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MODULI SPACES OF SINGULAR YAMABE METRICS

RAFE MAZZEO, DANIEL POLLACK, AND KAREN UHLENBECK

1. Introduction

Much has been clarified in the past ten years about the behavior of solutions
of the semilinear elliptic equation relating the scalar curvature functions of two
conformally related metrics. The starting point for these recent developments was
R. Schoen’s resolution of the Yamabe problem on compact manifolds [S1], capping
the work of a number of mathematicians over many years. Soon thereafter Schoen
[S2] and Schoen-Yau [SY] made further strides in understanding weak solutions
of this equation, particularly on the sphere, and its relationship with conformal
geometry. Of particular interest here is the former, [S2]; in that paper, Schoen
constructs metrics with constant positive scalar curvature on Sn, conformal to the
standard round metric, and with prescribed isolated singularities (he also constructs
solutions with certain, more general, singular sets). This ‘singular Yamabe problem’
is to find a metric g = u4/(n−2)g0 on a domain Sn\Λ which is complete and has
constant scalar curvature R(g). This is equivalent to finding a positive function u
satisfying

(1.1)
∆g0u−

n− 2

4(n− 1)
R(g0)u+

n− 2

4(n− 1)
R(g)u

n+2
n−2 = 0 on Sn\Λ,

g complete on Sn\Λ, R(g) = constant,

where R(g0) = n(n − 1) is the scalar curvature of the round metric g0. The com-
pleteness of g requires that u tend to infinity, in an averaged sense, on approach to
Λ.

The earliest work on this singular Yamabe problem seems to have been that of
C. Loewner and L. Nirenberg [LN], where metrics with constant negative scalar
curvature are constructed. Later work on this ‘negative’ case was done by Aviles-
McOwen [AMc], cf. also [Mc] and Finn-McOwen [FMc], where the background
manifold and metric are allowed to be arbitrary. For a solution with R(g) < 0 to
exist, it is necessary and sufficient that dim(Λ) > (n − 2)/2. A partial converse
is that if a solution with R(g) ≥ 0 exists (at least when M = Sn), it is necessary
that k ≤ (n − 2)/2, [SY]. Schoen gave the first general construction of solutions
with R(g) > 0 [S2]. These solutions have singular set Λ which is either discrete
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or nonrectifiable. Many new solutions on the sphere with singular set Λ, a smooth
perturbation of an equatorial k-sphere, 1 ≤ k < (n − 2)/2, are constructed in
[MS]. F. Pacard [Pa] has recently constructed positive complete solutions on the
sphere with singular set an arbitrary smooth submanifold of dimension (n− 2)/2.
Regularity of solutions near the singular set Λ, no matter the sign of the curvature
or background manifold or metric, is examined in [M1], cf. also [ACF] for a special
case of relevance to general relativity. A more detailed account of part of this history
is given in [MS]. Quite recently the first author and F. Pacard [MP] established the
existence of solutions on M \Λ where M is any compact manifold with nonnegative
scalar curvature and the singular set Λ is any finite, disjoint union of submanifolds
Λi with dimensions ki ∈ {1, . . . , (n− 2)/2}.

In this paper we return to this problem in the setting studied by Schoen [S2] on
Sn, where Λ is a finite point-set:

(1.2) Λ = {p1, . . . , pk}.

Hereafter, Λ will always be taken to be this set, unless indicated specifically, and
the scalar curvature R(g) attained by the conformal metric will always be n(n−1).
In this case, no solutions of (1.1) exist when k = 1. A proof of this, following
from a general symmetry theorem, is indicated below. Thus we always assume that
k ≥ 2. Since this problem is conformally invariant, the set Λ may be replaced
by F (Λ) for any conformal transformation F ∈ O(n + 1, 1). A simple topological
argument (given in [S2]) shows that using such a transformation we can always
arrange that Λ is ‘balanced’, i.e. that the points pj sum to zero as vectors in Rn+1.
Henceforth this will be tacitly assumed as well. Notice that if Λ is balanced, k > 2,
and if F is a conformal transformation which preserves Λ, then (since some power
of F fixes three points on the sphere, and also the origin in Rn+1) F must be an
orthogonal transformation. If k = 2 then F could also be a dilation. Also, any
balanced configuration Λ is contained in a minimal equatorial subsphere Sk ⊂ Sn,
and an Alexandrov reflection argument similar to the one in §8 of [CGS] shows that
if u is an arbitrary solution to (1.1), and F is a rotation preserving Λ pointwise,
then u must also be invariant under F . Observe that this implies that no complete
solutions exist on Sn\{p}. If u were such a solution, then because any other point
can be moved to be antipodal to p, this reflection argument would show that u
is rotationally symmetric with respect to any other point on the sphere. Hence u
would have to be constant, which contradicts completeness. Hence (except when
k = 2) we do not get ‘trivial’ families of solutions of (1.1) obtained by pulling
back a fixed solution by a family of conformal transformations. Note, however,
that if F preserves Λ, but permutes the points, there is no reason to expect that
most solutions of (1.1) will be fixed by F ; indeed, it is not even clear a priori that
F -invariant solutions exist in this case.

Our aim in this work is to consider the moduli spaceMΛ, which is by definition
the set of all smooth positive solutions u to the problem

(1.3)
∆g0u−

n(n− 2)

4
u+

n(n− 2)

4
u
n+2
n−2 = 0 on Sn\Λ,

g = u
4

n−2 g0 complete on Sn\Λ,

where Λ = {p1, . . . , pk} is any fixed, balanced set of k points in Sn. We remark
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that the geometric condition that the metric g be complete is equivalent to the
analytic one of requiring that the set Λ consist of nonremovable singularities of u.
This space might be called the ‘PDE moduli space’ MPDE

Λ , to distinguish it from
the ‘geometric moduli space’ Mgeom

Λ which consists of all geometrically distinct
solutions of this problem. In most instances these spaces coincide, although the
second could conceivably be somewhat smaller than the first if some solutions admit
nontrivial isometries (e.g. as in the case k = 2 discussed in §2 below). MΛ will
always denote the former of these spaces here. By Schoen’s work [S2], MΛ is
nonempty whenever k > 1. In fact, his construction yields families of solutions. As
this was not the aim of his work, this is not made explicit there, nor are the free
parameters in his construction counted.

We shall examine a number of questions, both local and global, concerning the
nature of this moduli space. The simplest of these is whetherMΛ is a manifold, or
otherwise tractable set, and if so, what is its dimension. Our main result is

Theorem 1.4. MΛ is locally a real analytic variety of formal dimension k.

The formal dimension is the dimension predicted by an index theorem. As is
usual in moduli space theories, obstructions may well exist to prevent MΛ from
attaining this dimension. We clarify this and give a more careful statement in
Theorem 5.4, Corollary 5.5 and Theorem 6.13 below. We also describe how natu-
ral parameters on MΛ may arise. On the linear level, these are given by certain
scattering theoretic information for the metrics g ∈ MΛ. Another geometric de-
scription is given by the Pohožaev invariants which are defined in §3. We also
obtain information on a geometrically natural compactification ofMΛ which is ob-
tained by taking the union with lower-dimensional moduli spaces corresponding to
singular sets Λ′ ⊂ Λ. We are, as yet, unable to provide a satisfactory description
of the interior singularities of MΛ, or to determine whether this compactification,
MΛ, is itself a compact real (semi-)analytic variety. This latter property is, by all
indications, true. We hope to return to this later.

There are many similarities between the theory of constant scalar curvature
metrics on Sn\Λ where Λ is finite and that of embedded, complete, constant mean
curvature (CMC) surfaces with k ends in R3. The first examples of such CMC
surfaces were given by N. Kapouleas [Kap]. One-parameter families of solutions
with symmetry were constructed by K. Grosse-Brauckmann [B]. Further general
results on the structure of these surfaces and related problems appear in [KKS],
[KKMS] and [KK]. In the last of these, N. Korevaar and R. Kusner conjecture
that there is a good moduli space theory for these surfaces. Our methods may
be adapted immediately to this setting. If M ⊂ R3 is an embedded, complete
CMC surface with k ≥ 3 ends which satisfies a hypothesis analogous to (5.2) below,
then our results imply that the space of all nearby surfaces of this type, up to
rigid motion in R3, is a (3k − 6)-dimensional real analytic orbifold. In order to
understand the structure of the moduli space near surfaces where this hypothesis is
not satisfied an argument different from the one employed here is needed since, for
example, we do not have an analogue of the constructions in §6. Recently such an
argument was derived based on the linear analysis developed in this paper. Thus
we can also assert that the moduli space of such constant mean curvature surfaces
is locally a real analytic variety, as was claimed in [KK]. This argument can be
seen as an extension of ‘Liapunov-Schmidt reduction’ or the ‘Kuranishi method’
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and also applies to give a new, direct proof of Theorem 1.4. These results appear
in [KMP].

The outline of this paper is as follows. In §2 we analyze in detail the special case
when k = 2. The solutions here will be called Delaunay solutions, in analogy with
a similar family of complete constant mean curvature surfaces in R3 discovered in
1841 by C. Delaunay [D], although it was Fowler [Fo1], [Fo2] who first studied the
differential equation (see (2.1) below) of which these are solutions. Only in this case
may the moduli space be determined completely, since, using the symmetry argu-
ment discussed above, the equation now reduces to an ODE. We also analyze the
spectral theory of the linearized scalar curvature operator completely in this simple
case. §3 collects a number of disparate results about solutions of (1.3) with isolated
singularities which are used throughout the rest of the paper. This contains an
explanation of the results of Caffarelli-Gidas-Spruck and Aviles-Korevaar-Schoen
which state that the Delaunay solutions are good models for arbitrary solutions
of (1.3) with isolated singularities. We also discuss here the Pohožaev invariants
and compactness results for solutions g ∈ MΛ. The linearization L of the scalar
curvature operator is studied in §4. We prove Fredholm results for this operator,
using and expanding earlier work of C. Taubes [T]. Other results here include more
detailed information on asymptotics of solutions of Lw = 0, as well as the compu-
tation, using a relative index theorem, of the dimension of the ‘bounded nullspace’
of L. §5 uses these results to establish the structure ofMΛ near its smooth points.
In §6 we show thatMΛ is a real analytic set by writing it as a slice of an ‘urmoduli
space’ MΛ with the conformal class determined by any g ∈ MΛ. Our study of the
urmoduli space MΛ draws on work of A. Fischer and J. Marsden, [FM1] and [FM2].
We also prove a generic slice theorem here which shows that slices of MΛ by generic
nearby conformal classes are smooth, even if MΛ is not. In §7, our concluding
remarks, we discuss three aspects about the nature of MΛ concerning which we
have not yet obtained satisfactory results. The first of these is the nonexistence of
L2 eigenvalues for the linearization, especially for the solutions constructed in [S2].
Secondly, we give a description of local coordinates on MΛ near smooth points.
This is done both on the linear level and geometrically in terms of the Pohožaev
invariants introduced in §3. At this point we also provide a brief discussion of the
recent construction [MPU] of dipole solutions for the problem. Finally, we address
certain natural questions concerning the boundary of the geometric compactifica-
tion MΛ.

The authors wish to thank Rick Schoen for his continued interest and substantial
advice throughout the course of this work. The first two authors also had a number
of enlightening conversations with Nick Korevaar, Rob Kusner and Tom Mrowka.

2. Delaunay solutions

In this section we discuss the Delaunay family of solutions. These constitute, up
to conformal equivalence, the totality of solutions when Λ has only two elements.

ODE analysis. When k = 2, the condition that Λ be balanced means that p2 =
−p1. It is not difficult to show using the Alexandrov reflection argument [CGS] that
any positive solution of the PDE (1.3) is only a function of the geodesic distance
from either p1 or p2. This equation reduces to an ODE, which takes the simplest
form when written relative to the background metric dt2 + dθ2 on the cylinder
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R × Sn−1 with coordinates (t, θ), which is conformally equivalent to Sn\Λ. Thus,
since the cylinder has scalar curvature (n− 1)(n− 2), and g = u4/(n−2)(dt2 + dθ2)
has scalar curvature n(n− 1), u = u(t) satisfies

(2.1)
d2

dt2
u− (n− 2)2

4
u+

n(n− 2)

4
u
n+2
n−2 = 0.

This is easily transformed into a first order Hamiltonian system: setting v = u′

(primes denoting differentiation by t)

(2.2)

u′ = v,

v′ =
(n− 2)2

4
u− n(n− 2)

4
u
n+2
n−2 .

The corresponding Hamiltonian energy function is

(2.3) H(u, v) =
v2

2
+

(n− 2)2

8
u

2n
n−2 − (n− 2)2

8
u2.

The orbits of (2.2) remain within level sets of H, and since these level sets are
one dimensional, this determines these orbits (but not their parameterizations)
explicitly. The equilibrium points for this flow are at (0, 0) and (ū, 0), where

(2.4) ū =

(
n− 2

n

)n−2
4

.

There is a special homoclinic orbit (u0(t), v0(t)) corresponding to the level set H =
0; it limits on the origin as t tends to either ±∞, and encloses a bounded set Ω
in the right half-plane which is symmetric across the u-axis, given by {H ≤ 0}.
Somewhat fortuitously we may calculate explicitly that

u0(t) = (cosh t)
2−n

2 .

Of course, {H = 0} decomposes into two orbits: this one and the stationary orbit
(0, 0). It is simple to check that orbits not enclosed by this level set, i.e. those
on which H > 0, must pass across the v-axis and into the region where u < 0.
Thus, since we are only interested in solutions of (2.1) which remain positive and
exist for all t, it suffices to consider only those orbits in Ω. Notice that the second
equilibrium point (ū, 0) is in this region, and that all other orbits are closed curves.
These correspond to periodic orbits (uε(t), vε(t)), with period T (ε), 0 < ε < 1.
The parameter ε may be taken as the smaller of the two u values where the orbit
intersects the u-axis, so that 0 < ε ≤ ū (note that, strictly speaking, the orbit with
ε = 0 corresponds to the equilibrium point at the origin, but by convention we set
it equal to the one previously defined). This ODE analysis is also described in [S3].

The corresponding metrics on R×Sn−1 (or Sn\{p1, p2}) have a discrete group of
isometries, given on the cylinder by the translations t 7→ t+T (ε). They interpolate
between the cylindrical metric ū4/(n−2)(dt2 + dθ2) (which is rescaled by the power
of ū so that its scalar curvature is n(n− 1)) and the solution corresponding to the
conformal factor u0(t). This later solution is nothing other than the standard round



308 RAFE MAZZEO, DANIEL POLLACK, AND KAREN UHLENBECK

metric on Sn\{p1, p2}, which is therefore incomplete and not, strictly speaking, in
the moduli space MΛ. In all that follows we shall adopt the notation

(2.5) gε = u
4

n−2
ε

(
dt2 + dθ2

)
when referring to these Delaunay metrics.

Of greatest concern is the Laplacian for the metrics gε; in terms of the coordinates
(t, θ) on the cylinder we may write this operator as

(2.6)
∆ε = u−

2n
n−2 ∂t

(
u2∂t

)
+ u−

4
n−2∆θ

= u−
4

n−2 ∂2
t + 2(∂tu)u−

(n+2)
n−2 ∂t + u−

4
n−2∆θ.

We use ∂t for the partial derivative with respect to t, etc. Also, ∆θ is the Laplacian
on the sphere Sn−1 of curvature 1. We use the convention that −∆ is a positive
operator. Also, we write u = uε throughout this section.

It is convenient to replace the variable t by a new variable r(t), depending on ε,
which represents geodesic distance with respect to gε along the ∇t integral curves,
which are already geodesics (with varying parameterization) for each of the metrics

gε. r(t) is defined by setting dr/dt = u
2

n−2 and r = 0 when t = 0. Then

∂t = u
2

n−2 ∂r

and consequently, using the first equality in (2.6),

(2.7)

∆ε = u
2−2n
n−2 ∂r

(
u

2n−2
n−2 ∂r

)
+ u−

4
n−2∆θ

= ∂2
r +

2n− 2

n− 2

∂ru

u
∂r + u−

4
n−2∆θ.

The function u is still periodic with respect to r, but the period R(ε) now is
better behaved than the period T (ε) above. In fact, whereas

lim
ε→0

T (ε) =∞, and lim
ε→ū

T (ε) =
2π√
n− 2

(the latter equality is proved by linearizing (2.2) at (ū, 0)), we have instead

(2.8) lim
ε→0

R(ε) = π, and lim
ε→ū

R(ε) =
2π√
n
,

so that the period stays within a compact interval in the positive real axis as ε
varies between its limits.

It is somewhat amusing that when n = 4 we can solve (2.1) explicitly, once the
transformation from t to r is effected; this was pointed out to us by R. Schoen. In
fact, now ∂t = u∂r and (2.1) becomes

(2.9) u∂r(u∂ru)− u+ 2u3 = 0.

Setting v = u∂ru as the new dependent variable and u as the independent variable
we get that v∂uv − u + 2u3 = 0. Integrating to solve for v, and then integrating
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again leads to a general expression for u. Adjusting the constants we finally get
that

(2.10) uε(r) =
√

1
2 + (1

2 − ε2) cos(2r).

The parameterization has been arranged so that u(ε) attains its minimum when
r = π/2 + `π, ` ∈ Z. Notice also that this shows that the period R(ε) ≡ π when
n = 4.

It is perhaps also instructional, although not necessary within the context of
this paper, to consider the space of solutions to the problem on the real projective
space with one point removed, RPn\{p}. We can identify any solution on this space
with a solution on Sn\{p,−p} invariant under the reflection which exchanges these
two antipodal points. Transforming the twice-punctured sphere to the cylinder,
we are looking for solutions u such that u(t, θ) = u(−t,−θ). Any such solution
is, of course, independent of θ and in the Delaunay family. For each value of the
Delaunay parameter ε there are two possibilities, one taking its minimum value at
t = 0 and the other taking its maximum value there. These are connected via the
cylindrical solution by letting ε increase to ū. The moduli space is thus a copy of
R, with the cylindrical solution at the ‘origin’. Alternatively, this moduli space is
just the part of the u-axis in the set H < 0 in the (u, v)-plane. As ε tends to zero
on one end of this moduli space, the solution tends to the round spherical metric.
As ε tends to zero at the other end, the solution tends to zero.

Spectral theory for the Delaunay solutions. Although the Alexandrov reflec-
tion argument shows that we have already described the full moduli spaceMΛ when
Λ has only two elements, we proceed further here to analyze the linearization of the
scalar curvature operator around a Delaunay solution gε. This case will serve as
the model, and an important ingredient, for the more general linear analysis later.
Thus, for v a suitably small function, let

(2.11)
Nε(v) = ∆ε(1 + v)− n(n− 2)

4
(1 + v) +

n(n− 2)

4
(1 + v)

n+2
n−2

= ∆εv + nv +Q(v)

where Q(v) is the nonlinear, quadratically vanishing term

(2.12) Q(v) =
n(n− 2)

4

(
(1 + v)

n+2
n−2 − 1− n+ 2

n− 2
v

)
.

Solutions of Nε(v) = 0 correspond to other complete metrics on the cylinder with
scalar curvature n(n− 1), and hence correspond to other Delaunay solutions. The
linearization of Nε about v = 0 is thus given by

(2.13)
d

dσ
Nε(σφ)

∣∣∣∣
σ=0

= Lεφ = ∆εφ+ nφ.

Frequently we shall omit the ε-subscript from Lε when the context is clear.
Using (2.6) and (2.13) and introducing an eigendecomposition {ψj, λj} for ∆θ

on Sn−1 we decompose L into a direct sum of ordinary differential operators Lj
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with periodic coefficients on R. The spectral analysis of each Lj , hence of L itself,
is accomplished using Bloch wave theory, cf. [RS]. One conclusion is that spec(L)
is purely absolutely continuous, with no singular continuous or point spectrum.
Moreover, each Lj has spectrum arranged into bands, typically separated by gaps;
L itself has spectrum which is the union of all of these band structures:

spec(L) =
⋃
j

spec(Lj).

From (2.13) it is clear that spec(−L) is bounded below by −n. We proceed to
analyze this spectrum near 0.

The first question is to understand the Jacobi fields, i.e. elements of the nullspace
of L. Any solution of Lψ = 0 may be decomposed into its eigencomponents

ψ =
∑

aj(t)ψj(θ),

where the aj solve Lj(aj) = 0. Some of these solutions, although not necessarily all,
may be obtained as derivatives of one-parameter families of solutions of N(v) = 0.
It is common in geometric problems, cf. [KKS], for the Jacobi fields corresponding
to low values of j to have explicit geometric interpretations as derivatives of special
families of solutions of the nonlinear equation. This is the case here, at least for
the eigenvalues λ0 = 0 and λ1 = · · · = λn = n− 1.

For j = 0 we look for families of solutions of N(v) = 0 which are independent of
the Sn−1 factor. There are two obvious examples, one corresponding to infinitesimal
translations in t and the other corresponding to infinitesimal change of Delaunay
parameter:

(2.14)

η → uε(t+ η)

uε(t)
− 1 ≡ Φ1(t, ε; η) and

η → uε+η(t)

uε(t)
− 1 ≡ Φ2(t, ε; η).

Now define

(2.15) φj = φj,ε =
d

dη
Φj(t, ε; η)|η=0 , j = 1, 2,

so that Lεφj = 0, j = 1, 2. Of course, neither φ1 nor φ2 are in L2 since L has no
point spectrum. In fact, differentiating uε(t+ T (ε)) = uε(t), first with respect to t
and then with respect to ε, shows that

(2.16) φ1(t+ T (ε)) = φ1(t), φ2(t+ T (ε)) + φ1(t)T ′(ε) = φ2(t).

The first of these equalities states that φ1 is periodic while the second shows that
φ2 increases linearly, at least so long as T ′(ε) 6= 0. Hence the φj are generalized
eigenfunctions for L with eigenvalue λ = 0; their existence and slow growth imply
that 0 is in the essential spectrum of L0, hence that of L. It is also not hard to
see that φ1 and φ2 are linearly independent when ε 6= ū. In fact, if we translate
uε so that it attains a local maximum at t = 0, then φ1(0) = 0, whereas φ2(0) =
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(dε/dε)/ε = 1/ε, so that these functions are not multiples of one another. When
ε = ū, φ1 ≡ 0, but φ2 does not vanish since φ2(0) = 1/ū. A second solution of
Lφ = 0 in this case is obtained by translating φ2 by any non-integer multiple of
its period. We shall prove below that these two functions form a basis, for each
ε, for all temperate solutions of Lφ = 0 on the cylinder; any other solution of this
equation must grow exponentially in one direction or the other.

To find Jacobi fields corresponding to the first nonzero eigenvalue of ∆θ, it is
easiest first to transform the background cylindrical metric to the round spherical
metric. The conformal invariance of the equation means that one-parameter families
of solutions may be obtained from one-parameter families of conformal maps of Sn.
For example, Φ1 in (2.14) already corresponds to the composition of gε with the
family of conformal dilations fixing the two singular points. We can also consider
composition with a family of parabolic conformal transformations which fixes one
or the other of the singular points. Derivatives of these families lead to the new
Jacobi fields. To compute them we first transform the equation yet again so that
the background metric is the flat Euclidean metric on Rn and the singular points
are at 0 and ∞. The equation becomes

(2.17) ∆Rnw +
n(n− 2)

4
w
n+2
n−2 = 0,

where the function w on Rn is related to u on the cylinder by the transformation

(2.18) u(t, θ) = e(n−2)t/2w(e−t), w(ρ, θ) = ρ(2−n)/2 u(− log ρ, θ),

in terms of the polar coordinates (ρ, θ) on Rn. The Delaunay solutions correspond to
functions wε = wε(ρ). A parabolic transformation of Sn fixing one of the singular
points corresponds to a translation of Rn if that singular point corresponds to
the point at infinity. Infinitesimal translation is just differentiation by one of the
Euclidean coordinates xj . But

∂wε
∂xj

= θj
∂wε
∂ρ

,

and θj = xj/ρ is an eigenfunction for ∆θ with eigenvalue n− 1. So ∂wε(ρ)/∂ρ is a
solution of L1φ = 0, where L1 is written in terms of ρ instead of t. Transforming
back to the cylinder once again we arrive at the solution

(2.19)

φ3(t) = et
(
u′(t)

u(t)
+
n− 2

2

)
= et

(
φ1(t) +

n− 2

2

)
.

To obtain the other, exponentially decreasing, solution to L1ψ = 0, we simply
observe that inversion about the unit sphere in Rn corresponds to reflection in t
about t = 0. If uε is positioned so that it assumes a maximum at t = 0, then
uε(−t) = uε(t), and we obtain from (2.19) the solution

(2.20) φ4(t) = e−t
(
n− 2

2
− φ1(t)

)
.

The solutions φ1, . . . , φ4 are also recorded and employed in [AKS].
It is also important to have some understanding of the continuous spectrum near

0; we do this for each Lj individually.
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Lemma 2.21. For every ε ∈ (0, ū] and j ≥ 1, 0 /∈ spec(Lj). Hence the spectral
analysis of L near the eigenvalue 0 reduces to that of L0. The only temperate
solutions of L0φ = 0 are precisely the linear combinations of the solutions φ1 and
φ2 of (2.15).

Proof. The eigenvalues of ∆θ are λ0 = 0, λ1 = 1− n, etc. For j > n (numbering
the eigenvalues with multiplicity, as usual) λj < −n− 1. Thus

(2.22)
Lj = u−

4
n−2 ∂2

t + 2u−
n+2
n−2ut∂t + u−

4
n−2λj + n

< u−
4

n−2 ∂2
t + 2u−

n+2
n−2ut∂t + n(1− u− 4

n−2 )− u− 4
n−2 .

Since 0 < u ≤ 1 for every ε and t, the term of order zero in this expression is always
strictly negative. Standard ODE comparison theory now implies that an arbitrary
solution of Ljφ = 0 must grow exponentially either as t → +∞ or −∞. Clearly
then 0 /∈ spec(Lj) for j > 1.

The same conclusion is somewhat more subtle when j = 1. First of all, observe
that because φ3 and φ4 above span all solutions to the ODE L1ψ = 0, and since
both of these functions grow exponentially in one direction or the other, it is evident
that 0 is not in the spectrum of L1. We wish to know, though, that 0 is actually
below all of the spectrum of −L1. This is no longer obvious since the term of order
zero in

(2.23) L1 = u−
4

n−2∂2
t + 2u−

n+2
n−2ut∂t + (1− n)u−

4
n−2 + n

is no longer strictly negative. Conjugate L1 by the function up, where p is to be
chosen. A simple calculation gives

u−pL1u
p = u−

4
n−2 ∂2

t + (2p+ 2)uut∂t +A,

where

A = u−
2n
n−2

{
p(p+ 1)u2

t +

(
p(n− 2)2

4
+ 1− n

)
u2 +

(
n− pn(n− 2)

4

)
u

2n
n−2

}
.

Somewhat miraculously, upon setting p = 2/(n− 2) this expression reduces to

A =
2n

(n− 2)2
u−

2n
n−2

(
u2
t −

(n− 2)2

4
u2 +

(n− 2)2

4
u

2n
n−2

)
=

4n

(n− 2)2
u−

2n
n−2H(ε),

where H(ε) is the Hamiltonian energy (2.3) of the solution uε(t). This is a negative
constant for every ε ∈ (0, ū], and so once again we have obtained an ordinary
differential operator with strictly negative term of order zero. u−2/(n−2)L1u

2/(n−2)

is unitarily equivalent to L1, and by the previous argument, the spectrum of the
first of these operators is strictly negative, and in particular does not contain 0.
Hence the same is true for L1 and the proof is complete.

We can say slightly more about the spectra of the Lj . In fact, when ε = ū,

Lj =
n

n− 2

(
∂2
t + λj

)
+ n,



MODULI SPACES OF SINGULAR YAMABE METRICS 313

and

spec(−Lj) =

[
−n
(

1 +
λj
n− 2

)
,∞
)
.

In particular, spec(−L0) = [−n,∞) and spec(−L1) = [n/(n − 2),∞). The
spectrum of −Lū is the union of these infinite rays. As ε decreases, gaps appear
in these rays, and bands start to form (in fact, by (2.8) the first gap appears at
−3n/4). As ε decreases, the first band extends from −n to some value to the left
of −3n/4; the second band begins somewhere to the right of this point, and always
ends at 0. It is not important for our later work that 0 is always on the end of
the second band (or at least, at a point where the second Bloch band function
has a turning point), but it is rather amusing that we may determine this. The
explanation is that from (2.16), whenever T ′(ε) 6= 0 (which certainly happens for
almost every ε < ū), the Jacobi field φ2 grows linearly. This signifies that 0 is at
the end of a band, or at the very least, at a turning point for one of the Bloch
band functions for L0 which parameterize the bands of continuous spectrum. As
ε continues to decrease to 0 these bands shrink further and further. It is more
revealing to consider the operator Lε written in the geodesic coordinates (r, θ) as
in (2.7). As noted earlier, as ε → 0 this operator remains periodic, but develops
singularities every π units. Geometrically, the metrics gε are converging to an
infinite bead of spheres of fixed scalar curvature n(n− 1). The spectrum of −L for
this limiting metric is a countable union of the spectrum of −∆−n on one of these
spheres, i.e. consists of a countable number of isolated points {−n, 0, n + 2, . . . },
each with infinite multiplicity. The bands of continuous spectrum have coalesced
into these infinite-multiplicity eigenvalues. Note that in this limit, the infimum of
spec(L1) has increased to zero at a rate which may be estimated by a power of ε.

3. Generalities on solutions with isolated singularities

In this section we collect various results concerning solutions of the singular Yam-
abe problem with isolated singularities, particularly in the context of conformally
flat metrics, which will be required later.

Asymptotics. The Delaunay solutions discussed in the last section are interesting
explicit solutions in their own right. However, their importance is due to the fact
that they are asymptotic models for arbitrary solutions of the singular Yamabe
problem, at least in the conformally flat setting. Before stating this result more
carefully we introduce some notation. The half-cylinder (0,∞)t × Sn−1

θ is confor-
mally equivalent to the punctured ball Bn\{0}; an explicit conformal map is given
by sending (t, θ) to the polar coordinates (ρ, θ), where ρ = e−t. A Delaunay solution
uε(t) may be transformed to the function

(3.1) ũε(ρ) = ρ
2−n

2 uε(− log ρ).

Using the conformal invariance of the conformal Laplacian, this function solves

(3.2) ∆ũ+
n(n− 2)

4
ũ
n+2
n−2 = 0.
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Theorem 3.3. Let ũ ∈ C∞(Bn\{0}) be a positive solution of equation (3.2) with a
nonremovable singularity at the origin. Then there exists some ε ∈ (0, ū] and A > 0
so that ũ is asymptotic to the modified Delaunay solution ũε in the sense that

(3.4) ũ(ρ, θ) = (1 +O(ρα))ũε(Aρ, θ),

for some α > 0; A corresponds to a translation of the t parameter. The analo-
gous estimate still holds whenever ũ and ũε are replaced by any of their derivatives

(ρ∂ρ)
j∂βθ .

This result was proved by Caffarelli, Gidas and Spruck [CGS] using a fairly
general and complicated form of the Alexandrov reflection argument. They actually
only give a somewhat weaker estimate whereO(ρα) is replaced by o(1). An alternate
argument, relying on more direct geometric and barrier methods, was obtained at
around the same time by Aviles, Korevaar and Schoen in the unpublished work
[AKS], and they obtained the stronger form. This last work is very close in method
to the proof of the analogous result for complete constant mean curvature surfaces
embedded in R3 presented in [KKS]. It is possible to calculate the decay rate α in
terms of spectral data of the operator Lε, and we shall indicate this argument in
the next section. To our knowledge it is unknown whether some form of this result
has been proved when the background metric is not conformally flat, but it seems
likely to be true.

Note that the estimate (3.4) may be restated for the transformed function
u(t, θ) = e−(n−2)t/2ũ(e−t, θ) on the cylinder. Now

(3.5) u(t, θ) = (1 +O(e−αt))uε(t).

This is the form we shall use. It states that an arbitrary solution on the half-cylinder
converges exponentially to a Delaunay solution.

Pohožaev invariants. A key ingredient in Schoen’s construction [S2] of solutions
of (1.3) with isolated singularities is his use of balancing conditions for approximate
solutions. These conditions follow from the general Pohožaev identity proved in
[S2]. In the present setting, when (Ω, g) is a compact, conformally flat manifold
with boundary, T is the trace-free Ricci tensor of g, X is a conformal Killing field
on Ω, and R(g) is constant, then

(3.6)

∫
∂Ω

T (X, ν)dσ = 0.

Here ν is the outward unit normal to ∂Ω, and dσ is surface measure along this
boundary. There is a more general formula involving an integral over the interior
of Ω when the scalar curvature is not constant, or when X is not conformal Killing.

When Ω b Sn\{p1, . . . , pk}, there are many conformal Killing fields to use. An
important class of these are the ‘centered dilations’. Any such X is equal to the
gradient of the restriction of a linear function `(q) = 〈q, v〉, where v ∈ Rn+1 and
Sn ⊂ Rn+1 is the standard embedding. Explicitly,

(3.7) Xq = v − 〈q, v〉q, q ∈ Sn,
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since the unit normal to TqSn is just q. Let c denote the set of all such X . It is a
subspace of the Lie algebra, o(n+ 1, 1), of the conformal group O(n+ 1, 1).

By (3.6), each X ∈ o(n+ 1, 1) determines an element of Hn−1(Sn\Λ,R), associ-
ating to a hypersurface Σ the number

(3.8) P(Σ, X ; g) =

∫
Σ

T (X, ν) dσ.

The dual homology space is generated by the classes of hyperspheres Σi, where, for
each pi ∈ Λ, Σi = ∂Br(pi) for r sufficiently small, is chosen so that no other pj is
in the same component of Sn\Σi as pi. These classes satisfy the single homology
relation [Σ1] + · · · + [Σk] = 0. The number in (3.8) will be written Pi(X ; g) (or
simply Pi(X)) when Σ = Σi. Alternately, as suggested by this notation, we shall
also regard each Pi as a linear functional on the X ’s, i.e. as an element of o∗(n+1, 1).
These functionals will be called the Pohožaev invariants of the solution metric g.
They satisfy

(3.9) P1 + · · ·+ Pk = 0.

Theorem 3.3 makes it possible to calculate at least some components of the Pi,
by computing the Pohožaev invariants for the Delaunay solutions; we do this now.
Since Hn−1(Sn\{p1,−p1},R) ≡ R, it suffices to compute the single number P1(X)
for each X ∈ c. As described above, X may be identified with an element v ∈ Rn+1.
A straightforward calculation, similar to one given in [P2], shows that this invariant
is, up to a constant, simply the Hamiltonian energy H(ε) of the particular Delaunay
solution:

Lemma 3.10. Using the identification of X ∈ c with v ∈ Rn+1, the Pohožaev
invariant for the Delaunay metric gε on Sn\{p1,−p1} is given by

P1(X) = cnH(ε) 〈v, p1〉.

Here cn is a non-vanishing dimensional constant (identified explicitly in [P2]).

The asymptotics in Theorem 3.3 (even with the sharp estimate of α we will give
later) do not give enough information for the invariant Pi to be computed for every
X ; the point is that if X has associated vector v perpendicular to pi then Lemma
3.10 shows that there is no ‘formal’ asymptotic contribution to the invariant, but
unfortunately the decay is not sufficient for there to be no ‘perturbation’ contribu-
tion. The one case where this is not an issue is when X is chosen to have associated
vector exactly pi. The associated invariant Pi(X) in this case will be called the
dilational Pohožaev invariant and denoted Di (or Di(g)).

Corollary 3.11 ([P2]). The dilational Pohožaev invariant Di(g) associated to the
puncture pi and the solution metric g is equal to cnH(εi), where εi is the Delau-
nay parameter giving the asymptotic model for the metric g at pi, as provided by
Theorem 3.3.

Local compactness properties of the moduli space. It is natural to determine
the possible ways that solution metrics g of our problem can degenerate. Phrased
more geometrically, we wish to determine what the ends of the moduli space MΛ
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look like, and to determine a geometrically natural compactification. Any MΛ,
when Λ contains just two elements, may be identified with any other, and we may
call this space simply M2. In this space, all g ∈ M2 are Delaunay, and indeed
M2 may be identified with the open set Ω ⊂ R2, Ω = {H < 0} as described in
§2. This space is two dimensional, smooth, and locally compact. A sequence of
elements in M2 degenerate only when the Delaunay parameter ε (or ‘neck-size’ of
the solutions) tends to zero. Recalling that the Hamiltonian energy H is strictly
monotone decreasing for ε ∈ (0, ū], this may be restated as saying that Delaunay
solutions degenerate only when H(ε)→ 0.

A similar statement is true when Λ has more than two elements. As we have
seen in Corollary 3.11, the Pohožaev invariants Pi, and indeed just the dilational
Pohožaev invariants Di, determine the Hamiltonian energies of the model Delaunay
solutions for the metric g at each puncture pi. Clearly, then, if there exists some
particular pi such that for a sequence of solution metrics gj ∈ MΛ the dilational
Pohožaev invariant Di(gj) tends to zero as j → ∞, then this sequence should
be regarded as divergent in MΛ. The complementary statement, generalizing the
situation for M2, is also still valid, and was proved by Pollack [P2]:

Proposition 3.12. Let gj be a sequence of metrics in MΛ, such that for each
i = 1, . . . , k the dilational Pohožaev invariants Di(gj) are bounded away from zero.
Then there is a subsequence of the gj converging to a metric ḡ ∈MΛ. The conver-
gence is uniform in the C∞ topology relative to ḡ, or indeed relative to any of the
gj, on compact subsets of Sn\Λ.

The question of what happens to divergent sequences in MΛ may also be deter-
mined. Before describing this we return to M2. There is an ‘obvious’ compactifi-
cation,M2, which is the closure of Ω in R2. M2\M2 decomposes into two disjoint
sets: the first contains the single point {0, 0} ∈ R2, which corresponds to the con-
formal factor 0, while the second is the orbit {u0(t), v0(t)} passing through {1, 0},
which corresponds to the incomplete spherical metric on Sn\{p1,−p1}. These latter
points on the compactification ofM2 may be identified with the nonsingular round
metric on Sn itself, and these are themselves metrics of constant scalar curvature
n(n − 1) on Sn. M2 is a stratified space; its principal stratum is M2 itself, the
codimension one (and one dimensional) stratum consists of copies of the nonsingu-
lar round metric on Sn, and finally the codimension two (zero dimensional) stratum
consists of the single trivial solution of the PDE, which is a completely degenerate
metric.

There is a similar compactification of MΛ and corresponding decomposition of
MΛ when the cardinality of Λ is larger than two (and still finite). The following is
a corollary of the proof of Proposition 3.12:

Corollary 3.13. Let gj ∈ MΛ be a sequence such that for some nonempty subset of
points pi1 , . . . , pis , the invariants Di1(gj), . . . ,Dis(gj) are uniformly bounded above
by some −η0 < 0 for all j, and all other Di(gj) tend to zero. Then this sequence
has a convergent subsequence converging to a metric ḡ ∈MΛ′ , i.e. ḡ is still singular
at the points Λ′ ≡ {pj1 , . . . , pjs}, but extends smoothly across the points in Λ\Λ′
and R(ḡ) = n(n − 1). If all D(gi, pj) tend to zero as i → ∞ then either gi tends
to zero, uniformly on compact subsets of Sn \ Λ, or else gi converges to the round
metric on Sn.

This means that the compactification MΛ contains copies of MΛ′ for certain
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subsets Λ′ ⊂ Λ. In addition it may contain a set whose points correspond to copies
of the round metric on Sn, and finally a set whose points correspond to the ‘zero
metric’. Later in this paper we shall give a somewhat better description ofMΛ once
we have determined the structure of MΛ itself better. Notice also that it must be
somewhat subtle to determine precisely which subsets Λ′ ⊂ Λ haveMΛ′ occurring
inMΛ. The subsets Λ′ which can arise in the description above are determined by
the Pohožaev balancing condition (3.9). For example, when Λ has two elements,
there is no piece of the boundary corresponding to MΛ′ for Λ′ having just one
element; this is because no complete solution of our problem exists on Sn\{p}.
From the present perspective, this holds because D1(gj) − D2(gj) = 0 for any j
(here Λ = {p1, p2}) by virtue of (3.9), so that if one of these numbers tends to zero,
the other must as well. (The difference in the signs here from (3.9) is because in (3.9)
the same conformal Killing field X is used in each Pohožaev invariant, whereas here
we use X corresponding to p1 for one and −X corresponding to p2 = −p1 for the
other.) The subtle point is that the complete Pohožaev invariants, rather than just
the dilational ones, are required when Λ has more than two points, and these are
not determined just linear algebraically by the location of the pi and the Delaunay
models at these punctures.

4. Linear analysis on manifolds with asymptotically periodic ends

In this section we prove various results concerning the analysis of the Laplacian
and the linearization of the scalar curvature operator about solution metrics g ∈
MΛ. Many of the basic results hold more generally, e.g. for the Laplacian on
manifolds with asymptotically periodic ends.

The linearized operator. For the remainder of this paper, L will always denote
the linearization about the constant solution v = 0 of the nonlinear operator

(4.1)
N(v) = ∆g(1 + v)− n(n− 2)

4
(1 + v) +

n(n− 2)

4
(1 + v)

n+2
n−2

= ∆gv + nv +Q(v),

where Q(v) is the same as in (2.12), so that, as before,

(4.2) L = ∆g + n.

Let Ej denote a neighborhood of the puncture pj which is conformally equivalent

to a half-cylinder [0,∞)t × Sn−1
θ . We fix these cylindrical coordinates around each

pj . By virtue of Theorem 3.3, L can be treated on each Ej as an exponentially small
perturbation of the corresponding operator Lεj for the periodic Delaunay metric
gεj which is the asymptotic model for g on Ej . Thus on each Ej we may write

(4.3) L = Lεj + e−αtF,

where F is a second order operator with coefficients bounded in C∞ as functions of
(t, θ).

The linear analysis of the Laplacian on manifolds with asymptotically periodic
ends is remarkably similar to that for manifolds with asymptotically cylindrical
ends, as detailed for example in [Me]. In particular, the Fredholm theory for such an
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operator on exponentially weighted Sobolev (or Hölder or ...) spaces has an almost
identical statement in either case, although the proofs are rather different. The
Fredholm theory in this asymptotically periodic setting was previously developed
by Taubes in [T], although we proceed somewhat further into the linear analysis as
we need more detailed results. It is also possible to develop a full scattering theory
for the Laplacian on these manifolds. We shall actually require and develop some
scattering theoretic results to clarify the nature of the moduli spaceMΛ.

The Fourier-Laplace transform. The basic tool for the parametrix construc-
tion, upon which all the linear analysis relies, is the Fourier-Laplace transform, in
a form employed already by Taubes [T]. We proceed to develop some properties of
this transform, here denoted F .

The function spaces we shall use here are exponentially weighted Sobolev spaces
based on L2(Sn\Λ; dVg); these will be written Hs

γ(Sn\Λ), or just Hs
γ , for γ, s ∈ R,

s > n/2. The last condition ensures that the spaces behave well under nonlinear
operations. To define them, decompose Sn\Λ into the union of the ends E1, . . . , Ek
and a compact piece K. Over K an element h ∈ Hs

γ restricts to an ordinary Hs

function. Over Ej , h = eγth̃, where h̃ ∈ Hs([0,∞) × Sn−1, dt dθ). Note that the
measure here is uniformly equivalent to the one induced by g for any g ∈MΛ.

The transform F is, strictly speaking, defined for functions on the whole cylinder
C = R × Sn−1. It would be somewhat more natural to first develop its properties
acting on e.g. the Schwartz space S, but we shall specialize immediately to functions
with support on just one half of C. So let h(t, θ) ∈ Hs

γ on Ej , and assume h = 0
for t ≤ 1. Set

(4.4) ĥ(t, ζ, θ) = F(h) =
∞∑

k=−∞
e−ikζh(t+ k, θ).

Assume for the moment that h is smooth. Then, since h decays like eγt, this series
converges provided =ζ ≡ ν < −γ. We have set ζ = µ+iν, so that <ζ = µ. ĥ(t, ζ, θ)
depends holomorphically on ζ in the region ν < −γ. When h is only assumed to

be in Hs
γ , ĥ(t, ζ, θ) will still depend holomorphically on ζ in the same region, but

as a function with values in the space Hs. ĥ is continuous in ν ≤ −γ as a function
with values in Hs. These results follow from the Plancherel formalism.

The transform F is invertible, and its inverse is given by contour integration.
To make the following equation clearer, assume that t ∈ R, and t̃ is its reduction
mod 1 (so that 0 ≤ t̃ < 1). Then when ` ≤ t < `+ 1 so that we may write t = t̃+ `,

(4.5) h(t, θ) =
1

2π

∫ 2π

µ=0

ei`ζ ĥ(t̃, ζ, θ)dµ.

In this formula we integrate along a line =ζ = ν0. By Cauchy’s theorem this
contour may be shifted to allow ν0 to be any number less than −γ. If, as we are
assuming, h vanishes for t < 0, then ĥ(t̃, ζ, θ) not only extends to the lower half ζ
plane, but decays like eν there. Shifting the contour arbitrarily far down shows that
the integral (4.5) vanishes for any ` < 0, as it should. By a similar argument, if
h(t, θ) is defined by the integral (4.5) taken along some contour =ζ = ν0, where the

integrand ĥ(t̃, ζ, θ) is only assumed to be defined along that line, then h ∈ Hs
−ν0

.
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In particular, if ĥ is holomorphic in some lower half plane ν < −γ, and continuous
with values in Hs as a function of t̃ up to this upper boundary, then h ∈ Hs

γ .

Next, reindexing the sum defining ĥ gives

(4.6) ĥ(t+ 1, ζ, θ) = eiζ ĥ(t, ζ, θ).

This just means that ĥ(t, ζ, θ) is a section of the flat bundle on S1 × Sn−1 with
holonomy ζ around the S1 loop. This bundle is isomorphic to the flat bundle with
trivial holonomy; the bundle map is given by conjugating by eiζt. Thus the function

(4.7) h̃ ≡ e−iζtĥ(t, ζ, θ)eiζt

satisfies h̃(t+ 1, ζ, θ) = h̃(t, ζ, θ).

Fredholm theory. The basic Fredholm result for the linearization L may now be
stated and proved.

Proposition 4.8. There exists a discrete set of numbers Γ ⊂ R such that the
bounded operator

(4.9) L : Hs+2
γ (M) −→ Hs

γ(M)

is Fredholm for all values of the weight parameter γ /∈ Γ. In particular, 0 ∈ Γ, so
the map (4.9) is not Fredholm when γ = 0, i.e. on the ordinary unweighted Sobolev
spaces, but is Fredholm for all values of γ sufficiently near, but not equal to zero.

Proof. It suffices to construct a parametrix G for L so that LG− I and GL− I are
compact operators on Hs

γ and Hs+2
γ , respectively. As usual, G may be constructed

separately on each piece of the decomposition of Sn\Λ into a compact piece and the
k ends E1, . . . , Ek around each pj . The parametrix construction on the compact
piece is the standard microlocal one since L is elliptic. We construct a parametrix
on each Ej using the Fourier-Laplace transform.

Fix one of these ends, Ej , and let gε be the model asymptotic Delaunay metric
for the fixed metric g there. The corresponding model operator Lε, as in (4.3), has
periodic coefficients (for notational convenience we assume that the period is one
here) so it acts on sections of the flat bundle with holonomy ζ described above by

the obvious rule (̂Lεh) ≡ L̂εĥ. This induced operator L̂ε looks just like Lε in local
coordinates (t, θ). This step is the same as conjugating Lε by F . We may proceed

further and conjugate L̂ε by eiζt so as to act on the trivial flat bundle. This final
induced operator, which depends holomorphically on ζ, will be called L̃ε(ζ):

(4.10) L̃ε(ζ) = e−iζtLεe
iζt.

The main point of the proof is that L̃ε(ζ) has an inverse (say on L2(S1 × Sn−1))
which depends meromorphically on ζ. This will be a direct consequence of the
analytic Fredholm theorem, which is proved for example in [RS] and states that
a strongly holomorphic family of Fredholm operators, depending on the complex
variable ζ, either fails to be invertible for every ζ, or else is invertible for all ζ except
for those in some discrete set in the parameter space. To check that this result is
applicable, simply note that L̃ε(ζ) is elliptic for every ζ, (as already observed)
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depends holomorphically on ζ and, by the various transformations we performed,
acts on a fixed function space (on a fixed bundle) over a compact manifold. Hence
it forms a family of Fredholm operators; standard considerations show that the
holomorphic dependence of the coefficients of this operator on ζ ensure the strong
holomorphy of the family.

Our next task is to show that L̃ε(ζ) is invertible for some value of ζ. Once this
is accomplished, the analytic Fredholm theorem will imply that the set of poles
{ζj} of L̃ε(ζ)

−1 is discrete in C. The invertibility of L̃ε(ζ) at some ζ is equivalent

to the invertibility of L̂ε acting on the flat bundle with holonomy ζ. When ζ is
real, this operator is self-adjoint, hence invertible so long as it has no nullspace. A
solution of L̂εψ = 0 on this bundle lifts to a function ψ(t, θ) on R× Sn−1 satisfying
ψ(t+1, θ) = eiζψ(t, θ). Since ζ is real here, this lift is bounded and ‘quasi-periodic.’
However, we have already shown in §2 that such a function can exist only when
ζ = 0; in fact, the arguments there show that any temperate solution must be
constant on the cross-section Sn−1, i.e. be a solution of the reduced operator L0.
In addition, the functions φ1 and φ2 of (2.15) are independent solutions of this
operator, hence span the space of all solutions since L0 is a second order ODE.
Finally, neither of these transform by a factor eitζ over a period except for ζ = 0.
Thus L̃ε is invertible for every real ζ ∈ (0, 2π). This proves that L̃ε(ζ)

−1 exists and
depends meromorphically on ζ.

We make some remarks about the set of poles {ζj} of this meromorphic family of
inverses. First, if ζ is in this set, then so is ζ + 2π` for any ` ∈ Z. In fact, although
L̃ε(ζ + 2π) is not equal to L̃ε(ζ), these two operators are unitarily equivalent: the
unitary operator intertwining them is multiplication by the function e2πit. So, for
some fixed ζ, either both of these operators are invertible or neither of them is. By
discreteness and this translation invariance, the set {ζj} has at most finitely many
inequivalent (mod 2π) poles in any horizontal strip a < =ζ < b. Note in particular
that the only poles on the real line occur at the points in 2πZ. By discreteness
again, there are no other poles in some strip −ε < =ζ < ε,=ζ 6= 0. We shall usually
restrict attention then only to values of ζ in the strip 0 ≤ ζ < 2π (or equivalently,
in C/2πZ); P will denote the set of poles in this strip. Finally, note that the adjoint

of L̃ε(ζ) is precisely L̃ε(ζ̄), and so P is invariant under conjugation. This means
that we can list the elements of P as follows:

(4.11) P = Pε = {. . . ,−ζ2,−ζ1, ζ0 = 0, ζ1, ζ2, . . . }.

Also define

(4.12) Γ = Γε = {γj = =ζj : ζj ∈ P} = {. . . ,−γ1, 0, γ1, . . . }.

The γj form a strictly increasing sequence tending to infinity, and in particular, Γ
is a discrete set in R. We shall provide an interpretation of the nonzero elements
of P in the next subsection.

Next we unwind this inverse L̃ε(ζ)
−1 ≡ G̃ε(ζ) to obtain a parametrix for Lε

on Ej . The inverse for L̂ε acting on the flat bundle with holonomy ζ is given by

Ĝ = eitζG̃e−itζ , for every ζ /∈ P . To obtain an inverse for Lε we simply conjugate
Ĝ with the Fourier-Laplace transform F . Recall, though, that this makes sense
only if the contour integral in the definition of F−1 avoids P . So, by conjugating,
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and in doing so, taking this integral along a contour =ζ = −γ, for any γ /∈ Γ, we
obtain an inverse for Lε. Since integrating along this contour produces a function in
Hs
γ(R×Sn−1), we have obtained an inverse G = Gε,γ for Lε acting on Hs

γ functions
on Ej , supported in t ≥ 1 for all γ /∈ Γ. Clearly this G is a parametrix with compact
remainder for L = Lε + e−αtF acting on Hs

γ(Ej).
As a final step, couple these parametrices we have produced on each end Ej to the

interior parametrix to obtain a global parametrix for L on all of Sn\Λ with compact
remainder. Both right and left parametrices of this type may be obtained this way,
and their existence implies immediately that L is Fredholm on Hs

γ whenever γ /∈ Γ.
It is a simple exercise to check that L does not even have closed range when γ ∈ Γ,
in particular, when γ = 0.

It is obviously of interest to determine when L is actually injective or surjective.
In general this is a rather complicated question, but we make note of the following
result.

Corollary 4.13. Suppose that L has no L2 nullspace (i.e. is injective on Hs
γ for

γ ≤ 0), then for all δ > 0 sufficiently small (with δ < α)

L : Hs+2
δ −→ Hs

δ is surjective,

L : Hs+2
−δ −→ Hs

−δ is injective.

This first statement follows from the second and duality, since L is self-adjoint
on L2, i.e. when γ = 0.

Asymptotic expansions. The Fourier-Laplace transform may also be used to
obtain existence of asymptotic expansions for solutions to Lw = 0 on each end Ej .
For our purposes in this paper, it will only be important to know that any such w
has a leading term in its expansion, which decays (or grows) at some specified rate,
and an error which decays at a faster rate. One use of this will be to estimate the
exponent α appearing in (3.5). However, the full expansion is not much harder to
prove, so we will do this too.

The starting point is the fact, discussed above, that the Fourier-Laplace trans-
form of a function w ∈ Hs

γ(R × Sn−1), supported in t ≥ 0, say, is a function
ŵ(t, θ, ζ) which is holomorphic in the half-plane =ζ < −γ (and taking values in
Hs(S1 × Sn−1)). For a general function of this type, the most that can be con-
cluded is that it has a limit on the line =ζ = −γ in the appropriate L2-sense
discussed earlier.

When the solution w is transformed to a function w̄(r, θ) = w(− log r, θ) on
Bn\{0}, elliptic regularity shows that w̄ is a conormal distribution with respect
to the origin, i.e. has stable regularity when differentiated arbitrarily often with
respect to the vector fields r∂r, ∂θ (this is just the same as w itself having stable
regularity with respect to ∂t, ∂θ); [M1], for example, contains a discussion of conor-
mal regularity. For degenerate operators of a type closely related to L, one expects
solutions to be polyhomogeneous conormal, cf. [M1] or [Me]. Polyhomogeneity
is simply the property of having an asymptotic expansion in increasing (possibly
complex) powers of r and integral powers of log r, with coefficients smooth in θ (as
functions of t these expansions are in analogous powers of et and t). Alternately,
polyhomogeneous conormal distributions may be characterized as those with Mellin
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transforms, already defined and holomorphic in some lower half-plane in C, extend-
ing meromorphically to the whole complex plane, with only finitely many poles in
any lower half-plane, all of which are of finite rank.
w̄ will not be polyhomogeneous, except when ε = ū and the underlying metric is

cylindrical. In fact, w̄ (cut off so as to be supported in r ≤ 1) will have Mellin trans-
form still defined and holomorphic in a half-plane and extending meromorphically
to all of C, but now its poles are arranged along lattices on a countable discrete set
of horizontal lines. Each pole is still finite rank. This meromorphic structure of the
Mellin transform of w̄ is equivalent to the fact that the terms in the expansion for
w have the form e−βtwj , where wj is periodic in t. The residues at the poles along
a fixed horizontal line at height β will be the Fourier series coefficients of wj .

This more general discussion has involved the Mellin transform as r → 0 (or
equivalently, the standard Fourier transform as t → ∞). We shall revert now
to the Fourier-Laplace transform; it is much less flexible than either of the other
transforms, since it presupposes periodicity, but suffices here for our immediate
purposes.

Suppose that w ∈ Hs
γ(R× Sn−1) for some γ /∈ Γ is supported in t ≥ 0 and solves

Lεw = f for some compactly supported smooth function f (hence w ∈ Hs
γ for every

s by elliptic regularity). For example, we could take φ, which solves Lεφ = 0, and
let w = χφ where χ is a cutoff function having support in t ≥ 0 and equaling one
for t ≥ 1. Taking transforms we get L̂ŵ = f̂ ; this function on the right, f̂(t, θ, ζ),

is obviously smooth in (t, θ) and entire in ζ. Applying the inverse Ĝ from the last

section gives ŵ(t, θ, ζ) = Ĝf̂(t, θ, ζ). The right side of this equation is meromorphic
in ζ with poles at some subset of points in P , hence the same is true for the left
side as well. Notice that the poles of Ĝ in =ζ < −γ must be cancelled by zeroes of
f̂ since ŵ is a priori known to be regular in this half-plane.

The function w is recovered by inverting F , integrating along the line =ζ = −γ.
However, by Cauchy’s theorem this integration may be taken along any higher
contour =ζ = −γ′, so long as the interval [γ′, γ] does not contain any points of
Γ. Thus, for any such γ′, w ∈ Hs

γ′ . If the contour is shifted even further, so as

to cross a point in P , i.e. a pole of Ĝ, then the resulting integral along the line
=ζ = −γ′′ produces a new function v. Since (Lεv)̂= L̂εĜf̂ = f̂ and f̂ is entire, it
follows that v also solves Lv = f , and so w and v must differ by an element of the
nullspace of Lε. By construction v ∈ Hs

γ′′ , and so we have decomposed w as a sum
v + ψ, where Lεψ = 0. ψ is given by the residues of ŵ at the points ζj ∈ P with
−γ < =(−ζj) = −γj < −γ′′. (We use −ζj instead of ζj for notational convenience
only.) If there is just one such point, say −ζj , then it is clear that in fact ψ ∈ Hs

γj+ε

for every ε > 0. Actually, it is not hard to show, using results from §2, that this ψ
must grow or decay exactly like a polynomial in t times eγjt.

This process may be continued by moving the contour past more and more poles.
At each step, we have decomposed w into a sum of solutions of Lεψ = 0 and a term
which decays at a rate given by the height of the contour.

Proposition 4.14. If w solves Lεw = f for some compactly supported function
f on (0,∞) × Sn−1, with w ∈ Hs

γ for some γ /∈ −Γ, then, as t → ∞, w(t, θ) ∼∑
ψj(t, θ), where each ψj solves Lεψj = 0 and ψj decays like a polynomial in t

multiplying e−γjt, where γj ∈ −Γ as in (4.12).

Note that this result shows that the poles ζj , or at least their imaginary parts,
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γj , correspond to the precise growth rates of solutions of Lεφ = 0 on the cylinder.
A similar, though slightly more complicated, expansion holds for the elements

of the nullspace of the linearization L in (4.2).

Proposition 4.15. Let w solve Lw = 0, at least on some neighborhood of the
puncture pj, and lie in Hs

γ for some γ /∈ −Γ, where Γ is the set of imaginary parts

of poles corresponding to the inverse Ĝ for the model Lε for L near this puncture.
Then w has an asymptotic expansion

w(t, θ) ∼
∞∑

j,k=0

ψj,k(t, θ)

as t→ ∞. In this sum, the ‘leading terms’ ψj,0 are solutions of Lεψj,0 = 0 corre-
sponding to the poles ζj above =φ = −γ. These decay, as before, like a polynomial
in t multiplying e−γjt. The higher terms ψj,k, k > 0, decay like a polynomial in t

multiplying e−(γj+kα)t.

Proof. As before, we may assume that w is supported in t ≥ 0 and Lw = f is
compactly supported and smooth. By (4.3),

(4.16) Lεw = −e−αtFw + f.

Now conjugate by the Fourier-Laplace transform, and apply the inverse Ĝ of L̂ε to
get

(4.17) ŵ = Ĝ(−e−αtFw)̂+ Ĝf̂ .

The term on the left is holomorphic, a priori, in the half-plane =ζ < −γ. The second
term on the right is entire, while the first term on the right is holomorphic in =ζ <
−γ and extends meromorphically to the slightly larger half-plane =ζ < −γ + α.
As before, w can be recovered by integrating along =ζ = −γ − ε; if this contour is
moved up to =ζ = −γ+α−ε, and if the strip −γ < =ζ < −γ+α contains no poles,
then we find that w ∈ Hs

γ−α. If there are poles in this strip, then, exactly as in the
last proposition, w decomposes into a sum v+ψ with v ∈ Hs

γ−α and Lεψ = 0. ψ in
turn decomposes into a sum of terms ψj,0 corresponding to the various poles in this
strip. This improved information may be then fed back into (4.16) and (4.17). Now
the right side of (4.17) extends meromorphically to the half-plane =ζ < −γ + 2α,
and the contour may be shifted further to get more contributions to the expansion
for w. Continuing this bootstrapping yields the full expansion. Details are left to
the reader.

The deficiency subspace. Particularly important for us in the application of
the implicit function theorem will be the pole 0 ∈ P for Ĝ (for any value of the
Delaunay parameter ε). Specifically, we will be concerned with those solutions of
Lεw = 0 and Lw = 0 which are in Hs

δ for every δ > 0, but not in any Hs
−δ. Here

we are still only concerned with the local behavior of these solutions on each end
Ej . Their global nature will be discussed later.

The representatives of a basis of (Ker L∩Hs
δ )/(Ker L∩Hs

−δ) are given in (2.15)
as the functions φ1 = φ1,ε and φ2 = φ2,ε. They depend on t but not on θ. The
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fact that φ2 grows linearly in t indicates that Ĝ has a pole of order 2 at φ = 0.
These are the only temperate solutions of Lεφ = 0 on the whole cylinder; any other
solution grows at an exponential rate (with possible exponents given by the values
of =P = Γ).

If the solution metric g has model Delaunay parameter ε on the end Ej , then
these functions (for that value of ε) may be cut off and transplanted onto this semi-
cylinder. They do not decay, but it is easy to create a sequence of cut-offs χiφ
(φ = φ1 or φ2) with the following properties: each χi is compactly supported, and
has support tending to infinity as i tends to infinity. The L2 norm of χiφ equals
one for all i, but the L2 norm of L(χiφ) tends to zero (L is the linearization, not
one of the models Lε here). The existence of such sequence is a standard criterion
for showing that L does not have closed range on L2. In any event, we think of
φ1, φ2 as constituting the bounded approximate nullspace for L (here ‘bounded’ is
loosely interpreted to encompass the linearly growing φ2).

Define now a linear space W generated by the functions φ1,εj , φ2,εj , cut off in
a fixed way so as to be supported in t ≥ 0 and transplanted on each end Ej ; the
εj are the Delaunay parameters for the particular model metrics gεj on Ej . Since
there are k ends, W is 2k-dimensional. For reasons that will become clear in the
next section, we call W the deficiency subspace for L. Clearly W ⊂ Hs

δ for every s
and every δ > 0.

The Linear Decomposition Lemma. There are two important corollaries of
Proposition 4.15 and its proof which we single out in this section. The first concerns
the behavior of solutions of the inhomogeneous equation Lw = f on each end Ej ,
while the second studies the exact value of the exponent α appearing in Theorem
3.3 and then later in (4.3), etc.

As already pointed out in Corollary 4.13, if L has no global L2 nullspace, then we
can find a solution w ∈ Hs+2

δ to the equation Lw = f for every f ∈ Hs
δ , whenever

δ > 0. In particular, this holds whenever f ∈ Hs
−δ. Clearly, whenever f decays at

some exponential rate like this, we expect the solution w to be somewhat better
behaved than a general Hs+2

δ function; of course, it is immediate that it is in this
space for any δ > 0, but we can do even better. This is the subject of what we will
call the

Linear Decomposition Lemma 4.18. Suppose f ∈ Hs
−δ for some δ > 0 suffi-

ciently small, and w ∈ Hs+2
δ solves Lw = f . Then w ∈ Hs+2

−δ ⊕W , i.e. w may be
decomposed into a sum v + φ with v decaying at the same rate as f and φ in the
deficiency subspace W .

Proof. Clearly this question may be localized to each end Ej , and in this localized
decomposition φ will be a combination of φ1 and φ2. The decomposition is achieved
by exactly the same sort of shift of the contour in the integral defining F−1 across
a pole of Ĝ. Here the contour is being shifted from =ζ = −δ to =ζ = +δ; the pole
crossed is the one at ζ = 0.

The second corollary deals with the rate at which a general solution of (1.3) on a
punctured ball, singular at {0}, converges to the radial Delaunay metric. We assume
the simpler statement of Theorem 3.3 that u decays to uε at some exponential rate
α, and use the linear theory to find the optimal rate. First transform the punctured
ball to the half-cylinder (0,∞) × Sn−1, and assume all functions are defined here.
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Write the solution u as a perturbation (1 + v)uε, so that Nε(v) = 0, where Nε is
the nonlinear operator (2.11). This equation is the same as Lεv = −Q(v), where Q
is the quadratically vanishing function in (2.12). We already know that v ∈ Hs

−α
(for all s), hence Q(v) ∈ Hs

−2α. By the contour-shifting arguments above, this
implies that v itself decays at this faster rate, at least provided 2α < γ1, where
γ1 is the first positive element in Γ. Continue this process until this first pole at
ζ1 has been crossed; the conclusion is that v decays exactly like e−γ1t (possibly
multiplied by a polynomial in t). We could also bootstrap further and obtain a
complete asymptotic expansion for v, of the same general form as in Proposition
4.15 above, although more exponents occur because of the nonlinearity. (This is a
simple form of the argument in [M2].) We summarize this discussion as

Proposition 4.19. The exponent α occurring in Theorem 3.3 governing the rate
of decay of a general solution u to its model Delaunay solution uε is equal to the
first nonzero element γ1 in the set Γ corresponding to Ĝε. The function u admits a
complete asymptotic expansion into terms of increasingly rapid exponential decay.

The bounded nullspace. In this last subsection of §4, we finally come to the
global behavior of that portion of the nullspace of L corresponding to the pole at
z = 0. This space, B, which we shall call the ‘bounded nullspace’ of L, is defined
by

(4.20) B = {v ∈ Hs
δ : Lv = 0} ∩ {w ∈ Hs

−δ : Lw = 0}⊥.

The full nullspace of L on Hs
δ will be the direct sum of B and the L2 nullspace

(which, by Proposition 4.15, is the same as the nullspace of L in Hs
−δ). In particular,

when this latter space is trivial, B is the full nullspace of L in Hs
δ . By the Linear

Decomposition Lemma 4.18, B is already contained in Hs
−δ ⊕W . The purpose of

this subsection is to determine the dimension of B.
As usual, an index theorem is the principal tool for calculating dim(B). For-

tunately we require only a relative index theorem, which computes the difference
between two indices in terms of asymptotic data, rather than global data. To be
more explicit, for any γ /∈ Γ set

(4.21) ind (γ) = dim ker L|Hsγ − dim coker L|Hsγ .

This is obviously independent of s. Since the adjoint of L on Hs
γ is L on H−s−γ ,

duality implies that

(4.22) ind (−γ) = −ind (γ) for every γ /∈ Γ.

If γ1 and γ2 are any two allowable values (i.e. neither is in Γ), the relative index
with respect to these two numbers is simply the difference

rel-ind (γ1, γ2) = ind (γ1)− ind (γ2).

In particular, using duality again,

(4.23)
rel-ind (δ,−δ) =2 ind (δ)

=2
(

dim ker L|Hsδ − dim ker L|Hs−δ
)

= 2 dim(B).

As noted above, this relative index can be shown, on fairly general principles, to
be computable in terms of asymptotic data for the operator L. Finding a specific
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and computable formula is another matter and, to our knowledge, there is no general
result of this sort available for asymptotically periodic operators. However, such
a result is available for operators associated to asymptotically cylindrical metrics,
and we will use this instead. Our result is

Theorem 4.24. dim(B) = k.

Proof. By (4.23), it suffices to show that rel-ind (δ,−δ) = 2k. By the usual stability
properties of the index (hence any relative index) under Fredholm deformations, we
compute this number by choosing a one-parameter family of Fredholm operators
Lσ, 0 ≤ σ ≤ 1, with L0 = L, and L1 an operator for which this relative index
is computable. Since L is just ∆g + n, we shall choose a one-parameter family of
metrics gσ and define Lσ to be ∆gσ +n. The metrics gσ will agree with g except on
each of the ends Ej , where we make the following homotopy. First deform g on each
end to its model Delaunay metric gε, and then deform each gε through Delaunay
metrics to the cylindrical metric gū. The metric g1 will agree with the original g on
any large fixed compact set, and will equal gū on each end Ej . This metric is now
an exact b-metric, in the language of [Me] (more prosaically, it has asymptotically
– and in this case, exactly – cylindrical ends), and the corresponding operator L1

is an elliptic b-operator.
Of course, we still need to prove that Lσ is Fredholm on Hs

δ and Hs
−δ for every

0 ≤ σ ≤ 1, provided δ > 0 is sufficiently small. In the part of the deformation where
g is homotoped to its model Delaunay metric gε on each end, this is obviously true.
For the remaining part of the deformation, we need to know that the elements of
{γj ∈ Γ, j > 1}, which are the weights for which L will not be Fredholm, remain
bounded away from 0 as ε varies between its initial value and ū. This is precisely
the content of Lemma 2.21.

Now, to apply Melrose’s Relative Index Theorem [Me], note that we may as well

consider the operator L̃1 = n−2
n L, which on each end takes the form ∂2

t +∂2
θ+(n−2).

The set P for this operator (called specb(L̃
1) in [Me]) is {±i

√
n− 2,±γj , j ≥ 1},

where γj are all strictly positive, tending to infinity, and obtained in a straightfor-
ward manner from spec(∆θ). The prescription to calculate the relative index is to
first consider the ‘indicial family,’ which in this case equals ∆θ + (n − 2) − ζ2 (it
is obtained by passing to the Fourier tranform with respect to t, which carries ∂t
to −iζ). This is a holomorphic family of elliptic operators on Sn−1, and its inverse
G(ζ) has poles exactly at the points of P . Since we are computing the jump in the
index as the weight changes from −δ to +δ, we need to compute the ‘degree’ of
each pole (as defined in [Me]) for each element of this set with imaginary part equal
to zero. Each of the poles ±

√
n− 2 is simple and of rank one, and so the degree of

each is also equal to one. Finally we need to sum over all poles and over all ends
Ej , because the preceding discussion is local on each end. For each end there are
two poles of G with imaginary part zero, each contributing a degree of one to the
computation, and there are k ends; the sum of all of these is 2k, and this is the
relative index rel-ind (δ,−δ).

5. The moduli space: smooth points

In this section we commence the study of the moduli space MΛ itself. Here
we use the linear theory developed in the previous section in a straightforward
way to study neighborhoods of the ‘good points’ g ∈ MΛ, where the associated
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linearization has no L2 nullspace. In the next two sections we develop ideas to
study neighborhoods of the nonsmooth points.

The implicit function theorem is directly applicable only when the linearized
operator Lg = ∆g + n is surjective on the appropriate function spaces. These
function spaces should be tangent to a suitable space of metrics conformal to g and
with prescribed growth conditions on each end of Sn\Λ. Let g ∈MΛ, and consider

all nearby metrics conformal to g of the form (1 + v)
4

n−2 g. The most natural class
of such metrics is

(5.1) Mets+2
−δ = {(1 + v)

4
n−2 g, v ∈ Hs

−δ, v > −1}.

Clearly
TgMets+2

−δ = Hs+2
−δ .

The operator Ng(v), as defined in (4.1), can be considered as a map from this space
of metrics to Hs

−δ, and as such is obviously C∞. However, it is never surjective,
since −δ < 0. The obvious alternative, to consider metrics growing at the rate +δ,
is unsuitable because of the nonlinearity.

The case where this difficulty is easiest to remedy is when Lg has no L2 nullspace:

(5.2) ker (Lg) ∩ L2(Sn\Λ, dVg) = {0}.

This will be our standing hypothesis in the rest of this section.
We can rephrase this condition by recalling, by virtue of Proposition 4.15 on

asymptotics of solutions of Lφ = 0, that if φ were in the L2 nullspace of L, then it
would decay at the exponential rate e−γ1t on each end, where γ1 = γ1(εj) is the first
nonzero element of Pεj on the end Ej , corresponding to the model Delaunay metric
gεj there. In particular, under the hypothesis (5.2), for δ ∈ (0, γ1), the operator L
has no nullspace on Hs

−δ for any s ∈ R. Now apply Corollary 4.13 and the Linear
Decomposition Lemma 4.18 to conclude that (5.2) is equivalent to the statement
that

(5.3)
L : Hs+2

−δ (Sn\Λ, dVg)⊕W −→ Hs
−δ(Sn\Λ, dVg)

is surjective for any 0 < δ < min
j
{γ1(εj)} and s ∈ R.

W is the 2k-dimensional deficiency subspace introduced in the last section. Because
we work with a nonlinear equation, we assume that s > n/2.

Theorem 5.4. Suppose g ∈ MΛ is a metric such that the hypothesis (5.2) is
satisfied. Then there exists a 2k-dimensional open manifold W, the elements of
which are functions v on Sn\Λ to be described below, and with a distinguished
element v0 ∈W, such that the nonlinear map

Ng : Hs+2
−δ (Sn\Λ; dVg)×W −→ Hs

−δ(Sn\Λ; dVg)

defined by Ng(v, ψ) = Ng(v+ψ) where Ng is the operator given by (4.1), restricted to
a neighborhood of 0 in the first factor, is real analytic. Moreover, the tangent space
Tv0W is identified with the deficiency subspace W , and using this identification, the
linearization Lg of the map Ng is surjective, as in (5.3).
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Corollary 5.5. Suppose g ∈ MΛ satisfies the hypothesis (5.2). Then there is
an open set U ⊂ MΛ containing g, such that U is a k-dimensional real analytic
manifold.

The proof of the corollary follows directly from the surjectivity statement (5.3),
by a straightforward application of the real analytic implicit function theorem. The
dimension k is of course the dimension of the nullspace of L as a map (5.3). This
nullspace is the bounded nullspace B defined in the last section, and by Theorem
4.24 its dimension is k. So to conclude the proof of the theorem and the corollary
it suffices to construct W, and to show that Ng is a real analytic mapping.

The only difficulty in the construction of W is that the elements of W are not,
generally, bounded either above or below, so we could not use (1 + v)4/(n−2) as a
conformal factor for most v ∈ W . However, recall from (2.15) that each element
φj,ε, j = 1, 2, of the bounded nullspace for the model problem on the cylinder is
the tangent to a curve η → Φj(t, ε, η) of actual conformal factors. The actual curve
vη ∈W we would want to use for each such element of W on an end has the form

vη(t) =

{ uε(t+η)
uε(t)

− 1, j = 1,

uε+η(t)
uε(t)

− 1, j = 2.

The manifold W is constructed by gluing together these local definitions from each
end Ej in an essentially arbitrary, but smooth, manner. By construction, T0W =
W , as desired.

To check the real analyticity of Ng, the main step is to write Ng(v + ψ) in such
a way that it clearly lands in Hs

−δ. Hence, on each end write Ng = Nε + e−αtQ,
and then use a common formula for the remainder in Taylor’s theorem to obtain

Ng(v + ψ) = Nε(ψ) + e−αtQ(v + ψ) +

[∫ 1

0

N ′g(ψ + sv) ds

]
v.

Since Nε(ψ) = 0, every term on the right here is in Hs
δ so long as δ < α. Further-

more, every term is real analytic in (v, ψ). Real analyticity of Ng on the interior,
away from the ends, is even easier.

The rest of the proof is now standard.

6. The real analytic structure of MΛ

In this section we prove that MΛ is always an analytic set by representing it as
the slice of an infinite dimensional real analytic manifold MΛ with the conformal
class g0. We go on to prove a generic slice theorem, that even if MΛ itself is not
smooth, generic nearby slices of MΛ by other conformal classes will be.

The urmoduli space MΛ. As described above, we wish to regard MΛ as the
slice by the standard conformal class [g0] of the infinite dimensional set MΛ con-
sisting of all metrics, not necessarily in the standard conformal class on Sn, with
constant scalar curvature n(n− 1). For obvious technical reasons, we consider only
those metrics which satisfy appropriate growth and asymptotics conditions near the
punctures pj (this will be be elaborated on below.) Consideration of this ‘big’, or
‘ur-’, moduli space (when the underlying manifold is compact) was first undertaken
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by Fischer and Marsden in the early 1970’s ([FM1] and [FM2]), motivated in part
by concerns in general relativity. They proved that it is a smooth Banach mani-
fold (in any one of a number of standard Banach completions), provided a certain
overdetermined linear equation has only the trivial solution.

Their precise set-up was to consider Mρ, the set of all metrics (of some fixed
finite regularity) with scalar curvature function ρ, a fixed function on the underlying
manifold X . To show that this set is a Banach manifold, it suffices to show that
the linearization of the scalar curvature map (which assigns to any metric g its
scalar curvature function R(g)) is surjective at any g ∈ Mρ. Since this map R
carries metrics to functions, its linearization, which we will call αg here, carries
the tangent space at g of the space of all metrics, i.e. the symmetric 2-tensors, to
scalar functions. A. Lichnerowicz [Li] had earlier computed that, for h a symmetric
2-tensor,

(6.1) αg(h) = δδh−∆g(tr h)− 〈rg , h〉.

Here δ is the divergence operator on tensors, and rg is the Ricci tensor for g. It
is easy to check that αg reduces to (a multiple of) the linearization operator Lg
we have been studying when h is a multiple of the metric g (and hence is tangent
to the conformal class [g]), when ρ = n(n − 1). It is straightforward to check
that the symbol of αg is surjective, so it follows that the symbol of its adjoint α∗g is
injective, and then that the symbol of αg◦α∗g is an isomorphism. Therefore, this last,
fourth order operator is elliptic; at least when X is compact, it is Fredholm, and in
particular has closed range of finite codimension. Since range (αg) ⊃ range (αg◦α∗g),
the range of αg itself is closed and of finite codimension. (It does, however, always
have an infinite dimensional kernel.) By virtue of all this, when X is compact,
αg is surjective if and only if α∗g is injective, and this (α∗g(f) = 0) is precisely the
overdetermined equation referred to earlier.

From (6.1) it follows readily that

(6.2) α∗g(f) = Hess g(f)− g∆g(f)− f rg.

If α∗g(f) = 0, then taking the trace we also get that ∆g(f) = −(ρ/(n − 1))f ;
substituting this back into (6.2) we obtain finally the condition

(6.3) α∗g(f) = 0 =⇒ Hess g(f) = −
(
rg −

ρ

n− 1
g

)
f.

Fischer and Marsden were able to show that (6.3) (or equivalently, (6.2)) has only
the trivial solution f = 0 except possibly in the special cases where ρ is a nonneg-
ative constant and ρ/(n − 1) is in the spectrum of −∆g. Thus, except for these
cases, Mρ is a smooth Banach manifold.

In the case of interest here, the underlying manifold Sn\Λ is not compact, and
ρ/(n − 1) = n is always in spec (∆g). We address the former of these concerns
first, since the Fredholm theory of §4 may be adapted easily to this problem.
As before Hs

γ(Sn\Λ) will denote the Sobolev space of scalar functions decaying

like eγt on each end, with respect to fixed cylindrical coordinates (t, θ) there and
with respect to a fixed metric g ∈ MΛ (any element of the moduli space can be
used as a fixed background metric to define these Sobolev spaces). Define also
Hs
γ(Sn\Λ, Sym2T ∗(Sn\Λ)) to be the space of symmetric 2-tensors h = eγtk, with k

in the unweighted Sobolev space Hs(Sn\Λ, Sym2T ∗(Sn\Λ); dVg).
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Proposition 6.4. For any g ∈ MΛ, the operator (6.1) is bounded as a linear map

αg : Hs+2
γ (Sn\Λ, Sym2(T ∗(Sn\Λ))) −→ Hs

γ(Sn\Λ).

It has an infinite dimensional nullspace, and the closure of its range has finite
codimension for all γ ∈ R. There exists a discrete set Γ′ such that for all γ /∈ Γ′,
this map also has closed range.

Proof. The boundedness assertion is immediate. The proof of the closed range part
is very close to the analogous one given in §4 for the scalar operator Lg, so we just
provide a sketch. As in [FM2] and above, the surjectivity of the symbol of αg
guarantees that we merely have to show that Ag = αg ◦ α∗g, which is elliptic, has
closed range for all γ /∈ Γ′. The operator Ag is asymptotically periodic on each end
Ej of Sn\Λ, and the Fourier-Laplace transform may again be employed to construct
local parametrices on each of these ends. The fact needed to make this work is
that the holomorphic family of elliptic operators Ãε(φ), on the compact manifold
S1×Sn−1, and associated to the Delaunay model operator Agε , is invertible at some
φ ∈ C. In this case the analytic Fredholm theory, and the rest of the construction
in §4, proceeds exactly as before. Again we prove this for φ ∈ R, since for such
φ, Ãε(φ) is self-adjoint. Invertibility is equivalent to the injectivity of the induced
operator α̃∗ε (φ), and this in turn is implied (by taking traces) by the injectivity of

the model operator L̃ε(φ). The invertibility of this last operator for all φ ∈ (0, 2π)
(we are again assuming the period of αε, et al., to be one for simplicity) was already
proved in §4, and so we are done.

To proceed with the program of [FM2], we also have to show that α∗g is injective
on Sn\Λ for any g ∈ MΛ. If this were true, then the urmoduli space MΛ would
be a real analytic manifold in a neighborhood of every g ∈ MΛ, i.e. there would
exist a (local) thickening of MΛ into the real analytic moduli space MΛ such that
MΛ = MΛ ∩ [g0], as desired. Unfortunately this is not quite so simple, since, as
already noted, ρ/(n− 1) is always in the spectrum of ∆g; we are thus precisely in
the case not treated by [FM2].

The equation (6.3) is rather similar to the well-known equation of Obata, which
also appears in the study of the scalar curvature, and actually reduces to Obata’s
equation when X is an Einstein manifold. In analogy with the situation there – in
particular, Obata’s characterization [O] of (Sn, g0) as the only compact manifold
admitting nontrivial solutions of his equation – Fischer and Marsden conjectured
that (6.3) admits a nontrivial solution, at least when X is compact, if and only
if X is the standard sphere. This is now known to be false: indeed, let X be
the product of the circle of length L, S1(L), with any Einstein manifold En−1 of
positive scalar curvature, e.g. Sn−1. Then, if the scalar curvature of E is normalized
to be (n− 1)(n− 2), (6.3) implies that f depends only on the variable t along the
circle, and satisfies the ODE f ′′ + (n − 2)f = 0. Thus, (6.3) admits a nontrivial
solution whenever L is an integer multiple of

√
n− 2. There are also noncompact

counterexamples to their conjecture: the simplest are just the universal covers
R×En−1 of the compact examples above.

The characterization even of all compact manifolds admitting solutions to (6.3)
is still unknown, although it is almost certain that the list of possibilities is rather
small. Fortunately, though, the characterization of all complete conformally flat
manifolds admitting nontrivial solutions to (6.3) was obtained about ten years ago,
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independently by J. Lafontaine [L] and O. Kobayashi [Ko]. The simplification in this
case is that the Ricci tensor of any conformally flat manifold is always harmonic.
Kobayashi and Lafontaine proved that beyond the sphere and the product type
examples discussed above, there is also a collection of examples which are warped
products of S1 with En−1. We shall not write these examples explicitly here, but
simply note that, provided k > 2, the solution metrics (Sn\Λ, g), g ∈ MΛ, are
never warped products (for topological reasons alone!). We obtain then

Proposition 6.5. There are no nontrivial solutions to the equation α∗g(f) for any
g ∈MΛ, provided k > 2.

Even when k = 2, only the cylinder R × Sn−1 amongst the Delaunay metrics
appears on the list of counterexamples. To check this, use the system of equations
given in Lemma 1.1 of [Ko]. These involve both the warping function for the
metric and the function f . Elementary manipulations show that the noncylindrical
Delaunay metrics never satisfy this system.

Corollary 6.6. MΛ is a real analytic Banach manifold in a neighborhood of MΛ.

Proof. It remains only to set up the precise function spaces on which the implicit
function theorem (see [Fe], page 239) will be applied, and make a few additional
comments. We use, of course, the weighted Sobolev spaces Hs

γ of symmetric 2-
tensors and functions, as before.

The crux of the argument is the fact that when g ∈ MΛ, αg is surjective both
on Hs

δ and on Hs
−δ, and indeed on Hs

γ for any γ /∈ Γ′! This seems somewhat
counterintuitive, but follows from the highly overdetermined nature of α∗g. In fact,
we already know that αg has closed range on Hs

γ , γ /∈ Γ′ by Proposition 6.4.
Its cokernel is identified with the kernel of the adjoint, α∗g, which is a map from

H−s−γ to H−s−2
−γ . By injectivity of the symbol of α∗g we may use elliptic regularity

to replace −s here by any positive number, e.g. +s. Finally we can invoke the
results of Lafontaine and Kobayashi, via Proposition 6.5, to conclude that α∗g has
no nullspace, regardless of the weight −γ.

Now consider the scalar curvature map

(6.7) Ng : Hs+2
−δ (Sym2)×W −→ Hs

−δ(Sym2),

defined in the obvious way. We are including the factorW here so that points of the
urmoduli space are allowed to have varying neck sizes, but all other perturbations
are required to decrease exponentially on the ends. To apply the analytic implicit
function theorem we need to know, first, that the linearization

(6.8) αg : Hs+2
−δ (Sym2)⊕W −→ Hs

−δ

is surjective, which we have just established, and second that (6.7) is a real analytic
mapping of Hilbert spaces. This latter statement is also straightforward, so this
completes the proof.

One unfortunate shortfall of this theorem is that, although MΛ provides a thick-
ening of MΛ, it is not a uniform thickening, i.e. one of fixed ‘width’ around MΛ.
However, over any compact subset of MΛ we can ensure the existence of MΛ out
to some fixed distance by the obvious covering argument. To find this fixed width
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thickening uniformly on MΛ we would need to understand more about the com-
pactificationMΛ. If the analogies of the result of Kobayashi and Lafontaine as well
as the asymptotics result, Theorem 3.3, and the compactness result, Proposition
3.12, were known for non-conformally flat metrics, this would be unnecessary, and
many of the results here could be given a more satisfactory form.

Analyticity ofMΛ and the Generic Slice Theorem. In addition to its intrin-
sic nature and relationship to the concerns of this paper, the urmoduli space MΛ

is required for two purposes: to show that MΛ itself is analytic, and to prove the
Generic Slice Theorem. The proofs of these results are very closely related, so we
develop the preliminaries for them simultaneously.

Inside the ambient space V = Hs+2
−δ (Sym2)×W there are two analytic (Hilbert)

submanifolds, namely MΛ and the conformal class [g0]. (By [g0] we always mean
the set of all metrics in V conformal to the round metric g0.) Likewise we have all
other conformal classes in V ; a generic such class will be denoted [g′]. Notice that
all the analytic machinery, in particular the Fredholm theory and relative index
computations in §4, still holds for any metric (corresponding to an element) in V .

Choose any element g ∈ MΛ and let [g′] be the conformal class of g. We shall
assume that [g′] is very near [g0]. The immediate aim is to prove that MΛ and
[g′] intersect almost transversely at g; in general these submanifolds may not be
transverse at g, however they will always form a Fredholm pair there. This means
that their tangent spaces, E ≡ Tg[g

′] and F ≡ TgMΛ, which are closed linear

subspaces in V ≡ TgV = Hs+2
−δ ⊕W , form a Fredholm pair, i.e. that E ∩F is finite

dimensional, and that E + F is closed in V and has finite codimension there. To
any Fredholm pair one can associate an index, which is the dimension of E ∩ F
minus the dimension of V/(E + F ). This number is stable under perturbations of
the pair. These matters are explained more thoroughly in [K].

Lemma 6.9. MΛ and [g′] are a Fredholm pair at any point g in their intersection.

Proof. The orthogonal complements of E and F are given by

(6.10)
E⊥ = {h : tr g(h) = 0},
F⊥ = {h : h = α∗g(f), f ∈ Hs+4

−δ }.

It will suffice to show that E ∩F and E⊥ ∩F⊥ are finite dimensional, and that the
orthogonal projection π : F → E⊥ has closed range.

First suppose that h ∈ E∩F . Then h = f ·g with f ∈ Hs+2
−δ ⊕W and αg(h) = 0.

Computing αg(f · g) we find that Lg(f) = 0. Since L is a Fredholm operator,
there can be at most a finite dimensional family of such h in the intersection; the
precise dimension is the same as the nullspace of L on Hs+2

δ . On the other hand,

if h ∈ E⊥ ∩F⊥, then h = α∗g(f) with f ∈ Hs+4
−δ and tr g(h) = 0. But tr g(α

∗
g(f)) is,

up to a factor, just Lg(f), so the dimension of this intersection is the same as the

dimension of the nullspace of L on Hs+2
−δ , and is thus finite.

To conclude the proof, we need to know that the projection π has closed range
(and hence is Fredholm, by the work above). The map π is defined, for any h ∈ V ,
by decomposing h = λ · g+ k, where tr (k) = 0, and setting π(h) = k. Now suppose
hj is a sequence of elements in F , ‖hj‖ = 1 for all j, but kj = π(hj)→ 0 in norm.
Since αg(hj) = 0 we have (n − 1)Lg(λj) = δδkj − 〈rg, kj〉. The right hand side of
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this equation certainly goes to zero in norm, so by our Fredholm theory for Lg, the
functions λj decompose as λj = µj +νj with νj going to zero in norm and µj in the
nullspace. Since µj · g is in the nullspace of αg also, we may subtract it off from hj ,
and get that ‖hj‖ → 0, contrary to hypothesis. Hence π restricted to F has closed
range, and this completes the proof.

Before stating the next result we need to introduce some notation. First, if [g′]
is a conformal class on Sn (represented by elements in V , and assumed to be near
[g0]), then MΛ([g′]) will denote the moduli space of complete metrics on Sn\Λ
with constant scalar curvature n(n − 1) in the conformal class [g′]. For ε > 0
any sufficiently small number we also let MΛ,ε([g

′]) denote the subset of MΛ([g′])
consisting of solution metrics g with the Killing norms of all Pohožaev invariants
bounded below by ε (see §7 for a discussion of these norms). This is simply the
subset ofMΛ([g′]) consisting of solutions with neck sizes uniformly bounded away
from 0 by ε. By Proposition 3.12, each MΛ,ε([g0]) is compact; then, provided [g′]
is sufficiently close to [g0], MΛ,ε([g

′]) will also be compact, since it is contained in
a compact neighborhood of MΛ,ε by virtue of the implicit function theorem and
the considerations above.

Generic Slice Theorem 6.11. For any fixed ε > 0, the truncated moduli space
MΛ,ε([g

′]) is a k-dimensional real analytic manifold for all conformal classes [g′]
in a set of second category and sufficiently close to [g0].

Proof. The reason for introducing the truncated moduli spaces is, of course, that
we know the existence of MΛ to a fixed distance away from MΛ only over each
MΛ,ε. We shall not comment further on this modification, but simply remark that
it could be removed provided somewhat more were known about MΛ, as discussed
at the end of the previous subsection.

This result follows from the Sard-Smale theorem, once we have checked the
hypotheses. The basic point, of course, is that MΛ([g′]) is the same as MΛ ∩ [g′].
We parameterize the set of conformal classes (not modulo diffeomorphisms!) close
to [g0] by the linear Hilbert space E⊥ = {k ∈ Hs+2

−δ : tr g(k) = 0} for some fixed
g ∈MΛ. Now consider the projection map

(6.12) Π : MΛ −→ E⊥.

MΛ is given by the preimage Π−1(0). The preimage Π−1(k) in MΛ is precisely the
set MΛ([g′]) where [g′] = [g0 + k] is the conformal class corresponding to k. This
preimage is a smooth, in fact real analytic, manifold provided k is a regular value
of Π. By Sard-Smale, once we know that Π is a Fredholm map (of index k), then
the set of regular values in E⊥ is of second category. Observing that the tangents
to the orbits of the diffeomorphism group are certainly not of second category, we
may conclude that the moduli spaces over generic conformal classes close to [g0]
are smooth and k dimensional.

However, the assertion that Π is Fredholm of index k is contained within the
preceding lemma. Indeed, if g ∈ MΛ and F = Tg(MΛ), then we proved there that
the projection π = Π∗ : F → E⊥ is Fredholm, and its index is the same as the
relative index of Lg across the weight 0, i.e. equal to k.

To finish the proof we need to eliminate the possibility that Π(MΛ) is contained
within a (finite codimensional) submanifold of E⊥. Although this would follow
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from knowing that π is surjective, this is a difficult issue. Instead we appeal to
the existence theory for the nonlinear equation, generalizing Schoen’s basic con-
struction. In fact, the construction of solutions given in [S2] may be carried out
not only for the standard round metric g0, but also for generic metrics g′ which
are small perturbations of g0 compactly supported away from Λ. The only modifi-
cation of Schoen’s method needed to accomplish this is given in [P1], Proposition
1.2. The linearization of this set of compactly supported perturbations is clearly
dense in E⊥, hence there is a dense set of k ∈ E⊥ near the origin for which the
preimage Π−1(k) is nonempty. This is sufficient to conclude that Π(MΛ) contains
a full neighborhood of 0, hence the condition ‘regular value’ for Π is not the empty
one. This completes the proof.

The reader should note that an alternate possibility for proving smoothness of
generic slices would be to study the linear operator Lg for any g ∈MΛ close to but
not in the standard conformal class and show that this operator generically has no
L2 kernel. The smoothness would then follow by the results of §5, combined with a
compactness argument. However, proving that Lg has no decaying eigenfunctions
would require setting up a somewhat elaborate perturbation theory, since this is
equivalent to trying to perturb point spectrum which is sitting on the end of a
band of continuous spectrum. Thankfully we have been able to avoid this approach
here (although we have had to appeal to the rather more difficult existence theory
for the nonlinear equation instead). It should be noted that the surjectivity of Π∗
(which we have established) is equivalent to this eigenvalue perturbation result.

The second main result, thatMΛ is (locally) a real analytic variety, also follows
from Lemma 6.9.

Theorem 6.13. For any g ∈ MΛ there exists a ball B in V = Hs+2
−δ (Sn\Λ; Sym2)×

W, a finite dimensional space M , a real analytic variety A in M and a real analytic
diffeomorphism

Φ : B −→ V

such that Φ(MΛ ∩B) = A ∩B′, where B′ is a small ball containing Φ(g).

The proof reduces to the following abstract result, which is presumably well-
known:

Lemma 6.14. Let V be a Hilbert space, and E and F two real analytic subman-
ifolds, the tangent spaces of which at any point of the intersection p ∈ Γ ≡ E ∩ F
form a Fredholm pair. Then for each point p ∈ Γ there exists a neighborhood B of
p, a finite dimensional subspace M ⊂ V , a real analytic variety A ⊂M , and a real
analytic diffeomorphism

Φ : B −→ V

such that Φ(Γ∩B) = A∩B′ ⊂M ∩B′, where B′ is a neighborhood of Φ(p) in M .

Proof. By initially composing with a real analytic diffeomorphism we may assume
that a neighborhood of p in E lies in a linear subspace and that p = 0. (In our
situation, E is the conformal class and this may be accomplished by a translation.)
Let Ψ̄ denote a ‘defining function’ for F in V . By this we mean that Ψ̄ is a real
analytic map from V into another Hilbert space U such that F = Ψ̄−1(0). By the
stability of Fredholm pairs, any level set Ψ̄−1(w) forms a Fredholm pair with E , for
all sufficiently small w ∈ U , and for all points of intersection near the origin in E . It
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is evident that this statement is equivalent to the assertion that Ψ ≡ Ψ̄
∣∣
E : E → U

is a Fredholm map. The intersection E ∩F is the same as Ψ−1(0). Thus the lemma
may be rephrased as saying that if Ψ is a real analytic Fredholm map between
two Hilbert spaces E and U , then the level set Ψ−1(0) is locally equivalent, by an
analytic diffeomorphism, to a finite dimensional analytic variety.

A standard implicit function theorem argument proves this assertion. Let A =
Ψ∗|0, and set M = ker(A), L = W 	 range(A). Then both L and M are finite

dimensional. Define a new map Ψ̃ : E ⊕ L→ U by Ψ̃(q, f) = Ψ(q) + f . Then

Ψ̃∗

∣∣∣
(0,0)

(h, φ) = A(h) + φ,

so this differential is obviously surjective. Note that

ker(Ψ̃∗

∣∣∣
(0,0)

) = {(h, φ) : A(h) + φ = 0}.

Since A(h) and φ lie in orthogonal spaces, this nullspace is just M = ker(A). The
analytic implicit function theorem gives the existence of two analytic maps

k : M →M⊥ ⊂ E , ` : M → L

and a ball B̃ around (0, 0) ⊂ E ⊕ L such that all zeroes of Ψ̃ in this ball lie in the
graph of the map (k, `) : M →M⊥ ⊕ L:

{(q, f) : Ψ(q) + f = 0} ∩ B̃ = {(m+ k(m), `(m)) : m ∈M ∩ B̃}.

Thus, for m in this ball, Ψ(m + k(m)) + `(m) vanishes identically. The zeroes of

Ψ in B̃ ∩ E are then just {m + k(m) : m ∈ B̃ ∩M : `(m) = 0}, for these points

are all zeroes of Ψ̃, and are the only such zeroes at which Ψ also vanishes. If Π is
an analytic diffeomorphism of E carrying the graph of k into M , then B ∩Ψ−1(0)

equals Π−1(M ∩ B̃)∩{m ∈M ∩ B̃ : `(m) = 0} as desired. This completes the proof
of Lemma 6.14.

It is also possible to establish the real analytic structure of MΛ by using a
modification of ‘Liapunov-Schmidt reduction’ (also referred to as the ‘Kuranishi
method’). The closely related and analogous result concerning the real analyticity
of the moduli space of complete, embedded, constant mean curvature surfaces in
R3 is proved by this method in [KMP]. This technique is more direct than the one
used above, however in using the approach provided by the urmoduli space, MΛ,
we also obtain the Generic Slice Theorem rather easily.

7. Concluding remarks and informed speculation

L2-nullspace and singularities of MΛ. We have not yet discussed whether it
is possible to give conditions ensuring that a given g ∈ MΛ is a ‘smooth point’,
as defined in §5. It is possible for MΛ to be both smooth and of the correct
dimension near g even if Lg has L2-nullspace; however, absence of this nullspace is
our only criterion for guaranteeing this smoothness. We expect that it should be
difficult to establish such a criterion in general. It would also be quite interesting
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to understand when MΛ is not smooth in the neighborhood of some element g.
In particular, constructing solutions near which MΛ is singular seems like another
very challenging and important problem.

On the other hand, the two known constructions for producing points in MΛ,
those of Schoen [S2] and [MPU], yield solutions with explicit geometries. The
dipole solutions of [MPU], described below, are manifestly smooth points. These
solutions exist only for certain configurations Λ, whereas the ones in [S2] exist for
any Λ. Unfortunately, the existence of L2-nullspace for these latter solutions is less
evident, although we expect this to be true; outlined below is a strategy to prove
this. Note that once the existence of one smooth point in any component ofMΛ is
established, the real analyticity of the moduli space then shows that almost every
element in that component is a smooth point.

We now give a brief description of Schoen’s solutions and their construction.
These solutions are uniformly small C0 perturbations of explicit approximate so-
lutions. Each of these approximate solutions is constructed from an ‘admissible
conformal structure’ (Γ, σ); Γ is an infinite tree with a labeling, σ, of strong dila-
tions Gij for each directed edge eij . We assume for simplicity that Γ has one vertex
of order k and all other vertices of order 2. The admissibility of the labeling σ refers
to certain compatibility conditions that the dilations must satisfy. The strength,
λij , of these dilations can be related to a measurement of the ‘neck sizes’ εij of
the approximate solution gσ constructed from the data (Γ, σ). (Sn\Λ, gσ) consists
of almost spherical regions, corresponding to the vertices V of Γ, joined by small
necks, corresponding to the edges, the sizes of which are dictated by the εij . There
are infinitely many parameters in the construction of these approximate solutions
since the admissible conformal structures σ can be varied, even with Γ fixed. In
particular, one can begin with an initial conformal structure σ1, so that the corre-
sponding approximate solution g1 consists of one central spherical region Ω0 (the
vertex of order k) and k periodic, spherically symmetric ends. But in order to find
an exact solution, it is necessary to deform the conformal structure, as dictated by
the Pohožaev balancing condition, and break this symmetry.

The conformal structure (Γ, σ) decomposes Sn\Λ into a union of almost spherical
regions, Ωi, i ∈ V . Each Ωi ⊂ Sn is the pullback by a conformal diffeomorphism
Fi of Sn of a large region of Sn. The metric gσ on Ωi is constructed so that
Fi : (Ωi, gσ) → (Sn, g0) is an isometry off a small neighborhood of ∂Ωi. This
decomposition gives rise to a basic analytic property of the approximate solution
metric gσ. This is the existence of a basis of functions ησij , i ∈ V and j = 1, . . . ,
n+ 1, for an infinite dimensional space K (the ‘small eigenspace’) corresponding to
all the spectrum of Lgσ = ∆gσ + n in a small interval around 0. The functions ησij
have explicit geometric descriptions. Each ησij has support concentrated on Ωi and
corresponds to the linear function ηj on Fi(Ωi) ⊂ Sn. Linear functions are of course
eigenfunctions for ∆g0 with eigenvalue n. On the orthogonal complement K⊥, Lgσ
is invertible, uniformly in σ. As the εij → 0, these approximations improve and
Lgσ converges, as an operator on L2, to the operator Lg0 on the disjoint union of
spheres indexed by V .

Writing the solution g as a perturbation, g = (1 + η)
4

n−2 gσ and using the con-
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formal invariance of the conformal Laplacian, we find that

(7.1)
Lg =∆g + n

= (1 + η)−
4

n−2∆gσ + 2(1 + η)−
n+2
n−2 〈∇η,∇〉+ n.

Now, η is small in C0 (by which we mean that |η|0 can be made arbitrarily small by
taking all εij sufficiently small), and estimates from [S2] can be used to show that
∇η is small in L2 over any fixed compact set, but these facts do not immediately
imply the existence of an analogous good basis for the ‘small eigenspace’ K for Lg.
Nonetheless, we expect this basis to exist, namely that there exist an ε > 0 such
that if εij < ε for all ij, then there exists a set of smooth functions ηij , i ∈ V ,
j = 1, . . . , n + 1, which satisfy the estimates in Lemma 3.6 of [S2]. The span of
these functions is a subspace K ⊂ L2(Sn\Λ) such that

‖Lgη‖L2(Sn\Λ) ≤c(ε)‖η‖L2(Sn\Λ) for η ∈ K,
‖η‖L2(Sn\Λ) ≤c‖Lgη‖L2(Sn\Λ) for η ∈ K⊥,

where c is a constant independent of ε, and c(ε) tends to 0 as ε → 0. Note that
from (7.1) this conjecture would be immediate if ‖η‖H1 were finite and small. Un-
fortunately, this is never the case, since the η in Schoen’s construction is not even
in L2.

The likeliest method to establish the existence of this space K with its explicit
basis is to write the solution along each end as a conformal perturbation of the
Delaunay metric gε on the half-cylinder to which it converges at infinity. There is
good evidence that perturbation determining the solution is uniformly small and
even exponentially decaying, again provided the neck sizes are sufficiently small.
With this information in hand, a not very complicated transference procedure would
produce the basis for K with all necessary estimates.

If these could be settled, it would then be possible to resolve some basic questions
about the existence of an L2-nullspace of Lg, for Schoen’s solutions.

Conjecture 7.2. Suppose g ∈MΛ is a solution similar to that constructed in [S2],

so that g = (1 + η)
4

n−2 gσ as above. Assume that Λ ⊂ Sn does not lie in any round
hypersphere. Then there exists an ε = ε(Λ) > 0, such that if σ satisfies εij < ε for
each edge (i.e. all ‘neck sizes’ are less than ε), then Lg has no L2-nullspace, and
hence g is a smooth point of MΛ. If Λ does lie in a hyperplane, then any element
φ in the L2-nullspace of Lg is not integrable, i.e. it is not tangent to a path in MΛ.

We provide a brief sketch of our plan for proving this. If g is a solution con-
structed from some (Γ, σ), with all neck sizes sufficiently small, and if φ ∈ L2,
Lgφ = 0, then φ admits two different decompositions, one into the ‘almost lin-
ear functions’ ηij concentrated on the almost spherical regions Ωi, and the other
(which is only local along each end E`) into eigenfunctions for the Laplacian along
the cross-sectional sphere, as in §2. For this latter decomposition we need the (puta-
tive) fact that the solution stays uniformly close to the Delaunay solution to which
it asymptotically converges. The former expansion would show that φ is very close
to a linear function on each of the almost spherical regions. A very important point
here is that the linear function determined by φ on each of the spherical regions can
never vanish. In terms of the eigenfunctions of the second decomposition, this first
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decomposition implies that along each end, φ has most of its mass concentrated
in the eigenspaces corresponding to the zeroth and first nonzero eigenvalues of the
cross-section. Since g is only approximately Delaunay, the zeroth Fourier coeffi-
cient φ0 of φ is not an exact solution of L0φ0 = 0, however, the error terms are
sufficiently controllable to show that φ0 must be quite small (again, depending on
the size of ε). Hence, in fact, most of the mass of φ is contained in the coefficients
φ1, . . . , φn, corresponding the the first nonzero eigenvalue of the Laplacian on Sn−1

(which has multiplicity n). We call these ‘transverse’ linear functions, since each of
the spherical regions where we consider them has a natural axis picked out. Thus
these arguments show that an L2 solution of Lφ = 0 restricts on each spherical
region to be almost linear. More specifically, on the innermost sphere along each
end (the one adjoining the central spherical region), φ actually restricts to be ap-
proximately transverse linear. But now, on the central sphere, φ is linear and near
each of the neighborhoods where the various ends are attached, must restrict to
a transverse linear function relative to the axis determined by that end. This is
clearly impossible if the points do not lie in any subsphere.

For the second assertion, concerning the situation when Λ ⊂ Sn−1, we only need
to use that φ is sufficiently close to a linear function on the central sphere. Of
necessity, this linear function is one which vanishes on the equator determined by
Λ. Hence, if φ were an integrable Jacobi field, we would obtain a family of solu-
tions which were not symmetric about this equator, contradicting the reflectional
symmetry guaranteed by the Alexandrov reflection argument.

We hope to be able to settle these issues in the near future. There are, of
course, a number of more refined questions about the singular structure of MΛ,
beginning with the problem, already noted, of constructing solutions near which
MΛ is singular.

Coordinates on MΛ. In this section we discuss two ways in which coordinates
for MΛ may be given. We begin with the one arising from the linear analysis.

If g ∈ MΛ is a point for which Lg has no L2-nullspace, then a neighborhood of
g in MΛ is parameterized by a small neighborhood of the origin in the bounded
nullspace B. Thus, linear coordinates on B yield local coordinates on MΛ near g.
The problem then is to get precise information about these linear coordinates on
B. Unfortunately, this seems difficult, in general. We now discuss how one would
go about this, and at least set the problem up in scattering-theoretic terms.

By definition, any element φ in the deficiency subspace W can be expanded
on each end as a combination of the model solutions φ1, φ2 plus an exponentially
decreasing error. For clarity, we label these model solutions onEj with a superscript
(j). Thus

(7.3) W 3 φ ∼ ajφ(j)
1 + bjφ

(j)
2 on Ej .

So any φ ∈W determines a map

(7.4)
S : W −→ R2k,

φ 7−→ (a1, b1, . . . , ak, bk).

By the definition of W , S is an isomorphism. Now suppose φ is in the bounded
nullspace B.
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Lemma 7.5. Under the hypothesis (5.2), the linear map

C ≡ S|B : B −→ R2k

is injective. Its image SΛ is a k-dimensional subspace which is Lagrangian with

respect to the natural symplectic form
∑k
j=1 daj ∧ dbj on R2k.

Proof. C is obviously linear, and it is injective, because otherwise there would exist
an element φ ∈ B with all its asymptotic coefficients aj , bj vanishing. By the results
of the last section, such a φ would lie in L2, which contradicts the hypothesis (5.2).

That SΛ is Lagrangian is a consequence of Green’s theorem. There is an analo-
gous result for manifolds with asymptotically cylindrical ends proved in [Me]. Since
we already know that SΛ is k-dimensional, it suffices to prove that it is isotropic. For
this, let ψ, χ ∈ B and set C(ψ) = (a1, b1, . . . , ak, bk), C(χ) = (α1, β1, . . . , αk, βk).
Using the coordinate tj along the end Ej , let MA denote the region in Sn\Λ where
each tj ≤ A. Then, since Lψ = Lχ = 0,

0 =

∫
MA

((Lψ)χ− ψ(Lχ)) dVg =

∫
∂MA

(
∂ψ

∂ν
χ− ψ∂χ

∂ν

)
dσg,

where ν is the unit vector-field normal to ∂MA. Substitute the expansions for ψ and
χ at each end, and drop all terms which decrease exponentially as A→ ∞ in this
expression. This means that we can replace the metric g on Ej by the Delaunay

metric gεj there, and also replace ν by u
−2/(n−2)
εj ∂tj and dσg by u

(2n−2)/(n−2)
εj .

Taking the limit as A→∞ we get

(7.6) 0 =
k∑
j=1

(αjbj − ajβj)
∫
Sn−1

(
∂φ

(j)
1

∂tj
φ

(j)
2 − φ

(j)
1

∂φ
(j)
2

∂tj

)
u2
εj dσ.

Here dσ is the standard volume measure on Sn−1. If we setAj equal to the integrand
for the jth end, then it suffices to show that these constants Aj are nonzero and

independent of j. However, φ
(j)
1 and φ

(j)
2 are independent solutions of the ODE

L0φ = 0, and the expression in parentheses in the integrand in (7.6) is just the
Wronskian for this ODE. This Wronskian may be written explicitly as some nonzero
multiple of

exp

(
−2

∫
u′εj
uεj

)
= u−2

εj .

This shows that the integrand, hence the integral itself, is a non-vanishing constant,
independent of j.

The relevance of SΛ to the description of coordinates onMΛ near g is explained
as follows. Suppose first, for simplicity, that there exists an element φ ∈ B for which
all aj , bj = 0, j > 1, but a1 = 1, b1 = 0. If g(s) is a curve in moduli space tangent
to this φ, then the Delaunay parameters εj on each of the ends would remain fixed,
at least infinitesimally, along this curve. In fact, the metrics g(s) (or the underlying
curve of solutions us of the PDE) would be strongly asymptotic to the initial metric
g on Ej , j > 1. On E1 however, g(s) would be strongly asymptotic to a translation
of g, or alternately, of its model Delaunay metric there. If, on the other hand,
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a1 = 0, b1 = 1 and all other aj , bj = 0, then again each g(s) would be strongly
asymptotic to g on all ends except E1; on that end the Delaunay parameter for
the model metric would be changing, but the model Delaunay metric would not be
translating. Of course, neither of these types of elements of B need exist.

If φ is a general element of B, and g(s) is a curve in MΛ through g tangent to
φ, then φ describes infinitesimal changes in translation and Delaunay parameters
along each end. The most precise description of coordinates on MΛ would relate
the proportions of these various changes on each end to one another for all directions
φ ∈ TgMΛ. This is equivalent to describing the coefficients aj , bj for each φ ∈ B,
and this, in turn, is equivalent to describing the Lagrangian subspace SΛ. An
explicit description of SΛ requires a better understanding of the Pohožaev balancing
condition (3.9).

For the sake of illustration, let us examine all this forM2, the moduli space when
k = 2. Of course, we have already given a complete description of this space, but
it provides a concrete example of this description. We let the background metric
be any Delaunay metric gε with ε < ū. Now B is 2 dimensional, consisting of the
elements φ1 and φ2. Hence

SΛ = {a1 = −a2, b1 = b2} ⊂ R4,

which is Lagrangian, as expected. The two natural curves g(s) emanating from any
g ∈M2 are simply the families Φ1 and Φ2 defined in (2.14).

It may be possible to give a geometric description of parameters onMΛ by con-
sidering the Killing norms of the Pohožaev invariants. Recall that these invariants
are elements of o?(n + 1, 1), the dual of the Lie algebra of the conformal group.
Any element X ∈ o(n+ 1, 1) may be uniquely decomposed as X = X0 + w, where
X0 ∈ o(n+ 1) and w ∈ Rn+1. The Killing form

B : o(n+ 1, 1)× o(n+ 1, 1)→ R

is the nondegenerate symmetric quadratic form given by

B(X, X̂) =
1

2
Tr(X0X̂0) + w · ŵ.

Thus, B(·, ·) is positive definite on Rn+1 and negative definite on o(n + 1) (with
respect to this decomposition). Moreover, the adjoint representation preserves B

in the sense that B(Ad(F )(X), Ad(F )(X̂)) = B(X, X̂), for all F ∈ O(n+ 1, 1) and

X, X̂ ∈ o(n+ 1, 1).
Since B is nondegenerate it provides an identification between o(n + 1, 1) and

its dual space. Thus we may use the Killing form to identify, for the Pohožaev
invariants P1, . . . ,Pk of a metric g ∈ MΛ, corresponding elements P ′1, . . . ,P ′k ∈
o(n+ 1, 1). The squared Killing norm of the Pohožaev invariant Pi is then defined
to be

‖Pi‖2 = B(P ′i,P ′i).

These k numbers are conformal invariants. By this we mean the following. If
F ∈ O(n + 1, 1) is a conformal diffeomorphism of Sn and g ∈ MΛ, then F ?(g) ∈
MF−1(Λ). The Pohožaev invariants of g and F ?(g) do not coincide but transform
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via the co-adjoint representation (see [S2] and [KKMS]). Since B is invariant under
this representation this implies that the squared Killing norms of the Pohožaev
invariants of g and F ?(g) are the same.

Schoen has suggested the following way to obtain parameters on MΛ. Let Λ =
{p1, . . . , pk} be a balanced singular set. One can then try to produce, for some ε > 0,
a 1-parameter family of solutions gt ∈MΛ, t ∈ (0, ε), such that the asymptotic neck
sizes ε1, . . . , εk for gt are all equal to t. To realize the other (k − 1)-parameters,
choose any k-tuple of numbers, (a1, . . . , ak), close to 1 and normalized so that
a1 = 1. Then there is a conformal diffeomorphism F taking Λ to Λ′ = {p′1, . . . , p′k}
so that

∑k
j=1 ajp

′
j = 0. As before, there is now a 1-parameter family of solutions

g′t, on Sn \ Λ′ with asymptotic neck sizes given by (a1t, . . . , akt). Thus F ?(g′t) ∈
MΛ is another 1-parameter family of solutions. This exhibits the k-parameters as
(t, a2, . . . , ak). It should be possible to phrase this in terms of the squared Killing
norms of the Pohožaev invariants described above.

Dipole solutions. We briefly describe a new construction of solutions [MPU] for
certain special configurations Λ ⊂ Sn. In general terms, this construction shows
that any two ‘nondegenerate’ complete manifolds M1 and M2 with constant posi-
tive scalar curvature may be grafted together to obtain a one parameter family of
complete conformal metrics of constant positive scalar curvature on the connected
sum M1#M2; furthermore, these solution metrics are nondegenerate as well. Here
nondegenerate means simply that the linearized scalar curvature operator L has
no L2-nullspace, and that it is surjective on a suitable extension of L2 (this is
explained more carefully in [MPU]). This is proved by a fairly standard gluing
procedure, using the implicit function theorem.

Since, in particular, Delaunay metrics on Sn−1×R are nondegenerate, we obtain
nondegenerate solutions on Sn \{p1, p2, q1, q2}, where p1, p2 and q1, q2 are two pairs
of points, with each pair clustered tightly near two antipodal points P,Q ∈ Sn.
The conformal factor u on Sn which is singular at these four points is very small
on the complement of small balls around P and Q containing the pi, qi, and is
highly concentrated in these balls. For this reason, we call these ‘dipole solutions’.
The large region where u is small corresponds to the small neck joining the two
Delaunay solutions. As the neck gets smaller, the pi converge to P and analogously
for the qi.

By the final assertion of the result, this new solution (or rather, family of solu-
tions) is nondegenerate, so the process may be iterated. We obtain

Theorem 7.7 ([MPU]). Let P1, . . . , P` be a balanced set of points on Sn. Then

for ε sufficiently small, there exist points p
(1)
i and p

(2)
i in each ε ball Bε(Pi) and

a moduli space of dimension 2` of nondegenerate solutions on Sn \ Λ where Λ =

{p(j)
i , 1 ≤ i ≤ `, j = 1, 2}. Moreover the map from this moduli space to R2`,

sending a solution to the translation and neck parameters at p
(1)
i , for i = 1, . . . , `,

is an isomorphism onto an open set.

There are several important consequences of this result. The first is that since
we can fix the neck parameters of the initial Delaunay solutions arbitrarily before
the gluing, and since we may choose the gluing to alter these parameters only on
one end of each Delaunay solution, we obtain solutions on the complement of 2`
points, where the Delaunay parameters are prescribed at ` of the points. In par-
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ticular, we obtain solutions with 2` ends, ` of which are asymptotically cylindrical.
This is important, in part, because it produces solutions with the simplest type of
asymptotic behavior.

Another consequence concerns nondegeneracy and follows from an elaboration
of our perturbation techniques. We can consider the moduli space of pairs

M = {(Λ,MΛ)}.

A development of the ideas here shows that M itself is a real analytic set. Its
expected dimension is k(1 + n), where k is the cardinality of Λ. If there is a
nondegenerate solution for a given configuration Λ, then the whole component of
M containing that solution has this dimension; by consideringM as a fibration over
the kn-dimensional space of configurations, we see that generic fibers also have the
correct dimension k, and hence that generic points in this fiber are nondegenerate.
Since we have found nondegenerate solutions for certain configurations Λ when
k = 2`, we conclude that generic points in the same component ofM (presumably
including those where the points are not so tightly clustered in pairs) are also
nondegenerate. Unfortunately, no uniqueness theorem has been proved, even in
the restricted setting of Theorem 7.7. This means that we have no information on
the number of connected components other than to assert, as a consequence of the
compactness theorem [P2], that there are finitely many.

The structure of the boundary ∂MΛ. There are a number of interesting ques-
tions about the structure of the compactification MΛ. Recall from §3 that this
compactification is obtained by adding certain solutions g ∈ MΛ′ to MΛ, for cer-
tain subsets Λ′ ⊂ Λ. There are two basic problems. The first is to determine which
subsets Λ′ have elements occurring in ∂MΛ. This is again intimately connected to
the balancing condition (3.9). There are few examples where we can say anything
explicit about this. The case k = 2 was already discussed in §3. The existence of
dipole solutions [MPU] may give additional information concerning this problem
when k is even.

The other fundamental problem is to determine how much ofMΛ′ is contained in
∂MΛ when at least one point g ∈ MΛ′ lies in ∂MΛ. More specifically, we propose
the following:

Conjecture 7.8. Suppose that g ∈ MΛ′ ∩ ∂MΛ. Then the entire component of
MΛ′ containing g also lies in ∂MΛ.

It is easy to show, using the compactness theorem of [P2], that the set of points
g′, in the same component of MΛ′ as g and which also lie in ∂MΛ, is closed. One
method to prove that this set is open would be to generalize the general grafting
procedure of [MPU]. This would prove the conjecture.
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Abstract. Complete, conformally flat metrics of constant positive scalar cur-
vature on the complement of k points in the n-sphere, k ≥ 2, n ≥ 3, were
constructed by R. Schoen in 1988. We consider the problem of determining
the moduli space of all such metrics. All such metrics are asymptotically peri-
odic, and we develop the linear analysis necessary to understand the nonlinear
problem. This includes a Fredholm theory and asymptotic regularity theory
for the Laplacian on asymptotically periodic manifolds, which is of indepen-
dent interest. The main result is that the moduli space is a locally real analytic
variety of dimension k. For a generic set of nearby conformal classes the mod-
uli space is shown to be a k-dimensional real analytic manifold. The structure
as a real analytic variety is obtained by writing the space as an intersection of
a Fredholm pair of infinite dimensional real analytic manifolds.
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