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MODULAR FORMS AND DONALDSON INVARIANTS

FOR 4-MANIFOLDS WITH b+ = 1

LOTHAR GÖTTSCHE

1. Introduction

The Donaldson invariants of a smooth simply connected 4-manifold X depend
by definition on the choice of a Riemannian metric g. In case b+(X) > 1 they
turn out to be independent of the metric as long as it is generic, and thus give
C∞-invariants of X .

We study the case b+(X) = 1, where the invariants have been introduced in

[Ko]. We denote by ΦX,gc1,N
the Donaldson invariant of X with respect to a lift

c1 ∈ H2(X,Z) of w2(P ) for an SO(3) bundle P on X with −p1(P ) − 3 = N .
Kotschick and Morgan showed in [K-M] that the invariants only depend on the
chamber of the period point of g in the positive cone H2(X,R)+ in H2(X,R). For

two metrics g1, g2 which do not lie on a wall they express ΦX,g1c1,N
− ΦX,g2c1,N

as the

sum over certain wall-crossing terms δXξ,N , where ξ runs over all classes in H2(X,Z)
which define a wall between g1 and g2. They also make the following conjecture.

Conjecture 1.1 ([K-M]). δXξ,N is a polynomial in the multiplication by ξ and the

quadratic form QX on H2(X,Z) whose coefficients depend only on ξ2, N and the
homotopy type of X.

John Morgan and Peter Ozsváth have told me that they are now able to prove
the conjecture [M-O].

In previous joint papers [E-G1],[E-G2] with Geir Ellingsrud we have studied the
wall-crossing terms δSξ,N in the case of algebraic surfaces S with pg = 0. In [E-G1]

we expressed (for so called good walls) the δSξ,N in terms of Chern classes of some
“standard” bundles on Hilbert schemes of points on S, and proceeded to compute
the leading 6 terms of δSξ,N (similar results were also obtained in [F-Q]). In [H-P]
a Feynman path integral approach to this problem is developed, and some of the
leading terms of the wall-crossing formulas are determined.

In [E-G2], which builds on [E-G1], we restrict to the case of rational surfaces
and use the Bott residue formula to compute the δSξ,N explicitly (with the help of

a computer). As an application, using also the blowup formulas, we computed e.g.
the Donaldson invariants of P2 of degree smaller than 50.

In [K-L] the wall-crossing formulas had already been used in combination with
the blowup formulas to compute Donaldson invariants of P2 and P1 × P1 and to
show in particular that neither P2 nor P1×P1 is of simple type. Their calculations
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also showed that the blowup formulas impose restrictions on the wall-crossing for-
mulas, although this is not pursued systematically there. The authors did however
expect that this can be used to determine many (and possibly all) the wall-crossing
formulas for rational surfaces.

In the current paper we want to show that in fact, assuming Conjecture 1.1, one
can determine the δXξ,N completely for all X and all walls in H2(X,R)+ by use of the

blowup formulas. We will determine a universal generating function Λ(L,Q, x, t, τ)
which expresses all δXξ,N for all X , N and ξ. Here τ is a parameter from the complex
upper half plane, L, Q and x stand for the multiplication by ξ, the quadratic form
and the class of a point, and the exponent of t is the signature ofX . It turns out that
Λ(L,Q, x, t, τ) is an exponential expression in certain modular forms (with respect
to τ). As an application of our results we also get modular form expressions for
all the Donaldson invariants of the projective plane P2. Already in [K-L] it had
been shown that the Donaldson invariants of P2 and P1×P1 are determined by the
wall-crossing formulas on the blowup of P2 in two points. We use instead a simple
fact due to Qin: on a rational ruled surface the Donaldson invariants with respect
to a first Chern class c1 with odd restriction to a fibre vanish for a special chamber
CF .

The results of this paper should be seen in comparison with the new develop-
ments of Seiberg-Witten theory [S-W],[W1] which suggest a connection between the
Donaldson invariants and modular forms: the Donaldson invariants (and also the
Seiberg-Witten invariants) are seen as degenerations of supersymmetric theories,
parametrized by the “u-plane” (i.e. the modular curve H/Γ(2)). In fact Witten
informed me that he is currently trying to determine wall-crossing formulas and
the Donaldson invariants of the projective plane by integrating over the u-plane
(see also [W2]). The results should also be related to the current work [P-T] to-
wards proving the conjectural relationship between Seiberg-Witten and Donaldson
invariants.

The main tool for getting our result are the blowup formulas, which for 4-

manifolds with b+ = 1 I learned from [K-L]. Let X̂ := X#P2 (e.g. if X is an

algebraic surface, we can take X̂ to be the blowup of X at a point). The idea is

very simple: If C is a chamber in H2(X,R)+ and Ĉ is a related chamber (see below),
then there is a formula relating the Donaldson invariants of X with respect to C
and those of X̂ with respect to Ĉ. So let now C− and C+ be two chambers sepa-
rated by the wall W ξ, then in general there are several walls between the related

chambers Ĉ− and Ĉ+ on X̂, but it is very easy to determine them. We can therefore
express the wall-crossing term δXξ,N as follows. We apply the blowup formulas to

the related chambers C−, Ĉ− and C+, Ĉ+ and add up the wall-crossing terms for

all walls between Ĉ− and Ĉ+. This gives recursive relations. After encoding our
information into a generating function ΛX(L,Q, x, t, τ), these recursive relations
translate into differential equations, which enable us to determine ΛX up to mul-
tiplication by a universal function λ(τ). Unlike the case of the blowup formulas
in [F-S], the modular forms enter the formulas already as the coefficients of the
differential equations; they arize as theta functions for lattices describing the walls
between related chambers.

In order to finally determine λ(τ) we consider the particular case X = P1 × P1.
The above mentioned result of Qin now says that, for the first Chern class c1 =
F + G, the sum of the classes of the fibres in the two different directions, there
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are always two different chambers CF , CG of type (c1, N) where the corresponding
Donaldson invariants vanish. Therefore the sum of the δXξ,N for all classes ξ defining
walls between CF and CG must be zero. This fact gives us an additional recursion
relation, and with this we can finally determine λ(τ).

If we assume only a weaker form of the conjecture, namely if we allow δXξ,N to
depend on X , rather than just on the homotopy type, then we still get our result
for X a rational surface. If we assume the conjecture and the blowup formulas also
in the case that X is not simply connected but b1(X) = 0, then we can partially
extend our result also to this case.

This paper was written at the Max-Planck-Institut für Mathematik and benefit-
ted very much from the possibility to discuss with several of the experts in the field.
I am very thankful to Don Zagier, who proved Lemma 4.11 for me. I would also
like to thank John Morgan and Stefan Bauer for very useful conversations. I would
like to thank Dieter Kotschick for sending me the preprint of [K-L], which was very
important both for [E-G2] and for this work. This paper grew out of the joint work
[E-G1], [E-G2] with Geir Ellingsrud. Motivated by this work, and based also on
[K-L], I slowly realized the importace of the blowup formulas in this context. Also
the explicit formulas for the wall-crossing in [E-G2] were very important for me to
keep confidence in my computations.

2. Background material

In this paper we will denote by X a simply connected smooth 4-manifold with
b+(X) = 1 and b2(X) ≥ 2. We will assume Conjecture 1.1.

Notation 2.1. For A ∈ H2(X,Q) and α ∈ H2(X,Q) we denote by A · α ∈ Q the
canonical pairing, by Ǎ ∈ H2(X,Z) the Poincaré dual and by A2 the number A · Ǎ.
We denote by QX the quadratic form on H2(X,Z) and, for a class η ∈ H2(X,Q),
by Lη the linear form α 7→ η · α on H2(X,Q). If there is no risk of confusion we
denote by a the reduction of A ∈ H2(X,Z) modulo 2.

For a smooth four-manifold X we denote by X̂ the connected sum X#P2 of X

with P2 with reversed orientation, (e.g. if X is a smooth complex surface, then X̂
is the blowup of X in a point). Let E be the image of the generator of H2(P2,Z)

in H2(X̂,Z). We will always identify H2(X,Z) with the kernel of LE on H2(X̂,Z).
We write e for the reduction of E modulo 2.

Let g be a Riemannian metric on X , and P an SO(3) principal bundle with first

Pontrjagin class p1(P ) = −(N + 3). We denote by ΦX,gc1,N
the Donaldson invariant

corresponding to P , the metric g, the lift c1 ∈ H2(X,Z) of w2(P ) and a chosen
orientation of H2(X,Z)+. We use the conventions of e.g. [F-S] which coincide up
to a power of 2 with the conventions of [Ko]. If X is an algebraic surface and H an

ample divisor we will write ΦX,Hc1,N
for the invariant with respect to the Fubini-Studi

metric induced by H. Let p ∈ H0(X,Z) be the class of a point. Let AN (X) be the
set of polynomials of weight N in H2(X,Q)⊕H0(X,Q), where α ∈ H2(X,Q) has

weight 1 and p has weight 2, and A∗(X) :=
∑
N≥0AN (X). Then ΦX,gc1,N

is a linear

map AN (X) −→ Q. We put ΦX,gc1,N
:= 0 if N is not congruent to −c21 + 3 modulo 4

and

ΦX,gc1 :=
∑
N≥0

ΦX,gc1,N
: A∗(X) −→ Q.
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2.1. Walls and chambers.

Definition 2.2 (see e.g. [Ko], [K-M]). Let w ∈ H2(X,Z/2Z) andN a nonnegative
integer. Let H2(X,R)+ be the positive cone in H2(X,R). For ξ ∈ H2(X,Z) let

W ξ := {x ∈ H2(X,R)+
∣∣ ξ · x̌ = 0

}
.

We shall call W ξ a wall of type (w,N), and say that it is defined by ξ, if w is the
reduction of ξ modulo 2, N+3 is congruent to ξ2 modulo 4 and −(N+3) ≤ ξ2 < 0.
Note that any class ξ ∈ H2(X,Z) with ξ2 < 0 will define a wall of type (w,N)
for suitable N and w the reduction of ξ modulo 2; we will in this case say that ξ
defines a wall of type (N). A chamber of type (w,N) is a connected component of
the complement of the walls of type (w,N) in H2(X,R)+.

For a Riemannian metric g on X we denote by ω(g) ∈ H2(X,R)+ the corre-
sponding period point. For A−, A+ ∈ H2(X,R) we denote by WX

w,N (A−, A+) the

set of all ξ ∈ H2(X,Z) defining a wall of type (w,N) with ξ · Ǎ− < 0 < ξ · Ǎ+. We
put

WX
w (A−, A+) :=

⋃
N≥0

WX
w,N (A−, A+).

Theorem 2.3 ([K-M]). Let c1 ∈ H2(X,Z) and w the reduction of c1 modulo 2.
For all ξ ∈ H2(X,Z) defining a wall of type (w,N) we put

ε(c1, ξ,N) := (5N + 3 + ξ2 + (ξ − c1)2)/4.

There exists δXξ,N : SymN (H2(X,Q)) −→ Q such that for all generic metrics g+

and g− with ω(g+) and ω(g−) in the same connected component of H2(X,R)+

Φ
X,g+
c1,N

− Φ
X,g−
c1,N

=
∑

ξ∈WX
w,N (ω(g−),ω(g+))

(−1)ε(c1,ξ,N)δXξ,N .

Furthermore, if ω(g1) = −ω(g), then ΦX,g1c1,N
= −ΦX,gc1,N

.

Remark 2.4. (1) Our sign conventions are different from those of [K-M] and [K-L].

In fact the sign is chosen in order to give the leading term LN−2d
ξ QdX (with

d = (N + 3 + ξ2)/4) of δXξ,N a positive coefficient.

(2) In the future we will assume that we have fixed the orientation of H2(X,R)+

and thus the connected component of H2(X,R)+ in which the period points
of the metrics lie.

(3) By Theorem 2.3 we can write ΦX,Cc1,N
:= ΦX,gc1,N

for any metric g with ω(g) in
the chamber C.

2.2. Blowup formulas. The blowup formulas relate the Donaldson invariants of

a 4-manifold Y and Ŷ = Y#P2. In the case b+(Y ) > 1, when the invariants do not
depend on the chamber structure, they have been shown e.g. in [O], [L] and in the
most general form in [F-S]. In the case when X is a simply connected 4-manifold
with b+ = 1 I learned the blowup formulas from [K-L]. They then depend on the
chamber structure.

Definition 2.5 (see [Ko]). Let C ⊂ H2(X,R)+ be a chamber of type (w,N). A

chamber C0 ⊂ H2(X̂,R)+ of type (w,N) (resp. Ce ⊂ H2(X̂,R)+ of type (w +
e,N + 1)) is said to be related to C if and only if C is contained in the closure C0

(resp. in Ce).
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By [T] the formulas of [F-S] also hold for X with b+(X) = 1; we will however
only need a quite easy special case (see e.g. [Ko] and [S], ex. 11).

Theorem 2.6. Let C ⊂ H2(X,R)+ be a chamber of type (w,N), and let C0 ⊂
H2(X̂,R)+ (resp. Ce ⊂ H2(X̂,R)+) be related chambers of types (w,N) (resp.
(w + e,N + 1)). Then for all α ∈ AN (X) and β ∈ AN−2(X) for which both sides
are defined we have

ΦX,Cc1,N
(α) = ΦX̂,C0c1,N

(α),(0)b

ΦX,Cc1,N
(α) = ΦX̂,Cec1+E,N+1(Ěα),(1)b

ΦX̂,C0c1,N
(Ě2β) = 0,(2)b

ΦX,Cc1,N
(xβ) = −ΦX̂,Cec1+E,N+1(Ě3β).(3)b

2.3. Extension of wall-crossing formulas. We want to extend Theorem 2.3
from SymN (H2(X,Q)) to AN (X). For this we have to extend the definition of
δXξ,N . In the case that ξ is divisible by 2 (i.e. w = 0) we also have to extend the

definition of ΦX,gc1,N
to classes not in the stable range. For technical reasons we also

redefine the δXξ,N in case the intersection form on H2(X,Z) is even or the rank of

H2(X,Z) is at most 2. It should not be difficult to prove that this definition agrees
with that of [K-M], but we only need that Theorem 2.3 still holds.

Definition 2.7. (1) Let N = 4c2 − 3 for c2 ∈ Z. Let C be a chamber of type

(0, N) in H2(X̂,R)+ and Ce a related chamber of type (e,N + 1) on X̂. Then
we put for all α ∈ AN (X)

ΦX,C0,N (α) := ΦX̂,CeE,N+1(Ěα).

Note that (1)b above guarantees that our definition restricts to the standard
definition if α is in the stable range.

(2) Let ξ ∈ H2(X,Z) with ξ2 < 0. We extend the definition of δXξ,N by putting

δXξ,N := 0 if ξ does not define a wall of type (N) (i.e. if ξ2 is not congruent to

N + 3 modulo 4 or N + 3 + ξ2 < 0).
(3) Assume now that the intersection form on H2(X,Z) is even or the rank of

H2(X,Z) is at most 2 or that ξ is divisible by 2 in H2(X,Z). Then we put

for α ∈ SymN (H2(X,Q))

δXξ,N(α) :=
∑
n∈Z

(−1)n−1δX̂ξ+(2n+1)E,N+1(Ěα).

Note that by (2) the sum runs in fact only through integers n with (2n+1)2 ≤
N + 4 + ξ2.

(4) Assume that δYη,N (prβ) is already defined for all m for Y = X#mP2 for all

N , all ξ ∈ H2(Y,Z) with ξ2 < 0 and all β ∈ SymN−2r(H2(Y,Q)). Then we
put

δYξ,N (pr+1α) :=
∑
n∈Z

(−1)nδŶξ+(2n+1)E,N+1(Ě3prα)

for all α ∈ SymN−2r−2(H2(Y,Q)). Again by (2) the sum runs only through
n with (2n+ 1)2 ≤ N + 4 + ξ2.

We note that by definition δXξ,N = 0 if ξ does not define a wall of type (N).
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Finally we put

δXξ :=
∑
N≥0

δXξ,N : A∗(X) −→ Q.

If t is an indeterminate, we write δXξ (
∑
N αN t

N ) for
∑
N δ

X
ξ,N (αN )tN , and similarly

for ΦX,gc1 .

Remark 2.8. There is a small subtlety about the definition of ΦX,C0,N in (1). If w 6= 0,

then, given a chamber C in H2(X,R)+ of type (w,N), there is a unique related
chamber Ce in H2(X,R)+ of type (w+ e,N+ 1) consisting of all µ+aE with µ ∈ C
and a ∈ R sufficiently small. If w = 0, however, E defines a wall of type (e,N + 1)
separating two chambers C+

e (corresponding to a > 0) and C−e (corresponding to

a < 0) of type (e,N + 1), which are both related to C. ΦX,C0,N is still well-defined, as

δX̂(2n+1)E,N+1(Ě2k+1α) = 0 for N congruent to 1 modulo 4: By Conjecture 1.1 (and

its extension Remark 4.3 below to AN (X)) δX̂E,N+1(pr•) is a polynomial in LE and
Q
X̂

, N + 1 is even and E · α = 0.

Similarly, if w 6= 0, then there is a unique related chamber C0 in H2(X,R)+ of
type (w,N). If w = 0, then there are two related chambers separated by a wall

defined by 2E, but δX̂2nE,N (Ě2kα) = 0.

2.4. Vanishing on rational ruled surfaces. An important role both in the proof
of the main theorem and in the application to Donaldson invariants of the projective
plane is played by the following elementary vanishing result. Let S be a rational
ruled surface, and let F,E ∈ H2(S,Z) be the classes of a fibre of the projection to
P1 and a section respectively. For an ample divisor H let MS

H(c1, c2) be the moduli
space of H-stable torsion-free sheaves with Chern classes (c1, c2).

Lemma 2.9 ([Q2]). Assume c1 · F = 1, then MS
F+εE(c1, c2) is empty for all suf-

ficiently small ε > 0. In particular, given N ≥ 0, we get ΦS,F+εE
c1,N

= 0 for all
sufficiently small ε > 0.

3. Main theorem

We want to express the wall-crossing formulas in terms of the q-development of
certain modular forms. We start by reminding the reader of some notations and
elementary facts (see e.g. [H-B-J], [R]).

Notation 3.1. Let H = {τ ∈ C | Im(τ) > 0} be the complex upper half plane. We
denote q = e2πiτ and q1/n = e2πiτ/n. For a positive integer n let

σk(n) :=
∑
d|n

dk and σoddk (n) :=
∑

d|n, d odd

dk.

Let η(τ) := q1/24
∏
n>0(1−qn) be the Dirichlet eta-function, and let ∆(τ) = η(τ)24

be the discriminant. We denote by θ(τ) :=
∑
n∈Z q

n2

the theta function for the
lattice Z. We also have the Eisenstein series

G2k(τ) := −Bk/2k +
∑
n≥1

σk−1(n)qn,

where Bk is the k-th Bernoulli number, and the 2-division value

e3(τ) := 1/12 + 2
∑
n≥1

(−1)nσodd1 (n)qn/2.
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We put f(τ) := η(2τ)3/θ(τ). Then η(2τ), θ(τ), G2k(2τ) for k > 1, e3(2τ) and
f(τ) are modular forms of weights 1/2, 1/2, 2k, 2 and 1 respectively for certain
subgroups of SL(2,Z), whereas G2(2τ) is only a quasimodular form (see [K-Z]).

We will denote d logq(g) := g−1dg/dq. Note that

d logq(g1g2) = d logq(g1) + d logq(g2).(∗)

Remark 3.2. We will use the following identities:

(1) η(2τ)3 =
∑
n∈Z

(−1)n(n+ 1/2)q(n+1/2)2

,

(2) θ(τ) =
η(2τ)5

η(τ)2η(4τ)2
, (3) f(τ) =

η(τ)2η(4τ)2

η(2τ)2
,

(4) q d logq(η(2τ)) = −2G2(2τ), (5) q d logq(θ(τ)) = −2G2(2τ) − e3(2τ).

Proof. (1) and (2) are standard facts, following e.g. from the Jacobi identity. (3)
follows from (2). (4) follows by an easy calculation using (∗), and, using also (2),
the proof of (5) is similar.

The main result of this paper is the following.

Theorem 3.3. Let X be a simply connected 4-manifold with b+ = 1 and signature
σ(X). Let ξ ∈ H2(X,Z) with ξ2 < 0. For α ∈ H2(X,Z) denote

gXξ (αz, x, τ) := exp

(
(ξ · α)z

2f(τ)
−QX(α)

z2(G2(2τ) + e3(2τ)/2)

f(τ)2
+ 3x

e3(2τ)

f(τ)2

)
· θ(τ)σ(X)f(τ)

∆(2τ)2

∆(τ)∆(4τ)
.

Then

δXξ
(

exp(αz + px)
)

= resq=0(q−ξ
2/4gXξ (αz, x, τ)dq/q).

Remark 3.4. (1) One can see that this expression for δXξ is not compatible with

the simple type condition. In particular, given c ∈ H2(X,Z), a 4-manifold X
with b+ = 1 will be of c-simple type at most for some special points in the
closure CX of the positive cone of X . It had already been shown in [K-L]
that P2 is not of simple type and that there is no chamber for which P1 × P1

is of simple type. It is easy to see from this that rational algebraic surfaces
X can be of simple type at most for special points in CX .

(2) The expression resq=0(q−ξ
2/4gXξ (αz, x, τ)dq/q) is just the coefficient of qξ

2/4

of gXξ (αz, x, τ). The current formulation is however more intrinsic. Note also

that dq/q = 2πidτ .
(3) We see that the coefficient gN−2r,r of zN−2rxr in gXξ (αz, x, τ) is q−(N+3)/4

multiplied by a power series in q. In particular, if ξ defines a wall of type (N),

then q−ξ
2/4gN−2r,r is a Laurent series in q. If ξ with ξ2 < 0 does not define

a wall of type (N), then the constant term of q−ξ
2/4gN−2r,r is zero.

(4) It would be interesting to know whether for classes ξ ∈ H2(X,Z) with ξ2 ≥
0 the expression resq=0(q−ξ

2/4gXξ (αz, x, τ)dq/q) has a geometrical or gauge-
theoretical meaning.

As a reasonably straightforward application of Theorem 3.3 we can determine
all the Donaldson invariants of the projective plane P2.
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Theorem 3.5. We denote by
√
i a primitive 8-th root of unity and by H the hy-

perplane class in H2(P2,Z). Put

en(z, x, τ) := exp

(
n

2

√
iz

f(τ)
− iz2G2(2τ) + e3(2τ)/2

f(τ)2
+ 3ix

e3(2τ)

f(τ)2

)
∆(2τ)2

∆(τ)∆(4τ)
.

Then

ΦP2

H (exp(Ȟz + px)) = resq=0

( ∑
n>0 odd
a>n even

(−1)(n+1)/2q(a2−n2)/4en(z, x, τ)f(τ)
)dq
q
.

(1)

ΦP2
0 (exp(Ȟz + px)) = resq=0

( ∑
n>0 even
a>n odd

(−1)(a−1)/2q(a2−n2)/4 a

2
√
i
en(z, x, τ)

)dq
q
.

(2)

In (2) we have used Definition 2.7 to define ΦP2
0 (ȞN−2rpr) for r ≥ (N −5)/4. One

can check that (up to different sign conventions) (1) and (2) agree with the explicit
computations in [K-L] and [E-G2].

Proof of Theorem 3.5 from Theorem 3.3. Let Y be the blowup of P2 in a point,
and let E ∈ H2(Y,Z) be the class of the exceptional divisor. Let F = H−E be the
class of a fibre of the ruling Y −→ P1. Fix a nonnegative integer N . By Lemma
2.9 we get for ε > 0 sufficiently small ΦY,F+εE

H,N = 0 = ΦY,F+εE
E,N+1 . On the other hand

the chamber of H − εE is related to the polarization H of P2. Thus we obtain by
the blowup formulas (0)b and (1)b that ΦP2

H,N = ΦY,H−εEH,N and ΦP2

0,N = ΦY,H−εEE,N+1 . So

we get by Theorem 2.3 (and Lemma 4.1 below) the formulas

ΦP2

H (exp(Ȟz + px)) =
∑

ξ∈WY
h (F,H)

√
i
(ξ2+3)+(ξ−H)2

δYξ (exp(−
√
iȞz + ipx)),

ΦP2
0 (exp(Ȟz + px)) =

∑
ξ∈WY

e (F,H)

√
i
(ξ2+3)+(ξ−E)2

δYξ (−
√
iĚ exp(−

√
iȞz + ipx)).

It is easy to see that

WY
h (F,H) =

{
(2n− 1)H − 2aE

∣∣ a ≥ n ∈ Z>0

}
,

WY
e (F,H) =

{
2nH − (2a− 1)E

∣∣ a > n ∈ Z>0

}
.

For ξ = nH − aE we get −ξ2/4 = (a2 − n2)/4. Furthermore
√
i
(ξ2+3)+(ξ−H)2

=

(−1)(n+1)/2 if n is odd and a is even, and
√
i
(ξ2+3)+(ξ−E)2

= ia+2 if n is even and a

is odd. Thus, replacing −
√
i by

√
i, (1) follows directly by applying Theorem 3.3.

(2) follows the same way using that

δYξ (−
√
iĚ exp(−

√
iȞz + ipx)) =

d

dw

(
δYξ (exp(−

√
i(Ěw + Ȟz) + ipx))

)∣∣∣
w=0

= resq=0

(
q−ξ

2/4 d

dw
(gP̂2

ξ (−
√
i(Ěw + Ȟz), ix, τ))

∣∣
w=0

)
.
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Remark 3.6. The arguments in section 6 of [E-G2] show that, using Theorem 3.3
and the blowup formulas, we can get explicit generating functions for all the Don-
aldson invariants of all rational surfaces S in all chambers of H2(S,R)+. In [K-L]
it had been shown (also using the blowup formulas) that the wall-crossing terms
on P2#2P2 determine the Donaldson invariants on P2 and P1 × P1.

4. Proof of the main theorem

We give a brief outline of the argument. Let ξ ∈ H2(X,Z) define a wall of type
(w,N), and let C− and C+ be the two chambers separated by W ξ. The related
chambers C−0 and C+0 of type (w,N) (resp. C−e and C+e of type (w + e,N + 1))

on X̂ are now separated by several walls. We can express δXξ,N by first applying
the blowup formula to the pair C−, C−0 of related chambers, then summing up
the wall-crossing formulas for all walls between C−0 and C+0 and finally applying
again the blowup formula for C+, C+0 (and similarly for C−e, C+e). The blowup
formulas (0)b–(3)b from 2.6 will give relations (0)r–(3)r between the δXξ,N and the

δX̂ξ,N . Using Conjecture 1.1 we encode this information (for all blowups of X)
in a suitable generating function ΛX in several variables. Then we can translate
(0)r–(3)r into differential equations (0)d–(3)d for ΛX , which determine ΛX up to
multiplication by a function λX(τ). We finally determine λX(τ) by specializing to
the case X = P1 × P1 and applying Lemma 2.9.

Lemma 4.1. Let w be the reduction modulo 2 of c1 ∈ H2(X,Z), and let N be a
nonnegative integer. Let g− and g+ be two metrics on X, whose period points ω(g−)
and ω(g+) do not lie on a wall of type (w,N). Let

W := WX
w,N (ω(g−), ω(g+)).

Then we have for all α ∈ AN (X) and β ∈ AN−2(X):

Φ
X,g+
c1,N

(α) − Φ
X,g−
c1,N

(α) =
∑
ξ∈W

(−1)ε(c1,ξ,N)δXξ,N (α),(a)

Φ
X,g+
c1,N

(α) − Φ
X,g−
c1,N

(α) =
∑
ξ∈W

(−1)ε(c1,ξ,N)
∑
n∈Z

δX̂ξ+2nE(α),(0)r

Φ
X,g+
c1,N

(α) − Φ
X,g−
c1,N

(α) =
∑
ξ∈W

(−1)ε(c1,ξ,N)
∑
n∈Z

(−1)n−1δX̂ξ+(2n+1)E,N+1(Ěα),(1)r

0 =
∑
ξ∈W

(−1)ε(c1,ξ,N)
∑
n∈Z

δX̂ξ+2nE,N (Ě2β),(2)r

Φ
X,g+
c1,N

(pβ)− Φ
X,g−
c1,N

(pβ) =
∑
ξ∈W

(−1)ε(c1,ξ,N)
∑
n∈Z

(−1)nδX̂ξ+(2n+1)E,N+1(Ě3β).

(3)r

(a) says that Theorem 2.3 extends to our definition of δXξ,N .

Proof. We assume that N is congruent to −(c21 +3) modulo 4 (otherwise both sides
of (a), (0)r–(3)r are trivially zero). Let C− and C+ be the chambers of type (w,N)
of ω(g−) and ω(g+) respectively. Let C−0 and C+0 (resp. C−e and C+e) be related

chambers in H2(X̂,R)+ of type (w,N) (resp. (w + e,N + 1)).
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Claim.

W X̂
w,N(C−0, C+0) =

{
ξ + 2nE

∣∣ ξ ∈W, n ∈ Z, n2 ≤ (N + 3 + ξ2)/4
}
,

W X̂
w+e,N+1(C−e, C+e) =

{
ξ + (2n+ 1)E

∣∣ ξ ∈W, n ∈ Z, (2n+ 1)2 ≤ N + 4 + ξ2
}
.

In the case that w = 0, we assume that C−0 and C+0 (resp. C−e and C+e) lie
on the same side of W 2E (resp. WE). The claim is essentially obvious: Any

η ∈W X̂
w,N (C−0, C+0) must be of the form ξ + αE for ξ ∈W . By the definition of a

wall we see that α must be an even integer 2n with n2 ≤ (N + 3 + ξ2)/4. On the
other hand it is obvious that all ξ + 2nE with ξ ∈W and n2 ≤ (N + 3 + ξ2)/4 lie

in W X̂
w,N (C−0, C+0). For W X̂

w+e,N+1(C−e, C+e) we argue analogously.

Using this description of W X̂
w,N (C−0, C+0) and W X̂

w+e,N+1(C−e, C+e), we see that

for X with b2(X) > 2 and odd intersection form and α ∈ SymN (H2(X,Q)) and β ∈
SymN−2(H2(X,Q)), the formulas (0)r–(3)r are just straightforward translations of
(0)b–(3)b (note that ε(c1, ξ,N) − ε(c1 + E, ξ + (2n + 1)E,N + 1) is congruent to
n− 1 modulo 2).

Now assume that the intersection form of X is even or b2(X) ≤ 2 or ξ is divisible

by 2 in H2(X,Z). Then Definition 2.7, the description of W X̂
w,N (C−e, C+e) and (1)b

imply immediately that (a) holds for all α ∈ SymN (H2(X,Q)). We show (0)r–(3)r
for α ∈ SymN (H2(X,Q)) (we only carry out the case of (0)r, the other cases are

analogous). Let X̃ := X̂#P2; we denote by F the generator of H2(P2,Z). Then by

Definition 2.7 and (0)r for X̂ we get

Φ
X,C+
c1,N

(α)− Φ
X,C−
c1,N

(α) =
∑
ξ∈W

∑
m∈Z

(−1)m+1δX̂ξ+(2m+1)E,N+1(Ěα)

=
∑
ξ∈W

∑
n∈Z

∑
m∈Z

(−1)m+1δX̃ξ+2nF+(2m+1)E,N+1(Ěα)

=
∑
ξ∈W

∑
n∈Z

δX̂ξ+2nE,N (α).

Now let X be general. We assume (a), (0)r–(3)r for all blowups Y of X and

all classes α = plβ with β ∈ Symk(H2(Y,Q)) for some k. Then (3)r implies
immediately (a) for pα. The proof of (0)r–(3)r for pα is analogous to the last

section. We only carry out the case of (1)r. Let Ỹ := Ŷ#P2; we denote by F the
generator of H2(P2,Z). We get by Definition 2.7

Φ
Y,C+
c1,N

(pα)− Φ
Y,C−
c1,N

(pα) =
∑
ξ∈W

∑
n∈Z

(−1)nδŶξ+(2n+1)E,N+1(Ě3α)

=
∑
ξ∈W

∑
n∈Z

∑
m∈Z

(−1)n(−1)m−1δỸξ+(2n+1)E+(2m+1)F,N+2(F̌ Ě3α)

=
∑
ξ∈W

∑
m∈Z

(−1)m−1δŶξ+(2m+1)E,N+1(Ěpα).

Lemma 4.2. For ξ ∈ H2(X,Z) we get

exp
(
L(ξ+nE)/2 +Q

X̂

)
(Ěk•) =

∑
s+2t=k

(n/2)s(−1)s+t
k!

s!t!
exp(Lξ/2 +QX),
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as a map
∑
N≥0 SymN (H2(X,Q)) −→ Q.

Proof.

exp
(
L(ξ+nE)/2 +Q

X̂

)
(Ěk•) =

dk

dwk
exp

(
(Lξ − nw)/2 +QX − w2

)∣∣
w=0

,

and the result follows by induction.

Remark 4.3. Using Definition 2.7, Lemma 4.2 and easy induction we see that Con-
jecture 1.1 implies that δXξ,N (pr•) is a polynomial in Lξ/2 and QX with coefficients

only depending on N , ξ2, r and the homotopy type of X .

Definition 4.4. For all b ≥ 0 let X(b) := X#bP2. Let l, k, r, b ∈ Z, put N :=
l+2k+2r, and assume that there exists a class ξ ∈ H2(X(b),Z) with w = ξ2/4 < 0.
Then we put

P (l, k, r, b, w) :=
l!k!

(l + 2k)!
CoeffLl

ξ/2
Qk
X(b)

δ
X(b)
ξ,N (pr•).

(By definition P (l, k, r, b, w) will be zero if ξ does not define a wall of type (N)
or if one of l, k, r, b is negative.) Note that P (l, k, r, b, w) is well defined: By Con-

jecture 1.1 and Remark 4.3, δ
X(b)
ξ,N (pr•) is a polynomial in Lξ/2 and QX(b). As

b2(X) > 1, the monomials Llξ/2Q
k
X(b) are linearly independent as linear maps

Syml+2k(H2(X,Q)) −→ Q, therefore the coefficients of Llξ/2Q
k
X(b) in δ

X(b)
ξ,N (pr•)

are well defined. Finally, again by Conjecture 1.1 they depend only on the numbers
l, k, r, b, w.

Lemma 4.5. For all (l, k, r, b, w) with b ≥ 0, if the left hand side of the equations
below is well defined, then the right hand side is also, and

P (l, k, r, b, w) =
∑
n∈Z

P (l, k, r, b+ 1, w − n2),(0)s

P (l, k, r, b, w) =
∑
n∈Z

(−1)n(n+ 1/2)P (l+ 1, k, r, b+ 1, w − (n+ 1/2)2),(1)s ∑
n∈Z

n2P (l, k, r,b+ 1, w− n2) = 2
∑
n∈Z

P (l − 2, k + 1, r, b+ 1, w − n2),(2)s

P (l, k, r + 1, b, w) =
∑
n∈Z

(−1)n+1
(

(n+ 1/2)3P (l + 3, k, r, b+ 1, w − (n+ 1/2)2)

(3)s

− 6(n+ 1/2)P (l+ 1, k + 1, r, b+ 1, w − (n+ 1/2)2)
)
.

Proof. Take (l, k, r, b, w) such that there exists a class ξ ∈ H2(X(b),Z) with w :=
ξ2/4 < 0. Let N := l + 2k + 2r. We can assume that ξ defines a wall of type (N)
(otherwise both sides of (0)s–(3)s are trivially zero).

Assume first that b2(X) > 2 and that in addition the intersection form on
H2(X,Z) is odd, or b > 0. Then we can find an η which is not divisible in
H2(X(b),Z) with η2 = ξ2. (The intersection form is (1) ⊕ (−1)⊕b2(X(b))−1, there-
fore we can find orthogonal classes h, e1, e2 with QX(b)(h) = 1 = −QX(b)(e1) =
−QX(b)(e2), and we put η := nh + (n + 1)e1 (resp. η := nh + (n + 1)e1 + e2)

if ξ2 = −(2n + 1) (resp. ξ2 = −(2n + 2)) for n ∈ Z≥0.) We can therefore as-
sume that ξ is not divisible in H2(X(b),Z). Let C− and C+ be the two chambers
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separated by W ξ, with ξ · ǎ− < 0 < ξ · ǎ+ for a− ∈ C− and a+ ∈ C+. Assume

that N + 3 + 4ξ2 < 0. Then W
X(b)
w,N (a−, a+) = {ξ}. Therefore we can replace

Φ
X(b),C+
c1,N

− Φ
X(b),C−
c1,N

in (0)r–(3)r by (−1)ε(c1,ξ,N)δ
X(b)
ξ,N . Now we apply Lemma 4.2

and the definition of the P (l, k, r, b, w) to obtain the result.
If m := N + 3 + 4ξ2 ≥ 0 we use induction on m. So we assume that the result is

true for all m′ < m. Then W
X(b)
w,N (a−, a+) = {ξ} ∪Wm, where the classes η ∈ Wm

satisfy N + 3 + η2 < m. So by induction the result holds for all η ∈ Wm and thus
by Lemma 4.1 also for ξ.

Finally if b2(X) ≤ 2 or the intersection form on H2(X,Z) is even, and b = 0,
then we use Definition 2.7

δXξ,N(α) :=
∑
n∈Z

(−1)n−1δX̂ξ+(2n+1)E,N+1(Ěα).

The result now follows by a computation analogous to the proof of Lemma 4.1 (and
to the beginning of the proof of Lemma 4.8 below).

We want to use the P (l, k, r, b, w) as the coefficients of a power series, which
should solve a system of differential equations. This does not work directly, because
at the moment we have only coefficients with w < 0. So we have to “complete”
the coefficients, i.e. to define the P (l, k, r, b, w) for all l, k, r, b, w by making use of
relation (1)s.

Definition 4.6. For all l, k, r, b ∈ Z and allw ∈ 1
4Z define P (l, k, r, b, w) inductively

by

(1) If w = ξ2/4 < 0 for ξ ∈ H2(X(b),Z), then apply Definition 4.4.
(2) We put

P (l, k, r, b, w) :=
∑
n∈Z

(−1)n(n+ 1/2)P (l+ 1, k, r, b+ 1, w − (n+ 1/2)2)

whenever the right hand side is already defined inductively by (1) and (2).
Note that the sum is again finite.

We check that the P (l, k, r, b, w) are well defined. For this we have to see (a) that (1)
and (2) give the same P (l, k, r, b, w) whenever both apply, but this is the contents
of relation (1)s; and (b) that the above definition determines P (l, k, r, b, w) for each
5-tuple (l, k, r, b, w) ∈ Z4 × 1

4Z. If w ≤ 0, then on X(1) for all n ∈ Z there exist
classes ηn with η2

n = 4w − (2n + 1)2 < 0 (as the intersection form on X(1) is
odd and of rank ≥ 3), and thus P (l, k, r, b, w) is defined by (2). Now assume that
P (l, k, r, b, w′) is defined for all l, k, r, b and all w′ < w. Then we use (2) again to
define P (l, k, r, b, w). We put

ΛX(L,Q, x, t, τ) :=
∑

(l,k,r,b)∈Z4

∑
w∈ 1

4Z

P (l, k, r, b, w)
LlQkxrtbqw

l!k!r!b!
,

where again τ ∈ H and q = e2πiτ . Note that (1), (2) and Definitions 2.7 and 4.4
imply that P (l, k, r, b, w) = 0 if l + 2k + 2r + 3 is not congruent to 4w modulo 4.

Now ΛX encodes all the wall-crossing formulas for all blowups of X .
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Remark 4.7. Let ξ ∈ H2(X(b),Z) be a class with ξ2 < 0. Then for all α ∈
H2(X(b),Q)

δ
X(b)
ξ (exp(αz+ px)) = resq=0

(
∂b

∂tb
(q−ξ

2/4ΛX((ξ/2 · α)z,QX(α)z2, x, t, τ)
dq

q

) ∣∣∣
t=0

.

Proof. This follows directly from the definition.

Lemma 4.8. ΛX satisfies the differential equations

θ(τ)
∂

∂t
ΛX = ΛX ,(0)d

η(2τ)3 ∂

∂L

∂

∂t
ΛX = ΛX ,(1)d

2θ(τ)
∂

∂Q
ΛX = (q

d

dq
θ(τ))

∂2

∂L2
ΛX ,(2)d

∂

∂x
ΛX = (q

d

dq
η(2τ)3)

∂3

∂L3

∂

∂t
ΛX − 6η(2τ)3 ∂

∂L

∂

∂Q

∂

∂t
ΛX .(3)d

Proof. We first want to see that the relations (0)s–(3)s hold for all (l, k, r, b, w) ∈
Z4× 1

4Z, i.e. that the recursive definition is compatible with (0)s–(3)s. The proof is
similar in all cases, so we just do (0)s. We assume that (0)s holds for all (l, k, r, b, w′)
with w′ < w. Then we get

P (l, k, r, b, w) =
∑
n∈Z

(−1)n(n+ 1/2)P (l+ 1, k, r, b+ 1, w − (n+ 1/2)2)

=
∑
n,m∈Z

(−1)n(n+ 1/2)P (l+ 1, k, r, b+ 2, w− (n+ 1/2)2 −m2)

=
∑
m∈Z

P (l + 1, k, r, b+ 1, w−m2).

We now translate (0)s–(3)s into differential equations (0)d–(3)d:

ΛX =
∑

(l,k,r,b,w)

P (l, k, r, b, w)
LlQkxrtbqw

l!k!r!b!

=
∑

(l,k,r,b,w)

∑
n∈Z

P (l, k, r, b, w)
LlQkxrtb−1qw+n2

l!k!r!(b− 1)!

= θ(τ)
∂

∂t
ΛX .

Similarly we get

ΛX =
∑

(l,k,r,b,w)

∑
n∈Z

(−1)n(n+ 1/2)P (l, k, r, b, w)
Ll−1Qkxrtb−1qw+(n+1/2)2

(l − 1)!k!r!(b− 1)!

=
∑
n∈Z

(−1)n(n+ 1/2)q(n+1/2)2 ∂

∂L

∂

∂t
ΛX ,
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and (1)d follows from Remark 3.2. Furthermore

0 =
∑

(l,k,r,b,w)

P (l, k, r, b, w)
∑
n∈Z

(
n2Ll−2Qk

(l − 2)!k!
− 2LlQk−1

l!(k − 1)!

)
xrtb−1qw+n2

r!(b− 1)!

= (q
d

dq
θ(τ))

∂2

∂L2

∂

∂t
ΛX − 2

∂

∂Q

∂

∂t
ΛX .

Finally we get

∂

∂x
ΛX =

∑
(l,k,r,b,w)

P (l, k, r + 1, b, w)
LlQkxrtbqw

l!k!r!b!

=
∑

(l,k,r,b,w)

P (l, k, r, b, w)
∑
n∈Z

(−1)n+1

(
(n+ 1/2)3Ll−3Qk

(l − 3)!k!

− 6(n+ 1/2)Ll−1Qk−1

(l − 1)!(k − 1)!

)
xrtb−1qw+(n+1/2)2

r!(b− 1)!

= (q
d

dq
η(2τ)3)

∂3

∂L3

∂

∂t
ΛX − 6η(2τ)3 ∂

∂L

∂

∂Q

∂

∂t
ΛX .

Lemma 4.9. Putting λX(τ) := ΛX(0, 0, 0, 0, τ) we obtain

ΛX =exp
(
L/f(τ)−Q(G2(2τ)+e3(2τ)/2)/f(τ)2+3xe3(2τ)/f(τ)2+θ(τ)−1t

)
λX(τ).

Proof. Using Remark 3.2 we can reformulate (0)d–(3)d as

∂

∂t
ΛX = ΛX/θ(τ),

∂

∂L
ΛX = ΛX/f(τ),

∂

∂Q
ΛX =

1

2
q (d logq(θ(τ)))ΛX/f(τ)2,

∂

∂x
ΛX = q (d logq(η(2τ)3))ΛX/f(τ)2 − 3q(d logq(θ(τ)))ΛX/f(τ)2.

So the result follows by Remark 3.2.

To finish the proof of Theorem 3.3 we now only have to identify λX .

Lemma 4.10.

λX =
∆(2τ)

f(τ)11
exp(θ(τ)σ(X)) =

∆(2τ)2

∆(τ)∆(4τ)
f(τ) exp(θ(τ)−1σ(X)).

Proof. We first show that it is enough to prove this result in case X = P1 × P1.

We note that by Lemma 4.9 the statements for a variety Y and Ŷ = Y#P2 are

equivalent. It is therefore enough to show it for X̂ . X̂ has odd intersection form and

a := b2(X̂)−1 ≥ 2. So it is homotopy-equivalent to P2#aP2 = (P1×P1)#(a−1)P2.
As δXξ only depends on the homotopy type of X , it is enough to show the result

for P1 × P1. This is in fact the only time in our argument where we use that δXξ
depends on the homotopy type of X , rather than on X itself.

Let F,G ∈ H2(P1 × P1,Z) be the classes of the fibres of the two projections to

P1. Let k ∈ Z>0 and N := 4k − 1. Then Lemma 2.9 gives that ΦP1×P1,F+εG
F+G,N =
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ΦP1×P1,G+εF
F+G,N = 0 for all sufficiently small ε > 0. In particular we have for all k > 0

(−1)k+1
∑

ξ∈W P1×P1
f+g (F,G)

(−1)ε(F+G,ξ,4k−1)δP1×P1

ξ (2Ǧ4k−1) = 0.

Here W P1×P1

f+g (F,G) =
{

(2n− 1)F − (2m− 1)G
∣∣ n,m ∈ Z>0

}
, and

(−1)k+1+ε(F+G,(2n−1)F−(2m−1)G,4k−1) = (−1)n+m.

Applying Lemma 4.9 we get

Coeffq0

( ∑
n,m∈Z>0

(−1)n+mq(2n−1)(2m−1)/2(2n− 1)4k−1 λP1×P1(τ)

f(τ)4k−1

)
= 0.(∗)

Note that, by Definition 4.6, λP1×P1 = q−3/4λ̄, where λ̄ =
∑
liq

i is a power series
in q. Also f(τ) = q1/4f̄ with f̄ a power series in q with constant term 1. It is

well known ([Ko],[K-M]) that δP1×P1

F−3G((2Ǧ)3) = 1. Thus we get l0 = 1. Putting

λk :=
∑
j<k ljq

j , (∗) gives for each k ≥ 1 the recursive relation

lk = −
∑
n,m>0

(−1)n+m(2n− 1)4k−1Coeffqk−2nm+n+m(λ̄k/f̄
4k−1).

So we see that λP1×P1 is uniquely determined by (∗). We put

Hk(τ) :=
∑

n,m∈Z>0

(−1)n+mq
1
4 (2n−1)(2m−1)(2n− 1)4k−1∆(τ)/f(τ/2)4k+10.

Then the lemma follows from the following lemma (the proof of which is due to
Don Zagier).

Lemma 4.11. resq=0 Hk(τ)dqq = 0.

Proof. We start by rewriting Hk(τ).∑
n,m>0

(−1)n+mq(n−1/2)(m−1/2)(2n− 1)4k−1 =
∞∑

d odd

(−1)(d−1)/2σ4k−1(d)qd/4

=
1

2i
(G4k((τ + 1)/4)−G4k((τ − 1)/4)) =: G̃4k(τ),

where G4k(τ) is the Eisenstein series. We write

φ := f(τ/2)2 = (η(τ/2)η(2τ)/η(τ))
4
.

Then we have Hk(τ) = G̃4k(τ)∆(τ)/φ2k+5 . We want to show that Hk(τ) is a
modular form of weight 2 for the θ-group

Γθ :=
{
A ∈ SL(2,Z)

∣∣ A ≡ (1 0
0 1

)
orA ≡

(
0 1
1 0

)
modulo 2

}
.

The operation of Γθ is generated by τ 7→ τ + 2 and τ 7→ −1/τ . We see that

G̃4k(τ + 2) = −G̃4k(τ). Now we write

(−1/τ + 1)/4 =
(τ − 1)/4

4(τ − 1)/4 + 1
, (−1/τ − 1)/4 =

(τ + 1)/4

−4(τ + 1)/4 + 1
,

and use that G4k(τ) is a modular form of weight 4k for SL(2,Z), to obtain that

G̃4k(−1/τ) =
1

2i

(
τ4G4k((τ − 1)/4)− τ4G4k((τ + 1)/4)

)
= −τ4G̃4k(τ).
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Furthermore we see by φ(τ)6 = ∆(τ/2)∆(2τ)/∆(τ) that φ(−1/τ)6 = τ12φ(τ)6,
i.e. φ(−1/τ) = ωτ2φ(τ) for a 6-th root of unity ω. Putting τ := i we get φ(i) =
−ωφ(−1/i), i.e. ω = −1. We also obviously have φ(τ + 2) = −φ(τ). Putting this
together and using the fact that ∆(τ) is a modular form of weight 12 for SL(2,Z)
we finally see that Hk(τ) is a modular form of weight 2 for Γθ. In other words
Hk(τ)dq/q = 2πiHk(τ)dτ is a Γθ-invariant differential form on H, holomorphic out
of the cusps τ = 1 and τ = ∞ (i.e. q = 0). We show that Hk(τ) is holomorphic

at τ = 1. ∆(τ) and G̃4k(τ) are obviously holomorphic at τ = 1. We now put
τ := 1− 1/z and use again that ∆(τ) is a modular form of weight 12 for SL(2,Z)

and write 1/2− 1/(2z) = (z−1)/2
2(z−1)/2+1 to obtain

φ(τ)6 =
∆(1/2− 1/(2z))∆(−2/z)

∆(−1/z)
=
z12∆((z − 1)/2)(z/2)12∆(z/2)

z12∆(z)

= −(z/2)12 ∆(z)2

∆(2z)
.

So for z = ∞, (i.e. τ = 1) the modular form φ(τ) is holomorphic and does not
vanish. Thus also Hk(τ) is holomorphic at τ = 1. Thus the residue theorem implies
that resq=0(2πiHk(τ)dτ ) = 0.

Remark 4.12. As noted above, we have used that by Conjecture 1.1 δXξ,N depends
only on the homotopy type X rather than just on X only in the reduction above
to P1×P1. In particular, without assuming this, our proof still shows Theorem 3.3
for X a rational surface, and therefore also Theorem 3.5.

5. Possible generalizations

It should be possible to prove the blowup formulas and also Conjecture 1.1 for
4-manifolds X with b+(X) = 1 and b1(X) = 0 (i.e. dropping the assumption that
X is simply connected). If we assume these generalizations, then all our arguments
in the proof of Theorem 3.3 work in this more general case except for the reduction
to P1 × P1 at the beginning of the proof of Lemma 4.10. So we get

Corollary 5.1. Assume that the blowup formulas 2.6 and Conjecture 1.1 hold for
all 4-manifolds Y with b+(Y ) = 1 and b1(Y ) = 0. Then for all X with b+(X) = 1
and b1(X) = 0, all ξ in H2(X,Z) with ξ2 < 0 and all α ∈ H2(X,Q) we have

δXξ (exp(αz + px)) = resq=0

(
gXξ (αz, x, τ)λ[X](τ)∆(τ)∆(4τ)/(f(τ)∆(2τ)2 )

)
dq/q,

where gXξ is the generating function from Theorem 3.3 and λ[X](τ) is q−3/4 multi-

plied by an unknown power series λ̄[X](q) in q, which depends only on the equiva-

lence class [X ], where X and Y are equivalent if X#kP2 and Y#kP2 are homotopy
equivalent for some k.

The results of [E-G1] suggest that the dependence of λ[X](τ) on X should be
very simple.

Conjecture 5.2. λ[X](q) = n2f(τ)∆(2τ)2/(∆(τ)∆(4τ)), for n2 the number of 2-

torsion points in H2(X,Z).
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