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CAT(−1)-SPACES, DIVERGENCE GROUPS
AND THEIR COMMENSURATORS

M. BURGER AND S. MOZES

0. Introduction

A CAT(−1)-space is a metric geodesic space in which every geodesic triangle is
thinner than its associated comparison triangle in the hyperbolic plane ([B], [Bri-
Ha], [Gr]). The CAT(−1)-property is one among many possible generalizations
to singular spaces of the notion of negative curvature. Important examples of
CAT(−1)-spaces include Riemannian manifolds of sectional curvature k ≤ −1 and
their convex subsets ([B-G-S]), metric trees and piecewise hyperbolic cell complexes
([Mou],[Da],[Hag],[Be 1],[Be 2],[B-Br]).

In this paper we establish certain superrigidity results for isometric actions of a
group Λ on a CAT(−1)-space in the following two settings:

A. The group Λ is a subgroup of a locally compact group G with Γ < Λ <
ComGΓ, where Γ < G is a sufficiently large discrete subgroup and ComGΓ = {g ∈
G : g−1Γg and Γ share a subgroup of finite index} is the commensurator of Γ in G.

B. The group Λ is an irreducible lattice in G :=
∏n
α=1Gα(kα), where each Gα

is a semisimple algebraic group defined over a local field kα.
The issues addressed in this paper are motivated on one hand by earlier work of

G.A. Margulis ([Ma]) dealing with the linear representation theory of Λ, where in
case A, G is a semisimple group and Γ < G a lattice, and on the other hand by the
results of Lubotzky, Mozes and Zimmer ([L-M-Z]) concerning isometric actions of
Λ on trees, where Γ < Λ < ComGΓ, G is the group of automorphisms of a regular
tree and Γ < G is a lattice.

Our approach to establishing superrigidity results is based on ergodic theoretic
methods developed by Margulis ([Ma],[Zi 3],[A’C-B]). In this context, the following
notion of boundary of a locally compact group Γ will be useful: let B be a standard
Borel space on which Γ acts by Borel automorphisms preserving a σ-finite measure
class µ.

Definition. (B,µ) is a weak Γ-boundary if
(1) for any continuous affine action of Γ on a separable locally convex space E and

any Γ-invariant compact convex subset A ⊂ E, there exists a µ-measurable
Γ-equivariant map ϕ : B → A;

(2) the diagonal Γ-action on (B ×B,µ× µ) is ergodic.
The pair (B,µ) is called a Γ-boundary if condition (1) is replaced by

(1′) the Γ-action on (B,µ) is amenable.
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When Γ is a closed subgroup of a locally compact group G, we say that a (weak)
Γ-boundary (B,µ) is a (weak) (G,Γ)-boundary, if the Γ-action extends to a measure
class preserving Borel G-action.

Let now Y be a proper CAT(−1)-space, that is, a CAT(−1)-space in which all
closed balls are compact. In particular, its group of isometries Is(Y ) is locally
compact, second countable and Y admits an Is(Y )-equivariant compactification
Y := Y t Y (∞), where Y (∞) is the visual boundary of Y . A subgroup Λ < Is(Y )
acts c-minimally on Y if Y is the only nonempty Λ-invariant closed convex subset
of Y and a subgroup H < Is(Y ) is called elementary if it admits an invariant subset
∆ ⊂ Y consisting of one or two points.

Theorem 0.1. Let Γ be a discrete subgroup of a locally compact second countable
group G and Λ < G with Γ < Λ < ComGΓ. We assume that there exists a pair
(B,µ) which is a weak (G,Γ′)-boundary for any subgroup of finite index Γ′ < Γ. Let
Y be a proper CAT(−1)-space and π : Λ→ Is(Y ) a homomorphism such that π(Λ)
acts c-minimally on Y and π(Γ) is not elementary. Then π extends to a continuous
homomorphism

πext : Λ→ Is(Y ) .

While it is true that the Poisson boundary of an “étalée” measure on a locally
compact group Γ is an amenable ergodic Γ-space (see [Zi 2]) we do not know whether
Γ always admits a weak Γ-boundary in our sense. Thus an important part of
our paper is devoted to the construction of pairs Γ < G which admit a weak
boundary. This is carried out in the following setting: Γ is a discrete subgroup of
the group of isometries Is(X) of a proper CAT(−1)-space X , G = ComIs(X)Γ and

we assume that Γ is a divergence group (see 6.3). The notion of a divergence group
is borrowed from Patterson–Sullivan theory of Kleinian groups ([Ni],[Pa],[Su]; see
also [Bou],[Co],[Co-Pa1],[Ka]) which we generalize to CAT(−1)-spaces in Sections
1 and 6. As a consequence we obtain for every divergence group Γ < Is(X) a
canonical measure class on X(∞), the Patterson-Sullivan measure class (see 6.3,
definition) for which the following result holds.

Theorem 0.2. Let X be a proper CAT(−1)-space, Γ < Is(X) a discrete divergence
group and G = ComIs(X)Γ.

(1) The Patterson-Sullivan measure class µ on X(∞) is G-invariant and
(X(∞), µ) is a weak (G,Γ′)-boundary for any subgroup of finite index Γ′ < Γ.

(2) Let Y be a proper CAT(−1)-space and π : Γ → Is(Y ) a homomorphism
such that π(Γ) is not elementary. Then there exists a unique Γ-equivariant
measurable map ϕ : X(∞) → Y (∞) and it takes almost all its values in the
limit set Lπ(Γ) of π(Γ).

Remark. It follows from [Ad 2], that when Y is at most of exponential growth, the
action of any closed subgroup of Is(Y ) on Y (∞) is universally amenable. In this
case, Theorem 0.2 implies that (X(∞), µ) is a (G,Γ)-boundary.

Corollary 0.3. Let X,Y be proper CAT(−1)-spaces, Γ < Is(X) a discrete diver-
gence group, Λ < Is(X) a subgroup such that Γ < Λ < ComIs(X)Γ and π : Λ→ Is(Y )
a homomorphism such that π(Λ) acts c-minimally and π(Γ) is not elementary. Then
π extends to a continuous homomorphism

πext : Λ→ Is(Y ) .
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As examples of situations to which the above results apply we mention
(1) Γ < G is a lattice where G is a connected semisimple Lie group without

compact factors. When Γ is irreducible, the group ComGΓ is nondiscrete if and
only if Γ is arithmetic, in which case ComGΓ is dense in G ([Ma]).

(2) Γ < Aut T is a uniform tree lattice, that is, T is a locally finite tree and Γ\T
is a finite graph. According to [Li], ComAut T Γ is dense in Aut T (see 8.1).

(3) Γ < Aut T4 is the fundamental group of the Cayley graph of the free abelian
group on two generators. Then Γ is a divergence group whose commensurator is
dense in Aut T4 (see 7.5 and 8.2).

(4) Γ < Aut T is the fundamental group of the graph of groups (see 7.4 and 8.3)

Cb•
{e}

C2•
C2

(C2)2

•
(C2)2

•
(C2)3

• · · ·

Again, Γ is a divergence group whose commensurator is dense in Aut T .
Next we consider actions of irreducible lattices in higher rank semisimple Lie

groups on proper CAT(−1)-spaces. As a consequence of uniqueness results con-
cerning certain boundary maps (see Section 3) and Margulis’ factor theorem we
obtain

Theorem 0.4. Let Γ be an irreducible lattice in G =
∏n
α=1Gα(kα), where Gα is a

simply connected, kα-almost simple, kα-isotropic group and
∑n
α=1 rankkαGα ≥ 2.

Let Y be a proper CAT(−1)-space and π : Γ → Is(Y ) a homomorphism such that
π(Γ) is not elementary and acts c-minimally on Y . Then π extends to a continuous
homomorphism πext : G→ Is(Y ) which factors via a proper homomorphism of some
kα-rank one factor of G.

Corollary 0.5. Let Γ be an irreducible lattice in G =
∏n
α=1Gα(kα), where Gα is a

simply connected, kα-almost simple, kα-isotropic group and rankkαGα ≥ 2 for every
1 ≤ α ≤ n. Let Y be a proper CAT(−1)-space such that Is(Y ) has finite critical
exponent, and π : Γ→ Is(Y ) a homomorphism. Then there exists a π(Γ)-fixed point
in Y .

Remark. When G = G(R) (n = 1) and Y is a proper geodesic hyperbolic metric
space with at most exponential growth, Corollary 0.5 is due to S. Adams ([Ad 2],
Theorem 11.2).

This paper is organized as follows.
In Sections 1 and 6 we develop the Patterson-Sullivan theory for a closed sub-

group G < Is(X), where X is a proper CAT(−1)-space, and prove Theorem 0.2
in Section 6. In Section 2 we construct an Is(X)-equivariant center of mass map,
which associates a point in X to every positive measure µ on X(∞) whose sup-
port contains at least three points. In Section 3 we establish uniqueness results for
Γ-equivariant measurable maps defined on a weak Γ-boundary with values in the
space of compact subsets of X(∞). In Section 4 we prove Theorem 0.1, while in
Section 5 we prove Theorem 0.4 and Corollary 0.5. Sections 7 and 8 are devoted to
the construction of divergence groups Γ < Is(X) with dense commensurator, where
X is a locally finite tree.

1. Patterson’s construction, amenability

1.1. Let X be a proper metric space, i.e. closed balls are compact. The group
Is(X) of isometries of X endowed with compact–open topology is locally compact
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and second countable. It acts on X with closed orbits and compact stabilizers.
Moreover, Is(X)\X endowed with quotient distance is again proper.

The horofunction compactification X of X is the closure of the image of the
injective map

X −→ C(X)/ ∼
x 7−→ [dx] ,

where C(X) is the space of continuous functions on X with topology of uniform
convergence on compactas, C(X)/ ∼ is its quotient by the subspace of constant
functions and dx : X → R is the distance function to x ∈ X (see [B-G-S], §3.1).

The action of Is(X) on X extends to a continuous action on X by homeo-
morphisms. For ξ ∈ X(∞) := X\X , any representative βξ ∈ C(X) is called a
horofunction based at ξ. Observe that Bξ(x, y) = βξ(x) − βξ(y) is independent of
the chosen representative βξ. Alternatively, (ξ, x, y) 7→ Bξ(x, y) is the continuous
extension to X(∞)×X×X of the function (z, x, y) 7−→ Bz(x, y) = d(x, z)−d(y, z).

1.2. Definitions. For a positive Radon measure m on X , the number

δ := inf{s ∈ [0,∞] :

∫
X

e−sd(x,y)dm(y) < +∞}

is independent of x ∈ X and we call it the critical exponent of m. Observe that
δ may be infinite. The critical exponent δG of a closed subgroup G < Is(X) is by
definition the critical exponent of a positive G-invariant measure supported on a
G-orbit in X . Equivalently:

δG := inf{s ∈ [0,∞] :

∫
G

e−sd(x,gy)dg < +∞} .

An α-dimensional density for a closed subgroup G < Is(X) is a continuous G-
equivariant map

µ : X −→ M+(X(∞))
x 7−→ µx

such that
dµx(ξ)

dµy(ξ)
= e−αBξ(x,y) ∀ x, y ∈ X .

1.3. A straightforward generalization of a construction due to Patterson (see [Pa])
leads to the result that any closed subgroup G < Is(X) of finite critical exponent δ
has a δ-dimensional density. We now turn to the main points of the construction.

Proposition 1.1. Let m be a positive Radon measure on X, δ its critical exponent,
and G := {g ∈ Is(X) : g∗m = m}. Assume m(X) = +∞ and δ < +∞. Then there
exists a δ-dimensional density x→ µx for G such that

suppµx ⊂ supp m ∩X(∞), ∀ x ∈ X .
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Lemma 1.2 ([Pa]). Let µ be a positive Radon measure on [0,∞) and assume
that its critical exponent δ is finite and positive. Then there exists a continuous
increasing function h : R+ → R+ such that

(a) the integral
∫
e−sth(et)dµ(t) converges for s > δ and diverges at s = δ;

(b) ∀ ε > 0, ∃t0 such that ∀ t ≥ t0 and s > 1 h(st) ≤ tεh(s).

The proof given in [Pa] for µ purely atomic goes over verbatim to the general
case.

Given a measure m on X satisfying the hypothesis of Proposition 1.1, we define
for s > δ, x, x0 ∈ X , ζ ∈ X:

(∗) dµs,x(ζ) :=
e−sd(x,ζ)h

(
ed(x,ζ)

)
· dm(ζ)∫

X
e−sd(x0,y)h

(
ed(x0,y)

)
dm(y)

,

where h ≡ 1 if δ = 0 and, if δ > 0, h is the function associated by Lemma 1.2 to
the direct image of m via the proper map

X −→ [0,∞)
ζ 7−→ d(x0, ζ) .

Using the properties of h, one verifies that the family of G-equivariant continuous
maps

X −→ M+(X)
x 7−→ µs,x

, δ < s ≤ δ + 1,

is equicontinuous and uniformly bounded on compact sets. This family is therefore
relatively compact in the space of continuous maps C(X,M+(X)) endowed with
the topology of uniform convergence on compact sets. It follows from Lemma 1.2(a)
that any accumulation point x→ µx of this family takes its values in M+(X(∞)).

We have for x, y ∈ X and s > δ:

(∗∗) dµs,x(ζ)

dµs,y(ζ)
= e−sBζ(x,y) · h(d(x, ζ))

h(d(y, ζ))
.

The function ζ → h(d(x,ζ))
h(d(y,ζ)) extends continuously to X and its value on X(∞) is

1 (Lemma 1.2(b)). The family of functions

X −→ R

ζ 7−→ e−sBζ(x,y), δ ≤ s ≤ δ + 1,

is compact. It follows then from (∗∗) that any accumulation point x 7→ µx of the

family {x 7→ µs,x : δ < s ≤ δ + 1} satisfies dµx(ξ)
dµy(ξ) = e−δBξ(x,y) and is therefore a

δ-dimensional density for G.

1.4. Let G < Is(X) be a closed subgroup with finite critical exponent δ. Fix a
left Haar measure dg on G, let m be its direct image via the orbital map G → X ,
g → g · x0, and x → µs,x, s > δ, the corresponding family of maps defined in 1.3
(∗). Let x→ µx be some limit density of the above family and µ its measure class.
Then we have
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Proposition 1.3. For any compact metric space P on which G acts continuously,
there exists a µ-measurable G-equivariant map

ϕ : X(∞)→M1(P ) .

Proof. The diagonal action of G on X×P is continuous and the G-orbits in X×P
are closed with compact stabilizers. Fix p0 ∈ P and let m̃ be the direct image of dg
via the orbital map G → X × P , g 7→ g(x0, p0). For s > δ, x ∈ X , ζ ∈ X, p ∈ P ,
define:

dµ̃s,x(ζ, p) =
e−sd(x,ζ)h

(
ed(x,ζ)

)
dm̃(ζ, p)∫

X
e−sd(x0,y)h

(
ed(x0,y)

)
dm(y)

.

Let π∗ : M+(X × P )→M+(X) be the continuous G-equivariant map induced by
the projection π : X×P → X . Observe that π∗(µ̃s,x) = µs,x. We may assume that
for some sequence sn → δ, the sequence {x 7→ µsn,x : n ∈ N} converges to x 7→ µx
and that {x 7→ µ̃sn,x : n ∈ N} converges to a continuous G-equivariant map

X −→M+(X(∞)× P )

x 7−→ µ̃x

with π∗(µ̃x) = µx, ∀ x ∈ X . One verifies, as in the proof of Proposition 1.1, that

dµ̃x(ξ, p)

dµ̃y(ξ, p)
= e−δBξ(x,y) ∀ x, y ∈ X, (ξ, p) ∈ X(∞)× P .

In particular,
d(g∗µ̃x)(ξ, p)

dµ̃x(ξ, p)
= e−δBξ(gx,x) ∀ g ∈ G .

Fix x ∈ X . Since π∗(µ̃x) = µx, there is a measurable map ϕ : X(∞)→ M1(P )
such that for all ψ ∈ C(X(∞)× P ):∫

ψ(ξ, p)dµ̃x(ξ, p) =

∫
X(∞)

dµx(ξ)

∫
P

ψ(ξ, p)dϕ(ξ)(p) .

For all g ∈ G we have∫
X(∞)

dµx(ξ)e−δBξ(gx,x)

∫
P

ψ(ξ, p)dϕ(ξ)(p)

=

∫
ψ(ξ, p)e−δBξ(gx,x)dµ̃x(ξ, p) =

∫
ψ(gξ, gp)dµ̃x(ξ, p)

=

∫
X(∞)

dµx(ξ)

∫
P

ψ(gξ, gp)dϕ(ξ)(p)

=

∫
X(∞)

dµx(ξ)e−δBξ(gx,x)

∫
P

ψ(ξ, gp)dϕ(g−1ξ)(p) .

Applying this to ψ(ξ, p) = ψ1(ξ)ψ2(p), we get∫
P

ψ2(p)dϕ(ξ)(p) =

∫
P

ψ2(gp)dϕ(g−1ξ)(p)

and hence ϕ is G-equivariant. Q.E.D.

As an immediate consequence of Proposition 1.3, we have
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Corollary 1.4. For any continuous affine action of G on a locally convex separable
space E and any compact convex G-invariant subset A ⊂ E, there exists a µ-
measurable G-equivariant map ϕ : X(∞)→ A.

We refer to [Ad 1], Theorem 5.1, for related results on the amenability of the
action of a hyperbolic group on its boundary.

Lemma 1.5. Let X be a proper metric space and G < Is(X) a closed subgroup
with finite critical exponent δG. Then, for any closed subgroup H < G we have
δH ≤ δG.

Proof. Let dg, resp. dh, be left invariant Haar measures on G, resp. H, and
q : G → (0,∞) a continuous function such that q(gh) = q(g)∆G(h)∆H(h)−1,
g ∈ G, h ∈ H, where ∆G, resp. ∆H , are the modular functions of G, resp. H.
Then (see [Re]) there is a G-quasi-invariant positive Radon measure µ on G/H such
that ∫

G

f(g)dg =

∫
G/H

dµ(ġ)

∫
H

q(gh)f(gh)dh

for any positive measurable function f . Using this formula one verifies for s > δG:∫
G

e−sd(gx,x)dg =

∫
G/H

dµ(ġ)q(g)∆G(g−1)

∫
H

e−sd(hg−1x,x)dh .

In particular,
∫
H e
−sd(hg−1x,x)dh is finite for some g, hence s ≥ δH . Q.E.D.

Proposition 1.6. Let X be a proper CAT(−1)-space and G < Is(X) a closed
subgroup with finite critical exponent. For every ξ ∈ X(∞), the closed subgroup
StabG(ξ) is amenable.

Proof. Fix a base point p ∈ X and fix a choice of horofunctions βη, η ∈ X(∞), such
that βη(p) = 0. Let H < StabG(ξ) be the kernel of the continuous homomorphism
χξ : StabG(ξ)→ R defined by

βξ(gx)− βξ(x) = χξ(g), ∀ x ∈ X, g ∈ StabG(ξ) .

Since R is abelian and H is closed normal, it suffices to show that H is amenable.
Let m be an H-invariant measure supported on the orbit H · p ⊂ X . If m is finite,
then, since StabH(p) is compact, H admits a finite Haar measure and hence is
compact. Assume m(X) = +∞. We claim that supp m ∩ X(∞) = {ξ}. Since
supp m is unbounded and contained in H · p we have

∅ 6= X(∞) ∩ supp m ⊂ X(∞) ∩ β−1
ξ (0) .

For z ∈ β−1
ξ (0), a computation shows that the Gromov scalar product of z and ξ

w.r.t. p equals

(z · ξ)p =
1

2
d(z, p) .

Therefore, if η ∈ β−1
ξ (0) ∩X(∞), we have

(η · ξ)p = +∞
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and hence η = ξ, which proves the claim. Let P be a compact metric space on
which H acts continuously. Since H has finite critical exponent (Lemma 1.5), it
follows from Propositions 1.1 and 1.3 that there exists an H-equivariant measurable
map ϕ : {ξ} → M1(P ), and therefore an H-invariant probability measure on P .
Q.E.D.

Remark. The product X = [0,∞)×H2 with Riemannian metric (dt)2 + e−2t |dz|2
y2 ,

where H2 denotes the upper half-plane, is a CAT(−1)-space on which SL(2,R) acts
isometrically, fixing a point in X(∞).

Proposition 1.7. Let X be a proper geodesic space such that Is(X)\X is compact.
Then Is(X) has finite critical exponent.

Proof. Fix x0 ∈ X , D > 0 such that
⋃
g∈G gB(x0, D − 2) = X and F ⊂ G finite

such that
⋃
g∈F gB(x0, D − 2) ⊃ S(x0, D).

For every x ∈ X with d(x0, x) ≥ D there exists g ∈ F such that for all h ∈ Ug :=
{g′ ∈ G : d(g′x0, gx0) < 1}, d(hx0, x) < d(x0, x)−1. Indeed, the point p ∈ S(x0, D)
on the geodesic segment joining x0 to x verifies d(gx0, p) < D − 2 for some g ∈ F .
This implies d(gx0, x) < d(x0, x) − 2 and hence d(hx0, x) < d(x0, x) − 1, for all
h ∈ Ug.

Fix R > 0 such that h−1B(x0, D) ⊂ B(x0, R), ∀ h ∈ U :=
⋃
g∈F Ug. For

f ∈ L1(G) and F ∈ L1(X,m) define

f ∗ F (x) :=

∫
G

f(g)F (g−1x)dm(g) ,

where m denotes a Haar measure on G and m the corresponding G-invariant mea-
sure on G · x0 ⊂ X . For n ∈ N, set

fn(x) := χU ∗ . . . ∗ χU ∗ χB(x0,R)(x)

and α := ming∈F m(Ug). We claim that

fn(x) ≥ αn, ∀ x ∈ B(x0, R+ n) .

By induction on n, the case n = 0 is obvious. Now fix n ≥ 1. For every x ∈
B(x0, R+n)\B(x0, D) there is g ∈ F such that d(hx0, x) < d(x0, x)−1 < R+n−1
for all h ∈ Ug; and hence fn−1(h−1x) ≥ αn−1. For x ∈ B(x0, D) and h ∈ U ,
h−1x ∈ B(x0, R) and therefore fn−1(h−1x) ≥ αn−1. For x ∈ B(x0, R+ n) we have
therefore

fn(x) =

∫
G

χu(h)fn−1(h−1x)dm(x) ≥ α · αn−1 = αn .

The above claim now implies

αnm(B(x0, R+ n)) ≤
∫
fn(x)dm(x) = m(U)n ·m(B(x0, R))

which shows that T → m(B(x0, T )) has a finite rate of exponential growth and,
hence, the critical exponent of Is(X) is finite. Q.E.D.
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2. Center of mass

Let Y be a proper CAT(−1)-space, Is(Y ) its group of isometries and M+
3 (Y (∞))

the space of positive measures on Y (∞) whose support contains at least three
points. In this section we prove

Proposition 2.1. There is an Is(Y )-equivariant map

Cm : M+
3 (Y (∞)) −→ Y ,

whose restriction to any Is(Y )-orbit in M+
3 (Y (∞)) is continuous.

We begin by considering the action of Is(Y ) on FnY (∞) := {S ⊂ Y (∞) : |S| =
n}. The space FnY (∞) being an open subset in the space of all unordered n-
tuples of points of Y (∞) inherits a locally compact topology for which Is(Y ) acts
continuously. For S ∈ FnY (∞) and y ∈ Y , define

FS(y) :=
∑
ξ,ν∈S
ξ 6=ν

d(y, [ξ, ν]),

where d(y, [ξ, ν]) is the distance from y to the geodesic [ξ, ν] connecting ξ to ν. For
all g ∈ Is(Y ) and S ∈ FnY (∞), we have FgS = FS◦g.

Lemma 2.2. For n ≥ 3, the group Is(Y ) acts on FnY (∞) with closed orbits and
compact stabilizers.

Proof. We observe first that for n ≥ 3 and K ⊂ FnY (∞) a compact subset, the
continuous function

K × Y −→ R
(S, y) 7−→ FS(y)

is proper. To show the lemma, it suffices to show that given S ∈ FnY (∞)
and a sequence (gn)n∈N in Is(Y ) with limn→∞ gnS = T for some T ∈ FnY (∞),
the sequence (gn)n∈N is relatively compact. Let λ = min{FT (y) : y ∈ Y }, V
a compact neighborhood of T in FnY (∞) and N such that gnS ∈ V for all
n ≥ N . Since {(gnS, y) : FgnS(y) ≤ λ + 1} is relatively compact in V × Y , the

set
⋃
n≥N g

−1
n F−1

S ([0, λ + 1]) is relatively compact and hence (gn)n∈N is relatively
compact. Q.E.D.

Lemma 2.3 (Compare with [Fu], [L-M-Z]). (a) Let µ, ν be probability measures on
Y (∞) and (gn)n∈N a nonrelatively compact sequence in Is(Y ) such that

lim
n→∞

gn ∗ µ = ν.

Then the support of ν has at most two points.
(b) M+

3 (Y (∞)) is open in M+(Y (∞)). The action of Is(Y ) on M+
3 (Y (∞)) has

closed orbits and compact stabilizers.

Proof. (a) Without loss of generality we may assume that (gn)n+N tends to infinity.
Suppose that the support of ν contains more than two points. This would imply
that there exist three distinct points ξi ∈ Y (∞), 1 ≤ i ≤ 3, and three distinct
points ζi ∈ Y (∞) such that for some subsequence (hn)n∈N of (gn)n∈N we have
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limn→∞ hn · ζi = ξi for 1 ≤ i ≤ 3. This however implies that the sequence (hn)n∈N
is bounded (Lemma 2.2) which is a contradiction.

(b) follows from (a). Q.E.D.

We observe now that if C : M+
3 (Y (∞)) −→ Y is any Is(Y )-equivariant map, its

restriction to any Is(Y )-orbit is continuous. Indeed, by Lemma 2.3(b), the orbital
maps

Is(Y )/Stab(ν) −→ Is(Y ) · ν
Is(Y )/Stab(C(ν)) −→ Is(Y ) · C(ν) , ν ∈M+

3 (Y (∞)),

are homeomorphisms, C is Is(Y )-equivariant, and Stab(ν) ⊂ Stab(C(ν)).
We turn now to the construction of such a map.
A. For a bounded subset E ⊂ Y we let ct(E) denote the center of the unique

closed ball of minimal radius containing E.
B. For a finite subset S ⊂ Y (∞) with |S| ≥ 3, the function FS is proper convex

and MinFS := {y ∈ Y : FS(y) = inf FS} is therefore nonvoid bounded convex and
closed. Set c(S) := ct(MinFS).

Given now µ ∈ M+
3 (Y (∞)) a purely atomic measure and a1 ≥ . . . ≥ an ≥ . . .

the sequence of positive values taken by the function ρ 7−→ µ(ρ), the set ρµ := {ρ ∈
Y (∞) : µ(ρ) ≥ a3} ⊂ Y (∞) is finite and contains at least three points. We define
Cm(µ) := c(ρµ).

C. To a probability measure µ on Y (∞) we associate the convex function (Comp.
[Zi 2])

Fµ(y) :=

∫
Y (∞)

βρ(y)dµ(ρ) ,

where β : Y (∞)×Y −→ R is a fixed horofunction with βρ(p) = 0 for all ρ ∈ Y (∞),
and p is a fixed point in Y .

Lemma 2.4. Assume that µ(ρ) < 1
2 for all ρ ∈ Y (∞). Then Fµ is a proper

function.

Proof. Since Fµ is convex, it suffices to show that for any geodesic ray r : [0,∞) −→
Y starting at p, limt→∞ Fµ(r(t)) = +∞. Set ξ = r(+∞) and define for R ∈ N

V (R) := {ρ ∈ Y (∞) : βρ(r(t + s))− βρ(r(t)) ≥ s− 1 , ∀ t ≥ R, ∀ s ≥ 0} .

For every ρ 6= ξ the geodesics [ρ, ξ] and r are asymptotic and therefore

Y (∞)\{ξ} =
⋃
R∈N

V (R) .

Since µ(ξ) < 1
2 , there exists R ∈ N with µ(V (R)) > 1

2 . We have then, for t ≥ R
and s ≥ 0,

Fµ(r(t+ s))− Fµ(r(t)) =

∫
V (R)

[βρ(r(t + s))− βρ(r(t))] dµ(ρ)

+

∫
Y (∞)\V (R)

[βρ(r(t + s))− βρ(r(t))] dµ(ρ)

≥(s− 1)µ(V (R))− s · µ(Y (∞)\V (R))

≥(2µ(V (R))− 1)s− 1 ,
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which shows that limt→∞ Fµ(r(t)) = +∞. Q.E.D.

For a measure µ satisfying the hypothesis of Lemma 2.4, the set Min Fµ =
{y ∈ Y : Fµ(y) = inf Fµ} is therefore nonvoid, convex and compact. Observe
that, for g ∈ Is(Y ), the functions Fg∗µ and Fµ◦g

−1 differ by a constant and hence
Min Fg∗µ = g(Min Fµ).

Proof of Proposition 2.1. For µ ∈M+
3 (Y (∞)), let µ = µA + µD be the decomposi-

tion of µ into its purely atomic part µA and nonatomic part µD.
If µD = 0, we set Cm(µ) := Cm(µA) as defined in B. If µD 6= 0, the measure

ν = µD/µD(Y (∞)) satisfies the hypothesis of Lemma 2.4 and we define

Cm(µ) := ct(Min Fν) .

Q.E.D.

Corollary 2.5. Let Y be a proper CAT(−1)-space.
(1) A subgroup H < Is(Y ) is elementary if and only if there exists an H-invariant

probability measure on Y (∞).
(2) A closed subgroup H < Is(Y ) with δH = 0 is elementary.
(3) Assume that Is(Y ) has finite critical exponent. A closed subgroup H < Is(Y )

is amenable if and only if it is elementary.

Proof. (1) If H is elementary, there exists ∆ ⊂ Y , an H-invariant subset with
1 ≤ |∆| ≤ 2. If ∆∩Y 6= ∅, then H is compact and hence fixes a probability measure
on Y (∞). If ∆ ⊂ Y (∞), then |∆|−1

∑
η∈∆ δη is an H-invariant probability measure

on Y (∞). Conversely, let µ ∈ M1(Y (∞)) be an invariant probability measure.
Then, either | supp µ| ≤ 2 and H is elementary or µ ∈ M1

3 (Y (∞)) and H fixes
Cm(µ) ∈ Y (Proposition 2.1).

(2) Proposition 1.1 implies that there exists a 0-dimensional density for H and
hence an H-invariant probability measure on Y (∞); so H is elementary by (1).

(3) If H is amenable, it fixes a probability measure on Y (∞) and is therefore
elementary. If H is elementary, it contains a normal subgroup of index at most 2
which fixes a point in Y . It follows then from Proposition 1.6 that H is amenable.
Q.E.D.

3. Boundary maps

3.1. Given a proper CAT(−1)-space X , a subgroup G < Is(X) and x ∈ X , the
set G · x ∩X(∞) is independent of x ∈ X ; it is the limit set LG of G. If G does
not fix a point in X(∞), any nonvoid G-invariant closed subset A ⊂ X(∞) verifies
A ⊃ LG and therefore G acts minimally on LG ([Gh-H], 8. § 3, Proposition 25).
In particular, for any closed nonvoid convex G-invariant subset C ⊂ X , one has
C(∞) ⊃ LG and the G-action on Co(LG) ⊂ X , the closed convex hull of LG, is
therefore c-minimal. One has the inclusion LG ⊂ Co(LG)(∞); we do not know if
equality holds in general (see however [Bow]).

Let now Γ be a countable group acting by Borel automorphisms on a standard
Borel space B, preserving a σ-finite measure class µ, and let π : Γ → Is(X) be a
homomorphism. Denote by K(X(∞)) the space of closed subsets of X(∞) endowed
with the Hausdorff topology.
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Proposition 3.1. Assume that the diagonal Γ-action on (B×B,µ×µ) is ergodic
and that π(Γ) does not fix a point in X. Let F : B → K(X(∞)) be a Γ-equivariant
measurable map. Then, either F (b) ⊃ Lπ(Γ) for a.e. b ∈ B, or |F (b)| = 1 for a.e.
b ∈ B.

Corollary 3.2. Assume that the diagonal Γ-action on (B × B,µ × µ) is ergodic
and that π(Γ) is nonelementary. Then any Γ-equivariant measurable map

Φ : B −→M1(X(∞))

takes almost all its values in the subset of Dirac measures. In particular, there
exists at most one Γ-equivariant measurable map

ϕ : B −→ X(∞) .

3.2. We begin with the following observation: for ξ1, ξ2, ξ3, ξ4 ∈ X(∞) with ξi 6=
ξi+1, 1 ≤ i ≤ 4, where ξ5 = ξ1, the quantity [ξ1, ξ2, ξ3, ξ4] := (ξ1 · ξ2)x −
(ξ2 · ξ3)x + (ξ3 · ξ4)x − (ξ4 · ξ1)x is well defined and independent of x ∈ X and
hence one has [gξ1, gξ2, gξ3, gξ4] = [ξ1, ξ2, ξ3, ξ4], ∀ g ∈ Is(X). Given two closed
subsets F1, F2 ⊂ X(∞), containing each at least two points, the quantity

h(F1, F2) := min{|[ξ1, ξ2, ξ3, ξ4]| : ξ1, ξ2 ∈ F1, ξ3, ξ4 ∈ F2, ξi 6= ξi+1}

is finite and h(gF1, gF2) = h(F1, F2) ∀ g ∈ Is(X).

Proof of Proposition 3.1. Assume that there is ξ ∈ X(∞) such that Bξ := {b ∈ B :
F (b) 63 ξ} has measure 0. Since Γ is countable, we can find a Γ-invariant subset
E ⊂ B of full measure such that F (b) 3 ξ for all b ∈ E. The closed π(Γ)-invariant
subset

⋂
b∈E F (b) ⊂ X(∞) is then nonvoid and hence contains Lπ(Γ) (see 3.1).

Assume now that Bξ has positive measure for every ξ ∈ X(∞) and |F (b)| ≥ 2
for a.e. b ∈ B. We wish to obtain a contradiction. Let r be the essential value of
the Γ-invariant measurable function B ×B → R, (b, b′)→ h(F (b), F (b′)).

Since π(Γ) does not fix a point in X, the limit set Lπ(Γ) contains at least two
points; in particular there exists γ ∈ Γ such that π(γ) is hyperbolic (see [Gr], 8.1.A).
Let ξ+, resp. ξ−, denote the attractive, resp. repelling, fixed point of π(γ) in X(∞).
We claim that for every (b, b′) ∈ Bξ+ ×Bξ− , limn→∞ h(F (b), π(γ)nF (b′)) = +∞.

Indeed, fix x ∈ X ; since ξ+ /∈ F (b) there is a neighborhood V0 of ξ+ such that

` := sup{(ξ1 · ξ2)x : ξ1 ∈ V0, ξ2 ∈ F (b)} < +∞ .

For n ∈ N, let Vn ⊂ V0 be a neighborhood of ξ+ such that (ξ1 · ξ2)x ≥ n for
all ξ1, ξ2 ∈ Vn. Since F (b′) 63 ξ−, there exists k0 ≥ 0 such that for all k ≥ k0,
π(γ)kF (b′) ⊂ Vn. The definition of h implies then h(F (b), π(γ)kF (b′)) ≥ n − 2`,
which proves the claim.

For S := {(b, b′) ∈ B ×B : h(F (b), F (b′)) ≥ r + 1}, the claim implies⋃
n≥0

(e, γ−n)S ⊃ Bξ+ ×Bξ− .

Since Bξ+×Bξ− has positive measure, S must have positive measure, contradicting
the definition of r. Therefore |F (b)| = 1 for a.e. b ∈ B. Q.E.D.
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Proof of Corollary 3.2. Composing Φ with the Borel map supp: M1(X(∞)) →
K(X(∞)), which to every probability measure associates its support (see [A’C-B],
section 4), we obtain a Γ-equivariant measurable map F : B → K(X(∞)). If
|F (b)| > 1 for a.e. b ∈ B, then F (b) ⊃ Lπ(Γ) for a.e. b ∈ B (Proposition 3.1).
Since π(Γ) is nonelementary, |Lπ(Γ)| ≥ 3 and hence Φ takes almost all its values in

M1
3 (X(∞)). Composing Φ with the center of mass map (see Lemma 2.3 (b)) and

Proposition 2.1), we obtain a Γ-equivariant measurable map f : B → X . Let d be
the essential value of the Γ-invariant measurable function (b, b′) → d(f(b), f(b′)).
There exist b ∈ B and a Γ-invariant subset E ⊂ B of full measure, such that
d(f(b), f(b′)) = d, ∀ b′ ∈ E. Hence {f(b′) : b′ ∈ E} is a π(Γ)-invariant bounded
subset of X , which contradicts the assumption that π(Γ) is nonelementary. This
shows |F (b)| = 1 for a.e. b ∈ B and hence Φ takes almost all its values in the
subset of Dirac measures. If ϕ1, ϕ2 : B → X(∞) are Γ-equivariant measurable
maps, Φ(b) := 1

2δϕ1(b) + 1
2δϕ2(b) must be a Dirac measure for a.e. b ∈ B, hence

ϕ1 = ϕ2 a.e. Q.E.D.

4. Superrigidity for commensurators

In this section we prove Theorem 0.1. The main ingredients in its proof are the
uniqueness results (Corollary 3.2) of §3 and the general Proposition 4.1 below. This
proposition will also be used in the proof of Theorem 0.4.

Proposition 4.1. Let G be a locally compact, second countable group, B a standard
Borel space, and G×B → B a Borel action preserving a σ-finite measure class µ.
Let Λ < G be a dense subgroup, Y a proper CAT(−1)-space and π : Λ → Is(Y )
a homomorphism such that π(Λ) is nonelementary and acts c-minimally on Y .
Assume that there exists a Λ-equivariant measurable map ϕ : B → Y (∞). Then π
extends continuously to G.

Remark 4.2. We begin with the following general observation which will again be
needed in the proof of Theorem 0.4. Let (S,m) be a σ-finite measure space and
F (S,M1(Y (∞))) the space of measurable maps from S to M1(Y (∞)), endowed
with the topology of convergence in measure. This space is metrizable complete,
and from the Is(Y )-action on M1(Y (∞)), one obtains a continuous Is(Y )-action on
F (S,M1(Y (∞)). Clearly, the set

F3 := {f ∈ F (S,M1(Y (∞))) : {s ∈ S : f(s) ∈M1
3 (Y (∞))} has positive measure}

is an open subset of F (S,M1(Y (∞))). Moreover, since the Is(Y )-orbits in
M1

3 (Y (∞)) are closed and have compact stabilizers, the same holds for the Is(Y )-
orbits in F3. In particular, for every f ∈ F3, the orbital map induces a homeomor-
phism

Is(Y )/Stab(f) −→ Is(Y )∗f ⊂ F3 .

Proof of Proposition 4.1. Observe first that it is sufficient to prove the proposition
in the case where Λ is countable. Let now α be a probability measure in the class of
µ. Since supp ϕ∗(g∗α) = supp ϕ∗α for all g ∈ G and since π(Λ) is nonelementary,
we have ϕ∗(g∗α) ∈M1

3 (Y (∞)) for all g ∈ G. The map

Φ : G −→ F (G,M1
3 (Y (∞)))

defined by Φ(g)(g′) := ϕ∗(gg
′
∗α), g, g′ ∈ G, is measurable and Λ-equivariant. It

follows then from Remark 4.2 and the fact that Λ acts ergodically on G, that the
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essential image of Φ is contained in one Is(Y )-orbit. Hence, there exists g0 such
that for almost all g ∈ G: Φ(g0g) ∈ Is(Y )∗Φ(g0). Observe that the stabilizer of
Φ(g0) in Is(Y ) is trivial. Indeed, for h ∈ Is(Y ) with hΦ(g0) = Φ(g0), we have:
hϕ∗(g0g∗α) = ϕ∗(g0g∗α) for a.e. g ∈ G. In particular there exists g1 ∈ G such that
for all λ ∈ Λ, hπ(λ)∗ϕ(g1∗α) = π(λ)∗ϕ(g1∗α). Hence h fixes pointwise the π(Λ)-
orbit in Y of Cm(ϕ∗(g1∗α)) and its closed convex hull; since π(Λ) acts c-minimally,
the latter coincides with Y . Hence h = e.

We obtain in this way a well-defined measurable map τ : G → Is(Y ), such that
for a.e. g ∈ G : Φ(g0g) = τ(g)Φ(g0). Using Fubini’s theorem one shows that
τ is a measurable homomorphism and therefore coincides a.e. with a continuous
homomorphism τ̃ : G → Is(Y ). The Λ-equivariance of Φ implies then that g →
τ̃(g−1

0 gg0) gives the continuous extension of π to G. Q.E.D.

Proof of Theorem 0.1. Since (B,µ) is a weak (G,Γ)-boundary, there exists a Γ-
equivariant measurable map ϕ : B → M1(Y (∞)) which takes almost all its values
in the subset of Dirac measures (Corollary 3.2), thus providing a Γ-equivariant
measurable map ϕ : B → Y (∞).

For λ ∈ Λ, the maps ϕ and π(λ)−1◦ϕ◦λ are both equivariant w.r.t. the subgroup
λ−1Γλ∩Γ which is of finite index in Γ. The assumption that any subgroup of finite
index in Γ acts ergodically on B × B and Corollary 3.2 imply then that ϕ(b) =
π(λ)−1ϕ(λb) for a.e. b ∈ B and all λ ∈ Λ. It follows then from Proposition 4.1 that
π extends continuously to Λ. Q.E.D.

5. Lattices in higher rank groups and CAT(−1)-spaces

In this section we prove Theorem 0.4. An ingredient in its proof is the deter-
mination of Furstenberg boundaries of G(k), where G is a reductive group defined
over a local field k. These results (Proposition 5.1, Corollary 5.2) are well known
when k = R, C (see [Fu], §4); for ease of reference, we have included proofs valid
for arbitrary local fields. Now we fix some notations used throughout this section.

For a connected reductive group G defined over k, let S denote a maximal k-split
torus of G, kW := N(S)/Z(S) the Weyl group relative to k, P a minimal parabolic
k-subgroup containing ZG(S), P− the opposite parabolic k-subgroup containing
ZG(S) and U (resp. U−) the unipotent radical of P (resp. P−). Let kΦ be the set
of roots of G w.r.t. S, which we assume given the ordering such that P is associated
to kΦ+, and let k∆ be the corresponding set of simple roots.

Proposition 5.1. Let G be a connected reductive group defined over a local field
k and Q < G a parabolic k-subgroup. The homogeneous space G(k)/Q(k) is a
Furstenberg boundary of G(k).

Proof. We may assumeQ ⊃ P . Let µ be aG(k)-quasi-invariant probability measure
on G(k)/P (k) and ν its direct image on G(k)/Q(k) via the canonical projection
map. It suffices to show that µ can be contracted to a Dirac mass. Indeed, this
implies that ν can be contracted to a Dirac mass and, since supp ν = G(k)/Q(k),
that every probability measure on G(k)/Q(k) can be contracted to a Dirac mass
(see [Az], Lemma II. 11).

Let

G(k) =
⊔

w∈kW
U(k)wP (k)
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be the Bruhat decomposition of G(k) and σ ∈ kW the longest element. It follows
from [Bo] (Corollary 21. 28 and Theorem 21.26) that U(k)σP (k) is open and dense
in G(k). One concludes, using [Ber-Ze], 6.15, Theorem A, that the orbit map

U(k) −→ G(k)/P (k)
u 7−→ uσP (k)

identifies U(k) with an open dense subset V of G(k)/P (k).
Fix t ∈ S(k) such that |α(t)| < 1 ∀ α ∈ k∆. For any eigenvalue λ of Ad(t)

∣∣
LieU ,

we have then |λ| < 1. It follows then from the existence of an S-equivariant
k-isomorphism of algebraic varieties U → Lie(U) (foll. from [Bo-Ti], Theorem
4.15, and [Bo-Sp], Corollary 9.12, see [Ma], Proposition 1.3.3 (i)) that Int(t) acts
contracting on U(k) and hence limn→∞ t

n
∗µ|V = µ(V ) · δσP (k).

It remains to show that the µ-measure of the complement of V is zero, or what
amounts to the same, that the Haar measure of U(k)wP (k) is zero for all w 6= σ.

Fix w ∈ kW , kΦ′w := {α ∈ kΦ+ : w−1(α) < 0}, kΦw = {α ∈ kΦ+ : w−1(α) > 0}
and let U ′w, Uw be the unipotent subgroups of U associated resp. to kΦ′w, kΦw.
Then U = U ′w · Uw and we have w−1U ′ww ⊂ U−, w−1Uww ⊂ U (see [Bo], 21.14).
Set U ′′w := w−1U ′ww so that w−1U(k)wP (k) = U ′′w(k) · P (k). The map

U−(k)× P (k) −→ U−(k) · P (k) ⊂ G(k)
(u, p) 7−→ u · p

is a homeomorphism onto the open dense subset U−(k) ·P (k) and in these coordi-
nates the restriction to U−(k)P (k) of the Haar measure of G(k) is du×dp where du
is a left-invariant Haar measure on U−(k) and dp a right invariant Haar measure
on P (k).

If now U(k)wP (k) has positive Haar measure, then U ′′w(k) · P (k) has positive
du×dpmeasure and hence by Fubini’s theorem, U ′′w(k) is a closed subgroup of U−(k)
of positive du measure. In particular, U ′′w(k) is open in U−(k) and so is U ′′w(k)P (k)
in U−(k)P (k). The later set being open in G(k), we deduce that U(k)wP (k) is
open in G(k) and hence, since U(k)σP (k) is open dense, we must have w = σ.
Q.E.D.

Corollary 5.2. Let G be a connected reductive group defined over a local field
k, Q a parabolic k-subgroup and µ a G(k)-quasi-invariant probability measure on
G(k)/Q(k). The map P : L∞(G(k)/Q(k), µ) → C(G(k)), defined by Pf(g) :=∫
G(k)/Q(k)

f(gx)dµ(x), is injective.

Proof. Since G(k)/Q(k) is a Furstenberg boundary, the map P restricted to the
subspace of continuous functions is injective.

Let f ∈ L∞(µ) with Pf = 0. For all h ∈ G(k) and F ∈ C00(G(k)) a continuous
function of compact support, we have:∫

G(k)/Q(k)

dµ(x)

∫
G(k)

f(ghx)F (g)dg =

∫
G(k)

Pf(g)F (gh−1)dg = 0 .

Here dg denotes a right-invariant Haar measure on G(k). Since G(k) acts transi-
tively on G(k)/Q(k), the function

uF (x) :=

∫
G(k)

f(gx)F (g)dg

is continuous and the above equality reads PuF = 0. Hence uF = 0 for all F ∈
C00(G(k)) and therefore f = 0. Q.E.D.
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Lemma 5.3. Let G be a connected, simply connected, almost k-simple group and
H a locally compact second countable group. Any nontrivial continuous homomor-
phism π : G(k)→ H is proper.

Proof. Assume that π is not proper. In particular, rankkG ≥ 1. Let S′ := {t ∈
S(k) : |α(t)| ≤ 1, ∀ α ∈ k∆} and M a compact subgroup such that G(k) =
MS′M (see [Ma], I. Theorem 2.2.1 and references therein). Since π is not proper,
there exists a sequence (tn)n∈N in S′, leaving every compact subset of S′, and such
that h := limn→∞ π(tn) ∈ H exists. Passing to a subsequence, we may assume
limn→∞ α(tn) = 0 for some α ∈ k∆. Hence, there exists u ∈ U , u 6= e with
limn→∞ tnut

−1
n = e and hence e = limn→∞ π(tnut

−1
n ) = h−1π(u)h. This implies

that Ker π is not in the center of G(k) and therefore Ker π ⊃ G(k)+ = G(k) (see
[Ti 1]). Q.E.D.

Lemma 5.4. Let G be a connected k-almost simple group with rankkG ≥ 2, P a
minimal parabolic k-subgroup and Q1, Q2 proper standard parabolic k-subgroups of
G. Then G(k) 6= Q1(k) ·Q2(k).

Proof. Assume G(k) = Q1(k) ·Q2(k). Writing g = q1q2 = q′2 ·q′1 with qi, q
′
i ∈ Qi(k),

we have for the unipotent radical RuQi of Qi: gRuQ1g
−1 = q′2RuQ1q

′−1
2 ⊂ Q2,

since RuQ1 ⊂ Q2; similarly gRuQ2g
−1 ⊂ Q1.

Hence g[RuQ1(k)∩RuQ2(k)]g−1 ⊂ Q1(k)∩Q2(k) for all g ∈ G(k). Let Vi ⊂ k∆
be the proper subset of simple roots corresponding to Qi and take αi ∈ k∆\Vi.
Since kΦ is irreducible there exists a root γ ∈ kΦ+ containing α1 +α2, in particular
γ /∈ [V1] ∪ [V2] and hence U(γ)(k) ⊂ RuQ1(k) ∩ RuQ2(k) (see [Bo], 21.11, for
the definition of U(γ)). The normal subgroup of G(k) generated by U(γ)(k) is
therefore contained in Q1(k) ∩Q2(k); in particular G(k)+ ⊂ Q1(k) ∩ Q2(k). This
is a contradiction. Q.E.D.

Proof of Theorem 0.4. For α, 1 ≤ α ≤ n, we fix a minimal kα-parabolic subgroup
Pα of Gα and a maximal kα-split torus Sα in Pα. In this proof a subgroup Q<
G =

∏n
α=1 Gα(kα) is called standard parabolic if Q =

∏n
α=1Qα(kα), where Qα

is a standard kα-parabolic subgroup of Gα. Let Lπ(Γ) ⊂ Y (∞) denote the limit
set of π(Γ), Q be a standard parabolic subgroup of G, assume that there exists
a Γ-equivariant measurable map ϕ : G/Q → Lπ(Γ) and let R < G be a standard
parabolic subgroup with R 6= G. Let xQ := eQ ∈ G/Q and µR be an R-quasi-
invariant probability measure supported on RxQ ⊂ G/Q.

Claim 1. For almost every g ∈ G, the restriction of ϕ to gRxQ coincides g∗µR-a.e.
with a continuous map ϕg, and either

(a) ϕg(gRxQ) = ϕ(gxQ) for a.e. g ∈ G, or
(b) ϕg(gRxQ) = Lπ(Γ) for a.e. g ∈ G.
Let Tα ⊂ Sα be a kα-split torus such that Lα := ZGα(Tα) is a kα-Levi subgroup of

Rα; set T :=
∏n
α=1 Tα(kα) and L :=

∏n
α=1 Lα(kα). Then Lα∩Qα is a kα-parabolic

subgroup of Lα ([Bo], 21.13 (i)), LxQ = RxQ and L/L∩Q is a Furstenberg boundary
of L (see Proposition 5.1). Hence, since L/L∩Q is L-equivariantly homeomorphic to
LxQ ([Ber-Ze], 6.15, Theorem A), LxQ is a Furstenberg boundary of L. Composing
ϕ with the measure class preserving map:

G× (R/R ∩Q) −→ G/Q
(g, r) 7−→ grxQ
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and applying Fubini’s theorem, we deduce that for a.e. g ∈ G the restriction of ϕ
to gRxQ is g∗µR-measurable. Thus we may define for a.e. g ∈ G:

Φ(g)(`) := ϕ∗(g∗`∗µR), ` ∈ L,(5.1)

F (g) := suppϕ∗(g∗µR).(5.2)

Since µR is R-quasi-invariant, (5.2) defines a Γ-equivariant measurable map

F : G/R −→ K(Lπ(Γ)) .

Since π(Γ) is nonelementary, acts c-minimally on Y and Γ acts ergodically on
G/R×G/R, Proposition 3.1 implies that either

(a) F (g) is a point for a.e. g ∈ G, or
(b) F (g) = Lπ(Γ) for a.e. g ∈ G.

In the first case, the restriction of ϕ to gRxQ is g∗µR-a.e. constant for a.e. g ∈ G
and case (a) of the claim is proved.

Assume that the second case occurs. In particular we have Φ(g)(`) ∈M1
3 (Y (∞))

for a.e. g ∈ G and every ` ∈ L. Since L = ZG(T ) and T ⊂ L ∩Q, the subgroup T
acts trivially on RxQ = LxQ and (5.1) defines a Γ-equivariant measurable map

Φ : G/T −→ F (L,M1
3 (Y (∞))) .

Since R 6= G, at least one of the tori Tα is of positive dimension and hence T is
noncompact. Since Γ is an irreducible lattice it acts therefore ergodically on G/T ;
since the orbits of Is(Y ) in F (L,M1

3 (Y (∞))) are locally closed (see Remark 4.2),
we conclude that the essential image of Φ is in one Is(Y )-orbit.

In particular, for a.e. g ∈ G, there is `0 ∈ L such that for a.e. ` ∈ L, there is
τg(`) ∈ Is(Y ) with

(5.3) Φ(g`0`) = τg(`)Φ(g`0) .

Let g ∈ G and `, `0 ∈ L be such that (5.3) holds. For all f ∈ C(Y (∞)) and all
`1 ∈ L we have therefore∫

LxQ

f(ϕ(g`0``1x))dµR(x) =

∫
LxQ

f(τg(`)ϕ(g`0`1x))dµL(x) .

Since LxQ is a Furstenberg boundary of L, Corollary5.2 implies

f(ϕ(g`0`x)) = f(τg(`)ϕ(g`0x))

for all f ∈ C(Y (∞)) and a.e. x ∈ LxQ. Since C(Y (∞)) is separable, we obtain

(5.4) ϕ(g`0`x) = τg(`)ϕ(g`0x) for a.e. x ∈ LxQ .

In particular, since F (g) = Lπ(Γ) and π(Γ) acts c-minimally on Y , τg(`) ∈ Is(Y ) is
uniquely determined by (5.4).

In this way we obtain for a.e. g ∈ G a measurable map τg : L → Is(Y ) which,
in view of (5.4), is a measurable homomorphism. Therefore, τg coincides a.e. with
a continuous homomorphism and hence, since L acts transitively on RxQ, the
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restriction of ϕ to gRxQ coincides a.e. with a continuous map ϕg. In particular
F (g) = ϕg(gRxQ) and hence ϕg(gRxQ) = Lπ(Γ). This proves Claim 1.

Now, since G/P is a (G,Γ)-boundary and π(Γ) is nonelementary, one obtains,
using Corollary3.2, the compactness and Γ-invariance of Lπ(Γ), a Γ-equivariant
measurable map

ψ : G/P −→ Lπ(Γ) .

Let α := ψ∗(νP ), where νP is a G-quasi-invariant probability measure on G/P .
Since π(Γ) acts minimally on Lπ(Γ), we have suppα = Lπ(Γ). According to Margulis’
factor theorem ([Ma], IV Theorem 2.11) there exists Q < G, a standard parabolic
subgroup, and

ϕ : G/Q −→ Lπ(Γ),

a bi-measurable bijection of the measure spaces (G/Q, νQ), (Lπ(Γ), α), such that
ϕ◦pr and ψ coincide almost everywhere, where pr : G/P −→ G/Q is the canonical
projection. Moreover Q 6= G since π(Γ) is nonelementary.

Claim 2. For any standard parabolic subgroup R < G with R 6= G we have
either R ⊂ Q or R ·Q = G.

We apply Claim 1 to Q and ϕ. In case (a), the restriction of ϕ to gRxQ is
g∗µR-almost everywhere constant for a.e. g ∈ G. Since ϕ is injective, this implies
that g∗µR is a Dirac mass for a.e. g ∈ G and hence R ⊂ Q. In case (b), ϕ(gRxQ)
has full α-measure in Lπ(Γ) for a.e. g ∈ G and hence RxQ has full νQ-measure in
G/Q. The complement of RxQ in G/Q being open, we must have RxQ = G/Q and
hence R ·Q = G. This proves Claim 2.

It follows from Claim 2 that Q is a proper maximal standard parabolic subgroup
of G. We may therefore assume Q = Q1(k1)×

∏n
α=2Gα(kα), where Q1 is a proper

maximal standard k1-parabolic subgroup of G1. Assume that rankk1G1 ≥ 2 and
take R1 a proper standard k1-parabolic subgroup of G1 with R1 6⊂ Q1. For R :=
R1(k1) ×

∏n
α=2Gα(kα) we have then R 6⊂ Q and (see Lemma 5.4) R · Q 6= G,

contradicting Claim 2.

Hence rankk1G1 = 1 and, since
∑n
k=1 rankkαGα ≥ 2, we must have n ≥ 2. In

particular Λ := pr1(Γ), where pr1 : G −→ G1(k1) denotes projection on the first
factor, is a dense subgroup of G1(k1).

Identifying G/Q with G1(k1)/Q1(k1), the Γ-equivariance of ϕ : G1(k1)/Q1(k1)
−→ Y (∞) reads: ϕ(pr1(γ)x) = π(γ)ϕ(x) for a.e. x ∈ G1(k1)/Q1(k1) and every
γ ∈ Γ. Since the essential image of ϕ is Lπ(Γ), α(pr1(γ)) := π(γ) gives a well-defined
homomorphism α : Λ −→ Is(Y ) with respect to which ϕ is equivariant. Since Λ
is dense in G1(k1) and α(Λ) = π(Γ) is nonelementary and acts c-minimally on Y ,
Proposition 4.1 implies that α extends continuously to G1(k1) and hence is proper
(Lemma 5.3). Q.E.D.

Proof of Corollary 0.5. It suffices to show that π(Γ) is amenable. Indeed, since Γ

has property (T ) this implies that π(Γ) is compact and therefore fixes a point in

Y . If π(Γ) is not amenable, Corollary 2.5(3) implies that π(Γ) is not elementary
and hence (see 3.1) acts c-minimally on Co(Lπ(Γ)) ⊂ Y , the closed convex hull of
Lπ(Γ). It follows then from Theorem 0.4 that there exists α with rankkαGα = 1,
which contradicts the assumptions. Q.E.D.
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6. Divergence groups

6.1. In this section we develop the part of Patterson–Sullivan theory for divergence
groups acting on proper CAT(−1)-spaces needed in the proof of Theorem 0.2. As
the proofs are almost the same as in the case of groups acting on hyperbolic spaces,
we only indicate the modifications needed in order to treat the general case. The
main results are stated in 6.3.

6.2. Definitions. (a) Conical limit set: let X be a proper CAT(−1)-space, X(∞)
its ideal boundary, G < Is(X) a closed subgroup and π : X → G\X the projection
map. A point ξ ∈ X(∞) is a conical limit point of G, if for some (and hence any)
geodesic ray r : [0,∞) → X with r(∞) = ξ, the map π◦r : [0,∞) → G\X is not
proper. The set CG of conical limit points of G is a G-invariant Borel subset of
X(∞).

(b) Geodesic flow: (compare [Bou], § 2.8) the set

gX := {c : R→ X, c is an isometry}

endowed with the distance

dg(c1, c2) :=

∫ ∞
−∞

d(c1(t), c2(t))
e−|t|

2
dt

is a proper metric space on which Is(X) acts by isometries. Observe that the
subgroup of Is(X) consisting of the isometries acting trivially on gX is compact.
The geodesic flow is the R-action on gX defined by gtc(s) := c(s+ t). It commutes
with the action of Is(X). The fibers of the surjective Is(X)-equivariant map

V : gX −→ X(∞)×X(∞)\diag
c 7−→ (c(−∞), c(+∞))

are the gt-orbits in gX . Each of these fibers carries therefore a canonical arc–length
measure. Given a closed subgroup G < Is(X) and an α-dimensional density µ for
G, one verifies that the measure

dµx(ξ)⊗ dµx(η)

e−2α(ξ·η)x
on X(∞)×X(∞) ,

where (ξ · η)x denotes Gromov’s scalar product, is independent of x and hence
invariant under the diagonal G-action. Combined with arc length measure on the
fibers of the map V , one gets a G-invariant measure m̃µ on gX which is also geodesic
flow invariant. At this point we recall:

Lemma 6.1. Let Y be a proper metric space, G < Is(Y ) a closed unimodular
subgroup and m̃ a G-invariant Radon measure on Y . Given a Haar measure dg on
G, there is a unique Radon measure m on G\Y such that∫

G\Y
dm(y)

∫
G

ψ(gy)dg =

∫
Y

dm̃(y)ψ(y), ∀ ψ ∈ L1(Y, m̃) .

We denote by mµ the geodesic flow invariant measure on G\gX associated to
m̃µ using the above lemma.
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6.3. Statements.

Theorem 6.2 (Hopf dichotomy). Let G < Is(X) be a nonelementary closed uni-
modular subgroup and ν an α-dimensional density for G. Then the action of the
geodesic flow on (G\gX,mν) is either completely dissipative or completely recur-
rent. In the latter case, α = δG and ν is, up to scaling, the unique δG-dimensional
density of G.

We recall that a continuous measure preserving action of R on a locally compact
measure space (Z,m) is

(a) completely recurrent if, for almost every z ∈ Z, the map

[0,∞) −→ Z
t 7−→ gtz

is not proper;
(b) conservative if there exists a positive L1-function λ : Z → (0,∞) such that∫∞

0
λ(gtz) dt = +∞ for almost every z ∈ Z;

(c) completely dissipative if, for almost every z ∈ Z, the map

[0,∞) −→ Z
t 7−→ gtz

is proper.

Definition. A divergence group is a nonelementary closed unimodular subgroup
G < Is(X) of finite critical exponent, for which there exists a δG-dimensional den-
sity µ such that the geodesic flow on (G\gX,mµ) is completely recurrent. For
a divergence group G we call Patterson–Sullivan density the (essentially) unique
δG-dimensional density of G (see Theorem 6.2).

Theorem 6.3. Let G < Is(X) be a nonelementary closed unimodular subgroup and
ν an α-dimensional density. The following properties of the action of the geodesic
flow on (G\gX,mµ) are equivalent:

(1) it is completely recurrent;
(2) it is conservative;
(3) it is ergodic.

For completeness we state the following result without proof. In the case of
hyperbolic spaces it is due to Sullivan (see [Ni], Theorem 8.2.3, and [Su]); its proof
may be adapted to the general case.

Theorem 6.4. For a closed unimodular nonelementary subgroup G < Is(X) the
following properties are equivalent:

(1) G is a divergence group;
(2) δG < +∞ and

∫
G e
−δGd(x,gy)dg = +∞ for some (and hence any) x, y ∈ X.

Corollary 6.5. (1) Let G1 < G2 < Is(X) be closed nonelementary subgroups such
that G2/G1 carries a finite G2-invariant measure. Then G1 is a divergence group
if and only if G2 is a divergence group. In this case, δG1 = δG2 and the Patterson–
Sullivan densities of G1 and G2 coincide up to a scaling factor.
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(2) Assume that Is(X)\X is compact. Then any nonelementary lattice Γ <
Is(X) is a divergence group.

(3) Let Γ < Is(X) be a discrete divergence group, µ its Patterson–Sullivan
density and Com Γ the commensurator of Γ in Is(X). There exists a continuous
homomorphism

χ : Com Γ −→ R∗+

such that µc·x = χ(c)c∗µx, ∀ c ∈ Com Γ, ∀ x ∈ X.

Proof of Corollary 6.5. (1) Let G1 < G2 < Is(X) be closed nonelementary sub-
groups such that G2/G1 carries a G2-invariant measure and let π : G1\gX →
G2\gX be the projection map.

If G2 is a divergence group and µ its Patterson–Sullivan density, the associated
measure m̃µ on gX induces measures m′µ on G1\gX and mµ on G2\gX such that

(∗)
∫
G2\gX

dmµ(c)

∫
G1\G2

dġψ(gc) =

∫
G1\gX

dm′µ(c)ψ(c)

for all ψ ∈ L1(G1\gX,m′µ). Now the action of the geodesic flow on G2\gX is
conservative (Theorem 6.3). If λ is a function on G2\gX as in the definition of
conservativity, it follows from (∗) that λ◦π ∈ L1

(
G1\gX,m′µ

)
and the geodesic

flow is therefore conservative on
(
G1\gX,m′µ

)
. Hence G1 is a divergence group. It

follows from the uniqueness statement in Theorem 6.2 that δG1 = δG2 and µ is also
the Patterson–Sullivan density of G1.

Assume that G1 is a divergence group and µ its Patterson–Sullivan density. One
verifies that

x 7−→
∫
G2/G1

dġ g−1
∗ µgx

is a δG1-dimensional density for G2 > G1. Hence, by Theorem 6.2,∫
G2/G1

dg g−1
∗ µgx = λ · µx, ∀ x ∈ X ,

where λ > 0 is some constant. Therefore µ is a δG1-dimensional density of G2. The
recurrence of gt on (G1\gX, mµ) implies the recurrence of gt on (G2\gX, mµ).
Hence G2 is divergence; this implies δG1 = δG2 and that µ is the Patterson–Sullivan
density of G2.

(2) By Proposition 1.7, Is(X) has finite critical exponent δ and by Proposition 1.1
there exists a δ-dimensional density µ for Is(X). Since Is(X)\gX is compact, mµ is
finite and hence the geodesic flow is recurrent. Hence Is(X) is a divergence group
and assertion (2) now follows from assertion (1).

(3) Let Γ < Is(X) be a discrete divergence group. Observe that, since Γ is
nonelementary, any subgroup Γ′ of finite index is nonelementary as well and hence
a divergence group by assertion (1). Let δ be the critical exponent of Γ, µ the
Patterson–Sullivan density of Γ and c ∈ Com Γ. Then, x → µx and x → c−1

∗ µcx
are δ-dimensional densities of Γ ∩ c−1Γc and hence (assertion (1)) there exists
χ(c) > 0 such that c−1

∗ µcx = χ(c)µx, ∀ x ∈ X . Clearly the map c −→ χ(c) is
a homomorphism.
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Since x→ µx is continuous, the homomorphism χ : Com Γ→ R∗+ is continuous

as well and hence extends to Com Γ. Finally, the continuous maps c 7−→ c−1
∗ µcx

and x −→ χ(c)µx defined on Com Γ coincide on Com Γ and hence on Com Γ.
Q.E.D

Proof of Theorem 0.2. (1) Let µ be the Patterson–Sullivan measure class on X(∞).
Corollary6.5(3) implies that G preserves µ and Corollary6.5(1) implies that the
diagonal action on (X(∞) ×X(∞), µ × µ) of any finite index subgroup Γ′ < Γ is
ergodic. Corollary1.4 and the uniqueness assertion in Theorem 6.2 imply then that
(X(∞), µ) is a weak Γ-boundary.

(2) follows from Corollary3.2 and the fact that (X(∞), µ) is a weak Γ-boundary.
Q.E.D.

6.4. The rest of this section is devoted to the proof of Theorems 6.2 and 6.3.
For x, y ∈ X and R ≥ 0, S(x, y,R) ⊂ X(∞) denotes the set of endpoints of

geodesic rays starting at x and meeting B(y,R). The next lemma follows from
Sullivan’s shadowing technique. For a proof, see [Ni], Theorem 4.3.2.

Lemma 6.6. Let G < Is(X) be a nonelementary closed subgroup, ν an α-dimen-
sional density of G and x ∈ X. Then there are constants R, c1, c2, k > 0 such
that

c1 ≤
νx(S(x, gx,R))

e−αd(x,gx)
≤ c2 ,

for all g ∈ G with d(x, gx) ≥ k .
In the above lemma, the hypothesis that G is nonelementary is used to exclude

the case where νx is a single atom. Observe that it follows from this lemma that
no conical point is an atom of νx.

Lemma 6.7. Let G < Is(X) be a nonelementary closed subgroup and ν an α-
dimensional density for G. Then δG ≤ α.

Proof. Let R, c1, c2, k > 0 be as in Lemma 6.6. For N ∈ N, N ≥ k and ε > 0,
Lemma 6.6 implies

(∗)

∫
N≤d(gx,x)≤N+1

e−(α+ε)d(gx,x)dg

≤ c−1
1 e−εN

∫
N≤d(gx,x)≤N+1

νx(S(x, gx,R))dg

= c−1
1 e−εN

∫
X(∞)

dνx(ξ)

∫
N≤d(gx,x)≤N+1

χg(ξ)dg,

where χg denotes the characteristic function of S(x, gx,R). Now observe that there
is a constant c > 0 such that, for all g, h ∈ G with |d(gx, x) − d(hx, x)| ≤ 1 and
S(x, gx,R) ∩ S(x, hx,R) 6= ∅, we have d(gx, hx) ≤ c. Hence (∗) is bounded by
e−εNc−1

1 · νx(X(∞)) ·
∫
K 1dg, where K = {k ∈ G d(kx, x) ≤ c}. Summing over

N ∈ N, we get α+ ε ≥ δG, ∀ ε > 0 and the lemma is proved. Q.E.D.

Corollary 6.8. Let Γ < Is(X) be a discrete subgroup and Γn < Γ, n ∈ N, a family
of nonelementary subgroups such that Γn ⊂ Γn+1, and

⋃
n∈N Γn = Γ. Then

δΓ = lim
n→∞

δΓn .
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Proof. We may assume that the sequence (δΓn)n∈N is bounded. Fix x ∈ X and
choose for every n a δΓn -dimensional density µn for Γn, such that µn,x is probability.
Let α ≤ δΓ be the limit of the increasing sequence (δΓn)n∈N (see Lemma 1.5) and
µ ∈ M1(X(∞)) an accumulation point of the sequence (µn,x)n∈N. Since Γ is the

increasing union of (Γn)n∈N, we have d(γ∗µ)(ξ) = e−αBξ(γx,x)dµ(ξ), ∀ γ ∈ Γ. The
formula dµy(ξ) = e−αBξ(y,x)dµ(ξ) defines an α-dimensional density for Γ and hence
α ≥ δG by Lemma 6.7. Q.E.D.

Lemma 6.9. Let G < Is(X) be a nonelementary closed subgroup, ν an α-dimen-
sional density for G, CG the set of conical points of G and A ⊂ CG a G-invariant
measurable subset. Then, either νx(A) = 0 or νx(A) = νx(X(∞)).

For a proof see [Ni], Theorem 4.4.4.

Lemma 6.10. Let G < Is(X) be a nonelementary closed subgroup and ν an α-
dimensional density for G with νx(CG) > 0. Then∫

G

e−αd(gx,x)dg = +∞ ,

in particular α ≤ δG.

Proof. Assume that
∫
G e
−αd(gx,x)dg < +∞. Let ε > 0 and K ⊂ G compact such

that ∫
G\K

e−αd(gx,x)dg < ε .

Let Kn ⊂ Kn+1, n ∈ N, be a sequence of compact subsets of G such that G =⋃
n∈NKn. Observe that

CG =
⋃
N∈N

⋂
n∈N

 ⋃
g/∈Kn

S(x, gx,N)

 .

Choose N ∈ N such that

νx

⋂
n∈N

⋃
g/∈Kn

S(x, gx,N)

 ≥ νx(CG)

2
.

We may take K large enough such that by Lemma 6.6

c−1
2 νx(S(x, gx,N + 1)) ≤ e−αd(gx,x), ∀ g /∈ K .

Hence ∫
X(∞)

dνx(ξ)

∫
G\K

dgχS(x,gx,N+1)(ξ) < c2 · ε .

Set U := {h ∈ G : d(x, hx) < 1}.
Observe that, for every ξ ∈

⋂
n∈N

(⋃
g/∈Kn S(x, gx,N)

)
, there is g /∈ K such that

gU ⊂ G\K and ξ ∈ S(x, gux,N+1), ∀ u ∈ U . This implies
∫
G\K χS(x,gx,N+1)(ξ)dg

≥
∫
U
du and hence∫

U

du · νx

⋂
n∈N

 ⋃
g/∈Kn

S(x, gx,N)

 < c2 · ε
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which implies νx(CG) = 0 and proves the lemma. Q.E.D.

Proof of Theorem 6.2. If mν is not completely dissipative, then νx gives positive
measure to the set CG of conical points and hence, by Lemma 6.9, gives full measure
to CG. This implies that the geodesic flow is completely recurrent on (G\gX,mν).
If this is the case, then ν gives full measure to CG and hence α = δG by Lemmas
6.7 and 6.10.

If µ is any δG-conformal density, then µ+ν gives positive mass to CG and hence,
by Lemma 6.9, full mass to CG. Furthermore, by Lemma 6.9, νx + µx and νx are
ergodic and hence coincide up to a constant: µx = c(x) · νx, ∀ x ∈ X . Since

dµx(ξ)

dµy(ξ)
=
dνx(ξ)

dνy(ξ)
,

the function x→ c(x) is constant. Q.E.D.

Proof of Theorem 6.3. We concentrate on the implication (1) =⇒ (2). Once a
function λ : G\gX → (0,∞) with suitable properties has been constructed, the
proof of the implication (2) =⇒ (3) is verbatim Hopf’s argument (see [Ho1], [Ho2]).

Lemma 6.11. Let Y be a proper metric space, G < Is(Y ) a closed unimodular
subgroup, m̃ a G-invariant positive measure on Y and m the corresponding measure
on G\Y . For the critical exponents δm̃, δm of m̃, m respectively, we have

δm ≤ δm̃ .

Proof. Let d denote distance on Y , dQ quotient distance on G\Y , π : Y → G\Y
the projection map and BQ(z,R) a ball of radius R with respect to the metric dQ.
We may assume that δm̃ < +∞. Observe that, for y ∈ Y fixed,

δm̃ = lim
R→∞

sup
log m̃(B(y,R))

R
.

Fix a Haar measure dg on G and choose T finite such that the set

U := {g ∈ G : d(gy, y) ≤ T}

has measure at least 1. Observe that ∀ g ∈ U : gB(y,R) ⊂ B(y,R + T ). If F
denotes the characteristic function of B(y,R+ T ), we have then∫

G

F (gζ)dg ≥ 1, ∀ ζ ∈ B(y,R) .

Since π(B(y,R)) = BQ(π(y), R), we get

m(BQ(π(y), R)) ≤
∫
G\Y

dm(ζ)

∫
G

F (gζ)dg

=

∫
Y

dm̃(ζ)F (ζ) = m̃(B(y,R+ T )) .

Hence δm ≤ δm̃. Q.E.D

Now let X be a proper CAT (−1)-space, G < Is(X) a closed subgroup, ν an
α-dimensional density for G, m̃ν , mν the corresponding measures on gX , G\gX
respectively and dQ the quotient distance on G\gX . Fix c0 ∈ G\gX and define,

for β > 2α, λ(c) = e−βdQ(c0,c).
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Lemma 6.12. (1) δm̃ν ≤ 2α and λ ∈ L1(G\gX,mν).
(2) There is a constant K > 0 such that, for all c, c′ ∈ G\gX with dQ(c, c′) ≤ 1,∣∣∣∣ λ(c)

λ(c′)
− 1

∣∣∣∣ ≤ K · dQ(c, c′) .

(3) Assume that the geodesic flow on (G\gX,mν) is completely recurrent. Then∫ ∞
0

λ(gtc)dt = +∞, ∀ c ∈ G\gX .

Proof. (1) Recall that for all c1, c2 ∈ gX

(∗) d(c1(0), c2(0)) ≤ dg(c1, c2) ≤ d(c1(0), c2(0)) + 2

(see [Bou], Proposition 2.8.1).
Now fix c0 ∈ gX and R ≥ 0. If dg(c0, c) ≤ R, then d(c0(0), c(0)) ≤ R and hence

(c(−∞), c(+∞))c0(0) ≤ R + C, where C is some constant depending only on X .
Hence

m̃ν(B(c0, R)) ≤ 2R · e2α(R+C) · νc0(0)(X(∞))2 ,

which implies δm̃ν ≤ 2α. The second assertion in (1) follows then from Lemma
6.11.

(2) follows from the fact that dQ is a distance.
(3) Let c ∈ gX project on a recurrent point in G\gX . It follows from (∗) that,

for T > 0 fixed, if gtc ∈ B(c0, R), then gt+s c ∈ B(c0, R+T +2), ∀ s ∈ [0, T ]. Since
c projects to a recurrent point, there exist tn → +∞ and hn ∈ G such that

gtn c ∈ hnB(c0, R)

and hence gtn+s c ∈ hnB(c0, R+ T + 2), ∀ s ∈ [0, T ].
Since λ has a positive lower bound on every compact set in G\gX , we deduce

that ∫ ∞
0

λ(gtc)dt = +∞ .

Q.E.D.

7. Divergence groups acting on trees

In this section, we apply the results of Section 6 to the case of groups acting on
locally finite trees in order to obtain examples of divergence groups. Notations and
notions pertaining to graph theory are taken from Serre [Se].

7.1. Let T = (X,Y ) be a locally finite tree, where X is the set of vertices and Y the
set of edges. On the geometric realization T of T there is a unique proper CAT(−1)
distance d for which all geometric edges have length 1 and whose restriction to X ⊂
T coincides with the combinatorial distance. Every automorphism g ∈ Aut T =
Is(X) extends canonically to an isometry gext ∈ Is(T ) of T and we have Aut T =
Is(T ) except when T is the 2-regular tree T2. Every path α : Pathn → T without
backtracking (geodesic) extends to a geodesic αext : [0, n]→ T , and for n =∞ this
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extension gives an Aut T equivariant identification between T (∞), the set of ends
of T , and T (∞). For a group G acting by automorphisms on T , the restriction
from T to X provides a bijection between α-dimensional conformal densities T →
M+(T (∞)) for G and α-dimensional conformal densities X → M+(T (∞)) for G.
Let gT denote the space of geodesics α : T2 → T , with Z-action defined by

g(n)c(m) := c(n+m), m ∈ V (T2) = Z, n ∈ Z .

The map gT → gT , c → cext, gives then an Aut T -equivariant identification be-
tween the R-action constructed from the time one suspension of the Z-action on
gT , and the R-action given by the geodesic flow on gT . In particular, the geodesic
flow on G\gT is the time one suspension of the Z-action on G\gT , which we will
also call the geodesic flow. If µ : X → M+(T (∞)) is a conformal density for
G, µext its extension to T , and mµ, resp. mµext

, the corresponding measures on

G\gT , resp. G\gT , then complete recurrence (resp. ergodicity) of the Z-action on
(G\gT ,mµ) is equivalent to complete recurrence (resp. ergodicity) of the geodesic
flow on (G\gT,mµext

). In particular, the results of Section 6 apply to the Z-action

on (G\g T ,mµ).

7.2. For a locally finite tree T = (X,Y ), let S(T (∞)) denote the space of locally
constant functions on T (∞) and S(T (∞))∗ its dual space. For α ∈ C, an α-
dimensional distribution is a map

µ : X → S(T (∞))∗

which satisfies µx(ϕ) = µy(ϕe−αB(x,y)) ∀ x, y ∈ X , ∀ ϕ ∈ S(T (∞)). Here B(x, y)
denotes the extension to T (∞) of the function X → R, z → d(x, z) − d(y, z) (see
1.1). For g ∈ Aut T and µ an α-dimensional distribution,

(g∗µ)x := g−1µgx, x ∈ X ,

defines an action of Aut T on the space Dα of α-dimensional distributions. For α ∈
R, this action preserves D+

α , the real cone of positive α-dimensional distributions.
GivenH < Aut T , a closed subgroup, we observe that the subset (D+

α )H ofH-fixed
vectors in D+

α coincides with the set of α-dimensional densities for H.
We define the following linear maps:

(a) Q : Dα → C(Y ), Qµ(y) := µo(y)(χs(y)), where χs(y) is the characteristic
function of the set s(y) ⊂ T (∞) consisting of all geodesic rays r : Path∞ → T
having y as initial edge.

(b) R : C(Y ) → C(Y ), RF (y) =
∑
F (y′), where the sum is over all edges y′

satisfying o(y′) = t(y) and y′ 6= y.
The linear maps R and Q are AutT -equivariant and Q takes its values in

Eα := {F ∈ C(Y ) : RF = eαF}

sending D+
α into E+

α := {F ∈ Eα, F (Y ) ⊂ [0,∞]} .
Proposition 7.1. Q : Dα → Eα is an Aut T -equivariant isomorphism of vector
spaces. In particular, for any subgroup G < Aut T , Q induces a bijection between
the set of α-dimensional densities for G and the set of G-invariant vectors in E+

α .

Proof. To verify injectivity, let µ ∈ Dα, x ∈ X and y ∈ Y with d(o(y), x) + 1 =
d(t(y), x). Then we have µx(χs(y)) = e−nαµo(y)(χs(y)), where n = d(o(y), x). In
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particular, if Qµ = 0 we have µx = 0 ∀ x ∈ X . To obtain an inverse to Q, define
for F ∈ Eα, and x, y as above:

µx(χs(y)) = e−nαF (y) .

With these definitions one has µ ∈ Dα and Qµ = F . Q.E.D.

Now we formulate some consequences of Proposition 7.1 in the context of graphs
of groups. Let A = (A, A) be a locally compact graph of groups. By this we mean
that A = (V,E) is a locally finite connected graph, for every v ∈ V and e ∈ E
the groups Av and Ae are compact and the monomorphisms αe : Ae → Ao(e) are
continuous with image αe(Ae) of finite index iA(e) in Ao(e). Fixing a basepoint

ao ∈ V , the universal covering T = (̃A, ao) is a locally finite tree and the image
G of the homomorphism π1(A, ao) → Aut T is a closed subgroup of Aut T . Let
π : T → A denote the canonical projection and Gf = {g ∈ Aut T : π ◦ g = π} the
associated full group [Ba].

By definition, G and Gf have the same orbits in Y , hence EGα = E
Gf
α and (using

Proposition 7.1) DGα = DGfα . In particular, any α-dimensional density for G is an
α-dimensional density for Gf .

The Aut T -equivariant operator R : C(Y ) → C(Y ) induces an operator R :
C(E)→ C(E) whose matrix r : E ×E → N is given by

re1,e2 =


iA(e2) if t(e1) = o(e2), e1 6= e2,

iA(e2)− 1 if e1 = e2,

0 otherwise

and Q induces therefore a bijection

(D+
α )G = (D+

α )Gf −→ F+
α := {F ∈ R(E), RF = eαF, F ≥ 0} .

It follows then from Lemma 6.7, that if Gf is nonelementary, its critical exponent
δGf can be computed by the formula

δGf = min{α ≥ 0 : F+
α 6= 0} .

According to [Ba-Ku], G is unimodular if and only if Gf is unimodular if and
only if the edge indexed graph (A, iA) is unimodular. The homogeneous space
Gf/G being compact, it follows from Corollary 2.5(1) that if Gf is unimodular it
is nonelementary if and only if G is nonelementary. Using Corollary 6.5(1) and 7.1,
this implies that Gf is a divergence group if and only if G is a divergence group.
According to [Ba], T and π : T → A only depend on the edge indexed graph (A, iA);
in the sequel we will therefore call a locally finite edge indexed graph divergence if
Gf is a divergence group.

7.3. In this subsection we show that the Z-action on Gf\g T is isomorphic to a sub-
shift and, that via this isomorphism, invariant measures coming from α-dimensional
densities of Gf correspond to certain Markov measures associated to elements of
F+
α . Concerning the Z-action on G\g T we mention that, even if G is discrete and
G\T finite, this Z-action need not be a finitely presented system.
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We will use the following basic constructions:
(a) To an edge indexed graph (B, iB) we associate the oriented line graph
L+(B, iB) whose set of vertices is E = E(B), the set of edges of B, and
whose set of positive edges is

{(e1, e2) ∈ E ×E : t(e1) = o(e2) and if e2 = e1, then iB(e2) > 1} .

(b) To an oriented graph a+, we associate the shift space

Sa+ = {c : T +
2 → a+, morphism of oriented graphs}

with Z-action defined by

g(n)c(i) := c(i+ n), n ∈ Z, i ∈ Z, c ∈ Sa+ .

Here T +
2 is the 2-regular oriented tree, that is, its set of vertices is Z and its set

of positive edges is {[i, i + 1] : i ∈ Z}. For y1, . . . , yn, a sequence of consecutive
vertices of a path in a+, one defines the cylinder

C(y1, . . . , yn) := {c : T +
2 → a+ : c(i) = yi , 1 ≤ i ≤ n} .

The family of cylinders is a basis of open sets for a topology on Sa+ which is locally
compact if a+ is locally finite.

In the sequel we use the following basic transitivity property of the full group
Gf .

Lemma 7.2. Given y1, y2 edges of T satisfying o(y1) = o(y2) and π(y1) = π(y2),
there exists g ∈ Gf such that gy1 = y2 and g is the identity on the connected
component of T \{y1, y2} containing o(y1).

This lemma follows immediately from the description of T = (̃A, a0) in terms of
the edge indexed graph (A, iA) given in [Ba].

The coding of the Z-action on Gf\g T is now obtained as follows. The map
g T → SL+(T ), which to every geodesic c : T2 → T associates the morphism

c′ : T +
2 → L+(T ) defined by c′(i) := c([i, i + 1]), is an Aut T and Z-equivariant

homeomorphism. The projection π : T → A induces then a morphism π+ :
L+(T )→ L+(A, iA) and, using Lemma 7.2, a Z-equivariant homeomorphism

Gf\g T −→ SL+(A,iA) .

We assume now that Gf is unimodular and fix a Haar measure m on Gf . For
every path in L+(A, iA) with vertex sequence y1, . . . , yn choose ỹ1, . . . , ỹn a lifted
path in L+(T ) and let Kỹ1,... ,ỹn be its stabilizer in Gf . This is an open com-
pact subgroup of Gf and, since Gf is unimodular, its measure only depends on
y1, . . . , yn. Define

m(y1, . . . , yn) := m(Kỹ1,... ,ỹn) .

We have, using Lemma 7.2:

(∗) m(y1, . . . , yn)

m(y1, . . . , yn−1)
=
m(yn−1yn)

m(yn−1)
=

{
1/iA(yn) if yn−1 6= yn,

1/iA(yn)− 1 if yn−1 = yn.
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To α ≥ 0 and F ∈ F+
α we associate the shift invariant measure

mF ∈M+(SL+(A,iA))

whose value on cylinders is given by

mF (C(y)) =
F (y)F (y)

m(y)
,

mF (C(y1, . . . , yn)) =
F (y1)F (yn)e−α(n−1)

m(y1, . . . , yn)
, n ≥ 2 .

Using the fact that RF = eαF and (∗), one verifies that mF is Markov. Further-
more, for µ ∈ (D+

α )Gf , the measuresmµ ∈M+(Gf\g T ) andmQµ ∈M+(SL+(A,iA))
correspond to each other via the identification Gf\g T → SL+(A,iA). In particular,
the total mass of mµ equals∑

y∈E

F (y)F (y)

m(y)
, where F = Qµ .

7.4. We apply the preceding discussion to the edge indexed graph (A, iA):

b•
e1

a1 1•
e2

a2 1•
e3
•a3 1• · · ·

We assume that b ≥ 2, not all ai’s are 1 and P (X) :=
∑∞
k=1 (ak − 1)vk−1X

k has
positive radius of convergence R, where vk = ak · . . . · a1.

Proposition 7.3. (1) The critical exponent δ of (A, iA) is given by the formulas:
(a) if P (R) > 1

b−1 , then P (e−2δ) = 1
b−1 ,

(b) if P (R) ≤ 1
b−1 , then e−2δ = R .

(2) (A, iA) is divergent if and only if P (R) ≥ 1
b−1 in which case the Patterson-

Sullivan measure is finite if and only if P ′(e−2δ) < +∞.

Proof. Fix α ∈ R. The equation RF = eαF , F ∈ R(E), is equivalent to

(1) eαF (ei) = F (ei+1) + (ai − 1)F (ei), i ≥ 1 ;

(2) eαF (ei) = ai−1F (ei−1), i ≥ 2 ;

(3) eαF (e1) = (b− 1)F (e1) .

First we observe that F (e1) = 0 implies F = 0. Hence we may assume F (e1) = 1.
Equations (2) and (3) imply then:

(4) F (e1) = e−α(b− 1) and F (ej) = e−jαvj−1(b− 1), j ≥ 2 .

Putting this into equation (1) we obtain

(5) e−jαF (ej+1) = 1− (b− 1)

j∑
k=1

e−2kα(ak − 1)vk−1 .
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We conclude that for every α ∈ R, there is a unique solution of RF = eαF with
F (e1) = 1 and, using (5), that this solution is in F+

α if and only if P (e−2α) ≤ 1
b−1 .

Since δ = min{α ≥ 0 : F+
α 6= (0)} (see 7.2), we get assertion (1).

Let F ∈ F+
δ and mF ∈M+(SL+(A,iA)) be the associated shift invariant measure.

Observe that c ∈ SL+(A,iA) is not recurrent if and only if there exists k ∈ Z with
g(k)c ∈

⋂
n≥1C(e1, . . . , en). The definition of mF and equation (5) imply

mF

⋂
n≥1

c(e1, . . . , en)

 = lim
n→∞

F (e1)F (en)e−(n−1)δ

= e−δ(b− 1)
[
1− (b− 1)P (e−2δ)

]
.

The measure of the set of nonrecurrent points is therefore 0 if and only if P (R) ≥
1
b−1 (see assertion (1)). The first assertion in (2) follows then from Theorem 6.3.

For the second part, one uses the explicit formulas (4), (5) and the formula for the
total mass of mF in 7.3. Q.E.D.

7.5. Cayley graphs and their fundamental group. Let Tk = (X,Y ) be the
k-regular tree, k ≥ 3, Γ < Aut Tk a subgroup acting freely without inversion on
Tk, µ an α-dimensional density for Γ and ϕµ(x) := µx(Tk(∞)). Then ϕµ ∈ R(X)
is Γ-invariant and an eigenfunction of the operator TF (x) :=

∑
o(y)=x F (t(y)), of

eigenvalue λ = (k − 1)e−α + eα. On the set of vertices V of the quotient graph
C := Γ\Tk, one defines a random walk with transition probabilities Pµ(x1, x2) =
λ−1ϕµ(x1)/ϕµ(x2) if x1, x2 ∈ V are adjacent and Pµ(x1, x2) = 0 otherwise. Let
mµ be the geodesic flow invariant measure on Γ\g Tk associated to µ.

Theorem 7.4 [Co-Pa 2]. If α ≥ 1
2`n(k − 1), the random walk defined by Pµ is

recurrent if and only if the geodesic flow on (Γ\g Tk,mµ) is ergodic.

We apply this to C = Cay(Φ, S), the Cayley graph of a finitely generated group
Φ, with respect to a finite generating set S, satisfying S = S−1, e /∈ S and k :=
|S| ≥ 3. Let µ be the Patterson–Sullivan density for Aut Tk, in particular we have
α = `n(k − 1) and ϕµ(x) = 1 ∀ x ∈ X . It follows from [Va] that Pµ is recurrent if
and only if Φ is a finite extension of (e), Z, or Z2, and in this case the above theorem
implies that Γ = π1(C) is a divergence group. Conversely, assume that Γ = π1(C)
is a divergence group with critical exponent δ and Patterson–Sullivan density ν.
Let N be the fundamental group of the finite graph Φ\C, in particular, Γ is normal
in N and N/Γ ∼= Φ. Corollary 6.5(3) implies that there exists a homomorphism
χ : N → R∗+ such that νn∗x = χ(n)n∗νx, ∀ x ∈ V and n ∈ N . In particular,
ϕν ∈ R(Φ) verifies ϕν(nγ) = χ(n)ϕν(γ) and the equation Tϕν(e) = λϕν(e) implies
that ∑

s∈S
χ(s) = λ = (k − 1)e−δ + eδ .

We have (k − 1)e−δ + eδ ≤ k for δ ∈ [0, `n(k − 1)], hence
∑
s∈S χ(s) ≤ k. Since

S = S−1, this implies χ = 1 and hence δ = 0 or δ = `n(k−1). The condition k ≥ 3
implies that Γ is free nonabelian and hence δ > 0 by Corollary 2.5, which shows
δ = `n(k − 1). Since χ ≡ 1, ν is the Patterson–Sullivan density of N and since
N\Aut Tk is compact, Corollary 6.5(1) implies that ν equals the Patterson–Sullivan
density µ of Aut Tk. Theorem 7.4 implies then that Pµ is recurrent and therefore
[Va] Φ is a finite extension of e, Z or Z2. We obtain therefore
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Corollary 7.5. Let C = Cay(Φ, S) be the Cayley graph of a finitely generated group
Φ with respect to a finite generating set S satisfying S = S−1 63 e and |S| ≥ 3. Then
Γ = π1(C) < Aut T|S| is a divergence group if and only if Φ is a finite extension of

(e), Z or Z2.

8. Examples

8.1. Let T be a locally finite tree and Γ < Aut T a uniform lattice; when |T (∞)| >
2, Γ is nonelementary and hence a divergence group, furthermore, by a result of
Liu [Li] ComAutT Γ is dense in AutT . The latter result was shown earlier by Bass
and Kulkarni [Ba-Ku] for a regular tree T .

8.2. Let Γd < Aut T2d be the fundamental group of the Cayley graph of Zd w.r.t.
the standard generators. We know that Γd is a divergence group precisely when
d = 2 (Corollary 7.5); Γd is not a lattice in AutT2d.

Proposition 8.1. The commensurator of Γd is dense in Aut T2d.

This result is an immediate consequence of

Proposition 8.2. Let T be a locally finite tree and Γ < Aut(T ) a subgroup acting
freely on T . Let Z = Γ\T be the quotient graph, π : T → Z the covering map.
Assume that for every pair of edges e1, e2 in T having a common vertex, if there
exists g ∈ Aut T such that ge1 = e2 and ge2 = e1, then there exists h ∈ AutZ such
that hπ(e1) = π(e2) and hπ(e2) = π(e1). Then ComAutT Γ contains the subgroup
of Aut T generated by all the vertex stabilizers.

Proof. It suffices to show that given any pair of equivalent edges e1, e2 in T as in
the proposition and a finite subtree F ⊂ T which contains the edges e1, e2 at its
boundary, i.e., such that the vertices t(ei), i = 1, 2, are terminal vertices of F , then
there exists an element c ∈ ComAutT Γ such that its restriction to F is c|F = τ ,
where τ : F → F satisfies τ |F\{e1,e2} = id, τ(e1) = e2 and τ(e2) = e1.

One obtains such an element c by constructing an appropriate finite graph W
together with two covering maps ϕi : W → Z so that if we let πW : T → W be a
covering map satisfying π = ϕ1 ◦ πW , then ϕ2 ◦ πW = ϕ1 ◦ πW ◦ τ . Denote by fi
the edge π(ei). Let W1 be the graph obtained by taking two copies Z(1), Z(2) of
Z and replacing the copies of the edges f1, f2 by edges going between the graphs

Z(1) and Z(2). I.e., we omit f
(j)
i , i = 1, 2, j = 1, 2, and have new edges ẽ

(j)
i such

that o(ẽ
(1)
i ) = o(f

(1)
i ), t(ẽ

(1)
i ) = t(f

(2)
i ), o(ẽ

(2)
i ) = o(f

(2)
i ), and t(ẽ

(2)
i ) = t(f

(1)
i ),

i = 1, 2. Note that the graph W1 may fail to be connected. In this case we will take

W1 to be the connected component containing the vertex o(ẽ
(1)
i ). We continue the

description as in the case where the original W1 is connected, in the second case
one should just ignore the parts referring to vertices and edges which happen to lie

in the second connected component. Let ϕ
(1)
1 : W1 → Z be the natural covering

map and h ∈ AutZ be the isometry interchanging f1 and f2. Using h we define a

covering map ϕ
(1)
2 : W1 → Z as follows:

(a) Vertices and edges of Z(1) are mapped via the original identification between
Z(1) and Z.

(b) Vertices and edges of Z(2) are mapped via composition of the original iden-
tification with the isometry h.
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(c) The edges ẽ
(j)
i are mapped by: ẽ

(1)
1 → f2, ẽ

(1)
2 → f1, ẽ

(2)
1 → f1, ẽ

(2)
2 → f2.

The pair of finite covering maps ϕ
(1)
1 , ϕ

(1)
2 : W1 → Z induces an element c1 in the

commensurator of Γ which interchange the edges e1 and e2 and fixes all other edges
e such that o(e) = o(ei). In order to obtain an element which stabilizes also the
rest of the edges and vertices in the finite subtree F , we proceed by constructing

new finite coverings ϕ
(k)
1 , ϕ

(k)
2 : Wk → Z, k = 1, 2, . . . , N , inducing elements of the

commensurator interchanging e1 and e2 and each fixes a larger and larger part of F .
Each graph Wk+1 will be constructed by adding a copy of Z to Wk and modifying

certain pair edges. Assume that we already constructed ϕ
(k)
1 , ϕ

(k)
2 : Wk → Z

such that the induced element ck of ComAutT Γ interchanges e1 and e2 and fixes
some part of the subtree F . Let πWk

: T → Wk be the covering map such that

π = ϕ
(k)
1 ◦πWk

and also πWk
(ei) = ẽ

(1)
i , i = 1, 2. Consider the image of F , πWk

(F ).
If it is a tree, then the element ck ∈ ComAutT Γ induced by the covering maps

ϕ
(k)
1 , ϕ

(k)
2 : Wk → Z satisfies ck|F = τ as required. Otherwise, there exist some

loop in πWk
(F ). Note that this loop contains also some edge lying inside one “Z

copy” in Wk (this is easily checked for k = 1 as well as for larger k’s by induction),
denote this edge by f . Let Z ′ be a new copy of Z and let f ′ ∈ Z ′ be the edge
corresponding to f . Construct the graph Wk+1 by taking the union of Wk with Z ′

and replacing the edges f , f ′ by the edges f̃ , f̃ ′ such that o(f̃) = o(f), t(f̃) = t(f̃ ′),

o(f̃ ′) = o(f ′), t(f̃ ′) = t(f). (Note that this new graph is still connected.) Next

define the covering maps ϕ
(k+1)
i : Wk+1 → Z, i = 1, 2, in the obvious way. Consider

the image πWk+1
(F ). As either the number of loops decreased or some simple loop

was replaced by a longer one, it follows that eventually we will reach some N such
that πWN (F ) will be a tree and the construction will be completed. Q.E.D.

8.3. Let b ≥ 4 be an integer, T the universal covering and Γ the fundamental group
of the graph of groups

Cb•
{e}

C2•
C2

(C2)2

•
(C2)2

•
(C2)3

• · · ·

where Cm denotes the cyclic group of order m, with monomorphisms (C2)m →
(C2)m+1 = (C2)m × C2, x 7→ (x, 0). Notice that the associated power series P (see
7.4) is rational and hence Γ < Aut T is a divergence group (Proposition 7.3(2)).

Theorem 8.3. Γ < Aut T is a divergence group and its commensurator is dense
in Aut T . Moreover Aut T is not discrete.

We remark that if instead of the above graph of groups we consider the graph
of groups having the same edge indexed graph but such that the groups (C2)m are
replaced by the cyclic groups C2m then, as shown by Bass and Lubotzky in [Ba-
Lu 2], the commensurator of the corresponding fundamental group is not dense.
To see this they show that it has only finitely many subgroups of finite index and
hence is essentially normalized by the commensurator. Since the subgroup of the
automorphism group generated by stabilizers of vertices is simple (see [Ti 2]), it
follows that the commensurator cannot be dense.

The rest of this section is devoted to the proof of Theorem 8.3. Let T = (X,E)
and d(x) denote the degree of a vertex x ∈ X .

Set X0 := {x ∈ X : d(x) = b} and for every x ∈ X define its level

`(x) := dist(x,X0) .
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Let Xi = {x ∈ X : `(x) = i}, X≤i = {x ∈ X : `(x) ≤ i}, and, for every x ∈ X , Ex
be the set of edges issued from x. For every x ∈ X with `(x) ≥ 1, Ex = E+

x t E−x ,
where E−x is the pair of edges connecting x to X`(x)−1. A level increasing geodesic
ray is a geodesic ray r : N→ X such that `◦r is strictly increasing.

Labelling: for every x with `(x) ≥ 1 we label the edges E−x by {α, β}, i.e. we fix
a bijection E−x ' {α, β}.

Numbering: for every x ∈ X0, we number the edges Ex by 0, 1, . . . , b−1, i.e. we
fix a bijection Ex ' {0, 1, . . . , b− 1}. We arrange the labelling such that for every
x ∈ X0 the b sequences of labels along the b level–increasing geodesic rays starting
at x are the same. We arrange the numbering such that if we remove X0 from X ,
then for every component C of X\X0, all “leaf–edges” of C get the same number.

Local data of an isometry: for h ∈ Aut T , the local data at x ∈ X0 is the
permutation of {0, . . . , b−1} it induces via the identifications of Ex and Eh(x) with
{0, . . . , b − 1}. The local data at x ∈ X\X0 is the permutation induced by h on
{α, β} via the identifications of E−x and E−h(x) with {α, β}. An isometry of X is

then completely determined by its local data at every point together with the image
of one point. Of course, not every choice of local datas is realized by an isometry.

Let Γ be the subgroup of Aut T consisting of all isometries h satisfying:
P1: The local data of h at level 0 vertices is a fixed power of the cycle (0, . . . ,

b− 1).
P2: The local data of h at x ∈ Xi only depends on i ≥ 1.
P3: For all i’s except finitely many, the local data of h at Xi is trivial.
Let r : N → X be a level increasing geodesic ray with r(0) ∈ X0; set xi = r(i),

i ∈ N. To this ray we associate the following isometries of X :
(a) ρ ∈ Aut T defined by the conditions

(1) ρ(x0) = x0,
(2) ρ preserves all labels,
(3) the local data of ρ at every x ∈ X0 is the cycle (0, . . . , b− 1).

(b) i ≥ 1, τi ∈ Is(X) defined by
(1) τi(xj) = xj , j ≥ i;
(2) τi preserves the labels at all levels j 6= i;
(3) τi permutes the labels at all points of level i;
(4) τi preserves the numbering.

Using the properties of the labelling and numbering one verifies that ρ, τi, i ≥ 1, are
well defined isometries. Let Y (i) be the connected component of X≤i containing
x0 and let

ΓY (i) := {γ ∈ Γ : γY (i) = Y (i)} .

Lemma 8.4. (a) Γ = 〈ρ, τi : i ≥ 1〉 and r(N) is a fundamental domain for the
action of Γ on X.

(b) ΓY (i) = 〈ρ, τj : 1 ≤ j ≤ i〉 .

This lemma is an easy verification which is left to the reader. Observe that part
(a) of this lemma implies that Γ is the fundamental group of the above graph of
groups.

Let Li be the set of connected components of X≤i and define Z1, Z2 ∈ Li to be
adjacent if the shortest geodesic connecting them intersectsXi only in its endpoints.
This puts on Li the structure of a connected graph. Let Z ∈ Li be adjacent to Y (i)
such that if y ∈ Y (i) and z ∈ Z denote the points realizing the distance d(Y (i), Z)
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we have y = xi. Then a suitable product of τj ’s with j ≥ i+ 1 defines an element
of Γ sending Y (i) to Z whose restriction τY (i),Z to Y (i) satisfies

(1) τY (i),Z(y) = z;
(2) τY (i),Z has trivial local datas at all points of Y (i).
In a similar way we get for every pair Y, Z ∈ Li of adjacent components an

isometry
τY,Z : Y −→ Z

verifying (1), (2) such that it is induced by an isometry τ̃Y,Z in Γ. In particular Γ
acts transitively on Li. We extend the definition of τY,Z to any Y, Z ∈ Li by

τY,Z = τTn−1Tn◦ . . . ◦τT1,T2
◦τT0,T1 , τ̃Y,Z = τ̃Tn−1Tn◦ . . . ◦τ̃T0T1 ,

where Y = T0 ≡ T1 ≡ . . . ≡ Tn = Z is some geodesic joining Y to Z in Li. Notice
that τY,Z and τ̃Y,Z do not depend on the choice of this geodesic.

Let Gi be the subgroup of AutT consisting of all automorphisms h such that
(1) ∀ Y, Z ∈ Li the diagram

Y h(Y )

Z h(Z)

h|Y //

τZ,Y

��
τh(Z),h(Y )

��
h|Z //

commutes.
(2) ∀ x ∈ Xi, the local datas of h on

{y ∈ X : βx(y) ≤ −1}

depend only on the level. Here βx is the Busemann function associated to the
unique level increasing geodesic ray starting at x.

Proposition 8.5. (1) For every Y, Y ′ ∈ Li and every isometry h : Y → Y ′, there
is a unique extension of h to an isometry E(h) ∈ Gi.

(2) Gi ⊃ Γ and the restriction map StabGi(Y ) −→ Is(Y ), Y ∈ Li , is an
isomorphism.

(3) ∀ Y, Z ∈ Li : τ̃Y,Z = E(τY,Z).

Proof. For x ∈ Xi let rx denote the level increasing geodesic starting at x, and let
βx be the associated Busemann function. For N ∈ N let B(Y,N) ⊂ Li denote the
ball of radius N centered at Y and TN ⊂ X denote the convex hull of⋃

Z∈B(Y,N)

Z .

Assume that E(h) is already defined on TN (this is so for N = 0). Observe that
the boundary ∂TN of TN consists of level i-vertices. Fix x ∈ ∂TN . Then E(h)
extends in a unique way to rx(N), sending it to rh(x)(N). This fixes the local data
of E(h) at every vertex of rx(N) of level ≥ i + 1. Now E(h) extends in a unique
way to {y ∈ X : βx(y) ≤ 0}, sending this set to {y ∈ X : βh(x)(y) ≤ 0} and such
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that the local data at every point of {y ∈ X : βx(y) ≤ −1} only depends on its
level.

Let y ∈ X such that βx(y) = 0, y 6= x, and Z ∈ S(Y,N + 1) be the component
with y ∈ Z. Let Z ′ ∈ S(h(Y ), N + 1) be the component with h(y) ∈ Z ′. Then
there is a unique way of extending E(h) to Z such that the diagram

Z Z ′

Y Y ′

E(h) //

τY,Z

��
τY ′,Z′

��
h
//

commutes.
This defines the extension of E(h) to TN+1. The construction shows that this

extension of h to an isometry in Gi is unique. Assertion (2) follows from the
definition of Γ and the uniqueness statement in (1). Finally (3) follows from (2).
Q.E.D.

Proposition 8.6. Let Y ∈ Li and Γ′Y := ResY (ΓY ) ⊂ Is(Y ). Then we have
E
(
ComIs(Y )Γ

′
Y

)
⊂ ComAutT Γ.

Proof. Let g ∈ ComIs(Y )Γ
′
Y and choose representatives γ1, . . . , γr of ΓY /g

−1Γ′Y g ∩
Γ′Y . We consider γi as elements of ΓY . Given γ ∈ Γ denote γ := τγY,Y ◦γ|Y ∈ Γ′Y .

Fix j such that σ := g−1γ−1
j γg ∈ Γ′Y . We have

E(g)−1γ−1
j γg|Y = E(g)−1γ−1

j |γY ◦ τY,γY γjgg−.1γ−1
j τγY,Y γ|Y g|Y

= E(γjg)−1τY,γYE(γjg)σ

= τY,Z ◦ σ|Y where Z = E(γjg)−1γY .

We have E(τY,Z) ∈ Γ, E(σ) ∈ Γ and

E(g)−1γjγE(g)|Y = E(τY,Z)E(σ)|Y ,

hence, by Proposition 8.5,

E(g)−1γjγE(g) = E(τY,Z)E(σ) ∈ Γ .

Q.E.D.

Corollary 8.7. ComAutT Γ is dense in Aut T and Aut T is not discrete.

Proof. Let g ∈ Aut T , T ⊂ X a finite subtree and i sufficiently big such that
T ∪ g(T ) is contained in a connected component Y of X≤i. Since the quotient
Γ′Y \Y is finite, there exists (see [Li]) h ∈ ComAutT Γ′Y with h|T = g|T . According
to Proposition 8.6, E(h) ∈ ComAutT Γ and E(h)|T = g|T . This proves the first
assertion.

For the second assertion we observe that any connected component Y of X≤1

is isomorphic to the first barycentric subdivision of the b-regular tree Tb. Via the
homomorphism E, Aut Tb injects then into Aut T . Q.E.D.
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[A’C-B] N. A’Campo and M. Burger, Réseaux arithmétiques et commensurateurs d’après G.A.
Margulis, Invent. Math. 116 (1994), 1–25. CMP 94:05

[Ad 1] S. Adams, Boundary amenability for word hyperbolic groups and an application to
smooth dynamics of simple groups, Topology 33 (1994), 765–783. CMP 94:17

[Ad 2] , Reduction of cocycles with hyperbolic targets, preprint, 1993.

[Az] R. Azencott, Espaces de Poisson des groupes localement compacts, Lecture Notes in
Math., vol. 148, Springer, Berlin and New York, 1970. MR 58:18748

[B] W. Ballmann, Lectures on spaces of nonpositive curvature, preprint, 1994.

[B-G-S] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Progr.
in Math., vol. 61, Birkhäuser, Boston, 1985.
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Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1933), 261–304.



CAT(−1)-SPACES AND DIVERGENCE GROUPS 93

[Ho2] E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature,
Bull. Amer. Math. Soc. 77 (1971), 863–877. MR 44:1789

[Ka] V. A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow
on hyperbolic spaces, J. Reine Angew. Math. 455 (1994), 57–103. CMP 95:01

[Li] Y. Liu, Density of the commensurability group of uniform tree lattices, J. Algebra 165
(1994), 346–359. MR 95c:20036

[L-M-Z] A. Lubotzky, S. Mozes, and R.J. Zimmer, Superrigidity of the commensurability group
of tree lattices, Comment. Math. Helv. 69 (1994), 523–548. CMP 95:04

[Ma] G.A. Margulis, Discrete subgroups of semisimple groups, Ergeb. Math. Grenzgeb. (3)17,
Springer, Berlin and New York, 1991. MR 92h:22021

[Mou] G. Moussong, Hyperbolic Coxeter groups, Ph.D. Thesis, Ohio State University, 1988.
[Ni] P.J. Nicholls, The ergodic theory of discrete groups, London Math. Soc. Lecture Notes,

vol. 143, Cambridge Univ. Press, Cambridge and New York, 1989. MR 91i:58104
[Pa] S.J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241–273.

MR 56:8841
[Re] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Univ. Press,

London and New York, 1968. MR 46:5933
[Se] J.-P. Serre, Trees, Springer, Berlin and New York, 1980. MR 82c:20083
[Su] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically

finite Kleinian groups, Acta Math. 153 (1984), 259–277. MR 86c:58093
[Ti 1] J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313–329.

MR 29:2259
[Ti 2] , Sur le groupe des automorphismes d’un arbre, Essays on Topology and Related
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