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THE MORDELL-LANG CONJECTURE

FOR FUNCTION FIELDS

EHUD HRUSHOVSKI

1. Introduction

In [La65], Lang formulated a hypothesis including as special cases the Mordell
conjecture concerning rational points on curves, and the Manin-Mumford conjec-
ture on torsion points of Abelian varieties. Sometimes generalized to semi-Abelian
varieties, and to positive characteristic, this has been called the Mordell-Lang con-
jecture; see [AV91] and [La91]. It is essentially a finiteness statement on the inter-
section of a subvariety of a semi-Abelian variety with a subgroup of finite rank. We
prove here the function-field version of the conjecture, in any characteristic.

In characteristic 0, the Mordell-Lang conjecture was proved in a sequence of
papers by Raynaud, Faltings and Vojta, at least in the case of Abelian varieties or
finitely generated groups. The full result was proved over number fields, and these
cases were inferred for function fields using a specialization argument; see [La91] for
a description. For Abelian varieties in characteristic 0, a quite different argument
was found by Buium; this inspired our approach. In positive characteristic, many
cases were proved in [AV91]. This paper presents a uniform proof incorporating
all cases, using model theoretic ideals. We describe the strategy following the
statement of the result (equivalent to the statement in [AV91]).

In this statement, and in the entire paper, we use the language of varieties rather
than schemes. We refer to the absolute Zariski topology unless otherwise stated,
and generally use terms in their geometric sense (over an algebraically closed field).

Let K/k be a field extension, k algebraically closed. Call a group Γ p′-finitely
generated if Qp ⊗ Γ is finitely generated as a Qp-module, where Qp = Q if p = 0,
and Qp = {m/n ∈ Q : n prime to p} if p > 0. This condition is of course valid for
finitely generated Abelian groups, and for prime-to-p-torsion groups. Recall that a
semi-Abelian variety is an extension of an Abelian variety by an algebraic torus.

Theorem 1.1. Let S be a semi-Abelian variety defined over K, and X a subvariety
of S. Let Γ be a p′-finitely generated subgroup of S. Suppose X ∩Γ is Zariski dense
in X. Then there exists a semi-Abelian variety S0 defined over k, a subvariety X0

of S0 defined over k, and a rational homomorphism h from a group subvariety of S
into S0, such that X is a translate of h−1(X0).

Call a subvariety of S satisfying the conclusion special. The theorem then states
that for any subvariety Z of S, Z ∩ Γ is contained in a finite union of special
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subvarieties of Z. (To see this, apply the theorem to the irreducible components X
of the Zariski closure of Z ∩ Γ.) If S is an Abelian variety with K/k trace 0, the
special subvarieties are just the cosets of Abelian subvarieties of S. In this case the
theorem reads as follows.

Corollary 1.2. Let k be an algebraically closed field, A an Abelian variety with
no nonzero homomorphic images defined over k, X a subvariety of A, and Γ a
p′-finitely generated subgroup of A. Then X(K)∩Γ = Y (K)∩Γ, where Y is a (re-
ducible) subvariety of X, equal to a finite union of translates of Abelian subvarieties
of A.

See also §6 for some quantitative statements, one in the presence of a discrete
valuation of K/k and hence a distance function, another giving an exponential
bound on the number of translates in 1.2 in terms of the rank of Γ (the other data
being fixed), in fixed positive characteristic.

We remark here that the characteristic zero geometric Mordell-Lang conjecture
can be deduced by specialization arguments from the positive characteristic case.
This was suggested in [La91], following the description of Voloch’s theorem; Lang
says one would need to know something on existence of ordinary specializations, but
that’s because of the ordinariness hypothesis in Voloch’s result, no longer present.
(Some other issues arising from the higher dimension and non-finite-generation
need to be addressed, but this can be done using methods of Neron and Raynaud.)
However we will not take this route, and will give a direct proof in characteristic
zero. The exponential growth with rk(Γ) alluded to above does not appear to
ascend to characteristic zero by this method.

Our opening move is taken from Buium ([Bu92]), who proved certain cases of
the theorem, including Corollary 1.2 in characteristic 0, using differential algebra.
A differential field should be regarded as an infinite-dimensional object, and in
particular an Abelian variety can no longer be viewed as finite-dimensional in an
absolute sense. However, using a homomorphism introduced by Manin ([Ma58],
[Ma63]), Buium points out that Γ is contained in a certain finite-dimensional group.
At this point he proceeds to use some of his theory of finite-dimensional Kolchin
closed groups (but also some analysis). Our proof uses instead the model theory of
abstract finite-dimensional groups (“groups of finite Morley rank”).

An algebraic structure (e.g. a group with a distinguished subset) is said to have
finite Morley dimension if one can assign an integer dimension to the “definable
subsets” so that certain natural conditions are satisfied. Such structures have been
analyzed, in the abstract, by model theorists, motivated initially by categoricity
questions. Examples are provided by algebraic varieties over an algebraically closed
field, with the usual dimension theory. However we apply the theory to the kernel of
the Manin homomorphism and certain related groups, that do not a priori carry the
structure of an algebraic variety. Following some reductions, we apply a general
dichotomy theorem of B. Zilber and the author. This theorem implies that an
enriched group satisfying the appropriate dimension-theoretic axioms is either a
module over a certain local ring, with no additional structure, or it carries the
structure of an algebraic group over an algebraically closed field. This dichotomy
leads to the two kinds of subvarieties mentioned implicitly in the theorem: group
subvarieties, and ones arising from varieties defined over the (algebraically closed)
constant field.
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In positive characteristic, we do not explicitly use differential algebra. We work
instead with fields K of some fixed finite dimension over Kp, endowed with a
distinguished basis for K/Kp. The role of the kernel of the Manin homomorphism
is played by the group p∞A(F ) of infinitely p-divisible points; F is a large field
that will be described below. It can be shown that for each n, there is a map
from A(F ) into a vector group over the truncated Witt vector ring Wn(F ) whose
kernel is pnA(F ) (up to finite index). We note that Manin asks in [Ma58] for a
positive characteristic analog of the Manin homomorphism. We are not certain if
we have found the “correct” analog. For us only the kernel p∞A(F ) plays a role;
we show in §2 that it has finite Morley dimension, and enjoys a dimension theory
as in the characteristic 0 case. Beyond this point, the proof is uniform in the
different characteristics. (Indeed it appears that the divergence in the proofs in the
different characteristics is due merely to an accident of the historical development
of model theory. Distinguishing a basis for K/Kp has the effect of fixing also a
stack of Hasse derivations. One expects that quantifier elimination and elimination
of imaginaries hold already in the differential language, without the distinguished
basis, and in this language the proof should become entirely uniform with respect
to the characteristic.)

We refer the reader to the short expository paper [NeP89] for basic model-
theoretic notions, and to [Sa72] for proofs. The paper [HZ] also contains a short
section summarizing some of the relevant definitions.

We proceed to describe sequentially the organization of the paper. We work
throughout in a universal domain F . If the characteristic is 0, F is a field with a
distinguished derivation. If it is p, F is a field with a distinguished p-basis (i.e. a
distinguished basis of F over F p); the basis is assumed finite, with pν elements. In
either case we make the following assumption:

(∗) Let F0 be a countable differential field (respectively, a countable field of
characteristic p with distinguished p-basis of size pν). Then F0 embeds into F
(preserving the derivation, or the p-basis). Moreover, any such embedding is unique,
up to an automorphism of F .

Such structures are called λ-saturated (λ > ω). They can be shown to exist by
standard model theoretic methods; see [Sa72] (§16, §40) and [Del88], or [RR75].
(They also enjoy strong uniqueness properties, whose discussion however would be
irrelevant here.) One immediate example of their usefulness for us is furnished by
the following observation. Whereas in general the group of infinitely-p-divisible
points of an Abelian variety over a separably closed field may be trivial, in the
saturated model the group is large, and reflects to a certain extent the properties
of the ambient Abelian variety.

In §2 we discuss the appropriate dimension theory, and describe a context in
which it applies, over separably closed fields. In particular we deduce that the
group of infinitely-p-divisible points mentioned above falls into this framework
(Lemma 2.15).

In §3 we state the main theorem in the language of differentially closed fields (fol-
lowing Buium’s lead), or in the language of separably closed fields (in characteristic
p > 0). We show that it implies Theorem 1.1 as stated.

In §4 we develop the required theory of Abelian groups of finite Morley dimen-
sion. The results of this section apply of course to commutative algebraic groups,
but the main issues dealt with here do not exist in that context. Better examples
may be found in the domain of complex tori; these can have some subquotients
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that are Abelian varieties and others that are not; the interaction between them,
in the general context, forms the subject of study of the section.

In §5 we prove the main theorem. It is here that we use the powerful results
from [HZ]. These results apply at or near dimension one, and it is the theory of §4
that permits the reduction to that level.

In §6 we give a quantitative variant of the result, conjectured by Voloch, in
the presence of a valuation and a corresponding local proximity function. In the
situation of Corollary 1.2, we show that the distance from a point of Γ to X can
be bounded in terms of its distance to Y .

I would like to thank Zoe Chatzidakis, Elisabeth Bouscaren, Anand Pillay, and
Carol Wood for their reading of this paper.

2. Thin types and Zariski geometries

The goal of this section is to introduce the various notions of finite dimension,
and to show that the types inside the kernel group admit a dimension theory of
the required type. The facts in characteristic 0 are largely classical model theory,
see e.g. [Sa72]. The fact that minimal types are Zariski in the sense below (after
removing a finite number of singularities) is shown in [HS]. Following the initial
definitions, we will therefore concentrate on characteristic p > 0.

We work in a universal domain U . acl denotes algebraic closure in the model
theoretic sense; so for countable X , acl(X) is the set of elements of U whose orbit
under Aut(U/X) is finite. dcl(X) is the set of elements definable over X , or the set
of elements of U fixed by Aut(U/X). If U is an algebraically closed field and 〈X〉
is the subfield generated by a subset X of U , then acl(X) is the algebraic closure
of 〈X〉 in U , and dcl(X) is the perfect closure of 〈X〉.

We need to lightly modify standard model theoretic usage in order to make the
language of Morley dimension apply in our context.

Definition 2.1. Let P be the solution set to a set of formulas of size ≤ λ, in a
λ+-saturated model. A definable subset of P is a set of the form D∩P , where D is a
definable set (perhaps with parameters outside P ). P is minimal if every definable
subset of P is finite or cofinite. Let B be any set over which P is defined; the
following notions are relative to B. If A is a small set of elements of P , let the rank
rkP (A) be the size of any maximal algebraically independent subset ofA. In general,

let rkP (A) = rkP (acl(A)∩P ). If q = tp(a1, . . . , am), let rkP (q) = rk({a1, . . . , am}).
If D is a definable or ∞-definable subset of Pn, define rkP (D) = max{rk(q) : q a
type in D}; an element of maximal rank of D is called generic. We omit P if its
identity is clear.
P is called pluriminimal if it is a finite union of minimal types. It is called semi-

minimal if there exists a minimal type Q and a finite set F such that P ⊆ acl(F,Q).
Similarly define semi-pluriminimal.

Morley dimension is defined recursively as follows. P is said to have dimension
−1 iff it is empty. P has dimension k if for some integer m, P cannot be split into
m+ 1 definable subsets none of which have dimension ≤ (k−1). The smallest such
m is called the Morley degree, or multiplicity, of P . (If U is an algebraically closed
field, this agrees with Zariski dimension.)

Lemma 2.2 (“internal Morley dimension”). Let P be minimal, and let D be a de-
finable subset of Pn of rank k. There exists an integer m = Mult(D) such that D
cannot be split into m+ 1 pairwise disjoint definable subsets of rank k.
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Proof. It suffices to show that there are only finitely many types q in D with
rk(q) = k. Let p[k] be the type of a generic k-tuple from P . For each subset s
of {1, . . . , n} of size k, consider the partial type qs(x1, . . . , xn) asserting that p[k]

holds of (xi : i ∈ s), (x1, . . . , xn) ∈ D, and each xi ∈ P . Let ai (i ∈ s) realize p[k].
Then there are only finitely many choices of ai (i /∈ s) such that (ai : i = 1, . . . , n)
realizes qs. For otherwise there would be such a choice (a1, . . . , an) with some aj
(j /∈ s) nonalgebraic over (ai : i ∈ s), so rk(a1, . . . , an) ≥ k + 1, contradicting
rk(D) = k. Thus each qs has only finitely many complete extensions. Since every
rank-k extension of D extends some qs, there are only finitely many of these.

The lemma shows that for definable subsets of Pn, dimension equals rank. (If
P is minimal.)

Definition 2.3. Let T be a theory with quantifier elimination and P a minimal
type. P is called Zariski if (i)–(iii) hold. (iii) is referred to as the “dimension
theorem”.

Call a subset of Pn closed if it is defined by a positive, quantifier-free formula.
Call it irreducible if it is not the union of two proper closed subsets.

(i) Every closed set in Pn is the union of finitely many closed, irreducible sets.
(ii) If X is a proper subset of Y , both closed subsets of Pn, and Y is irreducible,

then rk(X) < rk(Y ).
(iii) If X is a closed, irreducible subset of Pn, rk(X) = m, and Y is a diagonal

xi = xj , then X ∩ Y is the union of closed irreducible sets of dimension at least
m− 1.

Remark 2.4. Under these conditions, the collection of closed sets of Pn defines a
Noetherian topology, and the dimension of a closed set with respect to this topology
equals its rank. For every definable set Y there exists a proper closed subset F of
cl(Y ) such that Y − F = cl(Y )− F .

Proof. The first statement is clear: given an infinite descending chain of closed sets,
the first can be assumed irreducible, hence the second has smaller rank, beginning
an infinite descent of ranks. If X is irreducible, of rank k, one shows dim(X) ≥ k
by induction on k : X has a subset of rank k − 1; this subset can be chosen closed,
irreducible, hence by induction has dimension k− 1, so X has dimension ≥ k. The
other inequality is immediate from (ii). For the final statement, note that Y is a
finite union of sets Yi = Hi − Fi, with Hi closed irreducible and Fi a proper closed
subset. We may assume Y is not the union of fewer of these. Let H =

⋃
iHi,

F =
⋃
i Fi. Then cl(Y ) = H; and some Hi is not contained in any other Hj , hence

not in Fi, and being irreducible, not in F . Thus F is a proper subset of H, and
H − F ⊆ Y .

Lemma 2.5. Let T be a stable theory with a minimal type P . Assume P is Zariski
and not locally modular. Then T interprets a field F , with definable subfields Fα,
such that

⋂
α Fα is minimal, and nonorthogonal to P .

Proof. This is proved in [HZ] when P is strongly minimal (i.e. it is the solution set
of a single formula), but the proof goes through, and gives a type-definable field
F ∗, minimal and nonorthogonal to P . By [Hr90], there exists a definable field F
and definable subfields Fα, such that

⋂
α Fα = F ∗.

We require here only the results of §6 of [HZ]. This section is written largely
axiomatically, the axioms having been proved in §4 and §5. At the end of this
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section (2.20), we will indicate how one can shortcut this and directly prove the
axioms in the present contex.

2.6 Conventions on separably closed fields. Let T (p, ν) be the theory of sep-
arably closed fields F of charp > 0, of finite dimension pν over F p. (ν is the Ersov
invariant.) We endow F with a basis e1, . . . , epν of F over F p. The language is the
language of rings with pν distinguished constants, for the ei, as well as function
symbols for certain definable functions λn, described in 2.7(a) below. We work in
a universal domain U = F for this theory (a countably saturated model). The
notions of substructure and algebraic closure will be relative to F , in this language.

Usually we will denote algebraic varieties defined over F by an underlined capital
letter, such as V , and the group of F -points of V by V . We often implicitly assume
that V is given with an affine chart, and so we discuss coordinates of elements of
V ; in particular the set of F -points makes sense. We can also apply the Frobenius
to V . The variety obtained in this way will be denoted FrV . If V is a definable
group, the set of p-th powers of elements of V will be denoted V p. [V ]p denotes
the set of p-tuples from V . When there is no danger of confusion with the previous
two meanings, we revert to the notation V p. T (p, ν) admits quantifier elimination
and elimination of imaginaries (see [Del88]).

Fact 2.7 ([Del88]). In T (p, ν) there exist (basic) definable functions λn : F → F p
νn

with the following properties:

(a) λn is the inverse of the bijective morphism r(x1, . . . , xpνn) =
∑
xp

n

i en,i for

some designated basis {en,i} of F over F p
n

. In particular, λn = rn ◦ λn+1 for a

certain polynomial function rn : [F ]p
ν(n+1) → [F ]p

νn

.
(b) Any atomically definable subset of [F ]k is, for some n, the pullback by λ−1

n

of some (possibly reducible) subvariety U of [F p
νn

]k. Let dclf (X) denote the field
generated by X ∪ {e1, . . . , epν}, and aclf (X) the relative field-theoretic algebraic
closure of dclf (X) in the field F .

(c) If a ∈ acl(b1, . . . , bd), then a ∈ aclf ({λnbi : i ≤ d, n <∞}).
(d) If a ∈ dcl(b1, . . . , bd), then a ∈ dclf ({λnbi : i ≤ d, n <∞}).

Proof. (c) aclf ({λnbi : i ≤ d, n < ∞}) is an elementary substructure of F , so it is
(model-theoretically) algebraically closed.

(d) Suppose a ∈ dcl(b1, . . . , bd). Let k = dclf ({λnbi : i ≤ d, n <∞}). Note that
k is a perfect field. The separable closure ks of k is an elementary submodel of F ,
so a ∈ ks, and every automorphism of ks fixing k also fixes a. Hence a ∈ k.

Definition 2.8. tp(c/B) is (k-)thin if dcl(c, B) is a field extension of dcl(B) of
finite transcendence degree (at most k).

Lemma 2.9. Let K be a countable subfield of F,K = dcl(K). tp(a/K) is k-thin
iff the following condition holds:

(∗) for all powers q of p = char(F ) there exists a subfield L of F containing K
and of transcendence degree ≤ k over K, such that a ∈ KLq.

Proof. If tp(a/K) is k-thin, given q = pn, let L = K(λn(a)). Then since each basis
element of F/F q lies in K, a ∈ KLq. For the converse, we require a claim.

Claim. If a ∈ KLq and q = pn+m, then each coordinate of λn(a) is in KLp
m

.
Proof. We have a = f(b)/g(b), where f, g ∈ K[X ], a polynomial ring, and b is

from Lq. Let c ∈ Lpm be such that cp
n

= b. We can write a = f(b)g(b)p
n−1

/g(b)p
n

,
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so we may assume g ∈ K[X ]p
n

. Let {ei} be the chosen basis for F/F p
n

, and write

f =
∑
eif

[pn]
i , where fi ∈ F [X ] and f

[pn]
i is the result of taking the pn-th power of

each coefficient. Since K = dcl(K), fi ∈ K[X ] for each i. Clearly

λn(a) = λn(f(b))/g(b) = λn
(∑

eif
[pn]
i (cp

n

)
)
/g(b)

= λn
(∑

eifi(c)
pn
)
/g(b) = (f1(c)/g(b), . . . , fpνn(c)/g(b)).

Evidently all the coordinates are in KLp
m

.
Now if (∗) holds, let Ln witness (∗) for q = pn. Then tr deg(dcl(a)/K) =

sup tr degK(λn(a))/K ≤ tr degLn/K ≤ k.

Lemma 2.10. (i) If tp(a/K) is k-thin, K ⊆ K ′, then tp(a/K ′) is k-thin.
(ii) If tp(ai/K) is ki-thin, a ∈ aclf (a1, . . . , am), k =

∑
ki, then tp(a/K) is

k-thin.
(iii) If tp(a/K) is k-thin, then so is tp(λna/K).
(iv) If tp(ai/K) is ki-thin, a ∈ acl(a1, . . . , am), k =

∑
ki, then tp(a/K) is

k-thin.

Proof. (i), (ii), (iii) are clear. (iv) follows from (ii), (iii), and (c) of Fact 2.7.

Recall the definition of U(a/B) ([Las]). We say that U(a/B) = 0 if a ∈ acl(B);
U(a/B) ≤ n + 1 if for all B′ containing B such that a forks with B′ over B,
U(a/B′) ≤ n; U(a/B) = n if it is ≤ n but not ≤ (n − 1). In the present context,
“a forks with B′ over B” means that dcl(a,B) is not free from dcl(B′) over dcl(B);
see [Del88]. Note that U(a/B) = 1 iff tp(a/ acl(B)) is minimal.

Lemma 2.11. If tp(a/B) is k-thin, then U(a/B) ≤ k.

Proof. By induction on k, this is immediate from the above definitions.

Proposition 2.12. A thin minimal type in T (p, ν) is Zariski.

Proof. The assumption here is that the type is complete over some base substruc-
ture K.

The first claim takes place over an algebraically closed field.

Claim 2.12.1. Let U, V be irreducible smooth varieties of the same dimension, and
f : U → V a finite rational map (defined everywhere on U). Let C be a closed
irreducible subset of V n. Then all components of f−1C have the same dimension
(equal to dim(C)).

Proof. The induced map f : Un → V n satisfies the same assumptions as f , so we
may assume n = 1. Note that the graph F of f is a closed irreducible subset of
U×V (because we have a surjective rational map from U to F ). f−1C is isomorphic
to F ∩ (U ×C). Let X be a component of F ∩ (U ×C). By the dimension theorem
on U × V ,

dimX ≥ dimF + dim(U × C)− dim(U × V )

= dim(U) + dim(U) + dim(C) − 2 dim(U) = dim(C).

On the other hand the projection is a finite map from X to C, so dimX ≤ dimC.
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We now work in a universal domain for T (p, ν). Using elimination of imaginaries
and the existence of a definable pairing function, it suffices to consider 1-types. Let
P be a 1-type over K, K an algebraically closed, countable substructure of the
universal domain.

Let Pn be the Zariski closure of λnP , a subvariety of [F ]p
νn

. rn maps Pn+1 to
Pn. Since P is thin, for large enough n, say n ≥ N#, rn is finite-to-one above
some Zariski open subset P ∗n of Pn. We may choose P ∗n smooth; and by defining
P ∗n inductively, we can arrange that rn carries P ∗n+1 into P ∗n . Let e = dimPn for

large n. If U ⊆ P kn , write λ∗nU for {x ∈ P k : λnx ∈ U}, where λn(x1, . . . , xk) =
(λnx1, . . . , λnxk).

Let X be a closed subset of P k. We will show that (i) of the definition of Zariski
geometry holds by induction on rk(X). Let Xn be the Zariski closure in [Pn]k of
λnX . Then for all large enough n, X = λ∗nXn.

Claim 2.12.2. dim(Xn) = e · rk(X) for large n. (More specifically, for any n ≥ N#
such that X = λ∗nXn.)

Proof. Let (a1, . . . , ak) be a point of X , of rankd = rk(X). Say a1, . . . , ad are
algebraically independent, so a ∈ acl(a1, . . . , ad). By (c), for all k and j, λkaj ∈
aclf ({λnai : i ≤ d, n < ∞}). But since P is thin, for some N#, aclf ({λnai :
n < ∞}) = aclf (λN#ai). Thus for n ≥ N#, λnai ∈ aclf (λna1, . . . , λnad). Since
this holds for any (a1, . . . , ak) ∈ X , by compactness it holds in one of a finite
number of ways, and so persists to the Zariski closure: yi ∈ aclf (y1, . . . , yd) for any
(y1, . . . , yk) in the Zariski closure Xn of λnX , after some permutation of indices.
Thus dimXn ≤ d · dim(Pn). On the other hand for i ≤ d, the algebraic locus of
λnai over {λna1, . . . , λnai−1} contains λnb for all but finitely many b ∈ P ; hence it
equals Pn. Thus

dimXn = d · dim(Pn) = de = e · rk(X).

We consider only n ≥ N#. Write Xn = Xn(1) ∪ · · · ∪ Xn(mn) ∪ Yn, where
Xn(i) are the distinct components of Xn of dimension de. Let X(n; i) = λ∗nXn(i).
Then Xn(i) is the Zariski closure of λnX(n; i). By 2.12.2 applied to X(n; i), we
have rkX(n; i) = dimXn(i)/e = rk(X). Similarly the intersection of X(n; i) with
X(n; i′) (i 6= i′) has smaller rank. By Lemma 2.2, the number mn is bounded
independently of n. By Claim 1, r−1

n Xn(i) is a union of some of the components
Xn+1(j). So mn is nondecreasing with n; so for n above some N∗ (≥ N#) it
reaches a constant maximum m∗. It follows that for n ≥ N∗, r−1

n Xn(i) equals some
Xn+1(j); we recursively renumber so that r−1

n Xn(i) = Xn+1(i). So X(N∗; i) =

X(N∗+ 1; i) = · · · def
= X(i). Let Y = λ∗N∗YN∗ . Then X = X(1)∪ · · · ∪X(m∗)∪ Y ,

Y is closed of rank smaller than rk(X), and X(i) is closed of rank equal to rk(X).
It remains only to show that X(i) is irreducible. Suppose X(i) = U ∪V , with U, V
closed. Pick n ≥ N∗ such that U = λ∗nUn, V = λ∗nVn, with Un, Vn the Zariski
closures in P ∗kn of λnU , λnV respectively. Then Xn(i) = Un ∪ Vn. Since Xn(i) is
irreducible, it equals one of them; say Xn(i) = Un. Then in [P ]k,

Xi = λ∗nXn(i) = λ∗nUn = U.

We have shown that any closed set X is a finite union of irreducible components.
Further the proof showed that if X is irreducible, then X = λ∗nXn for large n, where
Xn is Zariski closed and irreducible of dimension e · rk(X). So if Y is irreducible,
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and X is a proper subset of Y , then (with the parallel notation) Xn must be a
proper subset of Yn, so e · rk(X) < e · rk(Y ), and rk(X) < rk(Y ).

It remains to prove the “dimension theorem” 2.3(iii). Let X,X ′ be closed irre-
ducible subsets of P k, rkX = d, rkX ′ = d′, and let Y be a component of X ∩X ′.
We must show: rkY ≥ d+ d′ − k. Let the notation Xn, X

′
n, etc. be as above, and

let n be large. Let Yn# be the component of Xn ∩X ′n containing λnY . We have
dim(Xn) = de, dim(X ′n) = d′e. By the dimension theorem for the ke-dimensional
smooth algebraic variety P ∗kn ,

dimYn# ≥ de+ d′e− ke = e(d+ d′ − k).

Evidently r−1
n Yn# = Yn+1#. Hence dimYn# is nondecreasing with n, so we choose

n large enough that dimYn# = dim YN# for N ≥ n. However, we do not yet know
that λnY is Zariski dense in Yn#. (And this would not be true without thinness.)
The problem may arise that for generic c in Yn#, for some q = pl and some
polynomials fi over K,

∑
fi(c)

qel,i = 0; in this case, every F -point c′ of Yn# must
also satisfy fi(c

′) = 0 for each i, and this may force c′ to lie on a proper subvariety
of Cn. To rule out this scenario we apply Claim 2 again.

Let X be a set of variables appropriate for describing elements of P kn ; X =
(X1, . . . , Xk) where each Xi = Xi,1, . . . , Xi,pn . Let I#, I, I ′ denote the ideals of
K[X ] vanishing on Yn#, Xn, X

′
n respectively.

Claim 2.12.3. If
∑
f qi el,i ∈ I(Yn#), then fi ∈ I(Yn#) for each i.

Proof. I# is one of the prime components of
√

(I + I ′), so there exists h /∈ I# and
an integer s such that (h(

∑
f qi el,i))

s ∈ I + I ′. By enlarging s, we may assume it

is a power of p. Replacing q by qs, h by hs, and l by l′ (where pl
′

= qs), we may
assume s = 1 (note that esl,i are some of the el′,j). Multiplying by hq−1 we have

hq(
∑
f qi el,i) ∈ I + I ′, so

∑
(fih)qel,i ∈ I + I ′. Now if we show that fih ∈ I# for

each i, then also fi ∈ I#, as I# is a prime ideal. Thus we may take h = 1. So∑
f qi el,i ∈ I + I ′. Say
(i)
∑
f qi el,i = g + g′, g ∈ I, g′ ∈ I ′.

At this point we make a change of variables. Let N = n + l, and let r =
rnrn+1 · · · rN−1, so that λn = rλN . Let Y = (Y1, . . . , YpN ) be a set of variables
appropriate for elements of PN . Let r∗ : K[X ] → K[Y ] be dual to r; it carries
K[X ] into K[Y q]. Since r takes XN into Xn, r

∗ takes I into I(XN ), and similarly
I ′ into I(X ′N ). Thus r∗(g) ∈ I(XN ), r∗(g′) ∈ I(X ′N ). We have:

(ii)
∑
r∗(fi)

qel,i = r∗(g) + r∗(g′).
Now we can decompose r∗(g) =

∑
el,iHi, with Hi ∈ Kq[Y ]. Since r∗(g) is in

K[Y q], so is each Hi; so we may write r∗(g) =
∑
el,ih

q
i , with hi ∈ K[Y ]. Similarly

r∗(g′) =
∑
el,ih

′q
i . Since r∗(g) ∈ I(XN ), and λN (X) is Zariski dense in Xn, we

have hi ∈ I(XN ) for each i (as was argued above). Similarly r∗(g′) =
∑
el,ih

′q
i ,

with h′i ∈ I(X ′N ). Now
(iii)

∑
r∗(fi)

qel,i =
∑

(hi + h′i)
qel,i.

Comparing coefficients of each monomial and using the fact that the el,i are
linearly independent over Kq, this equality of polynomials implies that r∗(fi) =
hi + h′i for each i. Thus r∗(fi) ∈ I(XN ) + I(X ′N ) ⊆ I(YN#). But dim(YN#) =
dim(Yn#), and r is generically finite-to-one, so rYN# is Zariski dense in Yn#. Thus
r∗ induces a 1-1 map from K[X ]/I(Yn#) to K[Y ]/I(YN#), so r∗(fi) ∈ I(YN#)
implies fi ∈ I(Yn)# = I#. This finishes the proof of the claim.
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It follows from the claim that λn(Y ) is Zariski dense in Yn#, so Yn# = Yn, and
rk(Y ) · e = dim(Yn) = dim(Yn#) ≥ e(d+ d′− k), so rk(Y ) ≥ d+ d′− k, as required
by the dimension theorem.

Corollary 2.13. Let T (p, ν) be the theory of separably closed fields F of char p > 0,
Ersov invariant ν <∞. Let P be a minimal thin type in T (p, ν). If P is not locally
modular, then P is nonorthogonal to F p

∞
=
⋂
{F q: q a power of p}.

Proof. By [Wood79] T (p, ν) is stable. By Lemma 2.5 we may assume P =
⋂
n Pn,

where Pn is a subfield of some definable field K. By [Mes], 3.6, K is definably
isomorphic to a finite extension of F , hence is a subfield of F 1/q for some q. So we
may assume K is a subfield of F . By [Mes], 3.1, each Pn contains some F q. Hence
P contains F p

∞
. Since P is minimal, P = F p

∞
.

By an ∞-definable subgroup of a group G we will mean the intersection of
countably many definable subgroups. A result from [Hr90] (mentioned above for
fields) states that an∞-definable subset, which is also a subgroup, is an∞-definable
subgroup in this sense.

Remark 2.14. The following will emerge in §5: Let F be a saturated model of
T (p, ν). Let G be a connected algebraic group defined over F , G = G(F ), and
A an ∞-definable subgroup of G. Assume A has no proper nontrivial definable
subgroups, and has thin generic type. Then either A is minimal and locally modular,
or G is isogenous (as an algebraic group) to a group H defined over F p

∞
, by an

isomorphism carrying A to H(F p
∞

).

Let F be a saturated separably closed field. The following lemma shows (us-
ing 2.12) that the group of infinitely-divisible points of a commutative algebraic
group over F has finite Morley dimension.

Lemma 2.15. Let G be a k-dimensional commutative algebraic group defined over
F , G = G(F ). Let A = p∞G =

⋂
n p

nG. Then any generic type of A is k-thin.

Proof. Say A is defined over K = dcl(K). Let a ∈ A. Given q = pn, let a = qb
with b ∈ G. By Weil’s theorem on symmetric functions, a ∈ K(bq) (this is in fact
just the content of Lemma 4 in Chapter 1 of [Weil48]). This proves the criterion of
Lemma 2.9.

The following lemmas will inform the ensuing discussion but will not be explicitly
used; they are included here in order to clarify the picture.

Lemma 2.16. Let G be a simple Abelian variety defined over F , but not isomorphic
to one defined over F p

∞
. Let G = G(F ) and A = p∞G. Then A has no proper

infinite definable subgroups.

Proof. We work over a relatively algebraically closed substructure, over which G is
defined. Let e = dim(G). It suffices to show that A is contained in every infinite
definable subgroup of G. Let H be such a definable subgroup. Let Gn = λnG, and
let Hn be the Zariski closure of λnH. Then for large enough n, H = G∩λ−1

n Hn(F ).
We will say something about F,G,A, and H in turn.

Let K = F p
−n

. Then K = F [ep
−n

1 , . . . , ep
−n

ν ]. Let F be the algebraic closure

of F , and let R be the ring F [ep
−n

1 , . . . , ep
−n

ν ]. Then R can be viewed as an affine
algebraic ring, andK as the set of F -rational points ofR. Note thatR is isomorphic,

over F , to F [u1, . . . , uν ], where the ui are commuting infinitesimals: up
n

i = 0.
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By taking pn-th roots of points of λnG, we identify λnG with the set of K-
points of G1 = Fr−n(G). Viewing K as R(F ) as above, we see that λnG can be
identified with G1(R(F )). Now the “composition” G2 = G1(R) is another group
scheme, and since R(F ) is isomorphic to F [u1, . . . , uν ], G2 is an extension of G1

by a commutative unipotent group Gu. Let G3 be the closed subgroup of p∞G2.
Then G3 meets Gu in a finite group. Hence G3 is isogenous to G1 (over F ). So G3

is a simple Abelian variety of dimension e.
Let An be the Zariski closure of λn(A). Then λn(A) ⊆ pAn, so pAn = An, and

hence An ⊆ p∞G2(F ) = G3(F ). Since G3 is simple, An = G3.
It follows that Hn ∩ An is finite, or else Hn contains An. In the first case, H

contains only finitely many pn-th powers. In particular Hpn is finite. Since the
pn-torsion points of G are finite in number, H is finite; a contradiction. So Hn

contains An, hence H = G ∩ λ−1
n Hn(F ) contains A.

Notation. G[q] = {x ∈ G : qx = 0}.

Lemma 2.17. Let G be a commutative algebraic group, and A an∞-definable sub-
group of G = G(F ) of finite Morley dimension, or just: with no properly descending
sequence of definable subgroups. Then A ⊆ p∞G+G[pn] for some n.

Proof. The chain of subgroups A ∩ pnG must stabilize. So A ∩ pnG = A ∩ p∞G
for some n. Hence if a ∈ A, then pna ∈ p∞G. Using saturation of F , p∞G is
p-divisible; so pna = pnb for some b ∈ p∞G. Thus pn(a− b) = 0, so a− b ∈ G[pn],
and a = b+ (a− b).

Lemma 2.18. Let G be a connected algebraic group defined over F , G = G(F ).
Then G is connected.

Proof. Let H be a definable subgroup of G of finite index. Let Gn = λnG; then Gn
can be endowed with a group structure in such a way that λn is an isomorphism; and
Gn = Gn(F ), where Gn is an algebraic group, isomorphic over F a to a power of G.
Let Hn be the Zariski closure of λnH. Then for large enough n,H = G∩λ−1

n Hn(F ).
λnH has finite index in λnG, hence Hn has finite index in Gn. But Gn is connected;
so Hn = Gn, and H = G.

Remark 2.19. Let G be a simple Abelian variety, defined over F , not isomorphic
to one defined over F p

∞
, G = G(F ). Let A = p∞G. In 2.15 we showed that A has

finite Morley dimension, and in 2.16 that A is minimal as a group. This suggests
that dim(A) = 1. This will indeed be shown in §5 as a consequence of modularity;
we do not know a direct proof.

2.20 Guide to §6 of [HZ]. This is intended for the reader who wishes to obtain 2.5
as efficiently as possible, reading only §6 of [HZ] and one preceding page. §6.1 is
motivation and includes no results. §6.2 is written for minimal types of stable
theories, and can be read directly. In §6.3 one assumes in addition a notion of
specialization and of a regular specialization between tuples of elements of the
minimal type, satisfying certain axioms. We will immediately give a definition of
these that may be used when D is a thin type in a separably closed field. In Lemmas
6.8 and 6.10, using §6.2, one obtains an Abelian group of dimension one. Then 6.9
and 6.11 work with the group elements and provide the required field.

The group obtained is again a thin type of U -rank one in a separably closed
field, and so the same definitions and axioms of specialization may be used. The
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dimension theorem 2.3(iii) has been proved only for complete types P . However,
if D is an ∞-definable group of dimension one, one may choose a complete type P
contained in D, and a generic element a of P ; then D is covered by P and (P + a),
translation by a gives a homeomorphism in every dimension, and the dimension
theorem thus holds in P and P + a and hence in D.

It remains to define the notion of specialization and regular specialization, and
prove the axioms used in §6.3 of [HZ]. Let D be a thin type in a separably closed
field; we suppose D is either a complete type over some base set, or else an ∞-
definable group of dimension one. The notion of closed set used in this section
gives rise to one specialization: a → b if b lies in every 0-definable closed set in
which a lies. We can also describe this directly. Given an element a of Dn, write
λa for the sequence (a, λ1a, λ2a, . . . ). We write a → b if λa specializes to λb in
the ordinary field-theoretic sense. In other words, any polynomial with coefficients
in the base field vanishing on any λna, also vanishes on λnb; or again, λnb is an
element of the locus of λna. We say that the specialization is regular if for each
n, λnb is a nonsingular point on the locus of λna.

We now indicate the proof of the axioms 6.6 of [HZ].
(1) is trivial.
(2) follows from the same fact in algebraically closed fields, applied to λa, λb.
(3) This follows from 2.3(iii): a′ is any generic point of the component of the

intersection of locus(a) with the diagonal x(1) = x(2) containing the locus of a′′.
(4) and (5) require reading the page preceding §6, starting with the definition

of “good” specialization. The amalgamation Lemma 5.14 in [HZ] for regular spe-
cializations follows from the same lemma in the case of algebraically closed fields,
applied to λa, λb, etc. Observe that amalgamating two fields over a (λ-closed) sub-
structure of a separably closed field can never create inseparability. Now follow the
proof of 5.14 for good specializations, and of 5.15 in [HZ]

(6) This states that the graph of addition is closed; indeed by results from [Hr90]
or [Mes], addition can be taken to be given locally by rational functions.

(7) The first statement follows from the fact that a product of smooth varieties
is smooth. For the second let a be a generic point of D and a′ any point of D;
we need to know that λna

′ is a nonsingular point of the locus of a. In case D is a
complete type, a′ must also be generic, so this is trivial. In case D carries a group
structure, all points on the locus are smooth.

3. Manin’s homomorphism and Buium’s reduction

In this section we show that the main Theorem follows from a slightly different
version, in which Γ is replaced by a certain definable subgroup. For Abelian varieties
in characteristic 0, this was observed by Buium, and forms the basis of his approach
in [Bu92], [Bu93].

We work in a universal domain F for differential fields of characteristic 0, or for
fields with a distinguished p-basis {ei}i=1,...,pν . Definable or ∞-definable sets are
understood in the sense of F , as is Morley dimension, etc.

We will eventually prove:

Theorem 5.9. Let K be either a separably closed field of characteristic p > 0, with
a finite p-basis fixed, or a differentially closed field of char 0. Let k =

⋂
nK

pn if
p > 0, k = {x : Dx = 0} if the characteristic is 0. Let S be a semi-Abelian variety
defined over K, X a subvariety, S = S(K), X = X(K), and let Γn (n = 1, 2, . . . )
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be a descending sequence of definable subgroups of S, such that
⋂
n Γn(F ) has finite

dimension. Assume that for each n, for some coset Cn of Γn, X ∩ Cn is Zariski
dense in X. Then there exists a semi-Abelian variety S0 defined over k, a subvariety
X0 of S0 defined over k, and a rational homomorphism h from a group subvariety
of S into S0, such that X = h−1(X0) + c for some c.

We now argue that this is sufficient. Let S,X, k,Γ be as in 1.1. We choose a
finitely generated field extension L of k, such that S,X and some p′-generators of Γ
are defined over L. In characteristic p, [L : Lp] is finite, and

⋂
n L

pn = k. The same
remains true for the separable closure K of L. In characteristic 0, we endow L with
a differential structure over k such that k is the field of constants, and we let K
be a differential closure. It remains only to replace Γ by an appropriate definable
subgroup.

In characteristic 0 we use:

Lemma 3.1. Let S be a semi-Abelian variety defined over F . Let Γ be a p′-finitely-
generated subgroup of S. Then there exists a subgroup of S of finite dimension
containing Γ.

Proof. This is proved in [Bu93] for Abelian varieties; the proof goes through in the
semi-Abelian case.

In characteristic p, we let Γn = pnS(K). The fact that the intersection of the
groups Γn has finite dimension was shown in the previous section. If Γ is a p′-
finitely generated subgroup of S(K), then (Γ/pnΓ) is finite, so Γ meets only finitely
many cosets of Γn. Hence some coset of Γn meets X in a Zariski dense set.

In either case, 1.1 follows from 5.9.

4. Abelian groups of finite Morley dimension

We work in this section with the category of∞-definable groups and morphisms
within some saturated stable structure C. All groups are assumed to have finite
Morley dimension.

A groupG of finite Morley dimension always has a maximal connected semi-pluri-
minimal subgroup S1(G). For algebraic groups, we always have S1(G) = G0 (the
connected component). In general this fails however. In Proposition 4.3 we show
how to reduce certain questions about definable subsets of G to similar questions in
S1(G) and in proper quotients of G; for example, a definable subset of G containing
no cosets of infinite subgroups of G is contained in finitely many cosets of S1(G).
We then proceed to analyze semi-pluriminimal groups; they are an “almost” direct
sum of pairwise orthogonal definable subgroups, each of which is semi-minimal.

Certain basic notions of algebraic groups generalize to the present context; one
must give definitions that do not rely on the Zariski topology, but only on dimension
theory for constructible sets. The definitions and facts in 4.0 are due to Zilber and
Poizat; see [NeP89].

Definition 4.0. (a) An ∞-definable group G is connected if it has no definable
subgroups of finite index.

(b) Let G be an∞-definable group, and X a definable subset of G. The stabilizer
Stab(X) is

{g ∈ G : dim((X − gX) ∪ (gX −X)) < dim(X)}.
It is a definable subset of G.
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(c) An ∞-definable subset X of G is indecomposable if whenever X is contained
in a finite union of cosets of a definable subgroup H of G, it is contained in a single
coset. If X is a complete type of degree 1, then it is indecomposable. If X is
indecomposable, then the coset generated by it is generated in finitely many steps.

Definition 4.1. Let G be an Abelian group, ∞-definable over a base set B, and
X a definable set over B. G is X-rigid if every connected definable subgroup of
G can be defined over a set C independent from X(C) over B. G is rigid if every
connected definable subgroup is defined over acl(B). Equivalently, every connected
definable subgroup is defined over some fixed countable set. G is strongly rigid if
the same holds for arbitrary (not necessarily connected) subgroups.

Definition 4.2 (of “full” orthogonality of two ∞-definable sets X,Y ). X,Y are
orthogonal if for any algebraically closed B ⊆ Ceq with X,Y defined over B, any
b ∈ X and any c ∈ Y , tp(b/B) ∪ tp(c/B) implies tp(bc/B).

In our applications of 4.3 below, A will be the maximal connected semi-pluri-
strongly minimal subgroup of G, and will be strongly rigid.

Proposition 4.3. Let G be an Abelian group of finite Morley dimension, A a non-
trivial connected definable subgroup, and X an (∞-) definable subset of G of mul-
tiplicity 1. Assume:

(i) A is G/A-rigid.
(ii) There is no definable group A′ ⊃ A with A′/A infinite and A′ ⊆ acl(Y,A,C)

for some minimal Y and finite C.
(iii) Stab(X) ∩A is finite.

Then X is contained in a single coset of A, up to a set of smaller dimension.

Proof. We may assume G,A,X are 0-definable. It is convenient to replace X by
the corresponding complete type, i.e. to remove from X all 0-definable subsets of
X of smaller rank. So we must now show that X is contained in a single coset of
A. Let θ : G → G/A be the canonical homomorphism, and let X/A = θ(X). For
b ∈ (X/A), let A(b) = θ−1(b), a coset of A.

Let b be an element of X/A. Then X ∩A(b) 6= ∅. Let U be a nonempty subset of
A(b), defined over {b} ∪A, of least possible dimension and multiplicity. For c ∈ A,
we can consider the translate U + c of U within A(b). Then (U + c) ∩ U is defined
over {b}∪A. Necessarily either U ∩ (U + c) or U − (U + c) has smaller dimension or
multiplicity than U ; so one of them is empty. It follows that U is a coset of some
subgroup K of A (namely K = {c ∈ A : U = U + c}). By considering intersections
of U with A-translates of X , we see that every A-translate of U meets X trivially
or is contained in X ; so X ∩A(b) is K-invariant.

By the rigidity assumption, Ko is defined over a set F0 orthogonal to G/A; so
b remains a generic element of X/A over F0. Thus X ∩ A(b′) is invariant under
translation by Ko, for generic b′ ∈ (X/A). So Ko ⊆ Stab(X). By (iii), K is finite.

Since U is a coset of K, it is also finite. Recalling that U is defined over {b}∪A,
we have U ⊆ acl(b, A). Every element of A(b) has the form a+ x for some a ∈ A,
x ∈ U , so A(b) ⊆ acl(b, A).

If rk(b/F0) = 0, then X/A is finite, and having multiplicity 1, it consists of a
single element; in other words X is contained in a single coset. Otherwise, we will
get a contradiction. Increase F0 to F1 so that rk(b/F1) = 1, and let Y be the
locus of b over F1, and X ′ = {x ∈ X : x + A ∈ Y }. Then A(b) ⊆ acl(b, A) for
b ∈ Y , so X ′ ⊆ acl(Y ∪ A). By the indecomposability theorem, for some finite



THE MORDELL-LANG CONJECTURE 681

m, {
∑
niyi : (y1, . . . , ym) ∈ Y m, (n1, . . . , nm) ∈ Zm,

∑
i ni = 0} is a subgroup of

G/A. So {a+
∑
nibi : a ∈ A, (b1, . . . , bm) ∈ X ′m, (n1, . . . , nm) ∈ Zm,

∑
i ni = 0}

is a subgroup of G, and evidently it contains A and is contained in dcl(A ∪X ′) ⊆
acl(Y ∪A). This contradicts assumption (ii).

Various formulations of this proposition lift easily to the superstable context.
We include a variation using full orthogonality, though it will not be used for the
proof of the main theorem.

Proposition 4.4. Let G be an Abelian group of finite Morley dimension, X a de-
finable subset of G, and A a connected definable subgroup. Assume A is orthogonal
to G/A. Then X is a finite union of definable subsets Xi with the following prop-
erty: For some definable subgroup Hi of G, Xi is a union of cosets of (Hi ∩ A)o,
and is contained in a single coset of Hi +A.

Proof. Let G∗ = G/A. Each element b ∈ G∗ can be thought of as a coset of
A in G, which we denote as A(b). There is no loss of generality in assuming
acleq(∅) = dcleq(∅), i.e. all types over ∅ are stationary. Let X# ⊆ G∗ be the
solution set of a complete type over acleq(∅). We will find a 0-definable subgroup
H of G such that {x ∈ X : x + A ∈ X#} is contained in a coset of H + A, and is
a union of cosets of (H ∩ A)o. By compactness, there exists a 0-definable set X∗

containing X# such that {x ∈ X : x + A ∈ X∗} is contained in a coset of H + A
(and of course this set is still closed under translation by elements of (H ∩ A)o).
Thus G∗ can be covered with 0-definable sets with this property. The statement of
the proposition follows by another application of compactness.

Pick b ∈ X#, and also g ∈ A(b). Let S = {c ∈ A : g + c ∈ X}. By stable
definability, S is definable with parameters C from A. We have

(∗) For some g ∈ A(b), A(b) ∩X = S + g.
By the orthogonality assumption, tp(b′/C) does not depend on b′ ∈ X#. Thus (∗)
holds for any b ∈ X#. Let K = {c ∈ A : c + S = S}. K is a definable subgroup
of A. Now if S + g = S + g′, then g − g′ ∈ K. Thus we have a definable map
f : X# → G/K (given by: f(b) = g + K iff A(b) ∩X = S + g). f is a section of
the natural projection π : (G/K)→ (G/A).

Claim. Let C∗ be the coset generated by X# in G∗. Then f extends to an affine
homomorphism from C∗ to G.

Proof. For large enough odd n, and (a1, . . . , an) ∈ X#n generic,
∑

(−1)iai is
a generic element of the connected, definable coset C∗ (“indecomposability theo-
rem”). It suffices to show that for all n there exists a constant χn such that for
all generic (a1, . . . , an) ∈ X#n, f(

∑′
ai) −

∑′
f(ai) = χn, where

∑′
denotes the

alternating sum. Let h(a1, . . . , an) = f(
∑′ ai)−∑′ f(ai). Then since f is a section

of π, h(a1, . . . , an) = 0 (mod A/K), i.e. h(a1, . . . , an) ∈ A/K. Thus h is a map
from X#n into A/K; since they are orthogonal, h is generically constant.

Thus there exists a connected definable subgroup H∗ of G∗ and a nontrivial
definable group homomorphism h : H∗ → G/K. Let H be a subgroup of G
containing K, such that H/K = hH∗. Note that (H +A)/A = H∗.

Claim. (H ∩A)o ⊆ K.
Proof. Clearly H ∩ A ⊇ K. We must show that (H ∩ A)/K is finite.

The homomorphism h induces an isomorphism between (H ∩ A)/K and
h−1((H ∩ A)/K)/Ker(h), a quotient of two definable subgroups of G∗. By the
orthogonality assumption, both sides must be finite.

This finishes the proof.
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Definition 4.5. If A is a definable group and X a minimal set, then there exists
a unique maximal connected subgroup C of A such that C ⊆ acl(X,F ) for some
finite F . We denote this group by A〈X〉.
Lemma 4.6. Suppose A is connected, and A ⊆ acl(Y ) for some pluriminimal Y .
Then A is isogenous to a direct sum of pairwise orthogonal semi-minimal groups
(namely to the direct sum of the various nontrivial subgroups A〈X〉, X minimal).

Proof. Clearly if X is orthogonal to X1 ∪ · · · ∪Xk, then

A〈X〉 ∩ (A〈X1〉+ · · ·+A〈Xk〉)
is finite. If Xi, Xj are nonorthogonal, then A〈Xi〉 = A〈Xj〉. Thus the group B
generated by all A〈X〉 (X minimal) is a finite orthogonal sum. We must show B =
A. Let c be a generic element of A, b = c+ B ∈ A/B. We have c ∈ acl(y1, . . . , yk)
for some yj from Y , hence c ∈ acl(b, y1, . . . , yk). Otherwise, minimizing k, we may
assume yj /∈ acl(b, y1, . . . , yj−1) for each j. So {b, y1, . . . , yk} is an independent set.
In particular, c /∈ acl(y1, . . . , yk).

Let Z be the locus of c over {y1, . . . , yk}. Then Z is infinite, but any element c
of Z is algebraic over c+B. Replace Z by a minimal ∞-definable subset Z ′; it has
the same property. A〈Z ′〉 is nontrivial, so it is contained in B. But Z ′/A〈Z ′〉 must
be finite, while Z ′/B is infinite, a contradiction.

Lemma 4.7. Suppose A is connected, semi-minimal, and locally modular. Then
A is isogenous to a direct sum of minimal subgroups.

Proof. Let {Ai} be a maximal set of minimal subgroups of A, such that the map
from

⊕
iAi to A has finite kernel. Let B be the image of this map, and suppose

for contradiction that B 6= A. As in 4.6 one finds a minimal Z ⊆ A such that
Z/B is infinite. But by [HP86] Z is a coset of a definable subgroup C of A (up
to a finite number of points). C must be minimal, and (C + B)/B is infinite, a
contradiction.

The following lemma is a special case of results from [Hr90]; we include a proof
for the reader’s convenience.

Lemma 4.8. Let A be a semi-minimal group. Suppose A is nonorthogonal to an
∞-definable set D. Then there exists a group B with B ⊆ dcl(D) and a definable
surjective homomorphism h : A→ B, with finite kernel.

Proof. We have A ⊆ acl(Y ) for some minimal Y ; Y is necessarily nonorthogonal
to D, so Y ⊆ acl(F,D) for some finite F , and hence A ⊆ acl(F,D). Let a be a
generic point of A over F , and let φ(x, y) be a formula over F such that φ(a, d)
holds for some d ∈ Dn, and for any d′, φ(x, d′) has only finitely many solutions. Let
C(a) = {d ∈ Dn : φ(a, d)}. By stability, C(a) can be defined with parameters from
D; let b be a canonical parameter for C(a). Then b = g(a) for some F -definable
function g. We may assume g(x) ∈ dcl(D) for all x.

Let K = {x ∈ A: for generic a ∈ A, g(a + x) = g(a)}. Let a0, . . . , a2r be
mutually independent generic elements of A, r = rk(A). If x − y /∈ K, then since
some ai is generic over x, y, g(x + ai) 6= g(y + ai). Thus the function f(x) =
(g(x+ a0), . . . , g(x+ a2r)) is 1-1 modulo K. The image B of A by f is contained in
dcl(A), and may be endowed with a group structure so that f is an isomorphism.
By stability (cf. [NeP89]), B and its group structure are definable with parameters
from D.
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Lemma 4.9. Assume: Whenever H1 ⊂ H2 are definable subgroups of G, there
exists a nonzero element of H2/H1 algebraic over any base of definition for H1.
Then G is strongly rigid.

Proof. We assume G is defined over acl(∅), and show every definable subgroup of
G is defined over acl(∅). Let H(a) be an a-definable subgroup. Let H1 be the
intersection of H(a′) over all a′ realizing tp(a/ acl(∅)). If H1 = H(a) we are done.
Otherwise there exists a nonzero b ∈ H(a)/H1 with b algebraic over ∅. Necessarily
b ∈ H(a′) for all a′, a contradiction.

The following lemma is well known.

Lemma 4.10. Let k be an algebraically closed field and G a semi-Abelian variety
defined over k. Then G(k) is strongly rigid.

Proof. All torsion points are algebraic, and 4.9 applies.

Lemma 4.11. Let A be a locally modular group. Then A is rigid.

Proof. [HP86].

Lemma 4.12. Let A,B be orthogonal subgroups of a group G, and let X ⊆ (A+B)
be the solution set of a complete type over acl(∅). Then X has the form U + V ,
U ⊆ A, V ⊆ B.

Proof. Let (a, b) be a point of X . Let U be the locus of a and V the locus of b.
Then by definition of orthogonality, for any a′ ∈ U and b′ ∈ V , (a′, b′) has the same
type as (a, b); so U + V ⊆ X .

Lemma 4.13. Suppose A,B are orthogonal (strongly) rigid groups. Then their
product is (strongly) rigid.

Proof. Applying 4.12 to the generic type, a connected definable subgroup of A×B
is a product of definable subgroups of A and of B. Thus an arbitrary definable
subgroup of A×B lies between two definable subgroups C ⊆ D with [D : C] finite,
and C,D each a product of subgroups of A and of B.

Lemma 4.14. Suppose F is a finite subgroup of A, and A/F is (strongly) rigid.
Then A is (strongly) rigid.

Proof. Let H(a) be a definable subgroup of A. Then J = H(a) + F does not
depend on a (if tp(a/ acl(∅)) is given). Hence H(a) is a subgroup of J containing
the connected component H of J . But H has finite index in J , so there are only
finitely many intermediate subgroups.

Lemma 4.15. Let A = A1 + A2, where A1, A2 are orthogonal semi-minimal sub-
groups, and A1 is of linear type. Let X ⊆ A be the solution set of a complete type
over acl(∅). Assume Stab(X) is finite. Then X is contained in a coset of A2.

Proof. By 4.12 we have X = U1 + U2, with Ui ⊆ Ai. So StabA1(U1) ⊆ Stab(X).
Since A1 is locally modular, U1 is contained in a coset of Stab(U1); so U1 is finite,
and being the solution set of a complete type, it has one point. Thus X is a translate
of U2.
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5. The main theorem

K is either a separably closed field of characteristic p > 0, with a finite p-
basis fixed, or a differentially closed field of char 0. In either case K is assumed
saturated (i.e. we work in the universal domain). Let k =

⋂
nK

pn if p > 0, and
k = {x : Dx = 0} if the characteristic is 0. In either case k is an algebraically closed
field. We will say that a type has finite dimension if it has finite Morley dimension
and, when p > 0, is thin.

Our goal is the following version of the main theorem.

Theorem 5.1. Assume K is saturated. Let S be a semi-Abelian variety defined
over K, and X a subvariety of S. Let Γ be an ∞-definable subgroup of S, of finite
dimension. Assume X ∩Γ is Zariski dense in X. Then there exists a semi-Abelian
variety S0 defined over k, a subvariety X0 of S0 defined over k, and a rational
homomorphism h from a group subvariety of S into S0, such that X = h−1(X0) + c
for some c.

Definition. We call a function h p-rational if p = 0 and it is rational, or when
p > 0 if it is the composition of a rational function with some negative power of
Frobenius.

Fact 5.2. If S ⊆ kn is a (relatively) definable subset, then S is constructible (i.e.
definable in the field structure (k,+, ·) with parameters). If h is a definable map
on S, then S may be split into finitely many constructible sets, on each of which h
is a p-rational function.

Proof. This follows from quantifier elimination, and the fact that every automor-
phism of a (differential) field extends to its separable (resp. differential) closure.

Fact 5.3. Let L be an ∞-definable field with minimal generic type. Then L is
definably isomorphic to k.

Proof. This is part of the theses of Sokolovic [So92] when p = 0, and of Messmer
[Mes] when p > 0.

Lemma 5.4. Let X be a Zariski minimal type. Then either X is locally modular,
or X is nonorthogonal to k.

Proof. When X is strongly minimal, i.e. it is the solution set of a single formula,
it is proved in [HZ] that there exists a field L satisfying the hypotheses of 5.3, and
nonorthogonal to X . The proof goes through in the general case. By 5.3, we may
take L = k.

Lemma 5.5. Let A be a semi-minimal group. Then either A is locally modular,
or there exists an algebraic group H defined over k and a definable surjective group
homomorphism h : A→ H(k), with finite kernel.

Proof. By 5.4, if A is not locally modular, it is nonorthogonal to k. By 4.8, there
exists a definable surjective group homomorphism h with finite kernel, such that
B = hA ⊆ dcl(k). By Fact 5.2, B is definable in the structure (k,+, ·). By [NeP89]
(see chapter on Weil’s theorem), there exists an algebraic group H defined over k
such that B is definably isomorphic to H(k).

Proposition 5.6. Let G be a semi-Abelian variety defined over K. Let G = G(K).
Let A be a semi-minimal definable subgroup of G, Zariski dense in G. Then either
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A is locally modular, or there exists an algebraic group H defined over k and a
bijective rational homomorphism h : G→ H, with h(A) = H(k).

Proof. Suppose A is not locally modular. Then by 5.5 there exists an algebraic
group H defined over k and a definable surjective group homomorphism h : A →
H(k), with finite kernel of size n, say. Consider R = {(nx, y) : h(x) = y}. If
(u, 0) ∈ R, then u = nx, h(x) = 0, so x is in the kernel and u = 0. Thus R defines a
homomorphism g from h(A) to G. If (0, y) ∈ R, then y is the image of an n-torsion
point of A; so g has finite kernel, and is surjective.

By 5.2, g is given by a p-rational map g. Since h(A) is Zariski dense in H, g
defines a homomorphism g on H into G. Let R be the smallest closed subgroup
of H with H/R semi-Abelian; then R is defined over k; H/R is strongly rigid
by 4.10, so Ker(g)/R is defined over k; hence Ker(g) is defined over k. Since k
is algebraically closed, there exists an algebraic group H∗ defined over k and a
surjective p-rational map f : H → H∗ whose kernel is Ker(g). We get an induced

p-rational map g∗ : H∗ → G with g = g∗f . Further f carries H(k) to H∗(k). Thus
we may assume Ker(g) is trivial.

The image g(H) contains A, which is Zariski dense in G, so it equals G. Let h be
the inverse map to g. Then h is p-rational. Composing with a power of Frobenius
(and changing H appropriately), we may assume h is rational.

Lemma 5.7. Let G be a semi-Abelian variety defined over K,G = G(K). Let A
be a semi-pluriminimal definable subgroup of G. Then A is (strongly) rigid.

Proof. By 4.6, 4.13, we may assume A is semi-minimal. Further we may assume A
is Zariski dense in G. If A is locally modular, we are done by 4.11. Otherwise by 5.6
there exist an algebraic group H defined over k, isogenous to G, and a surjective
map h : A→ H(k) with finite kernel. H is also a semi-Abelian variety, so H(k) is
(strongly) rigid. By 4.14, A is (strongly) rigid.

Proof of 5.1. The proof is now a sequence of reductions, leading to 5.6.
We may assume X has finite stabilizer; otherwise we may quotient out the con-

nected component of the stabilizer. Let A be the maximal semi-pluriminimal con-
nected subgroup of Γ. Then 4.3 (ii) holds. By 5.7, 4.3 (i) holds also. By assumption
X ∩ Γ is Zariski dense in X . Choose a definable Y ⊆ X ∩ Γ, such that Y is Zariski
dense in X , and of least possible dimension and multiplicity. Since X is irreducible,
whenever Y is written as a finite union

⋃
i Yi, one of the sets Yi must be Zariski

dense in X . Hence Y has multiplicity one. Moreover if Y ′ is a subset of Y of the
same dimension, then Y ′ is Zariski dense in X , since the complement cannot be.

Observe that if translation by an element a stabilizes Y in the sense that
dim(Y ∩(Y +a)) = dim(Y ), then the Zariski closure of Y ∩(Y +a) must be X , so (as
X∩(X+a) is Zariski closed and contains Y ∩(Y +a)) the element a stabilizes X as
a set. Thus the dimension-theoretic stabilizer of Y is contained in the set-stabilizer
of X ; so it is finite.

Thus 4.3 (iii) is also true of Y . So by 4.3, a subset Y ′ of Y of the same dimension
is contained in a single coset c+A of A. In particular (c+A)∩X is Zariski dense in
X . Replacing X by X−c, and Γ by A, we may assume Γ = A is semi-pluriminimal.

Write A as a sum of orthogonal subgroups Ai, with Ai semi-minimal. Let B be
the sum of all nonlocally modular Ai, and C the sum of the rest. By 5.4, if Ai, Aj
are nonlocally modular, then they are nonorthogonal to k, and hence to each other,
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so i = j. Thus B is semi-minimal. By 4.15, Y is contained in a single coset of B.
Translating, we may assume Y is contained in B.

Let G be the Zariski closure of B. Then G is a group subvariety of S, containing
X (the Zariski closure of Y ⊆ B). By 5.6, there exist an algebraic group S0 defined
over k and a bijective rational homomorphism h : G → S0 defined over K; and
h(B) = S0(k). So S0 is semi-Abelian. Let X0 be the Zariski closure of h(Y ). Since
h(Y ) ⊆ h(B) ⊆ S0(k), X0 is defined over k. Clearly h−1(X0) contains X . Since h
is bijective, h−1(X0) = X .

Remark 5.8. We observe that Theorem 5.1 for saturated K implies the same state-
ment for arbitrary models K. The assumptions that Γ is of finite dimension and
that Γ∩X is Zariski dense in X should both be understood in the universal domain
however. There are two points to observe here.

(i) Suppose S is defined over L. The domain and kernel of h, being algebraic
subgroups of S, are defined over a separable extension of L (= Ls). Hence up to
a p-rational isomorphism, S0 is defined over L. Let L∗ be a saturated elementary
extension of L, and let k∗ =

⋂
n L
∗pn (in characteristic p > 0) or k∗=constants

of L∗ (in the differential case). In either case k∗, L are linearly disjoint over k.
(In char p > 0, it is because L∗p

n

is linearly disjoint from L over Lp
n

for each
n.) Theorem 5.1 states that S0 is defined over k∗. It follows that a p-birational
copy of S0 exists over the algebraically closed field k. More precisely, there exist S′0
defined over k, a surjective map h′ : dom(h)→ S′0 defined over L, and a p-birational
map h′′ : S′0 → S0 defined over k∗, such that h = h′′h′. It follows similarly that
h′′−1X0 = h(X + t) is defined over k∗ ∩ L = k. (The t in S such that h(X + t) is
defined over k∗ may be chosen in L.)

(ii) Note that if Γ =
⋂
n Γn, where Γn is a definable group, then Γ∩X is Zariski

dense in X iff, for each n, Γn ∩X is Zariski dense in X . This is because Γ ∩X is
Zariski dense in X if and only if, for each m, there exist a1, . . . , am in Γ ∩X such
that (a1, . . . , am) is a generic point of Xm in the sense of algebraically closed fields.
(And the compactness theorem of model theory applies.) Similarly one can deal
with the case where for each n, Cn ∩X is Zariski dense in X , where Cn is some
coset of Γn. In this case in the saturated extension there will be a coset of

⋂
n Γn

meeting X in a Zariski dense set.

Thus we have proved the following restatement of Theorem 5.1.

Theorem 5.9. Let K be either a separably closed field of characteristic p > 0,
with a finite p-basis fixed, or a differentially closed field of char 0. Let k =

⋂
nK

pn

if p > 0, and k = {x : Dx = 0} if the characteristic is 0. Let S be a semi-
Abelian variety defined over K. Let Γn (n = 1, 2, . . . ) be a descending sequence of
definable subgroups of S, such that

⋂
n Γn has finite dimension. Assume that for

each n, for some coset Cn of Γn, X ∩ Cn is Zariski dense in X. Then there exist
a semi-Abelian variety S0 defined over k, a subvariety X0 of S0 defined over k,
and a rational homomorphism h from a group subvariety of S into S0, such that
X = h−1(X0) + c for some c.

6. A question of Voloch’s

We prove here a refinement of Theorem 1.1, conjectured by Voloch (Theo-
rem 6.4). In characteristic 0, a somewhat weaker version was proved in [BV93].
It is related to a conjecture of Lang concerning integral points on an open affine
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subset of an Abelian variety (see [BV93] and [La91]). We also observe some unifor-
mities that arise from our method of proof. In this section we use only basic model
theory, really only the compactness theorem, in the style of A. Robinson.

For simplicity, as in 1.2, we will assume away the homomorphisms that occur
in the conclusion of 1.1. Thus throughout this section, let k be an algebraically
closed field, K an extension field, A an Abelian variety defined over K with no
nonzero homomorphic images defined over k, X a subvariety of A, and Γ a p′-
finitely generated subgroup of A. (There is no difficulty in working with semi-
Abelian varieties and special subvarieties as in 1.1; we restrict to the Abelian case
for simplicity only.)

Recall:

Corollary 1.2. X(K) ∩ Γ = Y (K) ∩ Γ, where Y is a (reducible) subvariety of X,
equal to a finite union of translates of Abelian subvarieties of A.

We wish to exploit the method of proof to observe a uniformity in the finite
number involved.

Theorem 6.1. Let k,K,A,X be as above. There exists a finite number of Abelian
subvarieties B1, . . . , Bm with the following property. For any extension field K ′ of
K and any p′-finitely-generated subgroup Γ of A(K ′) of rank g, there exists a union
Y of a finite number l of cosets of the Bi, such that X(K ′) ∩ Γ = Y (K ′) ∩ Γ.

Moreover, l depends only on A,X, and g but not on the actual choice of Γ. In
characteristic p, we have: l ≤ mprg for a certain fixed r depending on A,X alone.

Proof. We give the proof in characteristic p, the characteristic 0 case being analo-
gous, using a derivation on K over k. In 6.1 we may first replace K by a finitely
generated field, and then by the separable closure of that field. Then k =

⋂
nK

pn .
We now have the following lemma:

Lemma 6.2. Let K be a separably closed field, and let A be an Abelian variety
defined over K, with no nonzero homomorphic images defined over k =

⋂
nK

pn .
Then there exist integers r, m, and Abelian subvarieties Bi of A (at most m of them)
with the following property: For any coset C of prA(K), there exists a subvariety
Y of X with C ∩X(K) = C ∩ Y (K); and Y is the union of at most m cosets of
some of the Bi.

Proof. Note that for a given choice of r,m andB∗ = {Bi}i=1,...,m, there exists a first
order formula ψ(y) = ψ(r,m,B∗)(y) such that: ψ(c) holds in K iff for every union Y
of at most m cosets of some of the Bi, (c+prA(K))∩X(K) 6= (c+prA(K))∩Y (K).
(The formula quantifies universally over the possible cosets of the Bi.)

Note that as r and m grow bigger, the formula ψ(c) grows stronger. Suppose
for contradiction that there are no r,m and Abelian subvarieties Bi as asserted in
the theorem. For any choice of r,m,B∗ there exists c with ψ(r,m,B∗)(y). Hence
by compactness, there exists an element c in some elementary extension K∗ of K
such that all the formulas ψ(r,m,B∗) hold of c. K∗ may be chosen countably
saturated. Let C = c + p∞A. Then by Corollary 1.2, C ∩ X(K∗) = C ∩ Y (K∗)
for some finite union Y of cosets of m Abelian subvarieties Bi of A. In particular
C ∩X(K∗) ⊆ Y (K∗). By compactness, for some r, (c + prA) ∩X(K∗) ⊆ Y . So
(c+prA)∩X(K∗) = (c+prA)∩Y (K∗). Thus ¬ψ(c) holds with ψ = ψ(r,m, {Bi}i),
a contradiction.
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We now finish the proof of 6.1. We simply observe that as Γ is p′-generated by
g elements, so is (Γ + prA(K))/prA(K), hence it has size at most prg. So Γ is
contained in prg cosets of prA(K), and the theorem follows.

Remark 6.3. Assume the situation of 6.1, but let A, X vary within an algebraic
family of Abelian varieties and subvarieties. Then the same proof shows that k,m
do not depend on the actual choice of A,X, and that the Bi also vary within an
algebraic family.

We now assume given a discrete valuation v of K/k. (In characteristic 0 the
assumption of discreteness of v is not needed; it can probably be eliminated in
characteristic p too.) Then one can define a v-adic distance dv(a,X) between a
point a of A and a subvariety X of A. We will define below a quantity λX(a),
which should be considered as − log dv(a,X). Thus 6.1 states that for a ∈ Γ, if
dv(a,X) = 0 then also dv(a, Y ) = 0, or equivalently that if λX(a) is infinite then
λY (a) is infinite. We prove a continuous version of this, conjectured by Voloch.

Theorem 6.4. With the assumptions above, there exist a finite union Y of trans-
lates of Abelian subvarieties of A, and a constant c, such that: for all a ∈ Γ,
λX(a) ≤ c · λY (a).

Remark 6.5. This statement naturally carries over to points of the v-adic closure
of Γ in A(Kv), where Kv is the v-adic completion of K.

Definition. To define λ, we consider A as embedded in projective space Pm. Let
R = {t ∈ K : v(t) ≥ 0} be the valuation ring of v. Any point x of Pm(K) can
be written in projective coordinates as x = (x0 : · · · : xm), with v(xi) ≥ 0 and
v(xi) = 0 for some i. We let

λ′X(x) = inf{v(f(x0 : · · · : xm)) : f a homogeneous polynomial in

R[X ] vanishing on X}.

Note that if {fj} are homogeneous polynomials generating the ideal of X in R[X ],
then λ′X(x) = min{v(fj(x0 : · · · : xm)) : j}. We are interested in small distances

from X, hence large values of λ′, so for convenience we let λX(x) = max(1, λ′X(x)).

Lemma 6.6. Let K have characteristic p > 0, A a group variety over K. Let X,Y
be subvarieties of A defined over K. Suppose X(Ks)∩prA(Ks) = Y (Ks)∩prA(Ks).
Then for some integer c and for all a ∈ prA(K), λX(a) ≤ c · λY (a).

Proof. Every separable extension of K embeds over K into some elementary exten-
sion of Ks. Hence the hypothesis implies that X(K ′)∩prA(K ′) = Y (K ′)∩prA(K ′)
for all separable extensions K ′ of K.

Suppose for contradiction that there is no integer c as required. Consider the
language describing an extension field K∗ of K, a valuation v∗ of K∗ extending v
on K, with value group Z∗ (extending the value group Z of v), and an element a∗

of A(K∗). We define λ∗ from v∗ as λ is defined from v. The following statements
are first-order:

(i) a∗ is in prA(K∗).
(ii) v∗ extends v (v∗(α) = v(α) for α ∈ K). Z∗ is an ordered group with a least

positive element (hence containing the integers Z as a convex subgroup).
(iii) λ∗X(a∗) > cλ∗Y (a∗) (c = 1, 2, . . . ).
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By assumption any finite number of the above axioms can be satisfied (with K∗ =
K, v∗ = v). Hence by compactness there exist K∗, v∗, a∗ with these properties. Let
R∗ be the valuation ring of v∗, and let

M ′ = {x ∈ R∗ : v∗(x) > nλ∗Y (a∗), all n}.
This is a prime ideal of R∗. v∗(x) = v(x) ∈ Z for x in R∗ ∩K, so M ′ meets R∗ ∩K
trivially; thus K embeds into K ′ = R∗/M ′.
K ′ is a separable extension of K. For suppose it is not. Let t ∈ K, v(t) = 1.

Then (since K/k has transcendence degree 1) there is a p-th root of t in K ′; i.e.
there is s in R∗ with sp − t in M ′, i.e. v∗(sp − t) large. But either v∗(s) = 0 and
v∗(sp − t) = 0, or v∗(s) ≥ 1 so v∗(sp) ≥ p and v∗(sp − t) = 1; a contradiction.

Let a′ be the image of a∗ in K ′. By (iii) we have that λX(a∗) is in M ′, so a′

is in X(K ′). Since a∗ = prb∗ for some b∗, and b∗ may be written with projective
coordinates from R∗, we see that a′ = prb′ for some b′ in A(K ′). Thus by the first
paragraph, a′ is in Y (K ′). But λY (a∗) is not in M ′, so a′ is not in Y (K ′). This
contradiction proves the lemma.

Lemma 6.7. Let there be given a derivation D of K over k compatible with the
valuation v, in the sense that for some constant b in the value field, if v(x) > b,
then v(Dx) > v(x) − b. (We can take b = 1.) Let A be a group variety over K,
X,Y be subvarieties of A defined over K, and B be a subgroup of A(K) defined by
a differential equation. Suppose X(Kd)∩B = Y (Kd)∩B holds in some differential
closure Kd of K. Then for some integer c and for all a ∈ B(K), λX(a) ≤ c ·λY (a).

Proof. Entirely analogous to 6.6 (and indeed we could have used 6.7 to prove 6.6).
We need only note that in an elementary extension (K∗, D∗, v∗) of (K,D, v), the
derivation D∗ continues to satisfy that v∗(x) > b implies v∗(D∗x) > v∗(x)−b, hence
is continuous, and hence induces a derivation of R∗/M ′ of the proof of 6.6.

Proof of 6.4. Again we limit ourselves to giving the proof in characteristic p > 0.
We have Γ ⊆ Ξ + prA(K) for some finite set Ξ. By 6.2, for some finite union Y of
translates of Abelian subvarieties of A,

X ∩ (Ξ + prA(Ks)) = Y ∩ (Ξ + prA(Ks)).

Thus by 6.6, for some c and all a ∈ (Ξ + prA(Ks)), λX(a) ≤ c · λY (a). (Actually
we require here a version of 6.4 valid for (Ξ + prA(Ks)) in place of prA(Ks); this
can be proved in the same way.)
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Abstract. We give a proof of the geometric Mordell-Lang conjecture, in any
characteristic. Our method involves a model-theoretic analysis of the kernel
of Manin’s homomorphism and of a certain analog in characteristic p.

Department of Mathematics, Massachusetts Institute of Technology, 2-277, Cam-

bridge, Massachusetts 02139

Current address: Department of Mathematics, Hebrew University, Jerusalem, Israel
E-mail address: ehud@math.mit.edu


