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THE ANALOGUE OF THE STRONG SZEGÖ LIMIT THEOREM
ON THE 2- AND 3-DIMENSIONAL SPHERES

KATE OKIKIOLU

Introduction

Let S1 denote the circle R/2πZ and let Pn denote the space of functions on
S1 spanned by { eimθ : 0 ≤ m ≤ n }. Write Pn for the orthogonal projection

L2(S1)→ Pn. For f ∈ L1(S1) let f̂n denote the nth Fourier coefficient of f ;

f̂n =

∫
S1

f(θ)e−inθ
dθ

2π
.

For a function f on S1 let [f ] denote the operator multiplication by f .

The strong Szegö limit theorem. If the function f : S1 → C has a logarithm
satisfying ∑

m∈Z
|m| |l̂og fm|2 <∞,

then

(0.1)
log detPn[f ]Pn = (n+ 1)

∫ 2π

0

log f(θ)
dθ

2π
+

1

2

∑
m∈Z
|m| l̂og fm l̂og f−m

+ ◦ (1) modulo 2πi as n→∞.

This theorem was first proved by G. Szegö [3] for positive functions f in the
class C1+α with α > 0. Conditions on f were relaxed by several people (see, for
example, [7] and [4]), until the sharp result above was obtained (see [2]).

Let us make a small technical remark. It is certainly true that for some contin-
uous functions f , (0.1) holds precisely, not just mod 2πi. It is not difficult to see
that the spectrum of Pn[f ]Pn is contained in the closed convex hull of the image
of f . If this set does not contain the origin, then there is a branch of the loga-
rithm defined on it which can be used to define log f and logPn[f ]Pn. If we replace
log detPn[f ]Pn in (0.1) by trace logPn[f ]Pn, the resulting formula holds precisely.

We also remark that if we instead define Pn to be the space spanned by {eimθ :
|m| ≤ n}, then formula (0.1) holds if we replace the factor (n + 1) in the leading
order term by (2n+ 1). In this paper, we will prove the analogue of this result on
the 2- and 3-dimensional spheres.
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For N = 2, 3, . . . , SN denotes the unit sphere in RN+1. For N fixed, let σ denote
surface measure on SN , and let dµ = dσ/(σ(SN )). Let 〈 , 〉 denote the standard
inner product on L2(SN , dµ). For points x, y in SN , let d(x, y) denote the distance
between x and y on SN , i.e. the angle between x and y in RN+1.

For n = 0, 1, 2, . . . , let Pn denote the space of polynomials of degree at most n on
RN+1 restricted to SN , and let Pn denote the orthogonal projection L2(SN , dµ)→
Pn; this is a spectral projection of ∆, the Laplace-Beltrami operator on SN . Let
dn denote the dimension of Pn; when N = 2, dn = (n + 1)2, and when N = 3,
dn = 1

6 (n+ 1)(n+ 2)(2n+ 3).

Frequently in this paper, a polynomial on RN+1 restricted to SN will simply be
called a polynomial on SN .

Let H1/2 = H1/2(SN ) denote the Sobolev space of functions f on SN such that
the norm ‖(I −∆)1/4f‖L2 is finite.

Theorem 0.1. For N = 2 or 3, if f ∈ C(SN ) ∩H1/2(SN ) is such that the closed
convex hull of the image of f does not contain the origin, then

trace logPn[f ]Pn = dn

∫
SN

log f(x) dµ(x)

+ αN n
N−1

∫∫
SN×SN

(log f(x)− log f(y))2

sinN−1 d(x, y) sin2 d(x,y)
2

dµ(x)dµ(y)

+ ◦ (nN−1) as n→∞,(0.2)

where α2 = 1/(4π), α3 = 1/(32).

We remark that the assumption that f is continuous is technical, and one might
hope to remove it. One might also hope to remove the assumption on the image
of f , and expect (0.2) to hold whenever log f ∈ H1/2 (i.e. whenever the second
integral on the right hand side exists), even though this is not the case for the
analogue of the strong Szegö limit theorem on a multi-dimensional torus, as noted
in [10].

To show the relationship between formulas (0.1) and (0.2), we remark that the
second term on the right hand side of (0.1) can be written as

1

8

∫ 2π

0

∫ 2π

0

(log f(θ)− log f(φ))2

sin2 θ−φ
2

dθ

2π

dφ

2π
,

while the second term on the right hand side of (0.2) has the form given in (1.5).
It seems likely that formula (0.2) is also true on SN with N > 3; in (1.4) we write
down what the constants αN ought to be in general.

To put Theorem 0.1 in context we will describe some related results. Write P(n)

for the space of spherical harmonics on SN of degree precisely n, and P(n) for the

orthogonal projection L2(SN , dµ) → P(n). Let B be a self-adjoint pseudodifferen-

tial operator of order zero on SN which commutes with ∆. In [14], it is shown that
for a smooth function F on R, traceF (P(n)BP(n)) has a complete asymptotic ex-
pansion in n. A weaker but more general result is proved in [8]: let A be a positive
self-adjoint elliptic pseudo-differential operator of order 1 on a smooth compact
N -dimensional manifold M without boundary. Let λ1 ≤ λ2 ≤ . . . denote the
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eigenvalues of A, let Pλ denote the space spanned by the eigenfunctions of A with
eigenvalue at most λ, and let Pλ denote the orthogonal projection L2(M) → Pλ.
Let B be a self adjoint pseudo-differential operator of order zero, for example mul-
tiplication by some smooth real function f , and write K = [−‖B‖, ‖B‖] ⊂ R.

Theorem. There exists an integer r and C > 0 such that if F ∈ Cr(K) then

∣∣ traceF (PλBPλ) − λN

(2π)N

∫
a0(x,ξ)<1

F (b0(x, ξ)) dxdξ
∣∣ ≤ C(λN−1 + 1)‖f‖Cr(K),

where a0 and b0 are the principal symbols of A and B.

Now let M be a manifold with density dµ, let {Pn} be a sequence (or continuum)
of subspaces of L2(M,dµ), write Pn for the orthogonal projection L2(M,dµ)→ Pn,
and for a function f on M , write [f ] for the operator multiplication by f . In this
situation, the “analogue of the strong Szegö limit theorem” would be a formula
giving the second order asymptotics of trace logPn[f ]Pn for f in some class of
functions for which the operator logPn[f ]Pn is trace class. In a moment, we will
list some cases when such a formula exists. First, however, we remark that as a
general rule, if we know the second order asymptotics of

trace logPn[f ]Pn

for all sufficiently regular functions f which are sufficiently close to a constant
function, or if we know the second order asymptotics of

trace(Pn[f ]Pn)k, for all k = 1, 2, . . .

for all sufficiently regular functions f , then we can deduce the second order asymp-
totics of

traceF (Pn[f ]Pn)

for harmonic functions F defined on a neighbourhood of 0, and all sufficiently small
and regular functions f . We will not try to make the above statement precise, but
examples of this idea can be seen in Proposition 0.2 and Section 3.

In the following cases, the second order asymptotics of trace logPn[f ]Pn are
known: in [16] and [17], M = RN with Lebesgue measure and Pn is the space of
functions whose Fourier transform is supported on nΩ, where Ω is any fixed set
with sufficient regularity. (In this case, a complete asymptotic formula is known.)
In [1], [9] and [10], M is the flat N -dimensional torus with Lebesgue measure
and Pn is the space of functions with Fourier series supported on nΩ, where Ω is
any set in RN satisfying certain weak conditions. In [4], M is the interval [−1, 1]
with measure (1 − x2)ν−1/2, and Pn is the space spanned by the ultraspherical
polynomials of index ν and degree at most n. In [6], M is a sufficiently regular
closed Jordan curve with arclength measure dµ and Pn is the space of polynomials
in the complex variable z of degree at most n. In [11], M is the interval [−1, 1]
with Lebesgue measure and Pn is the space spanned by the first n eigenfunctions
of a non-singular Sturm-Liouville operator.

One might ask what the second order terms of

trace logPn[f ]Pn and trace(Pn[f ]Pn)k
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look like in all these cases. The answer to these questions was useful in proving
Theorem 0.1. In all the cases listed above, the second order term of trace log Pn[f ]Pn
is quadratic in log f ; more precisely, the second order asymptotic formula has the
form

trace logPn[f ]Pn = (dimPn)L(log f) + bnB(log f, log f)

+ lower order error,

where L is a linear functional (L(g) = the “average” of g), the constants bn do not
depend on f and B( , ) is a bilinear functional. Perhaps there is a simple reason
why this should be true, but I am not aware of one. The reason that this is a
useful observation is that if the second order term of trace logPn[f ]Pn exists and is
quadratic in log f , then there exist a priori second order asymptotic formulas for
trace(Pn[f ]Pn)k. In the case of Theorem 0.1, it is possible to run this backwards;
to prove that these formulas for trace(Pn[f ]Pn)k hold and then use them to deduce
the asymptotics of trace logPn[f ]Pn.

Now we explain these ideas more fully. First we will derive a priori second order
asymptotic formulas for trace(Pn[f ]Pn)k assuming that a second order term for
trace logPn[f ]Pn exists and is quadratic in log f . We will also show how to write
the asymptotic formulas in terms of the integral kernels Kn(x, y) of the projections
Pn.

Notice that in terms of the integral kernels Kn(x, y), we have

trace Pn[f ]Pn =

∫
M

Kn(x, x)f(x) dµ(x),(0.3)

trace Pn[f ]Pn[g]Pn =

∫∫
M×M

|Kn(x, y)|2f(x)g(y) dµ(x)dµ(y),

and, by using the reproducing property of Kn(x, y),

(0.4) trace Pn[f ](I − Pn)[g]Pn

=
1

2

∫∫
M×M

|Kn(x, y)|2(f(x)− f(y))(g(x)− g(y)) dµ(x)dµ(y).

The asymptotics of the above quantities can be calculated if we have sufficiently
good asymptotics for the kernel Kn(x, y).

Proposition 0.2. Suppose W is a Banach algebra of functions on M with

W ⊆ L∞(V ), ‖ ‖W ≥ ‖ ‖∞, 1 ∈W.

Suppose there exists a continuous linear functional L on W , a continuous bilinear
functional B( , ) on W ×W , sequences of numbers an, bn, cn and a neighbourhood
U of 1 in W such that for every f ∈ U ,

(0.5) trace logPn[f ]Pn = an L(log f) + bnB(log f, log f) + ◦(cn) as n→∞.

Then for every g ∈W we have

an L(g) = tracePn[g]Pn + ◦(cn),

bnB(g, g) = 1
2 trace Pn[g](I − Pn)[g]Pn + ◦(cn),(0.6)
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so

(0.7) trace logPn[f ]Pn =

∫
M

Kn(x, x) log f(x) dµ(x)

+
1

4

∫∫
M×M

|Kn(x, y)|2(log f(x)− log f(y))2 dµ(x)dµ(y) + ◦(cn).

Furthermore, for k = 2, 3, . . . ,

(0.8)

trace (Pn[f ]Pn)k

= trace Pn[fk]Pn −
k−1∑
j=1

1

j
trace Pn[f j ](I − Pn)[fk−j ]Pn + ◦(cn)

=

∫
M

Kn(x, x)fk(x) dµ(x)

+
k−1∑
j=1

1

2j

∫∫
M×M

|Kn(x, y)|2(f j(x) − f j(y))(fk−j(x) − fk−j(y)) dµ(x)dµ(y)

+ ◦(cn).

Proof. To prove the proposition, fix g in W , write (0.5) with f replaced by 1− tg,
and expand the function log, which occurs in both sides of the equation, as a power
series. Formulas (0.6) result from equating coefficients of t and t2, and (0.3) and
(0.4) give (0.7). Equating higher powers of t yields (0.8).

Now we give an outline of the proof of Theorem 0.1. Our strategy is to prove
that the key formula (0.8) holds (with cn = nN−1). It is an easier matter to deduce
(0.7) from (0.8), and to compute the second order asymptotics of the terms on the
right hand side of (0.7), thus proving the theorem. Here are some more details of
this plan: the two terms on the right hand side of (0.7) came from (0.3) and (0.4).
To compute (0.3) is easy since, for the sphere, Kn(x, x) = dn; so

(0.9)

∫
SN

Kn(x, x)f(x) dµ(x) = dn

∫
SN

f(x) dx.

We will begin in Section 1 by using known asymptotics of the kernel Kn(x, y) to
obtain the second order asymptotics of (0.4). The result is

1

4

∫∫
SN×SN

|Kn(x, y)|2(f(x) − f(y))(g(x)− g(y) dµ(x)dµ(y)

= αN n
N−1

∫∫
SN×SN

(f(x) − f(y))(g(x)− g(y))

sinN−1 d(x, y) sin2 d(x,y)
2

dµ(x)dµ(y)

+ ◦(nN−1),

where αN is defined below (0.2), and in (1.4) for N > 3.
In Section 2 we will obtain the second order asymptotics of

trace (Pn[f ]Pn)k as n→∞, for k = 3, 4, . . . ,

for polynomials f . This is the key step and the most delicate. The asymptotic
formula which we will obtain is (0.8), which stated precisely in this context is as
follows.
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Lemma 0.3. If f is a polynomial on SN , where N = 2 or 3, then

trace (Pn[f ]Pn)k = trace Pn[fk]Pn −
k−1∑
j=1

1

j
trace Pn[f j ](I − Pn)[fk−j ]Pn

+ ◦(nN−1) as n→∞.

To prove Lemma 0.3, we will show that if f and f0 are polynomials on SN , where
N = 2 or 3, then

(0.10) trace (Pn[f ])j(I − Pn)[f0] =
1

j
trace Pn[f j](I − Pn)[f0] + ◦(nN−1).

Combined with the identity

(Pn[f ]Pn)k = Pn[fk]Pn −
k−1∑
j=1

(Pn[f ])j(I − Pn)[fk−j ]Pn,

this clearly proves the lemma. In fact we will prove a slightly stronger, linearized
version of (0.10): if f0, . . . , fj are polynomials on SN , where N = 2 or 3, then

(0.11)
∑
σ

trace Pn[fσ1 ] . . . Pn[fσj ](I − Pn)[f0]Pn

= trace Pn[f1 . . . fj ](I − Pn)[f0]Pn + ◦(nN−1),

where the sum is over σ in the set of permutations generated by the cycle (1, . . . , j).
It is clear that (0.11) implies (0.10).

The proof of (0.11) is based on the proof of the strong Szegö limit theorem (on
S1) by M. Kac; see [7]. We will take a moment to explain the approach. The
way Kac proves the theorem for functions f close to the constant function 1 is to
expand both sides of (0.1), first expanding logPn[f ]Pn and log f as power series in
Pn[1−f ]Pn and (1−f) respectively, and then expanding f as a Fourier series. The

resulting two expressions are simplified using the fact that eim
1xeimx = ei(m

1+m)x,
and they are both eventually expressed in the form

∞∑
k=0

∑
−∞<m1≤m2≤···≤mk<∞

cm1...mk(n)f̂m1 . . . f̂mk

for some coefficients cm1...mk(n). Formula (0.1) is established by obtaining certain
bounds on these coefficients and by showing that for fixed m1, . . . ,mk, the coeffi-
cients cm1...mk(n) coming from each side of (0.1) are equal, for n sufficiently large.
This final step amounts to a combinatorial identity of Hunt and Dyson, known
today as the Kac formula, which states that if m1, . . . ,mj are real numbers, then∑

σ

(
min{ 0, mσ1 , mσ1 +mσ2 , . . . , mσ1 +mσ2 + · · ·+mσj }

− min{ 0, mσ1 , mσ1 +mσ2 , . . . , mσ1 +mσ2 + · · ·+mσj−1 }
)

= min{ 0, m1 + · · ·+mj },
(0.12)
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where the sum is over σ in the set of permutations generated by the cycle (1, . . . , j).
We return now to the proof of Theorem 0.1. To prove (0.11), we expand the

polynomial f in spherical harmonics. For this purpose we fix bases for the spherical
harmonics on SN , with basis functions Ym indexed by lattice points m. On S2 the
lattice is Z2 and on S3 it is a sub-lattice of Z3. Having expanded f in spherical
harmonics, we simplify the resulting expression. The difficulty here which is not
present on S1 is that complicated coefficients result when one expresses the product
of two spherical harmonics as a linear combination of the basis spherical harmonics.
For the bases we use, the coefficients occurring in such linear combinations are
explicitly known. The perfect situation, from the point of view of performing

reductions analogous to those of Kac, would be if there existed a constant Γm1

m1
for

each pair of indices m1 and m1 such that for all indices m,

Ym1 · Ym =
∑
m1

Γm1

m1
Ym1+m;

i.e. if the operator [Ym1 ] acting on basis spherical harmonics corresponded to a
fixed linear combination of shifts in the index. Of course this is not the case, but
it turns out that in some precise sense, [Ym1 ] can be locally well approximated by
a fixed linear combination of shifts. This is made precise in Lemma 2.2.

Finally, in Section 3 we show how to extend the results of Section 2 for polyno-
mials f to functions f ∈ C(SN )∩H1/2(SN ), and then we show how to go from the
asymptotics obtained for trace (Pn[f ]Pn)k to the asymptotics for trace logPn[f ]Pn.
The methods in this final section are elementary and general.

Theorem 0.1 appeared in my thesis [10]. I would like to thank Alice Chang and
Tom Wolff for suggesting that I work on this problem.

1. Spherical harmonics and projection kernels

For N = 2, 3, . . . fixed, and n = 0, 1, 2, . . . , we let Hn = Hn(N) denote the space
of spherical harmonics of degree n on SN , which can be defined in several equivalent
ways. It is the space of restrictions to SN of homogeneous harmonic polynomials
on RN+1 of degree n, the space of eigenfunctions of the Laplace-Beltrami operator
on SN with eigenvalue n(n+N−1), and it is also Pn	Pn−1 = Pn∩P⊥n−1. We have
dimHn = dn − dn−1; the dimensions of Hn(2) and Hn(3) are 2n+ 1 and (n+ 1)2

respectively.
For details of the facts that follow, see [12]. The integral kernel of the orthogonal

projection L2(SN , dµ) → Hn(N) will be denoted by Zn(x, y) = Z
(N)
n (x, y). By

symmetry, the kernels Zn(x, y) and Kn(x, y) =
∑n
m=0Zm(x, y) depend only on the

distance d(x, y). It will be convenient to define functions on [0, π];

Zn(θ) =Z(N)
n (θ) = Z(N)

n (x, y),

Kn(θ) =K(N)
n (θ) = K(N)

n (x, y), where d(x, y) = θ.

The generating function for the functions Z
(N)
n is the Poisson kernel:

∞∑
n=0

rnZ(N)
n (θ) =

1− r2

(1− 2r cos θ + r2)(N+1)/2
.
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It will also be useful to introduce functions P
(λ)
n (θ) defined by

(1.1)
∞∑
n=0

rnP (λ)
n (θ) =

1

(1− 2r cos θ + r2)λ
.

(The functions P
(λ)
n (cos−1 x) are the standard ultraspherical polynomials.) From

the generating functions, one sees that

Z(N)
n (θ) =

2n+N − 1

N − 1
P ((N−1)/2)
n (θ),(1.2)

K(N)
n (θ) = P ((N+1)/2)

n (θ) + P
((N+1)/2)
n−1 (θ).

Let N ≥ 2 be fixed.

Lemma 1.1. If f, g ∈ H1/2(SN ), then

1

4

∫∫
SN×SN

|Kn(x, y)|2(f(x)− f(y))(g(x) − g(y)) dµ(x)dµ(y)

= αN n
N−1

∫∫
SN×SN

(f(x) − f(y))(g(x)− g(y))

sinN−1 d(x, y) sin2 d(x,y)
2

dµ(x)dµ(y) + ◦(nN−1),

(1.3)

where

(1.4) αN =
1

2N+2
(
Γ(N+1

2 )
)2 =

(σ(SN ))2

8(2π)N+1
.

Writing fm and gm for the orthogonal projections of f and g onto the space Hm,
another expression for the right hand side of (1.3) is given by

(1.5)

∫∫
SN×SN

(f(x) − f(y))(g(x)− g(y))

sinN−1 d(x, y) sin2 d(x,y)
2

dµ(x)dµ(y)

=
∞∑
m=1

βm

∫
SN

fm(x)gm(x) dµ(x),

where

for N even, βm =


4

(Γ(m+1
2 ))

2

(m2 −1)!(m2 )!
(m+1)(m+3)...(m+N−1)
(m+2)(m+4)...(m+N−2) , m even,

4
Γ(m2 )Γ(m2 +1)

((m−1
2 )!)2

m(m+2)...(m+N−2)
(m+1)(m+3)...(m+N−3) , m odd,

(1.6) for N odd, βm =

{
4 m(m+2)...(m+N−1)

(m+1)(m+3)...(m+N−2) , m even,

4 (m+1)(m+3)...(m+N−2)
(m+2)(m+4)...(m+N−3) , m odd.

In particular, for N = 3,

βm =

{
4(m+ 1− 1

m+1 ), m even,

4(m+ 1), m odd,
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and for all N we have βm ∼ 4m as m→∞. Furthermore, for all n and f ∈ H1/2,

(1.7)

∫∫
SN×SN

|Kn(x, y)|2(f(x) − f(y))2 dµ(x)dµ(y) ≤ C nN−1‖f‖H1/2 ,

where C is independent of n and f .

Proof. We will use elementary techniques and well-known asymptotic formulas. We
begin by proving (1.5).

For 0 < θ < π, define the sub-manifold Mθ of SN × SN by Mθ = {(x, y) :
d(x, y) = θ}. Let σθ denote surface measure on Mθ. To begin with, suppose that
f, g ∈ C∞(SN) and write

F (θ) =

∫
Mθ

(f(x) − f(y))(g(x)− g(y)) dσθ(x, y).

Suppose that h is any function in L∞[0, π]. The co-area formula gives∫∫
SN×SN

(f(x)− f(y))(g(x) − g(y))h(d(x, y)) dσ(x)dσ(y)

=

∫ π

θ=0

∫
Mθ

(f(x)− f(y))(g(x) − g(y))

|∇(x,y)d(x, y)| dσθ(x, y)h(θ)dθ

=
1√
2

∫ π

0

F (θ)h(θ) dθ.

Now with respect to the measure

dν(θ) =
sinN−1 θ dθ∫ π

0 sinN−1(φ) dφ
,

the functions h(θ) and F (θ)/ sinN−1 θ are square integrable. Since the functions

Zm(θ)/
√
Zm(0), m = 0, 1, 2, . . . , form an orthonormal base for L2([0, π], dν(θ)),

Parseval’s formula gives

1√
2

∫ π

0

F (θ)h(θ) dθ =

∫ π
0

sinN−1 φdφ√
2

∫ π

0

h(θ)
F (θ)

sinN−1 θ
dν(θ)

=
1√

2
∫ π

0 sinN−1 φdφ

∞∑
m=0

∫ π

0

Zm(θ)

Zm(0)
h(θ) sinN−1 θ dθ

∫ π

0

Zm(θ)F (θ) dθ.

Now

1√
2

∫ π

0

Zm(θ)F (θ) dθ

=

∫∫
SN×SN

Zm(d(x, y))(f(x) − f(y))(g(x) − g(y)) dσ(x)dσ(y)

=

{ −2(σ(SN))2
∫
SN fm(x)gm(x) dµ(x), m 6= 0,

2(σ(SN ))2
( ∫

SN f(x)g(x) dµ(x) − f0g0

)
, m = 0;
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so

1√
2

∫ π

0

F (θ)

sinN−1 θ
h(θ) dθ

=
2((σ(SN ))2∫ π

0
sinN−1 φdφ

∞∑
m=0

∫ π

0

(1− Zm(θ)

Zm(0)
)h(θ) sinN−1 θ dθ

∫
SN

fm(x)gm(x) dµ(x),

and hence∫∫
SN×SN

(f(x)− f(y))(g(x) − g(y))h(d(x, y)) dµ(x)dµ(y)

=
∞∑
m=1

βm(h)

∫
SN

fm(x)gm(x) dµ(x),

where

βm(h) =
2∫ π

0
sinN−1 φdφ

∫ π

0

(1− Zm(θ)

Zm(0)
)h(θ) sinN−1 θ dθ.

Now
∫
SN

fm(x)gm(x) dx is rapidly decreasing as m → ∞. Since Zm(θ) attains its
maximum value at 0, the function 1− (Zm(θ)/Zm(0)) is bounded, vanishes at θ = 0
and its first derivative also vanishes there. Using the bound

‖Z(N)′′
m ‖L∞ = O(mN+2), m→∞,

we get

1− Zm(θ)

Zm(0)
= O(m2) sin2 θ

2
,

so ∫ π

0

(1− Zm(θ)

Zm(0)
)h(θ) sinN−1 θ dθ = O(m2)‖h(θ) sinN−1 θ sin2 θ

2‖∞.

Approximating the function 1/(sinN−1 θ sin2 θ
2 ) by bounded functions in an appro-

priate fashion, we get (1.5) with the coefficients βm defined by

βm =
2π∫ π

0 sinN−1 θ dθ

∫ π

0

(1− Zm(θ)

Zm(0)
)

1

sin2 θ
2

dθ

π

=
−4π∫ π

0 sinN−1 θ dθ

∫ π

0

Z ′m(θ)

Zm(0)

cos θ2
sin θ

2

dθ

π
=

2N+1
(
Γ(N+1

2 )
)2

(N − 1)!

Z̃ ′m(0)

Zm(0)
,

where for functions G on [0, π] we set

G̃(0) = −
∫ π

0

G(θ)
cos θ2
sin θ

2

dθ

π
.

To derive (1.6), from (1.2) we have

Z̃ ′m(0)

Zm(0)
=

P̃
(λ)′
m (0)

P
(λ)
m (0)

, λ =
N − 1

2
,



THE ANALOGUE OF THE STRONG SZEGÖ LIMIT THEOREM 355

and using (1.1) we see that

P (λ)
m (0) =

(
m+ 2λ− 1

m

)
=

(
m+N − 2

m

)
and

∞∑
m=0

rmP̃
(λ)′
m (0) =

∫ π

0

2λr sin θ

((1− reiθ)(1− re−iθ))λ+1

cos θ2
sin θ

2

dθ

π

= 2λ<
∫ π

0

r(1 + z)

((1− rz)(1− r/z))λ+1

dθ

π
, z = eiθ,

= 2λ
∞∑

j,k=0

rj+k+1γjγk <
∫ π

0

(1 + z)zj−k
dθ

π
,

where
∞∑
k=0

γkw
k =

1

(1− w)λ+1
,

i.e.,

γk =
1

Γ(λ + 1)

Γ(k + λ+ 1)

k!
=

1

Γ(N+1
2 )

Γ(k + N+1
2 )

k!
.

Equating powers of r, we get

P̃
(λ)′
0 (0) = 0,

P̃
(λ)′
2k (0) = 2λγkγk−1, k > 0,

P̃
(λ)′
2k+1(0) = 2λγ2

k, k ≥ 0,

and, putting everything together,

βm =


2N+1 m!

(m+N−2)!

Γ(m+N−1
2 )Γ(m+N+1

2 )

(m2 −1)!(m2 )! , m even,

2N+1 m!
(m+N−2)!

(
Γ(m+N

2 )

(m−1
2 )!

)2

, m odd,

from which we get (1.6). We remark that βm > 0 for all m > 0 and βm ∼ 4m as
m→∞, so (

∑
βm
∫
|fm|2)1/2 is equivalent to the norm ‖(−∆)1/4f‖L2 .

We assumed so far that f, g ∈ C∞(SN ). For f ∈ C∞(SN ), setting g = f in
(1.5), we have

(1.8)

∫∫
SN×SN

|f(x)− f(y)|2

sinN−1 d(x, y) sin2 d(x,y)
2

dµ(x)dµ(y)

=
∞∑
m=0

βm

∫
SN
|fm(x)|2 dµ(x).

By standard arguments, the above identity and (1.5) hold for any f, g ∈ H1/2.
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We now prove (1.3), and begin by showing that for N fixed, the projection kernels
Kn(θ) have the following asymptotics:

(1.9) Kn(θ) = δN
n(N−1)/2

sin(N−1)/2 θ sin 1
2θ

cos((n+N/2)θ − πN/4 − π/4)

+
(
θ−(N+3)/2 + (π − θ)−(N+1)/2

)
O(n(N−3)/2), cn−1 ≤ θ ≤ π − cn−1,

Kn(θ) =

{
O(nN ), 0 ≤ θ ≤ cn−1

O(nN−1), π − cn−1 ≤ θ ≤ π,

where c is a positive number and

δN =
2(N+1)/2Γ(N2 + 1)

π1/2N !
= 2
√

2αN ,

where αN is defined in (1.4). In the interval 0 < θ < cn−1, this is just the trivial
bound on the kernel. As for the other intervals, from [13] (8.21.17) we have the
following:

P ((N+1)/2)
n (θ) =

2N/2Γ(N2 + 1)

N !

(n+N)!

n!(n+ N+1
2 )N/2

θ1/2

sin(N+1)/2 θ
JN/2((n+ N+1

2 )θ)

+

{
θ−(N−1)/2 O(n(N−3)/2), cn−1 ≤ θ ≤ π − ε,
θ2 O(nN ), 0 ≤ θ ≤ cn−1,

(1.10)

where c and ε are fixed positive numbers, and Jα(z) is the Bessel function defined
by

Jα(z) =
(z/2)α

Γ(α+ 1
2 )Γ(1

2 )

∫ +1

−1

(1− t2)α−
1
2 eizt dt.

Now

(1.11) Jα(z) =


O(|z|α), z → 0,(

2
πz

) 1
2

cos(z − απ/2− π/4) + O(z−
3
2 ), z →∞.

Combining these formulas, we get

P ((N+1)/2)
n (θ) =

2(N+1)/2Γ(N2 + 1)

π1/2N !

n(N−1)/2

sin(N+1)/2 θ
cos((n+ N+1

2 )θ − (N+1)π
4 )

+ θ−(N+3)/2 O(n(N−3)/2), cn−1 ≤ θ ≤ π − ε,

and from this and (1.2) we get (1.9) in the range 0 ≤ θ ≤ π − ε. To get the
behavior of Kn(θ) in the range π − ε < θ ≤ π, notice that if n is even then

P
(λ)
n (π − θ) = P

(λ)
n (θ), and if n is odd then P

(λ)
n (π − θ) = −P (λ)

n (θ). Hence

Kn(θ) = (−1)n ( P ((N+1)/2)
n (π − θ) − P

((N+1)/2)
n−1 (π − θ) ).
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Using the identity J ′α(z) = (α/z)Jα(z)− Jα+1(z) and (1.11), we get

Jα(z + w) − Jα(z − w)

=


O(|z|α−1|w|), 2|w| < |z| → 0,(

2
πz

) 1
2 (

cos(z + w − απ/2− π/4) − cos(z − w − απ/2− π/4)
)

+ O(|w|z− 3
2 ), 2|w| < |z| → ∞.

From this and (1.10), it is easy to deduce (1.9) in the ranges π − ε < θ < π − cn−1

and π − cn−1 ≤ θ ≤ π.
From (1.9) we get the asymptotics of the square of the kernel:

K2
n(θ) = 4αN

nN−1

sinN−1 θ sin2 1
2θ

(
1 + cos((2n+N)θ − πN/2− π/2)

)
+ (θ−(N+2) + (π − θ)−N ) O(nN−2),

cn−1 ≤ θ ≤ π − cn−1,

K2
n(θ) =

{
O(n2N ), 0 ≤ θ < cn−1,

O(n2N−2), π − cn−1 ≤ π.
To prove (1.3), we saw in (1.8) that f ∈ H1/2(SN ) implies∫∫

SN×SN

|f(x)− f(y)|2

sinN−1 θ sin2 1
2θ
dµ(x)dµ(y) < ∞.

Let Mθ and σθ be defined as above; Mθ = {(x, y) ∈ SN × SN : d(x, y) = θ} and
σθ is surface measure on Mθ. By the co-area formula, for any integrable function
G on SN × SN we have∫∫

SN×SN
G(x, y) dσ(x)dσ(y) =

∫ π

0

∫
Mθ

G(x, y)√
2

dσθ dθ.

For f, g ∈ H1/2(SN ) write

F (θ) =
1

sinN−1 θ sin2 θ
2

∫
Mθ

(f(x)− f(y))(g(x) − g(y)) dσθ.

Then F ∈ L1([0, π], dθ), and we have∫∫
SN×SN

|Kn(x, y)|2(f(x)− f(y))(g(x) − g(y)) dσ(x)dσ(y)

= 4αN n
N−1

∫ π

0

F (θ)√
2
dθ − 4αNn

N−1

√
2

( ∫ cn−1

0

F (θ) dθ +

∫ π

π−cn−1

F (θ) dθ
)

+ O(nN−1)

∫ π

0

F (θ) cos((2n+N)θ − πN/2− π/2) dθ

+ O(nN−2)

∫ π−cn−1

cn−1

(θ−1 + (π − θ)−1)|F (θ)| dθ

+ O(n2N )

∫ cn−1

0

|F (θ)|θN+1 dθ + O(n2N−2)

∫ π

π−cn−1

|F (θ)|(π − θ)N−1 dθ.
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The first term on the right hand side is equal to

4αN n
N−1

∫∫
SN×SN

(f(x) − f(y))(g(x)− g(y))

sinN−1 d(x, y) sin2 d(x,y)
2

dσ(x)dσ(y).

It is not hard to check that each of the other terms is ◦(nN−1) as n→∞, and that
(1.7) holds.

The rest of this section is devoted to describing the bases we will use for the
spherical harmonics on S2 and S3, and stating explicit formulas for the coefficients
that arise when the product of two spherical harmonics is expanded in spherical
harmonics. We will be far more interested in these coefficients than in the formu-
las for the spherical harmonics themselves, which we only include for the sake of
completeness. All the formulas and the theory behind them can be found in [15],
Chapter 3.

The Euler angles (θ, φ, ψ) with 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π are a
coordinate system for S3 defined by

( θ, φ, ψ )↔ ( cos θ2 cos φ+ψ
2 , cos θ2 sin φ+ψ

2 , sin θ
2 cos φ−ψ2 , sin θ

2 sin φ−ψ
2 ).

Normalized surface measure is given by

sin θ dθ

2

dφ

2π

dψ

4π
.

For the familiar spherical coordinates (θ, φ) on S2, normalized surface measure is
given by

sin θ dθ

2

dφ

2π
.

In both dimensions N = 2 and N = 3, the basis spherical harmonics will be
indexed by certain points in a lattice. Let

Λ(2) = Z2,

Λ(3) = { (m, p, q) : m ∈ Z, p, q,m− p,m− q even },
Λ∗ = { (m, p) : m ∈ Z, p,m− p even }.

The letters m, p, q, with or without subscripts or superscripts will be reserved
for the coordinates of lattice points. We will always use the notation

m = (m, p), m` = (m`, p`) m` = (m`, p`) m′ = (m′, p′)

for points in Λ(2) or Λ∗, and

m = (m, p, q), m` = (m`, p`, q`) m` = (m`, p`, q`) m′ = (m′, p′, q′)

for points in Λ(3). I(2), I(3) and I∗ will denote the “cones” of lattice points in
Λ(2), Λ(3) and Λ∗ given by

I(2) = { (m, p) ∈ Λ(2) : |p| ≤ m },
I(3) = { (m, p, q) ∈ Λ(3) : |p|, |q| ≤ m },
I∗ = { (m, p) ∈ Λ∗ : |p| ≤ m }.
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I(2) will index the basis of spherical harmonics on S2 and I(3) will index the basis
of spherical harmonics on S3. Moreover, {m = (m, p) ∈ I(2) : m = n } will index
the basis for Hn(2) (there are 2n + 1 points in this set), while {m = (m, p, q) ∈
I(3) : m = n } will index the base for Hn(3) (there are (n+ 1)2 points in this set).

For each index m in I(2) or I(3), we will now give a formula for the basis
spherical harmonic Ym on S2 or S3 respectively:

Y(p,m)(θ, φ) =
√

2m+ 1 tmp0(θ, φ, 0),

Y(p,q,m)(θ, φ, ψ) =
√
m+ 1 t

m/2
p/2 q/2(θ, φ, ψ),(1.12)

where for a point (m, p, q) such that (2m, 2p, 2q) ∈ I(3), we have

(1.13) tmpq(θ, φ, ψ) = e−i(pφ+qψ) Pmpq (cos θ),

where

Pmpq (z) = i−p−q
(

(m− p)!(m− q)!
(m+ p)!(m+ q)!

) 1
2
(

1 + z

1− z

) p+q
2

×
m∑

`=max{p,q}

(m+ `)!i2`

(m− `)!(`− p)!(`− q)!

(
1− z

2

)`
,

and where the square root is chosen so that
(
(1+z)/(1−z)

)(p+q)/2
is positive when

−1 < z < 1. Pmpq is closely related to a Jacobi polynomial. We have ‖Ym‖L2 = 1.
We now describe the coefficients arising in the linearization of products of spher-

ical harmonics. We have

(1.14) Ym1Ym =
∑
m1

Γm1

m1
(m)Ym1+m

for coefficients Γm1

m1
(m) given by

Γm1

m1
(m) =

∫
S3

Ym1(x)Ym(x)Ym1+m(x) dµ(x).

We extend the definition of Γm1

m1
(m) to all m, m1 ∈ Λ(N) by setting it equal to 0,

unless m, m1 + m ∈ I(N). By Cauchy-Schwarz we see that

|Γm1

m1
(m)| ≤ ‖Ym1‖L∞ .

Now Ym1Ym is a polynomial on SN of degree at most m1 +m, so Γm1

m1
(m) = 0

unless m1 +m ≤ m1 +m. By also considering the products Ym1(x)Ym1+m(x) and

Ym(x)Ym1+m(x), we find that

(1.15) Γm1

m1
(m) = 0 unless |m−m1| −m ≤ m1 ≤ m1.
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It can be seen from (1.12) and (1.13) that

for N = 2, Γm1

m1
(m) = 0 unless p1 = p1,

for N = 3, Γm1

m1
(m) = 0 unless p1 = p1 and q1 = q1.

(1.16)

We will need more precise information about the coefficients Γm1

m1
(m), so here is

the explicit formula:

Γm1

m1
(m) = F0(m)F1(m)F2(m)

where

for N = 2,
F0(m) =

(
(2m1+1)(2m+1)

2m1+2m+1

)1/2

F1(m) = C(m1,m,m
1 +m; p1, p, p1 + p)

F2(m) = C(m1,m,m
1 +m; 0, 0, 0),

for N = 3,

F0(m) =

(
(m1+1)(m+1)
m1+m+1

)1/2

F1(m) = C(m1

2 ,
m
2 ,

m1+m
2 ; p1

2 ,
p
2 ,

p1+p
2 )

F2(m) = C(m1

2 ,
m
2 ,

m1+m
2 ; q12 ,

q
2 ,

q1+q
2 )

(1.17)

and the Clebsch-Gordan coefficient C(m1,m,m
1 +m; p1, p, p1 + p) is given by

C(m1,m,m
1 +m; p1, p, p1 + p) =

(
(m1 +m1)!(m1 −m1)!

(m1 + p1)!(m1 − p1)!

)1/2

× (2(m+m1) + 1)1/2

×
(

(m+ p)!

(m+ p+m1 + p1)!

(m− p+m1 + p1)!

(m− p)!
(2m+m1 +m1 + 1)!

(2m+m1 −m1)!

)1/2

× (−1)p1−m1
min{m1+m1,m−p+m1−p1}∑

s=0

(−1)s

s!(m1 +m1 − s)!

× (2m+ 2m1 − s)!
(2m+m1 +m1 − s+ 1)!

(m− p+m1 +m1 − s)!
(m− p+m1 − p1 − s)!

,

(1.18)

for (m, p), (m1, p1), (m1 + m, p1 + p) ∈ I∗. (This formula can be found in [15],
(3.8.14′′).)

2. Asymptotics for trace(Pn[f ]Pn)k when f is a polynomial

In this section, we will prove (0.11) and hence Lemma 0.3. We will assume
throughout that the dimension N is equal to 2 or 3. To prove (0.11), by linearity we
need only consider the case when the functions f0, . . . , fj are spherical harmonics,
i.e., we just need to prove that for any fixed m0, . . . ,mj ∈ I(N),

trace Pn[Ym1 . . . Ymj ](I − Pn)[Ym0 ]Pn

−
∑
σ

trace Pn[Ymσ1
] . . . Pn[Ymσj

](I − Pn)[Ym0 ]Pn

= ◦(nN−1) as n→∞,
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where the sum is over σ in the set of permutations generated by the cycle (1, . . . , j).
Now we have

(2.1) trace Pn [Ymσ1
] · · ·Pn [Ymσj

] (I − Pn) [Ym0 ]Pn

=
∑
m

〈Pn [Ymσ1
] · · ·Pn [Ymσj

] (I − Pn) [Ym0 ]Ym , Ym 〉,

where for N = 2, the sum is over those m = (m, p) ∈ I(2) with m ≤ n, and for
N = 3, it is over those m = (m, p, q) ∈ I(3) with m ≤ n. Clearly each term in
the sum is bounded by 2‖Ym0‖∞ · · · ‖Ymj‖∞, so at first glance we see that (2.1) is

O(nN ). We can easily do better; by (1.15), (I−Pn)[Ym0 ]Ym = 0 unless m0+m > n.
(Recall the notation: m0 = (m0, p0) or (m0, p0, q0).) Since the number of indices
m with n−m0 < m ≤ n is O(nN−1), we see that (2.1) is O(nN−1).

Similar remarks apply to tracePn[Ym1 . . . Ymj ](I − Pn)[Ym0 ]. We have

(2.2)

trace Pn [Ym1 · · ·Ymj ] (I − Pn) [Ym0 ]

−
∑
σ

tracePn [Ymσ1
] · · ·Pn [Ymσj

] (I − Pn) [Ym0 ]

=
∑
m

(
〈Pn [Ym1 · · ·Ymj ] (I − Pn) [Ym0 ]Ym , Ym 〉

−
∑
σ

〈Pn [Ymσ1
] · · ·Pn [Ymσj

] (I − Pn) [Ym0 ]Ym , Ym 〉
)
,

where the sum is over those m ∈ I(N) with n−m0 < m ≤ n. Our goal is to prove
that this expression is ◦(nN−1) as n→∞. So far we know that it is O(nN−1). To
see where the cancellation occurs, we first express each of the operators [Ym`

] as a
linear combination of “shifts”. By (1.14) we have

(2.3) Ym`
Ym =

∑
m`

Γm`

m`
(m) Sm`

Ym,

where Sm`

denotes the shift operator:

Sm`

: Ym →
{
Ym`+m if m` + m ∈ I(N),

0 otherwise,

and where the sum is over m` ∈ Λ(N). In fact, by (1.15) and (1.16), Γm`

m`
(m) = 0

unless |m`| < m`, p
` = p` and, in the case N = 3, q` = q`. The set of m` for which

these conditions are satisfied is finite—that is to say, for m` fixed (2.3) holds where
the sum is over a finite set of indices m`; a finite set which does not depend on m.

To compute the expression

〈Pn [Ym1 · · ·YmjYm0 ]Ym , Ym 〉
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we expand each operator [Ymσ`
] in terms of shift operators. We get

〈Pn [Ym1 · · ·YmjYm0 ]Ym , Ym 〉

=
∑

m0,...,mj

Γm1

m1
(m2 + · · ·+ mj + m0 + m) · · ·Γmj

mj
(m0 + m)Γm0

m0
(m)

× 〈Pn Sm1 · · ·Smj

Sm0

Ym , Ym 〉

=
∑

m0,...,mj

∆m1,...,mj ,m0

m1,...,mj ,m0
(m) 〈Pn Sm1

· · ·Smj

Sm0

Ym , Ym 〉,

where ∆m1,...,mj ,m0

m1,...,mj ,m0
(m) is defined to be the product of Γ’s in the second line and

the sums are over those indices m0, . . . ,mj lying in a fixed finite subset of Λ(N),
which depends on m0, . . . ,mj but not on m. Similarly,

〈Pn [Ym1 · · ·Ymj ]Pn [Ym0 ]Ym , Ym 〉

=
∑

m0,...,mj

∆m1,...,mj ,m0

m1,...,mj ,m0
(m) 〈Pn Sm1 · · ·Smj

Pn S
m0

Ym , Ym 〉,

〈Pn [Ymσ1
] · · ·Pn [Ymσj

] [Ym0 ]Ym , Ym 〉

=
∑

m0,...,mj

∆mσ1 ,...,mσj ,m0

mσ1 ,...,mσj
,m0

(m)〈Pn Smσ1 · · ·Pn Smσj
Sm0

Ym , Ym 〉,

〈Pn [Ymσ1
] · · ·Pn [Ymσj

]Pn [Ym0 ]Ym , Ym 〉

=
∑

m0,...,mj

∆mσ1 ,...,mσj ,m0

mσ1 ,...,mσj
,m0

(m)〈Pn Smσ1 · · ·Pn Smσj
Pn S

m0

Ym , Ym 〉.

These sums are all over a fixed, finite set of indices m0, . . . ,mj . Consider the
expression

(2.4)

∑
m

(
∆m1,...,mj ,m0

m1,...,mj ,m0
(m) 〈Pn Sm1 · · ·Smj

(I − Pn)Sm0

Ym , Ym 〉

−
∑
σ

∆mσ1 ,...,mσj ,m0

mσ1 ,...,mσj
,m0

(m) 〈Pn [Smσ1
] · · ·Pn [Smσj

] (I − Pn) [Sm0

]Ym , Ym 〉
)
,

where the first sum is over those m with n −m0 < m < n. If one sums this over
m0, . . . ,mj then one gets (2.2); so in order to prove that (2.2) is ◦(nN−1), we just
need to show that (2.4) is ◦(nN−1) for fixed m0, . . . ,mj. For the rest of this section
we will assume that m0, . . . ,mj are fixed.

Notice that if Sm1 · · ·Smj

Sm0

Ym 6= 0, then none of the shifts Sm`

takes the
index m`−1 + · · ·+ mj + m0 + m outside the indexing set I(N), and

Sm1

· · ·Smj

Sm0

Ym = Sm1+···+mj+m0

Ym.

On the other hand, if Sm1 · · ·Smj

Sm0

Ym = 0, then one of the shifts Sm`

must take

an index m`−1+· · ·+mj+m0+m outside I(N), and we have ∆m1,...,mj ,m0

m1,...,mj ,m0
(m) = 0.
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Thus if ∆m1,...,mj ,m0

m1,...,mj ,m0
(m) 6= 0, then Sm1 · · ·Smj

Sm0

Ym 6= 0,

〈Pn Sm1 · · ·Smj

Sm0

Ym , Ym 〉 = 〈Pn Sm1+···+mj+m0

Ym , Ym 〉

=

{
1 if m0 + · · ·+ mj = 0 and m ≤ n,
0 otherwise,

and

〈Sm1 · · ·Smj

Pn S
m0

Ym , Ym 〉 = 〈 Sm1+···+mj

Pn S
m0

Ym , Ym 〉.

We can interchange a shift with a projection as follows:

Sm`

Pn = Pm`+n S
m`

;

hence

Pn S
m1+···+mj

Pn = PnPm1+···+mj+n S
m1+···+mj

= Pn+min{0,m1+···+mj} S
m1+···+mj

,

and

〈 Sm1+···+mj

Pn S
m0

Ym , Ym 〉

=

{
1 if m0 + · · ·+ mj = 0 and m ≤ n+ min{0, m1 + · · ·+mj},
0 otherwise.

Similarly, if ∆mσ1 ,...,mσj ,m0

mσ1 ,...,mσj
,m0

(m) 6= 0, then Smσ1 · · ·Smσj
Sm0

Ym 6= 0, and by pass-

ing all projections to the left of all shifts we get

〈Pn [Smσ1
] · · ·Pn [Smσj

] [Sm0

]Ym , Ym 〉

=


1 if m0 + · · ·+ mj = 0

and m ≤ n+ min{0, mσ1 ,mσ1 +mσ2 , . . . ,mσ1 + · · ·+mσj−1},
0 otherwise,

〈Pn [Smσ1
] · · ·Pn [Smσj

]Pn [Sm0

]Ym , Ym 〉.

=


1 if m0 + · · ·+ mj = 0

and m ≤ n+ min{0, mσ1 ,mσ1 +mσ2 , . . . ,mσ1 + · · ·+mσj},
0 otherwise.

Putting all this together, we see that (2.4) is equal to 0 unless m0 + · · ·+ mj = 0,
when it equals

(2.5) ∑
{m:n−m0<m≤n}

{
∆m1,...,mj ,m0

m1,...,mj ,m0
(m)

(
Xm≤n(m) − Xm≤n+min{0,m1+···+mj}(m)

)
−

∑
σ

∆mσ1 ,...,mσj ,m0

mσ1 ,...,mσj
,m0

(m)
(
Xm≤n+min{0,mσ1 ,...,mσ1+···+mσj−1}(m)

− Xm≤n+min{0,mσ1 ,...,mσ1+···+mσj }(m)
) }

,
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where X denotes the indicator function. We must show that this is ◦(nN−1) as
n→∞.

For N = 2 or 3, and 0 ≤ ` ≤ j, write

Γ`(m) = Γm`

m`
(m),

∆(m) = ∆m1,...,mj ,m0

m1,...,mj ,m0
(m),

∆σ(m) = ∆mσ1 ,...,mσj ,m0

mσ1 ,...,mσj
,m0

(m),

∆Σ(n) =
∑

{m∈I(N):m=n}
∆(m),

∆Σ
σ (n) =

∑
{m∈I(N):m=n}

∆σ(m).

We have |∆(m)|, |∆σ(m)| ≤ ‖m0‖∞ . . . ‖mj‖∞, so ∆Σ(n) and ∆Σ
σ (n) are O(nN−1).

The expression (2.5) is equal to∑
n−m0<m≤n

{
∆Σ(m)Xn+min{0,m1+···+mj}<m≤n(m) −

∑
σ

∆Σ
σ (m)

× Xn+min{0, mσ1 ,...,mσ1+···+mσj }<m≤n+min{0, mσ1 ,...,mσ1+···+mσj−1}(m)

}
.

We write this as

∆Σ(n)
∑

n−m0<m≤n

{
Xn+min{0,m1+···+mj}<m≤n(m)

−
∑
σ

Xn+min{0,mσ1 ,...,mσ1+···+mσj}<m≤n+min{0,mσ1 ,...,mσ1+···+mσj−1}(m)

}
+

∑
n−m0<m≤n

{
(∆Σ(m)−∆Σ(n))Xn+min{0,m1+···+mj}<m≤n(m)

−
∑
σ

(∆Σ
σ (m)−∆Σ(n))

× Xn+min{0,mσ1 ,...,mσ1+···+mσj }<m≤n+min{0,mσ1 ,...,mσ1+···+mσj−1}(m)

}
= (I) + (II).

We will examine (I). Now, m0 + · · ·+ mj = 0, so |m1 + · · ·+mj | ≤ m0, and∑
n−m0<m≤n

{
Xn+min{0,m1+···+mj}<m≤n(m)

−
∑
σ

Xn+min{0,mσ1 ,...,mσ1+···+mσj }<m≤n+min{0, mσ1 ,...,mσ1+···+mσj−1}(m)

}
= min{0,m1 + · · ·+mj} +

∑
σ

(
min{ 0, mσ1 , . . . ,mσ1 + · · ·+mσj−1 }

− min{0, mσ1 , . . . ,mσ1 + · · ·+mσj}
)

= 0,

by the Kac formula (0.12), so term (I) is equal to 0. Clearly, to show that (II) is
◦(nN−1), it suffices to show the following:
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Lemma 2.1. For any permutation σ of 1, . . . , j, we have∑
{m :n−m0<m≤n }

∣∣∆Σ
σ (m) − ∆Σ(n)

∣∣ = ◦(nN−1) as n→∞.

Proof of Lemma 2.1. We will show that

(2.6)
∣∣∆Σ

σ (n) − ∆Σ(n)
∣∣ = ◦(nN−1) as n→∞

and

(2.7) sup
{n0 :n−m0<m′≤n }

∣∣∆Σ(m′) − ∆Σ(n)
∣∣ = ◦(nN−1) as n→∞.

Write M = m0 + · · ·+mj + 2. For any function F : Λ→ C define the oscillation
of F at m ∈ Λ to be

ωF (m) = sup{| F (m′) − F (m)| : m′ ∈ Λ, |m−m′| ≤M}.

It is easy to see that the oscillation of a product satisfies the Leibniz rule:

ωFG(m) ≤ ωF (m) ‖G‖∞ + ‖F‖∞ ωG(m).

We will see that (2.6) and (2.7) are a consequence of the following:

Lemma 2.2. ∑
{m:m=n}

ωΓ`(m) = ◦(nN−1) as n→∞.

To show that this indeed implies (2.6) and (2.7), first note that

∆(m) = Γ0(m(0) + m) · · ·Γj(m(j) + m),

where for 0 ≤ ` ≤ j, m(`) ∈ Λ(N) is a fixed index. Since Γ` is bounded, Lemma
2.2 and the Leibniz rule imply that

(2.8)
∑

{m:m=n}
ω∆(m) = ◦(nN−1) as n→∞.

Similarly, if σ is fixed then ∆σ(m) = Γ0(m(0) + m) · · ·Γj(m(j) + m), where for

0 ≤ ` ≤ j, m(`) ∈ Λ is a fixed index. Now |m(`)|, |m(`)| ≤M , and the functions Γ`
are bounded. We have∣∣ ∆Σ

σ (n) − ∆Σ(n)
∣∣

≤
∑

{m:m=n}

∣∣Γ0(m(0) + m) · · ·Γj(m(j) + m)− Γ0(m(0) + m) · · ·Γj(m(j) + m)
∣∣

≤ C

j∑
`=0

∑
{m:m=n}

ωΓ`(m) = ◦(nN−1) as n→∞,

which proves (2.6).
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We will prove (2.7) when N = 3; the case N = 2 is similar. Let n−m0 < m ≤ n,
so |n−m| < M − 2. We want to bound |∆Σ(m)−∆Σ(n)|. The cases n−m even
and n−m odd are slightly different. We have∣∣∆Σ(m) − ∆Σ(n)

∣∣
=

∣∣∣∣ ∑
{m′:m′=m}

∆(m′) −
∑

{m′:m′=n}
∆(m′)

∣∣∣∣
≤
{ ∑

{p,q:(n,p,q)∈I(3)} |∆(m, p, q)−∆(n, p, q)| if n−m even,∑
{p,q:(n,p,q)∈I(3)} |∆(m, p+ 1, q + 1)−∆(n, p, q)| if n−m odd.

≤
∑

{m′:m′=n }
ω∆(m′) = ◦(nN−1),

by (2.8).

Proof of Lemma 2.2. Without loss of generality ` = 1. The number of indices
m ∈ Λ(N) with m = n and ω∆(m) 6= 0 is O(nN−1). Define the “reduced cones”
It, for 0 < t ≤ 1, by

It(3) = {m = (m, p, q) ∈ I(3) : |p|, |q| ≤ tm },
It(2) = {m = (m, p) ∈ I(2) : |p| ≤ tm },
It∗ = {m = (m, p) ∈ I∗ : |p| ≤ tm }.

For N = 2 or 3 and any fixed t < 1, we have

(2.9) sup
{m∈It(N):m=n}

ωΓj (m) = ◦(n−1) as n→∞.

(This is not true with t = 1.) This easily implies Lemma 2.2. To prove (2.9) from
(1.17), we see that Γ1 is a product of bounded functions F0, F1, and F2, and clearly

sup
{m∈I∗:m=n}

ωF0(m) = ◦(n−1) as n→∞.

Write

F (m, p) =

{
C(m1,m,m

1 +m; p1, p, p1 + p) if (m, p) ∈ I∗,
0 if (m, p) ∈ Λ∗ \ I∗.

p

s2n

Qn

p = m

n+Mnn−M

p = tm

msn 2n

I∗

I∗
t
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Using the Leibnitz rule for the oscillation, it is not hard to see that (2.9) will
follow if we show that

(2.10) sup
{m=(m,p)∈It∗:m=n }

ωF (m) = ◦(n−1) as n→∞,

for any fixed t < 1. Fix t < 1 and pick s with 0 < s < 1 and s2 > t. Define the
rectangle of lattice points Qn by

Qn = { (m, p) ∈ I∗ : sn ≤ m ≤ 2n, |p| ≤ s2n }.

To prove (2.10), we will show that for n sufficiently large, there is a function Gn
defined on

Q = {(x, y) ∈ R2 : s ≤ y ≤ 2, |x| ≤ s2},

such that

(2.11) ‖ |∇Gn| ‖∞ is uniformly bounded over n

and
F (p,m) = Gn( pn ,

m
n ) +O(n−1) on Qn.

That this does indeed prove (2.10) is easily seen, for we can pick n sufficiently large
so that if m = (m, p) ∈ It∗ and m′ = (m′, p′) ∈ Λ∗ is such that |m−m′| < M , then
m,m′ ∈ Qn, and hence

|F (p,m)− F (p′,m′)| ≤ |Gn( pn ,
m
n )−Gn(p

′

n ,
m′

n )|+O(n−1)

≤ M
n ‖ |∇Gn| ‖∞ +O(n−1).

To show that such functions Gn exist, we examine the expression for the Clebsch-
Gordan coefficient, (1.18):

F (p,m) =

{
(m+ c1)

(m+ p)!

(m+ p+ c2)!

(m− p+ c3)!

(m− p)!
(2m+ c4)!

(2m+ c5)!

} 1
2

×
c10∑
s=0

c11(s)
(m− p+ c6 − s+ 1) · · · (m− p+ c6 − s+ c7)

(2m+ c8 − s+ 1) · · · (2m+ c8 − s+ c9)

where c1, . . . , c10, c11(s) are constants with c7, c9 ≥ 1. This expression for F (p,m)
is a product of two factors. The factor involving the sum can be written as

1

(2m+ c8 − c10 + 1) · · · (2m+ c8 + c9)
J(p,m)

where J is a polynomial. We notice that

1

(2m+ c8 − c10 + 1) · · · (2m+ c8 + c9)
= (2m)−c9−c10(1 +O(m−1)).

The factor involving the square root is

m(c4−c5+1)/2(m+ p)−c2/2(m− p)c3/2(1 + O(m−1))
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on { (p,m) : |p| < sm }. Absorbing constants into J gives

F (p,m) = mc12(m+ p)c13(m− p)c14J(p,m)(1 + O(m−1))

on { (p,m) : |p| < νm }, for constants c12, c13, c14, and since F (p,m) is uniformly
bounded on I∗, we get

F (p,m) = mc12(m+ p)c13(m− p)c14J(p,m) + O(m−1).

Define Gn on Q by

Gn(x, y) = nc12+c13+c14yc12(y + x)c13(y − x)c14J(nx, ny).

Then F (p,m) = Gn( pn ,
m
n ) + O(n−1) on Qn, and we just need to show (2.11).

Clearly

yc12(y + x)c13(y − x)c14

and ∣∣∇(yc12(y + x)c13(y − x)c14
)∣∣

are uniformly bounded above and below on Q. Since Jn(x, y) = J(nx, ny) is a poly-
nomial on Q of degree at most the degree of J , there is a constant c0 independent
of n such that

‖ |∇Jn| ‖∞ ≤ c0‖Jn‖∞
on Q. Hence there is a constant c independent of n such that

‖ |∇Gn| ‖∞ ≤ c‖Gn‖∞.

Now F is uniformly bounded on I∗ so Gn is bounded by a constant c′ independent
of n on

1

n
Qn = {( xn ,

y
n ) ∈ Q : (x, y) ∈ Qn}.

Since any point of Q is at most
√

2/n from a point of 1
nQn, we get

‖ |∇Gn| ‖∞ ≤ c‖Gn‖∞ ≤ c
(
c′ +

√
2
n ‖ |∇Gn| ‖∞

)
and hence (2.11).

3. Asymptotics for trace logPn[f ]Pn when f ∈ C(SN ) ∩H1/2(SN)

For N = 2 or 3 fixed, let W be the space C(SN )∩H1/2(SN ) with norm ‖ · ‖W =
‖ · ‖L∞ + ‖ · ‖H1/2 .

In this section we will extend the key result of Section 2 to functions f ∈W .

Lemma 3.1. If f is a function in W and 0 ≤ j ≤ k <∞, then

trace
(
Pn[f ]

)j
(I − Pn)[fk−j ]Pn −

1

j
trace Pn[f j ](I − Pn)[fk−j ]Pn

= ◦(nN−1) as n→∞.

Furthermore, we will prove the following:
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Lemma 3.2. If f ∈ W is such that the closed convex hull of the image of f does
not contain the origin, then

trace logPn[f ]Pn = tracePn[log f ]Pn

+
1

2
trace Pn[log f ](I − Pn)[log f ]Pn + ◦(nN−1).

Combined with (0.3), (0.4), (0.9) and (0.10), this completes the proof of Theorem
0.1.

In the proofs of these two lemmas, we will make frequent use of the following
definitions and facts which can be found in [5] on page 187.

Proposition. Let (M,dµ) be a finite measure space. For an operator T on
L2(M,dµ), with integral kernel K(x, y), and an orthonormal base zk, k = 1, 2, . . . ,
of L2(M,dµ), the Hilbert-Schmidt norm of T is

‖T‖2 =

(∫∫
M×M

|K(x, y)|2 dµ(x)dµ(y)

)1/2

=

( ∞∑
k=1

‖Tzk‖22
)1/2

.

‖T‖ will denote the operator norm of T .
If T1 and T2 are Hilbert-Schmidt, then T1T2 is trace class,

| traceT1T2| ≤ ‖T1‖2‖T2‖2,

and
traceT1T2 = traceT2T1.

If T1 is bounded and T2 is Hilbert-Schmidt, then T1T2 is Hilbert-Schmidt and

‖T1T2‖2 ≤ ‖T1‖‖T2‖2.

Proof of Lemma 3.1. Write

(3.1)
t0n(f) = t0n(j, k; f) =

1

nN−1
trace (Pn[f ])j(I − Pn)[fk−j ]Pn,

t1n(f) = t1n(j, k; f) =
1

nN−1
trace Pn[f j ](I − Pn)[fk−j ]Pn.

We want to prove that for all j ≤ k fixed and f ∈W , we have

(3.2) t0n(f) − 1

j
t1n(f) = ◦(1) as n→∞.

From Section 2, we know that this holds when f is a polynomial on SN . Using the
remarks above (1.8), it is easily seen that W is a Banach algebra, so the Stone-
Weierstrass theorem implies that the polynomials on SN are dense in W . We will
show that if ‖f‖W , ‖g‖W < M , then for α = 0, 1,

(3.3) |tαn(f)− tαn(g)| ≤ C Mk−1‖f − g‖W ,
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where C is independent of M and n. A simple argument then gives (3.2) for all
f ∈W .

To prove (3.3), we have

‖Pn[f ](I − Pn)‖2 ≤ ‖Pn[f ]− [f ]Pn‖2

=

(∫∫
M×M

|Kn(x, y)|2|f(x)− f(y)|2 dµ(x)dµ(y)

)1/2

≤ Cn(N−1)/2‖f‖H1/2 ,

so for functions f and g in W , we have

‖Pn[fg](I − Pn)‖2 ≤ ‖Pn[f ]Pn[g](I − Pn)‖2 + ‖Pn[f ](I − Pn)[g](I − Pn)‖2
≤ ‖f‖L∞‖Pn[g](I − Pn)‖2 + ‖g‖L∞‖Pn[f ](I − Pn)‖2.

By induction we see that if f` ∈W for 1 ≤ ` ≤ j, then

(3.4)

‖Pn[f1 · · · fj](I − Pn)‖2 ≤
j∑
`=1

‖Pn[f`](I − Pn)‖2
∏
k 6=`
‖fk‖L∞

≤ C n(N−1)/2

j∑
`=1

‖f`‖H1/2

∏
k 6=`
‖fk‖L∞ .

From this we see that

‖Pn[f1 · · · fj ](I − Pn)‖2 ≤ C n(N−1)/2‖f1‖W . . . ‖fj‖W ,

and if ‖f‖W , ‖g‖W ≤M then

nN−1|t1n(f)− t1n(g)|
=
∣∣tracePn[f j − gj ](I − Pn)[fk−j ]Pn + tracePn[gj ](I − Pn)[fk−j − gk−j ]Pn

∣∣
≤ ‖Pn[f − g][f j−1 + · · ·+ gj−1](I − Pn)‖2‖(I − Pn)[fk−j ]Pn‖2

+ ‖Pn[gj](I − Pn)‖2‖(I − Pn)[f − g][fk−j−1 + · · ·+ gk−j−1]Pn‖2
≤ CnN−1Mk−1‖f − g‖W .

The case α = 0 can be proved in a similar way.

Proof of Lemma 3.2. By a simple scaling argument, Lemma 3.2 is is equivalent to
the following:

Lemma 3.2′. If f ∈W and ‖f‖∞ < 1, then

trace logPn[1− f ]Pn = tracePn[log(1− f)]Pn

+
1

2
trace Pn[log(1− f)](I − Pn)[log(1− f)]Pn + ◦(nN−1).

Proof of Lemma 3.2′. Let t0 and t1 be defined as in (3.1). We have

| t0n(j, k; f) | ≤ C(k − j) ‖f‖k−2
L∞ ‖f‖2H1/2 ,

| t1n(j, k; f) | ≤ Cj(k − j) ‖f‖k−2
L∞ ‖f‖2H1/2,(3.5)
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where C does not depend on j, k or f . To see this, by (3.4) we have

‖(I − Pn)[fk−j ]Pn‖2 ≤ Cn(N−1)/2‖f‖k−j−1
∞ ‖f‖H1/2 ,

so

nN−1| t0n(j, k; f) | = | trace(Pn[f ])j(I − Pn)[fk−j ]Pn |
≤ ‖ (Pn[f ])j−1‖‖Pn[f ](I − Pn) ‖2 ‖ (I − Pn)[fk−j ]Pn ‖2
≤ CnN−1(k − j)‖f‖k−2

L∞ ‖f‖2H1/2 .

The proof of the second inequality is similar.
Now the operator norm of Pn[f ]Pn is bounded by ‖f‖∞, so since ‖f‖∞ < 1, we

have

trace logPn[1− f ]Pn − tracePn[log(1− f)]Pn

=
∞∑
k=1

1

k

(
− trace(Pn[f ]Pn)k + tracePn[fk]Pn

)
=

∞∑
k=1

1

k

k−1∑
j=1

trace(Pn[f ])j(I − Pn)[fk−j ]Pn

= nN−1
∞∑
k=1

1

k

k−1∑
j=1

t0n(j, k; f)

and

trace Pn[log(1− f)](I − Pn)[log(1− f)]Pn

=
∞∑
j=1

∞∑
`=1

1

j

1

`
trace Pn[f j ](I − Pn)[f `]Pn

=
∞∑
k=2

1

k

k−1∑
j=1

(
1

j
+

1

k − j ) trace Pn[f j ](I − Pn)[fk−j ]Pn

= 2
∞∑
k=2

1

k

k−1∑
j=1

1

j
trace Pn[f j](I − Pn)[fk−j ]Pn

= 2nN−1
∞∑
k=2

1

k

k−1∑
j=1

1

j
t1n(j, k; f),

so

| trace logPn[1− f ]Pn − trace Pn[log(1− f)]Pn

− 1

2
trace Pn[log(1− f)](I − Pn)[log(1− f)]Pn |

≤ nN−1
∞∑
k=2

1

k

k−1∑
j=1

∣∣ t0n(j, k; f) − 1

j
t1n(j, k; f)

∣∣.
By (3.2), (3.5) and the dominated convergence theorem we see that this final ex-
pression is ◦(nN−1) as n→∞.
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