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THE REPRESENTATION OF NUMBERS

AS SUMS OF UNLIKE POWERS. II

KEVIN B. FORD

1. Introduction

In a previous paper ([Fo]), the author proved that every sufficiently large integer
is representable in the form

n =
15∑
i=1

xi+1
i ,(1.1)

where the numbers xi are nonnegative integers. In an addendum to that paper, the
author announced an improvement, for which we now supply a detailed proof. Our
main result is

Theorem 1. Every sufficiently large natural number n is representable in the form

n =
14∑
i=1

xi+1
i .

The principal tool in the proof is the Hardy-Littlewood circle method, incor-
porating results and techniques of a powerful new iterative method developed by
Vaughan and Wooley ([Va3], [Va4], [VW1], [Wo1], [VW2]).

In section 2, an algorithm developed in [Fo] for optimizing the parameters in
mixed power mean value theorems is generalized and analyzed. Section 3 details a
more sophisticated method of generating mixed power mean value theorems, by a
limited adaptation of the iterative method itself. The form of these estimates offers
many advantages over those of section 2, and provides the key to the elimination
of the 16th power from (1.1). These mean value theorems are then applied to the
proof of Theorem 1 in section 4. The tools developed here are applicable to a wide
range of mixed power representation problems, and we briefly illustrate in section
5 the application to the problem of determining the number of terms required to
represent all large n, when the lowest power used is a kth power instead of a square.

Throughout, n is a large natural number whose representation as a sum of mixed
powers is at issue, and ε is an arbitrarily small positive real number. Constants
implied by the Landau O- and Vinogradov �-symbols may depend on ε or k. For
a real number x, write e(x) for e2πix, [x] for the greatest integer not exceeding x
and ||x|| for the distance from x to the nearest integer. Unless otherwise speci-
fied, lowercase Latin letters denote natural numbers and Greek letters denote real
numbers. Let A(P,R) denote the set of natural numbers not exceeding P with no
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prime factor exceeding R. For a given representation problem, we take R = nη for
some η > 0. Many assertions, especially (2.1) below, are valid for η less than some
bound, which may depend on ε. We will take η to be as small as desired, and will
frequently state R� nε without comment. Since the number of such assertions is
finite, there is no danger of losing control of implicit constants.

Let

Pk =
1

2
n1/k

for each exponent k appearing in the representation, and define the generating
functions

fk(α) =
∑
m∈Bk

e(αmk),

where Bk is a subset of the integers between 1 and 2Pk. Our choices for sets Bk

will be either (Pk, 2Pk] or A(Pk, R), both of which are “full size”, meaning that
|Bk| � Pk. The fact that |A(Pk, R)| � Pk is a classical sieve result, and a proof
may be found in [DB]. Let F (α) = fk1(α)fk2(α) · · · fkr (α). Then

R(n) =

∫ 1

0

F (α)e(−nα)dα(1.2)

is the number of representations of n in the form

n = xk1
1 + xk2

2 + · · ·+ xkrr (xi ∈ Bki).(1.3)

Showing R(n) > 0 for large n is accomplished by partitioning [0, 1] into the “major
arcs” M and “minor arcs” m. The definition of M varies from problem to problem,
but always adheres to a special form. For Y > 1, let

M(Y ) =
⋃
q6Y

⋃
16a6q
(a,q)=1

M(Y ; q, a),(1.4)

where

M(Y ; q, a) =

{
α ∈ [0, 1] :

∣∣∣∣∣∣∣∣α− a

q

∣∣∣∣∣∣∣∣ 6 Y

nq

}
.(1.5)

When Y < 1
2n

1/2, the intervals M(Y ; q, a) are pairwise disjoint, hence any α ∈
M(Y ) uniquely determines a, q and β = ||α − a/q||. Throughout, whenever α ∈
M(Y ) is given, we assume these definitions of a, q and β. Observe also that Y < X
implies M(Y ) ⊂M(X).

To handle the minor arcs, we write∫
m

|F (α)|dα 6 sup
α∈m

|F1(α)|
∫ 1

0

|F2(α)|dα,(1.6)

where F (α) = F1(α)F2(α). The supremum of F1 is estimated by means of either
Weyl’s inequality for small k or an estimate such as ([Wo1], Theorem 1.4) for large
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k. The Cauchy-Schwarz inequality may be used to break the integral of |F2| into
two “mean-square” integrals which may be estimated in an elementary way by
consideration of the underlying diophantine equations (cf. Theorem 3 of [Th] and
Theorem 6.2 of [Va1]). The techniques developed in the next two sections provide
an alternative method of estimating these integrals.

For the circle method to be successful, one must show that the left side of (1.6)
is smaller in order of magnitude than F (0)n−1, the expected order of R(n). Inci-
dentally, the form of (1.6) necessitates the condition

r∑
i=1

1

ki
> 2

in order to obtain such a minor arc bound, even assuming a best possible upper

bound for
∫ 1

0 |F2| (see [HL], Hypothesis K). This condition implies that proving all
large n have a representation

n =
10∑
i=1

xi+1
i

is the theoretical limit of the circle method.

2. Smooth mean value theorems for mixed powers

Throughout this section,

fk(α) =
∑

m∈A(Pk,R)

e(αmk).

The works of Vaughan and Wooley ([Va3], [Va4], [Wo1], [VW2]) provide, for each
pair of positive integers (k, s), an estimate∫ 1

0

|fk(α)|2sdα� P
λ(k,s)
k(2.1)

valid for 0 < η 6 η(k, s). Note that we may take λ(k, 1) = 1 and λ(k, 2) = 2 + ε.
The first is a consequence of Parseval’s identity, and the second is deduced by
an elementary consideration of the underlying diophantine equation (see §6.1 of
[Va1]). Table 1 lists all of the values of λ(k, s) that will be required in the proof
of Theorem 1. The values were calculated with 16 digit precision by computer, the
final significant digit being rounded up. The values for s = 3 and s = 4 are given
by Theorem 1.4 of [Va4]. The values for 5 6 k 6 9 are taken from the appendix
of [VW2]. The remaining values are the result of an iteration procedure (on s),
applying at each step one of Lemma 2.2 of [Va4] (for s = 5 and some k), Lemma
3.2 of [Wo1] (for intermediate s), or inequality (k − 2) of [Va3, §4] (for large s).

We can extend these mean value theorems to nonintegral s by a simple interpo-
lation via Hölder’s inequality. If h is an integer and 0 < θ < 1, we have∫ 1

0

|fk(α)|2(h+θ)dα 6
(∫ 1

0

|fk(α)|2hdα
)1−θ (∫ 1

0

|fk(α)|2h+2dα

)θ
.(2.2)
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Table 1

k s λ(k, s) k s λ(k, s) k s λ(k, s)
4 3 3.1861407 7 7 8.5410894 12 9 10.5917109

4 4.5627210 12 17.2932208 10 12.0382168
5 6.1876809 8 4 4.2289285 11 13.5346434
6 8.0000001 5 5.5116307 12 15.0795792

5 3 3.1362571 7 8.3284883 13 5 5.2784087
4 4.4386563 8 9.8579814 9 10.4462093
5 5.9250797 14 20.3659701 10 11.8557131
6 7.5417546 9 4 4.1822894 12 14.8136933
7 9.2727289 5 5.4201075 13 16.3600526
8 11.0773627 7 8.1447208 14 17.9492906

6 3 3.0909091 8 9.6154494 14 5 5.2589353
4 4.3333334 16 23.4293887 6 6.4627737
5 5.7246965 10 4 4.1636826 7 7.7092805
6 7.2315633 5 5.4010244 10 11.7095544
7 8.8505716 6 6.6996396 13 16.0997159
8 10.5604127 9 10.9660666 14 17.6467017
9 12.3536709 11 4 4.1372319 15 6 6.4217891

10 14.2030055 5 5.3449419 11 12.9676813
11 16.0860412 6 6.6133232 12 14.3984547

7 3 3.0639191 9 10.7541737 14 17.3790325
4 4.2641175 21 31.4828795 15 18.9270975
5 5.5891167 12 5 5.3159121 16 20.5121267
6 7.0143820 8 9.1960407

Thus, defining

λ(k, h+ θ) = (1− θ)λ(k, h) + θλ(k, h+ 1)(2.3)

extends (2.1) to all positive real s.
Now suppose µi are positive real numbers. If x1, . . . , xr are positive numbers

satisfying

x1 + · · ·+ xr = 1,(2.4)

then by Hölder’s inequality, we have

S :=

∫ 1

0

|fµ1

k1
· · · fµrkr |

2 6
r∏
i=1

(∫ 1

0

|fki |2µi/xi
)xi

.(2.5)

It follows from (2.1), (2.3) and (2.5) that

S � nφ, φ =
r∑
i=1

xiλ(ki, µi/xi)

ki
.(2.6)

For a given set of exponents {ki}, our goal is to minimize φ subject to (2.4). To
this end, define for x ∈ (0, 1] the functions

gi(x) =
xλ(ki, µi/x)

ki
(1 6 i 6 r).(2.7)
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When µ1 = · · · = µr = 1, the algorithm of section 7 of [Fo] will find the optimum
values xi. The algorithm is identical in the general case, and is reproduced below.
The Cauchy-Schwarz inequality gives∫ 1

0

|fk|2h 6
(∫ 1

0

|fk|2h−2

)1/2(∫ 1

0

|fk|2h+2

)1/2

.(2.8)

Combined with (2.3), this shows that each λ(k, s) is convex as a function of s for
s > 0. By Lemma 7.1 of [Fo], it follows that each function gi(x) is convex, and thus
Lemma 7.2 of [Fo] implies that

∑
gi(xi) is minimized whenever

min
i
D+gi(xi) > max

i
D−gi(xi),(2.9)

where D− and D+ are the left and right differential operators, respectively.
The algorithm for finding such xi is to iterate the following operation:

Find i and j (with i 6= j) such that

D−gj(xj)−D+gi(xi)

is maximal. If the maximal difference is zero, then by (2.9) the
optimal values of xi have been found. Otherwise, set xi = xi + δ
and xj = xj − δ, where δ is the least positive number for which
(with the new values of xi and xj)

D−gj(xj) 6 D+gi(xi).

Since each λ(ki, s) is linear in s on each interval [h, h + 1] for natural numbers
h, it follows from (2.7) that the functions gi(x) are piecewise linear with bends at
the points x = 1/h for positive integers h. In practice, g′i(xi) 6= g′j(xj) for all i, j
and all xi, xj within the range of interest. Consequently, if x1, . . . , xr minimize the
sum in (2.6), then by (2.9), at most one of the numbers 1/xi will be nonintegral.
For the same reason, each step in the above algorithm will leave either 1/xi or 1/xj
integral, so the algorithm will find the optimal set x1, . . . , xr in a finite number of
steps.

The starting values of the algorithm are taken so that

kixi
µi

=
kjxj
µj

(2.10)

for all i, j. This usually gives a value for φ in (2.6) that is close to optimal. Heuris-
tically, the iteration procedure described above produces values of λ(k, s) of the
form

λ(k, s) ≈ 2s− k + cke−2s/k(2.11)

for some constant c (see Theorem 2.1 of [Wo2] for a proof of an upper bound of this
form). Considering the functions gi to be continuously differentiable, the condition
(2.9) becomes “g′i(xi) = g′j(xj) for all i, j”. By (2.7),

gi(x) ≈ 2µi
ki
− x+ cxe−2µi/(kix),

so that

g′i(x) ≈ −1 + ce−2µi/(kix)

(
2µi
kix

+ 1

)
,

which is a function of kix/µi. This justifies (2.10).
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3. Adaptation of the new iterative method

In this section we show how the new iterative method of Vaughan and Wooley
may be adapted in a limited manner to handle mixed powers. Throughout this
section, h = 3 or h = 4, and k > h. The method presented below will apply in
principle to all h, but it is most effective for smaller h.

Let S
(h)
k,s (P ) denote the number of solutions of

zh1 + xk1 + · · ·+ xks = zh2 + yk1 + · · ·+ yks

with

1 6 z1, z2 6 P,
xi, yi ∈ A(Ph/k, R) (1 6 i 6 s).

(3.1)

Let 0 < θ < 1/k, M = P θ, H = P 1−kθ and Q = Ph/k−θ. Let T
(h)
k,s (P ; θ) denote the

number of solutions of the equation

zh1 +mk(uk1 + · · ·+ uks) = zh2 +mk(vk1 + · · ·+ vks )

with

ui, vi ∈ A(Q,R) (1 6 i 6 s),
M 6 m 6MR,

1 6 z1, z2 6 P, z1 ≡ z2 (mod mk).

By Lemma 2.2 of [Wo1] (the Fundamental Lemma),

S
(h)
k,s (P )� Ph/k+θ+εS

(h)
k,s−1(P ) + P (2s−1)θ+εT

(h)
k,s (P ; θ).(3.2)

In practice the second term on the right side of (3.2) will dominate the first. Our

estimation of T
(h)
k,s (P ; θ) follows that in [Va4, §2]. Clearly

T
(h)
k,s =

∑
|d|6H

Ud,

where Ud is the number of solutions with z1 = z2 + dmk. Considering separately
solutions counted in U0, and letting z = z1 + z2, we obtain

T
(h)
k,s (P ; θ)� PMRQλ(k,s) +

∫ 1

0

Fh(α)|fk(2kα;Q)|2sdα,(3.3)

where

fk(α;Q) =
∑

m∈A(Q,R)

e(αmk),

Fh(α) =
∑

M<m6MR

∑
d6H

∑
z62P

e(αΨh),(3.4)

Ψh = Ψh(m, d, z) = m−k
(
(z + dmk)h − (z − dmk)h

)
.(3.5)
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If 21−h 6 a 6 1/2, then by Hölder’s inequality and (2.1), we have∫ 1

0

Fh(α)|fk(2kα;Q)|2sdα

�
(∫ 1

0

|fk(2kα;Q)|2s/(1−a)dα

)1−a(∫ 1

0

|Fh(α)|1/adα
)a

� Q(1−a)λ(k,s/(1−a))

(∫ 1

0

|Fh(α)|1/adα
)a

.

(3.6)

Combining (3.2), (3.3) and (3.6) yields

S
(h)
k,s (P )� Ph/k+θ+εS

(h)
k,s−1(P ) + P (2s−1)θ+ε

×
{
PMRQλ(k,s) +Q(1−a)λ(k,s/(1−a))

(∫ 1

0

|Fh|1/a
)a}

.
(3.7)

We now require estimates for the power moments of Fh appearing in (3.7).

Lemma 3.1. If 1 6 j 6 h− 1, then∫ 1

0

|Fh(α)|2jdα� P 2j−j+ε(MRH)2j−1(MR)ej ,

where

ej =

{
0, 1 6 j 6 h− 2,

1, j = h− 1.

Proof. This follows from (2.13)–(2.15) of [Va4] and is similar to the proof of Hua’s
inequality ([Va1], Lemma 2.5). Only the case k = h is treated in [Va4], but the
exponent of m in (3.5) plays no role in the argument.

For the mean cube of |F3|, we can do better than using Cauchy-Schwarz combined
with the square and fourth power moment estimates of Lemma 3.1.

Lemma 3.2. If 0 < θ < 3
5k+6 , then∫ 1

0

|F3(α)|3dα� P 7/2+εM−(2k−3/2).

Proof. The case k = 3 is proven in §3 of [Va3], and the general case follows in a
very similar manner. From (3.4), (3.5) and the Cauchy-Schwarz inequality, we have

|F3(α)|2 6 D(α)E(α),(3.8)

where

D(α) =
∑
d6H

∣∣∣∣∣∣
∑
z62P

e(6αdz2)

∣∣∣∣∣∣
2

and

E(α) =
∑
d6H

∣∣∣∣∣∣
∑

M<m6MR

e(2αd3m2k)

∣∣∣∣∣∣
2

.
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Now suppose (a, q) = 1 and β = |α− a/q| 6 q−2. By Lemma 3.1 of [Va3],

D(α)� P ε
(

P 2H

q(1 + P 2Hβ)
+ PH + q + P 2Hqβ

)
.(3.9)

Further, if Mk 6 X 6MkH3, q 6 X and β 6 (qX)−1, then by a slight modification
of the proof of Lemma 3.4 of [Va3],

E(α)� P ε
(

HM2

q1/k(1 +M2kH3β)1/3
+HM

)
.(3.10)

Incidentally, the condition θ < 3
5k+6 comes from the estimation of E(α). This is not

a serious restriction in applications, as the optimal choice for θ is usually smaller.
Let m denote the set of points α in [0, 1] with the property that whenever there are
a, q with (a, q) = 1 and |α− a/q| 6 (PHq)−1 we have q > P , and let M = [0, 1]\m.
If α ∈ [0, 1], Dirichlet’s Theorem (Lemma 2.1 of [Va1]) implies that there are a, q
such that (a, q) = 1, |α− a/q| 6 (PHq)−1 and q 6 PH. If α ∈ m, then q > P and
thus (3.8), (3.9) and (3.10) imply

F3(α)� P εH(PM)1/2.

Combined with the j = 1 case of Lemma 3.1, we obtain∫
m

|F3(α)|3dα� P εH2(PM)3/2.(3.11)

If α ∈M, then α is in some interval

M(q, a) = {α : |α− a/q| 6 (PHq)−1}

with 1 6 a 6 q 6 P and (a, q) = 1. Let W = P 2H = M2kH3. By (3.9) and (3.10),

F 2
3 (α)� P 2+εH2M

(
1

q(1 +Wβ)

)(
M

q1/k(1 +Wβ)1/3
+ 1

)
.

Hence

∫
M(q,a)

|F3(α)|3dα� P 3+εH3M3/2

×
∫ ∞

0

(
M3/2

q
3
2 (1+1/k)(1 +Wβ)2

+
1

q3/2(1 +Wβ)3/2

)
dβ

� P 3+εH3M3/2W−1
(
M3/2q−

3
2 (1+1/k) + q−3/2

)
.

Thus, summing on a and q,∫
M

|F3(α)|3dα� P 7/2+εH3M3/2W−1.(3.12)

The lemma now follows from (3.11) and (3.12).

Power moments of Fh for general a may be obtained by combining the estimates
in the preceding two lemmas with Hölder’s inequality. For a given value of a, the
optimal value of θ is obtained by equating the exponents of P in the last two terms
on the right side of (3.7). The best choice for a is always among the numbers
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Table 2

h k s a θ ν(h, k, s) α(h, k, s) α1(h, k, s) α2(h, k, s)
3 4 2 1/2 0.0758695 2.6517390 0.7827536 0.7777777 0.7745321

4 3 1/4 0.1319339 3.7608491 0.9130503 0.8839482 0.9096887
4 4 1/4 0.1836074 5.0531506 0.9822831 0.9495585 0.9765398
5 2 1/2 0.0408771 2.2817543 0.7060819 0.7142857 0.6894677
5 3 1/3 0.0861487 3.1284620 0.8238460 0.8188939 0.8146398
5 4 1/4 0.1191524 4.0875366 0.9041544 0.8879727 0.8999882
5 5 1/4 0.1398833 5.1250612 0.9583129 0.9320412 0.9491339
5 6 1/4 0.1571564 6.2256947 0.9914351 0.9618142 0.9883955
7 3 1/2 0.0427554 2.4386414 0.7109290 0.7273291 0.6947423
8 4 3/7 0.0482460 2.7677873 0.7440709 0.7604903 0.7321722
8 5 1/3 0.0584464 3.3291908 0.8069364 0.8125386 0.7977859
9 5 1/3 0.0476170 3.0247832 0.7695167 0.7830072 0.7588825

10 6 1/3 0.0449987 3.2484013 0.7838662 0.7952274 0.7744844
11 6 1/3 0.0379449 3.0080307 0.7548988 0.7716306 0.7446965

4 5 2 1/2 0.0545028 2.7090057 0.6227485 0.6029411 0.6163206
5 3 1/4 0.0964020 3.7850763 0.7537309 0.7309310 0.7490315
5 4 1/4 0.1309629 5.0173291 0.8456677 0.8256065 0.8452342
5 5 1/6 0.1528162 6.3627777 0.9093055 0.8908813 0.9146962
5 6 1/8 0.1658191 7.7726659 0.9568335 0.9373557 0.9626086
6 2 1/2 0.0303030 2.3939394 0.5681818 0.5500000 0.5577206
6 3 1/4 0.0725309 3.2716050 0.6820987 0.6673913 0.6757088
6 4 1/4 0.0932991 4.2309857 0.7755869 0.7576923 0.7697900
6 5 1/4 0.1120070 5.2953284 0.8428345 0.8257906 0.8426338
7 2 1/2 0.0182626 2.1793824 0.5265829 0.5108695 0.5168487
7 3 2/5 0.0542908 2.9102132 0.6295895 0.6179901 0.6224295
7 4 1/4 0.0712835 3.7029455 0.7171207 0.7030926 0.7093090
7 5 1/4 0.0840072 4.5643271 0.7874896 0.7707473 0.7828099

12 8 1/4 0.0451245 4.3723723 0.7402402 0.7268689 0.7334236
12 9 1/4 0.0490897 4.8942408 0.7764398 0.7619959 0.7723562
13 9 1/4 0.0426035 4.5360362 0.7506063 0.7367782 0.7448091
13 10 1/4 0.0462219 5.0243560 0.7823725 0.7682570 0.7788800
14 10 1/4 0.0404149 4.6806444 0.7584103 0.7445539 0.7532918
15 11 1/4 0.0384232 4.8050993 0.7653918 0.7514953 0.7609428
15 12 1/4 0.0410742 5.2339635 0.7915091 0.7775425 0.7892236

1
2 ,

1
3 ,

1
4 ,

1
8 or values for which s

1−a is an integer (see the remarks at the conclusion

of section 2). From (3.7) we thus obtain estimates of the form

S
(h)
k,s (P )� P ν(h,k,s).

Values of ν(h, k, s) along with the corresponding choices for a and θ for various
triples (h, k, s) are listed in Table 2. As with λ(k, s), these values were calculated
with 16 digit precision, the last significant figure being rounded up.
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To illustrate the calculations, let us estimate S
(3)
4,3(P ). Taking a = 1

4 , it follows
from (3.7) that

S
(3)
4,3(P )� P 3/4+θ+ν(3,4,2)+ε + P 5θ+ε

{
P 1+θQλ(4,3) +Q(3/4)λ(4,4)

(∫ 1

0

|F3|4
)1/4

}
.

By Lemma 3.1, Table 1 and the top row of Table 2,

S
(3)
4,3(P )� P 3.4017390+θ + P 3.3896056+2.8138593θ + P 3.8165306−0.4220407θ.

Equating the last two terms on the right gives θ ≈ 0.1319339 and S
(3)
4,3(P ) �

P 3.7608492. The values in the table were computed with 16 digit precision, and this
accounts for the slight discrepancy between this exponent and the value given in
Table 2.

By considering the underlying diophantine equations (see (3.1)), for fixed h and
k we have ∫ 1

0

|fh(α)fsk(α)|2dα 6 S(h)
k,s (2Ph)� P

ν(h,k,s)
h ,(3.13)

where

fh(α) =
∑

Ph<m62Ph

e(αmh),

fk(α) =
∑

m∈A(Pk,R)

e(αmk).
(3.14)

The above bounds may be used to generate mixed-power mean value theorems of
the sort described in the preceding section. By the same interpolation argument
(cf. (2.2) and (2.3)), the definition of ν(h, k, s) can be extended to all positive real
s. If xi are nonnegative real numbers satisfying x1 + · · ·+xr = 1, then by Hölder’s
inequality, ∫ 1

0

|fhfk1 · · · fkr |2 6
r∏
i=1

(∫ 1

0

∣∣∣fhf1/xi
ki

∣∣∣2)xi
�

r∏
i=1

n(xi/ki)ν(h,ki,1/xi).

(3.15)

Since the functions ν(h, k, s) are convex as functions of s by the analog of (2.8), an
algorithm identical to that described in the preceding section will find the optimum
values of xi in (3.15).

The inequality (3.13) may also be written as∫ 1

0

|fhfsk |2 � (fh(0)fsk(0))2 n−α(h,k,s),(3.16)

where

α(h, k, s) =
2

h
+

2s

k
− ν(h, k, s)

h
.

The number α(h, k, s) can be regarded as a measure of how much is saved over the
trivial bound for the left side of (3.16). It also has an arithmetical interpretation.
Let Nh,k,s(X) denote the number of positive integers less than X which can be
written as the sum of an hth power and s kth powers. A standard application of
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the Cauchy-Schwarz inequality (cf. the introduction to Chapter 6 of [Va1]) shows
that

Nh,k,s(X)� Xα(h,k,s).(3.17)

The values of α(h, k, s) are also included in Table 2. The final two columns in
the table are exponents for lower bounds for Nh,k,s(X) obtained by two different
methods. Davenport’s diminishing ranges method ([Va1], Theorem 6.2), seeded
with a mean value estimate of type (2.1), yields the bound Nh,k,s(X)� Xα1(h,k,s).
Combining (2.5) with the homogeneous mean value theorems (2.1) produces the
bound Nh,k,s(X)� Xα2(h,k,s).

When h = 3, Davenport’s method gives the best result for small s, and the
method of this section takes over for the larger s. When h = 4, inequality (3.16)
is superior for both smaller s and some larger s, while applying Hölder’s inequality
to the homogeneous mean value theorems gives the best results for intermediate
values of s.

Even when α(h, k, s) is smaller than α1(h, k, s) or α2(h, k, s), the structure of

the generating function for S
(h)
k,s (P ) provides several advantages in applications to

mixed power problems such as Theorem 1. These advantages are discussed in the
next section.

4. The proof of Theorem 1

In the proof of the theorem in [Fo], the two most critical estimates are the minor
arc bound and the estimate of the error resulting from the replacement of f3 by its
approximationW3. They correspond to estimates (4.10) and (4.24) below. Together
these bounds determine the optimal choice for the major arcs. As noted earlier,
the key to the elimination of the 16th power is the use of the mean value theorems
developed in the previous section. The chief advantage of these estimates is not the
improvement in the estimates themselves as measured by the numbers α(h, k, s),
but the form of the generating functions involved. In fact, in the application below
some of the mean value theorems used are worse than those attainable by other
methods (cf. (4.3) and Table 2). Using (3.15), the generating functions f3 and
f4 are ordinary Weyl sums (see (4.1) below), which means that (4.19) may be
used instead of the much weaker (4.21) on the major arcs. Also, in contrast to
Davenport’s method, none of the generating functions is “diminished”, i.e. we have
fk(0) � Pk for every k. The importance of this comes into play in replacing f3

by W3 in (4.24). The function F3 appearing there may be taken to be “smaller”
than in [Fo], and this strengthens the estimate for the mean value theorem of its
“complement” F4.

For 2 6 k 6 4 define

fk(α) =
∑

Pk<m62Pk

e(αmk),(4.1)

and for 5 6 k 6 15 define

fk(α) =
∑

m∈A(Pk,R)

e(αmk).(4.2)
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Let M = M(nµ) where µ = 0.461039. Let F (α) = f2(α)f3(α) · · · f15(α) and define
F1(α) through F7(α) as follows:

F1 = f3f7f8f9f10f11 F5 = f10f12f13f14f15

F2 = f4f5f6f12f13f14f15 F6 = f6f7f11

F3 = f8f9f10f11f14 F7 = f5f8f9

F4 = f4f5f6f7f12f13f15

We first establish a number of mean value theorems of the type discussed in sections
2 and 3. The values of λ(k, s) required are listed in Table 1, and the values of
ν(h, k, s) required are listed in Table 2.

Lemma 4.1. We have ∫ 1

0

|F1(α)|2dα� F 2
1 (0)n−0.777561,(4.3) ∫ 1

0

|F2(α)|2dα� F 2
2 (0)n−0.761827,(4.4) ∫ 1

0

|F4(α)|2dα� F 2
4 (0)n−0.795935.(4.5)

Proof. We utilize the mean value theorems (3.13), starting with Hölder’s inequality
in the general form ∫ 1

0

∣∣∣∣∣fh ∏
k∈K

fk

∣∣∣∣∣
2

6
∏
k∈K

(∫ 1

0

|fhfakk |2
)1/ak

,

where
∑

1/ak = 1. The optimal values of ak are obtained by the algorithm de-
scribed in section 2. For (4.3), with h = 3, the optimal values are a7 = 4, a8 =
60
13 , a9 = 5 and a10 = a11 = 6. For (4.4), with h = 4, the optimal values are

a5 = 3, a6 = 4, a12 = 1980
227 , a13 = 9, a14 = 10 and a15 = 11. Lastly, for (4.5), with

h = 4, we take a5 = a6 = 4, a7 = 5, a12 = 9, a13 = 10 and a15 = 45
4 .

Lemma 4.2. We have ∫ 1

0

|F3(α)|2dα� F 2
3 (0)n−0.461039,(4.6) ∫ 1

0

|F5(α)|2dα� F 2
5 (0)n−0.375420,(4.7) ∫ 1

0

|F6(α)|2dα� F 2
6 (0)n−0.391744,(4.8) ∫ 1

0

|F6(α)F 3
7 (α)|2dα� F 2

6 (0)F 6
7 (0)n−0.968255.(4.9)

Proof. Here we use the homogeneous mean value theorems (2.1) along with Hölder’s
inequality in the general form∫ 1

0

∣∣∣∣∣∏
k∈K

fµkk

∣∣∣∣∣
2

6
∏
k∈K

(∫ 1

0

|fk|2ak
)µk/ak

,

where
∑
µk/ak = 1. As in Lemma 4.1 , the optimal values for ak are obtained from

the algorithm described in section 2. For (4.6), we take a8 = 4, a9 = 140
29 , a10 =

a11 = 5 and a14 = 7. For (4.7), we take a10 = 4, a12 = a13 = 5, a14 = 60
11 and
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a15 = 6. For (4.8), we take a6 = 12
5 , a7 = 3 and a11 = 4. Finally, for (4.9), we take

a5 = 8, a6 = 336
31 , a7 = 12, a8 = 14, a9 = 16 and a11 = 21.

The final tool we need for the minor arcs is Weyl’s inequality (Lemma 2.4 of
[Va1]).

Lemma 4.3 (Weyl’s Inequality). Suppose that (a, q) = 1, |α− a/q| < q−2, φ(x) =
αxk + α1x

k−1 + · · ·+ αk−1x+ αk and K = 2k−1. Then

Q∑
x=1

e(φ(x))� Q1+ε

(
1

q
+

1

Q
+

q

Qk

)1/K

.

Using the Cauchy-Schwarz inequality, (4.3), (4.4) and Lemma 4.3 to bound f2(α),
we obtain∫

m

|F (α)|dα 6 sup
α∈m

|f2(α)|
(∫ 1

0

|F1(α)|2dα
)1/2(∫ 1

0

|F2(α)|2dα
)1/2

� F (0)n−(µ+.777561+.761827)/2+ε � F (0)n−1.000213.

(4.10)

We now introduce several auxiliary functions that come into play on the major
arcs. First set

Sk(q, a) =

q∑
m=1

e

(
amk

q

)
.(4.11)

Next let

wk(θ) =



∑
n/2k<m6n

1

k
m1/k−1e(θm), k 6 4,

∑
Rk<m6Pkk

1

k
m1/k−1%

(
logm

k logR

)
e(θm), k > 5,

(4.12)

where % is Dickman’s function (see [DB]). The only property of % that we require
is that %(x) > 0 for all positive x. For 2 6 k 6 15, let

Wk(α, q, a) =
1

q
Sk(q, a)wk

(
α− a

q

)
.(4.13)

For brevity, write

Wk(α) =

{
Wk(α, q, a), for α ∈M,

0, for α ∈ m,
(4.14)

and

∆k(α) = fk(α) −Wk(α).(4.15)

Upper bounds for Wk and ∆k are required. For k 6 4, Lemma 6.3 of [Va1] states

Wk(α, q, a)�
(
n

q

)1/k

(1 + n||α− a/q||)−1(4.16)

and when k > 5, Lemma 5.4 of [Va3] states

Wk(α, q, a)�
(
n

q

)1/k

(1 + n||α− a/q||)−1/k.(4.17)
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When α ∈M and k 6 4, (4.16) gives

Wk(α)�
(
n

q

)1/k

(1 + nβ)−1(4.18)

and Theorem 2 of [Va2] states

∆k(α)� q1/2+ε(1 + nβ)1/2.(4.19)

For k > 5, (4.17) gives

Wk(α)�
(
n

q

)1/k

(1 + nβ)−1/k(4.20)

and Lemma 5.4 of [Va3] gives

∆k(α)� qn1/k

logn
(1 + nβ).(4.21)

Observe that (4.21) is nontrivial only if q 6 log n. Utilization of this inequality will
necessitate a prior pruning of the major arcs to M(Y ), where Y is a small power
of log n. The following lemma contains an estimate for fk valid on major arcs of
small order.

Lemma 4.4 (Vaughan-Wooley). If fk is defined as in (4.2), and α ∈ M(logA n)
for some A, then

fk(α)� n1/kqε−1/k(1 + nβ)−1/k,

where the implied constant may depend on A.

Proof. This is a special case of Lemma 8.5 of [VW1].

The next lemma, essentially Lemma 2 of [Br], greatly aids the estimation of error
terms produced by replacing the generating functions fk with their approximations
Wk.

Lemma 4.5 (Brüdern). Let Q 6 N . For 1 6 a 6 q 6 Q, (a, q) = 1, let M(q, a)
denote an arbitrary interval contained in [(a/q) − 1/2; (a/q) + 1/2] and assume
that the M(q, a) are pairwise disjoint. Write M for the union of all M(q, a). Let
G : M → C be a function satisfying

G(α)� N

q

(
1 +N

∣∣∣∣α− a

q

∣∣∣∣)−1

for α ∈ M(q, a). Furthermore, let Ψ : R → [0,∞) be a function with a Fourier
expansion

Ψ(α) =
∑
|h|6H

ψhe(αh)

such that logH � logN . Then∫
M

G(α)Ψ(α)dα� Qψ0 logN + (logN)2
∑
h 6=0

|ψh|d(|h|),

where d(n) denotes the number of divisors of n.
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A typical application of this lemma will be with G(α) equal to a product of
powers of some of the Wk(α) (using (4.18)) and Ψ(α) = |fk1 · · · fkr |2, so that ψh is
the number of solutions of

h =
r∑
i=1

(xkii − y
ki
i ), xi, yi ∈ Bi.

Note that
∑
h ψh = Ψ(0) and ψ0 =

∫ 1

0 Ψ(α)dα. The hypotheses of the lemma imply
d(|h|)� Nε; thus we have

Corollary 4.6. Under the hypotheses of Lemma 4.5 , suppose further that ψh > 0
and ∫ 1

0

Ψ(α)dα� NεQ−1Ψ(0).

Then ∫
M

G(α)Ψ(α)dα� NεΨ(0).

Returning to the proof of Theorem 1, we now replace f2 by W2 and f3 by W3

on the major arcs. When 2 6 k 6 4, (4.19) and (1.5) imply

sup
α∈M

|∆k(α)| � nµ/2+ε.(4.22)

Thus, by (4.3), (4.4) and the Cauchy-Schwarz inequality,∫
M

|∆2F1F2| � nµ/2+ε

(∫ 1

0

|F1|2
)1/2(∫ 1

0

|F2|2
)1/2

� F (0)n−1.039174.

(4.23)

Now write G(α) = |W2(α)|2 and Ψ(α) = |F3(α)|2. By (4.18), (4.6) and Corollary
4.6 (with Q = nµ), we have ∫

M

|W2F3|2 � nεF 2
3 (0).

Combined with (4.5) and (4.22), it follows that∫
M

|W2∆3F3F4| 6 sup
M

|∆3|
(∫

M

|W2F3|2
)1/2(∫ 1

0

|F4|2
)1/2

� F (0)n−1.000781.

(4.24)

Before replacing f4 with W4, a pruning of the major arcs is required. Let M1 =

M(n3/8) and N1 = M\M1. On N1, whenever q 6 n3/8, (1.5) gives β > n3/8

qn . Let

θ = 3
44 . Then on N1, either q > n3/8−θ or β > nθ−1. By (4.18), we have in the first

case

|W2W3|2 �
n

q
(1 + nβ)−1n(2/3)(1−3/8+θ) =

n

q
(1 + nβ)−1n61/132

and in the second case

|W2W3|2 �
n5/3

q
(1 + nβ)−1n−3θ =

n

q
(1 + nβ)−1n61/132.
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It now follows from (4.5), (4.6), Corollary 4.6 and the Cauchy-Schwarz inequality
that

∫
N1

|W2W3F3F4| 6
(∫

N1

|W2W3F3|2
)1/2 (∫ 1

0

|F4|2
)1/2

� F (0)n−1.000240.

(4.25)

This is more than enough for replacing f4. Indeed, by combining (4.7), (4.8), (4.9),
(4.19), Corollary 4.6 and Hölder’s inequality we have

∫
M1

|W2W3∆4F5F6F7| 6 sup
M1

|∆4|
(∫

M1

|W2F5|2
)1/2(∫

M1

|W 3
3F

2
6 |
)1/3

×
(∫ 1

0

|F 2
6F

6
7 |
)1/6

� F (0)n−1.057209.

(4.26)

We now prune the major arcs further, to a set of α where Lemma 4.4 is applicable.
Let N2 = M1\M(X), where X = (logn)A for some large constant A. Arguing as
in the first pruning, on N2 we have either q > X1/2 or β > n−1X1/2. By (4.18),
we have in the first case

|W4|6 �
n3/2

q
(1 + nβ)−1X−1/4

and in the second case

|W4|6 �
n3/2

q
(1 + nβ)−1X−5/2.

In either case, |W2|2 � (n/q)(1 + nβ)−1 and |W3|3 � (n/q)(1 + nβ)−1.
To successfully apply Lemma 4.5, we must estimate more precisely the sum∑
|ψh|d(|h|), employing a result due to McDonagh [McD].

Lemma 4.7 (McDonagh). For each positive integer k, there is a constant Ck such
that ∑

t<N1/k

d(N − tk)� N1/k(logN)Ck .

Although not required here, it follows from the proof of Lemma 4.7 that Ck =
k22k+1 is admissible. Suppose k1 6 k2 6 · · · 6 kr and Ψ(α) = |fk1(α) · · · fkr (α)|2.
Then in the notation of Lemma 4.5, ψh is the number of solutions of

h =
r∑
i=1

(xkii − y
ki
i ), xi, yi ∈ A(Pki , R).
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For brevity write N = xk1
1 +

∑r
i=2(xkii − y

ki
i ). By Lemma 4.7,∑

h 6=0

ψhd(|h|) = 2
∑
h>0

ψhd(h)

= 2
∑
x,y

N>y
k1
1

d(N − yk1
1 )

6 2Pk1(Pk2 · · ·Pkr )2 max
N6rn

∑
y1<N1/k1

d(N − yk1
1 )

� (Pk1 · · ·Pkr )2(logn)Ck1 .

If G(α) satisfies the hypothesis of Lemma 4.5 and
∫ 1

0
Ψ(α)dα � Ψ(0)n−3/8, we

have ∫
N2

GΨ� Ψ(0)(logn)Ck1
+2.(4.27)

By (4.7) and (4.8), the bound (4.27) holds with Ψ = |F5|2 and Ψ = |F6|2. Therefore,
by Hölder’s inequality,∫

N2

|W2W3W4F5F6F7|

6 F7(0)

(∫
N2

|W2F5|2
)1/2(∫

N2

|W 3
3F

2
6 |
)1/3(∫

N2

|W 6
4F

2
6 |
)1/6

� F (0)n−1(logn)(C6+C10)/2+2−A/24 � F (0)n−1(logn)−1

(4.28)

if A is sufficiently large.
The final pruning stage takes us down to a set where (4.21) is useful. Let

Y = (logn)1/4 and N3 = M(X)\M(Y ). By Lemma 4.4 and (4.18), when α ∈ N3

we have

|W2W3W4F5F6F7(α)| � F (0)q−H(1 + nβ)−Q,

where H = 1
2 + 1

3 + · · ·+ 1
15 − ε > 2.318 and Q = 3 + 1

5 + · · ·+ 1
15 . We have∫

N3

q−H(1 + nβ)−Qdα 6
∑
q6Y

q1−H
∫ ∞
Y/nq

dβ

(nβ)Q
+

∑
Y <q6X

q1−H
∫ X/nq

0

dβ

(1 + nβ)Q

� n−1Y 1−Q
∑
q6Y

qQ−H + n−1
∑

Y <q6X
q1−H

� n−1Y 2−H .

It follows that ∫
N3

|W2W3W4F5F6F7| � F (0)n−1(log n)−1/13.(4.29)

The major arcs are now small and few enough for the replacement of each fk
with the corresponding Wk for k > 5. When α ∈M(Y ), (4.21) gives

∆k(α)� n1/k(logn)−3/4.
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If µ denotes Lebesgue measure, then by (1.4) and (1.5), µ(M(Y )) � Y 2n−1 and
hence ∫

M(Y )

|∆k| � n1/k−1(logn)−1/4.(4.30)

Combining (4.30) with the trivial bounds fk � n1/k, Wk � n1/k yields

∫
M(Y )

W2W3W4F5F6F7(α)e(−nα)dα =

∫
M(Y )

W2W3 · · ·W15(α)e(−nα)dα

(4.31)

+O(F (0)n−1(logn)−1/4).

Gathering together (4.10), (4.23)–(4.26), (4.28), (4.29) and (4.31) yields∫ 1

0

F (α)e(−nα)dα =

∫
M(Y )

W2 · · ·W15(α)e(−nα)dα

+O(F (0)n−1(log n)−1/13).

(4.32)

In [Fo], only the generating functions for k = 2, 3, 4 and 6 were replaced by the
corresponding Wk. Because all of the fk have been replaced by the corresponding
Wk here, the remainder of the argument is greatly simplified.

Our next step is to modify the integral on the right side of (4.32), replacing the
integral over each major arc M(Y ; q, a) with an integral over [0, 1]. The idea is
that Wk(α, q, a) is small outside M(Y ; q, a). By (4.16) and (4.17),

∑
q6Y

∑
(a,q)=1

∫
[0,1]\M(Y ;q,a)

|W2 · · ·W15(α, q, a)| � F (0)
∑
q6Y

q1−H
∫ ∞
Y/qn

dβ

(nβ)Q

� F (0)n−1(log n)−1/13.

(4.33)

From the definition of Wk (see (4.11)–(4.13)), we have∑
q6Y

∑
(a,q)=1

∫ 1

0

W2W3 · · ·W15(α, q, a)e(−nα)dα = S(n, Y )I(n),(4.34)

where

S(n, Y ) =
∑
q6Y

A(n, q),(4.35)

A(n, q) =
1

q14

∑
(a,q)=1

S2S3 · · ·S15(q, a)e(−an/q),(4.36)

I(n) =
1

15!

∑
(4.37)

m
−1/2
2 m

−2/3
3 m

−3/4
4

15∏
k=5

%

(
logmk

k logR

)
m

1/k−1
k ,

n

2k
< mk 6 n (k = 2, 3, 4), Rk < mk 6 P kk (5 6 k 6 15),

n = m2 + · · ·+m15.
(4.37)
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Since the numbers

(
logmk

k logR

)
are uniformly bounded above, it is readily shown (see

[Va1], Theorem 2.3) that

I(n)� F (0)n−1.

In light of (4.32)–(4.34), it remains to show S(n, Y ) � 1. First, since A(n, q) is
multiplicative in q (see Lemma 2.11 of [Va1]), we have

S(n) :=
∞∑
q=1

A(n, q) =
∏
p

χp, χp =
∞∑
h=0

A(n, ph).

The estimate Sk(q, a)� q1−1/k (Theorem 4.2 of [Va1]) and (4.36) give

|S(n)−S(n, Y )| 6
∑
q>Y

|A(n, q)| �
∑
q>Y

q1−H � (log n)−1/13

and

|χp − 1| 6
∞∑
h=1

|A(n, ph)| � p1−H .(4.38)

We also have χp > p−65 by Lemma 6.4 of [Fo], and together with (4.38), this shows
that S(n)� 1, completing the proof of Theorem 1.

5. Further applications of the method

Define H(k) to be the smallest number s such that all large n admit a represen-
tation

n =
s∑
i=1

xi+k−1
i .

The existence of H(k) for every k was proved independently by Freiman [Fr] and
Scourfield [Sc]. They also established the bound

H(k)� k5 log2 k.

Although no explicit bound for H(3) has appeared in the literature, techniques
existing prior to the new iterative method (see, for example, [Br]) produce an
upper bound for H(3) above 200. We sketch proofs of the following two estimates.

Theorem 2. We have H(3) 6 72.

Theorem 3. We have H(k)� k2 log k.

The most critical estimate for the proof of Theorem 2 is the minor arc bound.
For 5 6 k 6 74, let

fk(α) =
∑

m∈A(Pk,R)

e(αmk).

For 3 6 k 6 4, let

fk(α) =
∑

Pk<m62Pk

e(αmk).

Set M = M(n1/3) and m = [0, 1]\M. Let F (α) = f3(α)f4(α) · · · f74(α) and let

F1 = f5f19f20 · · · f74, F2 = f4f6f7 · · · f18.
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By arguments similar to the proofs of Lemmas 4.1 and 4.2, we obtain∫ 1

0

|F1(α)|2dα� F 2
1 (0)n−0.914282,∫ 1

0

|F2(α)|2dα� F 2
2 (0)n−0.919198.

Combined with Weyl’s inequality and the Cauchy-Schwarz inequality, we have∫
m

|F (α)|dα 6 sup
α∈m

|f3(α)|
(∫ 1

0

|F1(α)|2dα
)1/2 (∫ 1

0

|F2(α)|2dα
)1/2

� F (0)n−1.000073.

As in the proof of Theorem 1, handling the major arcs requires a multi-stage pruning
process. As the methods are similar to those used in the proof of Theorem 1, we
suppress the details.

The proof of Theorem 3 depends on the strength of the new mean value theorems
(2.1) combined with the analysis of section 2, plus a bound for smooth Weyl sums
on minor arcs which is vastly superior to known minor arc bounds for classical Weyl
sums. Let

fh(α) =
∑

Ph<m62Ph

e(αmh) (k 6 h 6 9k),

fh(α) =
∑

m∈A(Ph,R)

e(αmh) (20k 6 h 6 r),

where r is defined below. Let M = M(n1/(25k)), m = [0, 1]\M, and set

F1 = fk · · · f9k F3 = f40k · · · fr,
F2 = f20k · · · f40k−1 F = F1F2F3.

For technical reasons relating to the range of validity of Theorem 1.4 of [Wo1] and
the strength of (4.19), the generating functions for 9k+1, . . . , 20k−1 are not used.

When k is large and h > 20k, Theorem 1.4 of [Wo1] implies

sup
α∈m

|fh(α)| � P
1−1/(3h log h)
h ,

whence

sup
α∈m

|F2(α)| � F2(0)n−1/(500k log k).(5.1)

By Theorem 2.1 of [Wo2], λ(k, s) 6 2s−k+ke1−2s/k when k > 4 and s is a positive
integer. Combined with (2.3), it is easily shown that

λ(k, s) 6 2s− k + 3ke−2s/k(5.2)

for all real s > 2. Now let h > 40k. By (5.2), there is a number M such that if
s = s(h) = h

2 (log k + log log k +M) (cf. (2.10)), then λ(h, s) 6 2s− h+ h
1000k log k .

Let r be the largest positive integer with

r−1∑
h=40k

1

2s(h)
< 1,
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and increase M so that
r∑

h=40k

1

2s(h)
= 1.

It readily follows that r � k2 log k. Applying Hölder’s inequality, we obtain∫ 1

0

|F3| 6
r∏

h=40k

(∫ 1

0

|fh|2s(h)

)1/(2s(h))

� F3(0)n−K ,(5.3)

where

K =
r∑

h=40k

1

2s(h)

(
1− λ(h, s(h))− 2s(h) + h

h

)
> 1− 1

1000k log k
.(5.4)

By (5.1), (5.3) and (5.4), it follows that∫
m

|F (α)|dα 6 F1(0) sup
α∈m

|F2(α)|
∫ 1

0

|F3(α)|dα

� F (0)n−1−1/(1000k log k).

Because we have a large number of classical Weyl sums comprising F1(α), the
contribution from the major arcs is easily handled by the methods of [Va1, Ch. 4]
without the necessity for any pruning.

Acknowledgement

The author wishes to thank Professor Heini Halberstam for his constant support
and encouragement. This work forms part of the author’s Ph.D. thesis for the
University of Illinois at Urbana-Champaign.

References
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