed wgk),gogk) Wy — Z
such that the induced element c; of Compyu7 ' interchanges e; and e; and fixes
some part of the subtree F. Let mw, : 7 — Wy be the covering map such that
= npgk) omw, and also mw, (e;) = éz(-l), i = 1,2. Consider the image of F, my, (F).
If it is a tree, then the element ¢ € Compy7[ induced by the covering maps
wgk),wék) : Wi — Z satisfies cx|p = 7 as required. Otherwise, there exist some
loop in mw, (F'). Note that this loop contains also some edge lying inside one “Z
copy” in W, (this is easily checked for k = 1 as well as for larger k’s by induction),
denote this edge by f. Let Z’ be a new copy of Z and let f' € Z’ be the edge
corresponding to f. Construct the graph Wy by taking the union of Wy with Z’
and replacing the edges f, f by the edges f, f’ such that o(f) = o(f), t(f) = t(f'),

o(f") = o(f"), t(f") = t(f). (Note that this new graph is still connected.) Next
define the covering maps (pik—H) : Wiy1 — Z, 1 =1,2, in the obvious way. Consider
the image my, ,, (F). As either the number of loops decreased or some simple loop
was replaced by a longer one, it follows that eventually we will reach some N such
that 7y, (F') will be a tree and the construction will be completed. Q.E.D.

8.3. Let b > 4 be an integer, 7 the universal covering and I' the fundamental group
of the graph of groups

Cy C2 (C2)?  (C2)?
{e} Ca (C2)?
where C,, denotes the cyclic group of order m, with monomorphisms (Cy)™ —
(Cy)™+ = (C2)™ x Cy, 2z — (z,0). Notice that the associated power series P (see
7.4) is rational and hence I' < Aut 7 is a divergence group (Proposition 7.3(2)).

Theorem 8.3. ' < Aut7 is a divergence group and its commensurator is dense
in Aut 7. Moreover Aut 7T is not discrete.

We remark that if instead of the above graph of groups we consider the graph
of groups having the same edge indexed graph but such that the groups (C3)™ are
replaced by the cyclic groups Caom then, as shown by Bass and Lubotzky in [Ba-
Lu2], the commensurator of the corresponding fundamental group is not dense.
To see this they show that it has only finitely many subgroups of finite index and
hence is essentially normalized by the commensurator. Since the subgroup of the
automorphism group generated by stabilizers of vertices is simple (see [Ti2]), it
follows that the commensurator cannot be dense.

The rest of this section is devoted to the proof of Theorem 8.3. Let 7 = (X, E)
and d(z) denote the degree of a vertex x € X.

Set Xy :={zr € X : d(x) = b} and for every € X define its level

{(x) := dist(z, Xp) .
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Let X; ={zx € X : l(z) =i}, X<, ={z € X : {(z) < i}, and, for every z € X, E,
be the set of edges issued from x. For every x € X with ¢(x) > 1, E, = Ef UE,,
where E is the pair of edges connecting x to Xy,)—1. A level increasing geodesm
ray is a geodes1c ray r : N — X such that for is strlctly increasing.

Labelling: for every x with £(z) > 1 we label the edges E, by {«, 8}, i.e. we fix
a bijection E; ~ {a, 5}.

Numbering: for every x € Xy, we number the edges £, by 0,1,... ,;b—1,i.e. we
fix a bijection E, ~ {0,1,...,b — 1}. We arrange the labelling such that for every
x € X the b sequences of labels along the b level-increasing geodesic rays starting
at x are the same. We arrange the numbering such that if we remove Xg from X,
then for every component C' of X\ Xy, all “leaf-edges” of C' get the same number.

Local data of an isometry: for h € Aut7, the local data at x € X is the
permutation of {0,...,b—1} it induces via the identifications of £, and Ej,(,) with
{0,...,b— 1}. The local data at © € X\ Xy is the permutation induced by h on
{a, 6} via the identifications of E;" and E,  , with {a,}. An isometry of X is
then completely determined by its local data at every point together with the image
of one point. Of course, not every choice of local datas is realized by an isometry.

Let T" be the subgroup of Aut 7 consisting of all isometries h satisfying:

Py: The local data of h at level 0 vertices is a fixed power of the cycle (0, ...,
b—1).

Ps: The local data of h at € X; only depends on i > 1.

Ps: For all ¢’s except finitely many, the local data of h at X; is trivial.

Let r : N — X be a level increasing geodesic ray with r(0) € Xo; set x; = r(3),
i € N. To this ray we associate the following isometries of X:

(a) p € Aut 7 defined by the conditions
(1) p(xo) = o,
) p preserves all labels