
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 14, Number 2, Pages 279–296
S 0894-0347(00)00359-3
Article electronically published on November 30, 2000

THE AVERAGING LEMMA

RONALD DEVORE AND GUERGANA PETROVA

1. Introduction

Averaging lemmas arise in the study of regularity of solutions to nonlinear trans-
port equations. The present paper shows how techniques from Harmonic Analysis,
such as wavelet decompositions, maximal functions, and interpolation, can be used
to prove averaging lemmas and to establish their sharpness.

Let f(x, v) be a real-valued function defined on Rd × Ω, where Ω is a bounded
domain in Rd. In applications Ω is a set of velocity vectors. Associated to f , we
have the velocity average

f̄(x) :=
∫

Ω

f(x, v) dv.(1.1)

By an averaging lemma, we shall mean a result which deduces smoothness for f̄
from assumptions about f and the function

g(x, v) := v · ∇xf.(1.2)

Note that g(·, v) only gives information about the smoothness of f(·, v) in the
direction v. We shall restrict our attention to the nontrivial case d ≥ 2. The
simplest version of an averaging lemma is the following.

Theorem 1.1. If f, g ∈ L2(Rd × Ω), d ≥ 2, then f̄ is in the Sobolev space
W 1/2(L2(Rd)) and

‖f̄‖W 1/2(L2(Rd)) ≤ C
[
‖f‖L2(Rd×Ω) + ‖g‖L2(Rd×Ω)

]
,(1.3)

where C depends only on d and Ω.

This theorem is easily proved using Fourier transforms [8].
We are interested in generalizations of the averaging lemma in which the role

of L2 is replaced by Lp, p 6= 2. We shall use the abbreviated notation Bsp :=

Bsp(Lp(Rd)) for this Besov space. Note that W 1/2(L2(Rd)) = B
1/2
2 (L2(Rd)). We

shall prove the following averaging lemma in §3.
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Theorem 1.2. If f, g ∈ Lp(Rd × Ω), d ≥ 2, then the average f̄ is in the Besov
space Bmin(1/p,1/p′)

p and

‖f̄‖
B

min(1/p,1/p′)
p

≤ C
[
‖f‖Lp(Rd×Ω) + ‖g‖Lp(Rd×Ω)

]
,(1.4)

where C depends only on d and Ω.

As noted above, the case p = 2 of this lemma was first proved by Golse, Lions,
Perthame, and Sentis [8] and is a quite elementary application of Fourier transforms.
This latter paper also proves that when f, g ∈ Lp, then f̄ is in each of the Besov
spaces Bsp, 0 < s < min(1/p, 1/p′). DiPerna, Lions, and Meyer [7] remark that
Theorem 1.2 holds for p > 2 and also show for p < 2 that f, g ∈ Lp(Rd×Ω) implies
f̄ ∈ B

1/p′

2 (Lp(Rd)). Later, Bezard [2] showed that in the case 1 < p < 2, the
spaceB1/p′

2 (Lp(Rd)) can be replaced by the (smaller) potential space L1/p′ (Lp(Rd)).
The conclusion in Theorem 1.2 is slightly stronger than Bezard’s result because
B

1/p′

p (Lp(Rd)) is properly embedded in L1/p′(Lp(Rd)). The proofs of the previous
authors for 1 < p < 2 are based on Littlewood-Paley theory and in the case of
Bezard on an analysis of the averaging lemma for p = 1 involving Hardy spaces.

One of the main points of the present paper is to show how Theorem 1.2 follows
immediately from the following facts about the real method of interpolation:

(L1(Rd), B1/2
2 (L2(Rd)))2/p′,p = B1/p′

p (Lp(Rd)), 1 < p < 2,(1.5)

and

(L∞(Rd), B1/2
2 (L2(Rd)))2/p,p ⊂ B1/p

p (Lp(Rd)), 2 < p <∞.(1.6)

The second of these interpolation theorems is a simple consequence of existing
interpolation results and covers the case 2 < p <∞ in Theorem 1.2. On the other
hand, (1.5) uses (simple) new ideas based on maximal functions in its proof. We
feel that the new technique will prove useful in other settings.

We should note that to derive Theorem 1.2 from the above interpolation theorems
is elementary and utilizes only the obvious result that f ∈ Lp(Rd × Ω) implies
f̄ ∈ Lp(Rd), p = 1,∞, together with the simple case p = 2 already noted above.

We shall also show that Theorem 1.2 is sharp in the following sense.

Theorem 1.3. For each bounded domain Ω ⊂ Rd and each 1 < p < ∞ and q <
p, there is a function f with f, g ∈ Lp(Rd × Ω), d ≥ 2, such that f̄ is not in
B

min(1/p,1/p′)
q (Lp(Rd)).

In the case 1 < p ≤ 2, Lions [9] has shown the weaker result that for each
s > 1/p′ there exists f, g ∈ Lp for which f̄ is not in Bsp. He has also formulated
some negative results in the case 2 < p <∞ but not in the above form.

We shall also go into a deeper analysis of the averaging lemma near the endpoint
p = 1. We show that if Ω is bounded away from 0, then, whenever f, g ∈ L1(Rd×Ω),
the wavelet coefficients of f̄ are in weak-`1. Note that for a function in L1, it is
generally not true that its wavelet coefficients are in weak-`1. We want to stress
however that the proof of Theorem 1.2 does not require this weak-`1 theorem.

Our main vehicle for analyzing the averaging operation is wavelet decomposi-
tions. Wavelets give simpler characterizations of Besov spaces (in terms of wavelet
coefficients) than those from the Littlewood-Paley decompositions.

We have restricted our attention in this paper to a specific setting for averaging
lemmas. Many variants are possible such as replacing v by a more general function
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a(v) in v ·∇xf or taking a weighted average over Rd in place of the average over Ω.
The techniques put forward in this paper can be applied to these variants as well.
However, we feel that the main point of this paper is to understand how certain
elements from Harmonic Analysis can be used in the analysis of averaging lemmas.
Therefore, we do not strive to give the most general results but rather to illustrate
these simple techniques and to show how they give sharp results.

An outline of this paper is as follows. In §2, we introduce the known results
on wavelet decompositions and their characterization of Besov spaces that we shall
need in this paper. In §3, we prove the interpolation results (1.5)–(1.6). In §4, we
prove Theorem 1.2. In §5, we prove Theorem 1.3. The final section is devoted to
the weak-`1 result.

2. Besov spaces and wavelets

In this section, we introduce wavelet decompositions and explain how they char-
acterize the classical smoothness spaces. General references for the material in this
section are Meyer [10] and Daubechies [4]. Let E′ denote the set of vertices of the
cube [0, 1]d and let E denote the set of nonzero vertices. Let ψ be a univariate con-
tinuously differentiable wavelet function with compact support which is obtained
from the scaling function φ. Examples of such wavelets and scaling functions were
given by Daubechies [3]. We could also use biorthogonal wavelets or even noncom-
pactly supported wavelets but at the expense of technical complications. We shall
use the notation ψ0 := φ and ψ1 := ψ. For each e ∈ E′, we define the multivariate
wavelets

ψe(x1, . . . , xd) := ψe1(x1) · · ·ψed(xd).(2.1)

Let D denote the set of dyadic cubes in Rd and let Dj denote those dyadic
cubes which have side length 2−j and D+ :=

⋃
j≥0Dj . For any dyadic cube I =

2−j(k + [0, 1]d) in D and any e ∈ E′, we define the wavelet

ψeI(x) := ψe(2jx− k),(2.2)

which is a wavelet scaled to I. Notice that these functions are normalized in L∞.
To simplify the notation that follows, we introduce the indexing set ∆ which

consists of all pairs (I, e) with I ∈ D+ and e ∈ E (e ∈ E′ if I ∈ D0). We also let
∆j := {(I, e) ∈ ∆ : I ∈ Dj}, j ≥ 0. For any locally integrable function h on Rd, we
define its wavelet coefficients

aeI(h) := 〈h, ψeI〉, (I, e) ∈ ∆.(2.3)

Moreover, we let

aI(h) :=
{ ∑

e∈E′ |aeI(h)|, I ∈ D0,∑
e∈E |aeI(h)|, I ∈ Dj , j ≥ 1.(2.4)

These wavelet coefficients are normalized for L1(Rd).
There are times when we shall need normalizations of the wavelet functions and

coefficients for Lp(Rd). We define

ψeI,p := |I|−1/pψeI , (I, e) ∈ ∆,(2.5)

and

aeI,p(h) := |I|−1/p′aeI(h), aI,p(h) := |I|−1/p′aI(h).(2.6)
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Each function h which is locally integrable on Rd has the wavelet expansion

h =
∑

(I,e)∈∆

aeI,2(h)ψeI,2.(2.7)

The functions appearing in (2.7) form a complete orthonormal system for L2(Rd).
Let s ≥ 0, 0 < q, p ≤ ∞. The Besov space Bsq(Lp(Rd)) is usually defined by

means of moduli of smoothness or Fourier transforms. It is a smoothness space
with s giving the order of smoothness (analogous to the number of derivatives), p
giving the space in which smoothness is to be measured (namely Lp(Rd)), and q
giving a finer distinction of these spaces which is important in many applications.
We refer the reader to any of the standard treatments of Besov spaces ([6], [10],
[11], [1]).

There are equivalent characterizations of Besov spaces in terms of wavelet co-
efficients. We shall use these as our definition of the Besov spaces. Given s > 0,
let r > s, let φ and ψ be in Cr , and let ψ have at least r vanishing moments. For
1 ≤ p ≤ ∞, 0 < s < r, 0 < q ≤ ∞, we define the Besov space Bsq(Lp(Rd)) by means
of the (quasi-)norm

‖h‖Bsq(Lp(Rd)) :=


(∑∞

j=0 2jsq
(∑

I∈Dj aI,p(h)p
)q/p)1/q

, 0 < q <∞,

supj≥0 2js
(∑

I∈Dj aI,p(h)p
)1/p

, q =∞.

(2.8)

We note, but shall not use, the fact that the smoothness condition on ψ assumed
for (2.8) can actually be weakened to only requiring that ψ ∈ Bs+ε∞ (Lp) for some
ε > 0. Each choice of φ and ψ with the above-mentioned properties gives a norm
in (2.8) which is equivalent to the Besov norm.

In going further, we shall use the abbreviated notation

Bsp := Bsp(Lp(Rd)), s > 0, 1 ≤ p ≤ ∞.(2.9)

In the special case that φ = χ[0,1], the wavelet ψ is the Haar function and ψeI is
supported on I for each I ∈ D, e ∈ E′. The Haar function is not completely suffi-
cient for our purposes (it barely misses characterizing the Besov spaces of interest
to us), because of its lack of smoothness. However, it does provide one direction of
the characterization in (2.8).

Remark 2.1. If a function h is in the Besov space Bsq(Lp(Rd)), 0 < s < 1, 0 <
q, p ≤ ∞, then its Haar coefficients aI,p(h) satisfy ∞∑

j=0

2jsq

∑
I∈Dj

aI,p(h)p

q/p


1/q

≤ C‖h‖Bsq(Lp(Rd)),(2.10)

with C depending only on s and d.

This follows from well-known results on approximation by piecewise constant
functions. For example, let Pj denote the orthogonal projector which maps f into
the piecewise constant function Pjf which takes the value fI := 1

|I|
∫
I
f on each

dyadic cube I in Dj . Then, it is well known and easy to prove that

‖f − Pjf‖Lp(Rd) ≤ C|f |Bα∞(Lp(Rd))2
−jα(2.11)
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holds for all f ∈ Bα∞(Lp(Rd)), 0 < α ≤ 1. Obviously, the left side in (2.11) can be
replaced by ‖Pjf − Pj−1f‖Lp(Rd). This latter expression is simply the `p norm of
the Lp normalized Haar coefficients from the dyadic level j. This gives Remark 2.1
in the case q =∞. Choosing α1 < s < α2 and interpolating between Bα1

∞ (Lp(Rd))
and Bα1

∞ (Lp(Rd)) gives Remark 2.1 for all 0 < s < 1, 0 < q ≤ ∞.
We can always assume that the scaling function φ and the wavelet ψ are sup-

ported in [0, `] with ` an odd natural number. Then, when I ∈ Dj and I =
2−j(k + [0, 1]d), the functions ψeI , e ∈ E′, are all supported in

Ī := 2−j(k + [0, `]d).(2.12)

The overlapping support causes technical difficulties which can be overcome with
the following lemma (see Lemma 4.3 in [5]).

Lemma 2.2. There exist disjoint sets of dyadic cubes Γ1, . . . ,Γγ, with γ = γ(d),
such that

(i) D =
⋃γ
i=1 Γi,

(ii) Γm ∩ Γn = ∅, n 6= m,
(iii) if I, J ∈ Γm, either Ī ⊂ J̄ or J̄ ⊂ Ī or int(Ī) ∩ int(J̄) = ∅.

3. An interpolation theorem

In this section, we shall prove the interpolation results (1.5) and (1.6). Given
a pair of quasi-normed linear spaces X,Y which are continuously embedded in a
Hausdorff space X , the K-functional for this pair is defined by

K(f, t) := K(f, t;X,Y ) := inf
f=f0+f1

‖f0‖X + t‖f1‖Y , t > 0.(3.1)

The real interpolation space (X,Y )θ,q, 0 < θ < 1, 0 < q ≤ ∞, consists of all f ∈ X
such that

‖f‖(X,Y )θ,q :=

{(∫∞
0

[t−θK(f, t)]q dtt
)1/q

, 0 < q <∞,
supt≥0 t

−θK(f, t), q =∞,
(3.2)

is finite. The expression in (3.2) defines the (quasi-)norm for this space.
The fundamental interpolation theorem for the θ, q spaces is the following. If U

is a linear operator which boundedly maps X0 to X1 and Y0 to Y1, then, for each
0 < θ < 1 and 0 < q ≤ ∞, U also boundedly maps (X0, Y0)θ,q into (X1, Y1)θ,q and
we have

‖Uf‖(X1,Y1)θ,q ≤ C‖f‖(X0,Y0)θ,q(3.3)

for every f ∈ (X0, Y0)θ,q.
The real interpolation spaces have been characterized for many pairs (X,Y ). We

shall need such characterizations only for certain sequence spaces and we restrict
the following discussion to the cases we need. Let w be a weight function defined
on (I, e) ∈ ∆ and consider the spaces `p(w) consisting of all sequences (ceI)(I,e)∈∆

for which

‖(ceI)(I,e)∈∆‖`p(w) :=


(∑

(I,e)∈∆w((I, e))|ceI |p
)1/p

, 0 < p <∞,
sup(I,e)∈∆ w((I, e))|ceI |, p =∞,

(3.4)

is finite. We shall only be concerned with weights w of the form w((I, e)) := |I|s,
s ∈ R.
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If w0((I, e)) = |I|s0 and w1((I, e)) = |I|s1 are two weights of this form and
0 < θ < 1 and 0 < p0, p1 ≤ ∞, then (see [1], p. 119)

(`p0(w0), `p1(w1))θ,p = `p(wθ),(3.5)

where
1
p

=
1− θ
p0

+
θ

p1
, wθ(I) = |I|sθ , sθ = (1− θ)ps0

p0
+ θp

s1

p1
.(3.6)

It is also possible in the above interpolation results to replace the `p spaces by
Lorentz spaces. We shall only need this in the case of the weak-`1(w) spaces which
correspond to the Lorentz space `1,∞(w). The quasi-norm on weak-`1(w) is given
by

‖(ceI)(I,e)∈∆‖`1,∞(w) := sup
ε>0

εw{(I, e) ∈ ∆ : |ceI | > ε}

= sup
ε>0

ε
∑

(I,e): |ceI |>ε
|I|s.(3.7)

In the case s = 0 and w((I, e)) = 1, for all (I, e), we refer to the space weak-`1(w)
as simply weak-`1. If w((I, e)) = |I|s for some s ∈ R, then (see [1], p. 113)

(`1,∞(w), `2(w))θ,p = `p(w),(3.8)

where
1
p

=
1− θ

1
+
θ

2
.(3.9)

Note that the weight w in (3.8) is not varying.
We shall prove (1.5) and (1.6) by using wavelet sequences. If a function h ∈

L1(Rd), we can estimate its L1 normalized wavelet coefficients by

|aeI(h)| ≤ C0

∫
Ī

|h|,(3.10)

where Ī is as defined in (2.12). It follows that the sequence of wavelet coefficients
(aeI(h))(I,e)∈∆j

are in `1 for each j = 0, 1, . . . . However the combined sequence
(aeI(h))(I,e)∈∆ does not have this property. In fact, simple examples show that this
latter sequence need not even be in weak-`1. The following lemma shows that a
substitute for the weak-`1 property holds.

Lemma 3.1. For any s > 1 and w((I, e)) := |I|s, there exists a constant Cs > 0
such that for each h ∈ L1(Rd), we have

ε
∑

(I,e):|aeI(h)|>ε|I|s
w((I, e)) = ε

∑
(I,e):|aeI(h)|>ε|I|s

|I|s ≤ Cs‖h‖L1(Rd), ε > 0.(3.11)

Proof. From (3.10), for any (I, e) ∈ ∆,

|aeI(h)| ≤ C0

∫
Ī

|h| dx =: beI(h) =: bI(h),(3.12)

where the equalities serve to define beI(h) and bI(h). We fix ε > 0 and let Λ :=
{(I, e) ∈ ∆ : beI(h) > ε|I|s}. For each m, let Λm := {(I, e) ∈ Λ : I ∈ Γm}, where
the Γm are the sets of Lemma 2.2 which partition D. It is enough to show that

ε
∑

(I,e)∈Λm

|I|s ≤ C‖h‖L1(Rd).(3.13)
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We fix m and prove (3.13). We say a cube I ∈ Λm is maximal if Ī is not
contained in any other cube J̄ with (J, e) ∈ Λm for some e. We next show that for
any maximal cube I, we have

ε
∑

(J,e)∈Λm,J̄⊂Ī

|J |s ≤ C
∫
Ī

|h|.(3.14)

Indeed, for k ≥ 0, there are at most `d2kd2d indices (J, e) such that J̄ ⊂ Ī and
|I| = 2kd|J | and therefore∑

(J,e)∈Λm,J̄⊂Ī

|J |s ≤ (2`)d
∞∑
k=0

2kd(1−s)|I|s ≤ C|I|s ≤ Cε−1bI = Cε−1

∫
Ī

|h|,(3.15)

where the next to last equality is the criterion for membership in Λm and the last
equality is (3.12). This completes the proof of (3.14). We now add the inequalities
(3.14) and use the fact that the maximal cubes are disjoint to arrive at (3.13). This
completes the proof of the lemma.

We can now prove our main interpolation theorem.

Theorem 3.2. We have the following relations between interpolation spaces and
Besov spaces on Rd:

(L1, B
1/2
2 )2/p′,p = B1/p′

p , 1 < p < 2,(3.16)

and

(L∞, B
1/2
2 )2/p,p ⊂ B1/p

p , 2 < p <∞.(3.17)

Moreover, the norm for the interpolation space on the left side of (3.16) is equivalent
to the norm of the Besov space on the right side. Likewise, the norm of the Besov
space on the right side of (3.17) is less than a fixed multiple of the norm of the
interpolation space on the left side.

Proof. We first prove (3.16). Let w((I, e)) := |I|s, s := d+1
d , and let ceI(h) :=

|I|−saeI(h) with aeI(h) the L1 normalized wavelet coefficients of h given by (2.3).
We consider the linear operator U which maps h into (ceI(h))(I,e)∈∆. Lemma 3.1
gives that U boundedly maps L1 into weak-`1(w). The definition of the Besov space
B

1/2
2 gives that U boundedly maps this Besov space into `2(w). By (3.3), we have

that U boundedly maps (L1, B
1/2
2 )θ,p into `p(w) when θ satisfies 1

p = 1−θ
1 + θ

2 , i.e.
θ = 2/p′. From the definition (2.8) of the Besov spaces, we have

C‖(ceI(h))(I,e)∈∆‖`p(w) ≥ ‖h‖B1/p′
p

.(3.18)

This gives that the interpolation space on the left of (3.16) is embedded in the
Besov space on the right and

‖h‖
B

1/p′
p
≤ C‖h‖

(L1,B
1/2
2 )2/p′,p

.(3.19)

We can reverse this embedding as follows. We consider the operator V which
maps a given sequence d = (deI)(I,e)∈∆ to the function V (d) =

∑
(I,e)∈∆ d

e
Iψ

e
I,1.

Then V boundedly maps `1 into L1 and `2(w2) intoB1/2
2 whenw2((I, e)) := |I|− d+1

d .
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Thus, defining wp((I, e)) := |I|−
d+1
d

p
p′ and using (3.5), we obtain that V maps

`p(wp) into (L1, B
1/2
2 )2/p′,p and

‖V d‖
(L1,B

1/2
2 )2/p′

≤ C‖d‖`p(wp) ≤ C‖V d‖
B

1/p′
p

.(3.20)

The set of functions V d, d ∈ `p(wp), equals B1/p′

p and therefore we have reversed
the inequality (3.19). This completes the proof of (3.16).

The proof of the embedding (3.17) is similar to the proof of (3.19) except that
we use (3.5) in place of (3.8).

4. Proof of Theorem 1.2

In this section, we show how Theorem 1.2 can be proved by using the interpola-
tion results of the previous section. Throughout this section, Ω ⊂ Rd is a bounded
set. We introduce below a linear operator T and examine its mapping properties.
From these mapping properties we easily deduce the averaging lemma.

For any function F ∈ L1(Rd × Ω) + L∞(Rd × Ω), the differential equation

f + v · ∇xf = F(4.1)

has a solution

f(x, v) =
∫ ∞

0

e−sF (x− sv, v) ds,(4.2)

which is also in L1(Rd×Ω)+L∞(Rd×Ω). Note that if F ∈ Lp(Rd×Ω), 1 ≤ p ≤ ∞,
then so is f and

‖f‖Lp(Rd×Ω) ≤ ‖F‖Lp(Rd×Ω).(4.3)

Also, we have

‖v · ∇xf‖Lp(Rd×Ω) = ‖F − f‖Lp(Rd×Ω) ≤ 2‖F‖Lp(Rd×Ω).(4.4)

We define the linear operator T by

(TF )(x) := f̄(x) =
∫

Ω

f(x, v) dv,(4.5)

where f is given by (4.2). For each 1 ≤ p ≤ ∞, we have

‖TF‖Lp(Rd) ≤ (meas(Ω))1/p′‖f‖Lp(Rd×Ω) ≤ (meas(Ω))1/p′‖F‖Lp(Rd×Ω),(4.6)

where the last inequality is (4.3).
Let us consider more closely the action of T on L2(Rd ×Ω). If F ∈ L2(Rd ×Ω),

then from Theorem 1.1 (i.e. the case p = 2 of the averaging lemma), we have

‖TF‖
B

1/2
2
≤ C

(
‖f‖L2(Rd×Ω) + ‖v · ∇xf‖L2(Rd×Ω)

)
≤ C‖F‖L2(Rd×Ω),(4.7)

where the last inequality uses (4.3) and (4.4). In other words, T is a bounded
mapping from L2(Rd × Ω) into the Besov space B1/2

2 .
In summary, we have shown that T boundedly maps Lp(Rd × Ω) to Lp(Rd),

1 ≤ p ≤ ∞, and boundedly maps L2(Rd × Ω) into B
1/2
2 . It follows that for

1 < p <∞, we have

‖TF‖
B

min(1/p,1/p′)
p

≤ C‖F‖Lp(Rd×Ω), F ∈ Lp(Rd × Ω).(4.8)

For example, the case 1 < p < 2 follows from Theorem 3.2 and the fact that
(L1(Rd × Ω), L2(Rd × Ω))2/p′,p = Lp(Rd × Ω).
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Proof. Proof of Theorem 1.2 If f ∈ Lp(Rd × Ω) and g := v · ∇xf ∈ Lp(Rd × Ω),
then the function F := f + g is also in Lp(Rd ×Ω). The differential equation (4.1)
with this choice of right side F has f as its unique solution. Thus TF = f̄ and the
theorem follows from (4.8).

5. The sharpness of Theorem 1.2

In this section, we prove Theorem 1.3 in the case 2 ≤ p <∞. Similar techniques
(which we do not give) will also prove the case 1 < p ≤ 2 (see [12]).

Let Ω ⊂ Rd be an arbitrary but fixed bounded domain. It follows that there is
a constant M > 0 such that

|v| ≤M, v ∈ Ω.(5.1)

By rotating Ω if necessary, we can, without loss of generality, assume that Ωδ :=
Ω∩{v = (v1, . . . , vd) : vi ≥ δ, i = 1, . . . , d} satisfies meas(Ωδ) 6= 0 for some δ > 0.

We shall use the piecewise linear function of one variable which satisfies

F (u) :=

 u+ d+ 1, −d− 1 ≤ u ≤ −d,
1, −d ≤ u ≤ d,
−u+ d+ 1, d ≤ u ≤ d+ 1,

(5.2)

and is zero otherwise.
We shall build the function f called for in Theorem 1.3 as a sum of functions fk

which we now describe. Let

Ik := [9(k − 1)d, 2−k + 9(k − 1)d]d, k = 1, 2, . . . ,

be the family of dyadic cubes centered at xk = (xk1 , . . . , xkd), where

xki = 2−k−1 + 9(k − 1)d, i = 1, . . . , d.

From F we construct the family of multivariate functions

Fk(x) := F (x1)χ[−δk,δk](x2) . . . χ[−δk,δk](xd), δk := 2−k
√
d.

Note that Fk is one on the ball of radius 2−k
√
d centered at the origin. For v ∈ Ωδ

let Fk(·, v) denote the function whose graph is obtained from that of Fk(·), by a
shift of the origin to xk and then a rotation of the x1-axis to the v-axis (there are
many such rotations and the analysis that follows holds for any of them). Then,
Fk(·, v) is one on the ball of radius 2−k

√
d centered at xk.

In this section, we use the notation ψk := HIk,p′ for the following Lp′ normalized
multivariate Haar function with support Ik:

ψk(x) := 2kd/p
′
H(2kx1 − 9d(k − 1)2k)χ(2kx2 − 9d(k − 1)2k)

. . . χ(2kxd − 9d(k − 1)2k)

where χ := χ[0,1]. Note that for all v ∈ Ωδ, Fk(·, v) = 1 on the support of ψk.
We denote by Hv the hyperplane which is orthogonal to v and passes through

the origin, and we denote by Pv the projector onto Hv. For a multivariate function
h, we let

∫
L(Pvx) h be the line integral of h along the line L(Pvx), which consists of

all points in Rd which project onto Pvx.
For each k ≥ 1, let

fk(x, v) :=
{
Fk(x, v) sgn(

∫
L(Pvx) ψk), v ∈ Ωδ,

0, v ∈ Ω \ Ωδ.
(5.3)
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Given any sequence β := (βk) of positive real numbers from `p, we define

f(·, v) := f(·, v;β) :=
∞∑
k=1

2k(d−1)/pβkfk(·, v).(5.4)

As usual, g is defined via

g := v · ∇xf.(5.5)

In this construction every sequence β ∈ `p generates a corresponding function
f(·, β). The smoothness of f̄ is governed by the behavior of β. We investigate this
relation closer and show how different requirements, imposed on β, lead to different
regularity of f̄ . We will need the following lemma.

Lemma 5.1. Let Ωδ, Ik, and ψk be defined as above. Then, for every v ∈ Ωδ and
k ≥ 1, we can find a set W (v, k) ⊂ PvIk ⊂ Hv with the properties:

(a) measd−1(W (v, k)) ≥ c2−k(d−1),
(b) for every v ∈ Ωδ and w ∈W (v, k) we have

|
∫
L(w)

ψk| ≥ c2−k(1−d/p′),

with the constant c > 0 depending only on δ and Ω.

Proof. We shall prove a result similar to (a) and (b) for the unit cube. Then,
the lemma follows by dilating and translating. Let Q := [0, 1]d and let H0 be the
following Haar function supported on Q:

H0(x) =
{

1, 0 ≤ x1 < 1/2, 0 ≤ xi < 1, i = 2, . . . , d,
−1, 1/2 ≤ x1 < 1, 0 ≤ xi < 1, i = 2, . . . , d.(5.6)

Let W := {x ∈ Q : 1/2 ≤ x1 ≤ 3/4, 0 < xi ≤ 3/4, i = 2, . . . , d− 1, xd = 0}. For
each v ∈ Ωδ and x ∈ W , x+ tv ∈ Q if and only if t ≥ 0 and

xi + tvi ≤ 1, i = 1, . . . , d.(5.7)

This means that if v ∈ Ωδ, x ∈ W , and x + tv ∈ Q, then H0(x + tv) = −1. Note
that (5.7) holds for

0 ≤ t ≤ min
i=1,... ,d

1− xi
vi

.

Since for x ∈W and v ∈ Ωδ
1− xi
vi

≥ 1
4vi
≥ 1

4M
,

we have (5.7) for 0 ≤ t ≤ 1
4M . Hence for each x ∈ W the line segment L(Pvx) ∩Q

has length ≥ 1
4M δ, because |v| ≥ δ. Now, let W (v) be the projection (by Pv) of W

onto Hv. Then, measd−1(W (v)) ≥ c measd−1(W ) with c depending only on δ and
M , because δ ≤ vi ≤ M , i = 1, . . . , d. This shows property (a) for Q. Also, for
w ∈ W (v),

|
∫
L(w)

H0| =
∫
L(w)

1 ≥ δ

4M
,

which verifies (b).
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The following theorem implies Theorem 1.3 for 2 ≤ p <∞.

Theorem 5.2. Let Ω ⊂ Rd be a fixed bounded domain. For every sequence β ∈ `p,
2 ≤ p < ∞, the functions f and g, defined in (5.4) and (5.5), are in Lp(Rd × Ω)
and the velocity average f̄ is in B

1/p
p (Lp(Rd)). If β ∈ `p \ `q, q < p, then f̄ 6∈

B
1/p
q (Lp(Rd)).

Proof. We start with a direct calculation of the Lp norm of f . We use the fact that
for each fixed v ∈ Ωδ the supports of fk(·, v) are disjoint since the points xk are
sufficiently separated from each other. This gives

||f ||p
Lp(Rd×Ω)

=
∫

Ωδ

∫
Rd
|f(x, v)|p dxdv =

∞∑
k=1

2k(d−1)βpk

∫
Ωδ

∫
Rd
|fk(x, v)|p dxdv.

Since ‖fk(·, v)‖L∞(Rd) ≤ 1, we have that for every v ∈ Ωδ,∫
Rd
|fk(x, v)|p dx ≤ meas(supp fk(·, v)) ≤ C2−k(d−1).(5.8)

Therefore, we derive

||f ||p
Lp(Rd×Ω)

≤ C meas(Ωδ)
∞∑
k=1

βpk <∞,(5.9)

and hence f ∈ Lp(Rd × Ω).
We next prove that g is also in Lp(Rd × Ω). For each fixed v ∈ Ωδ, g(·, v) =

|v|Dv(f(·, v)), where Dv(f(·, v)) := v
|v| · ∇xf is the derivative of f in direction v

|v| .
Thus,

||g||p
Lp(Rd×Ω)

=
∫

Ωδ

|v|p‖Dv(f(·, v))‖p
Lp(Rd)

dv

≤ C
∞∑
k=1

2k(d−1)βpk

∫
Ωδ

‖Dv(fk(·, v))‖p
Lp(Rd)

dv.

Now, for each v ∈ Ωδ, we have ‖Dv(fk(·, v))‖L∞(Rd) ≤ 1, and Dv(fk(·, v)) = 0
outside of the support of fk(·, v). Therefore, as in (5.8), we get the inequal-
ity ‖Dv(fk(·, v))‖p

Lp(Rd)
≤ C2−k(d−1). This result and the previous estimate for

‖g‖p
Lp(Rd×Ω)

lead to

||g||p
Lp(Rd×Ω)

≤ C meas(Ωδ)
∞∑
k=1

βpk <∞.(5.10)

Therefore, by Theorem 1.2, f̄ ∈ B1/p
p (Lp(Rd)) and the first part of the theorem is

proved.
Going further, we consider only sequences β ∈ `p. We shall show that f̄ 6∈

B
1/p
q (Lp(Rd)), q < p, whenever β, used in the definition of f , is not an element of

`q. For this purpose, we calculate aIk,p(f̄) (see (2.6)) which is the sum of the Lp
normalized Haar coefficients of f̄ for Ik. One of the Haar coefficients that appears
in the sum defining aIk,p is obtained from the inner product of f̄ with ψk which
is the same as the inner product of 2k(d−1)/pβkf̄k with ψk. Therefore, using the
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definition (5.3) of fk, we obtain

|aIk,p(f̄)| ≥ |
∫
v∈Ωδ

∫
x∈Ik

2k(d−1)/pβkfk(x, v)ψk(x) dxdv|

= |
∫
v∈Ωδ

2k(d−1)/pβk

∫
w∈PvIk

[∫
L(Pvx)

fkψk

]
dwdv|.

By construction, fk ≡ 1 or fk ≡ −1 along the line segment L(Pvx) ∩ Ik, where the
sign of fk is determined by the sign of

∫
L(Pvx) ψk. Therefore we have

|aIk,p(f̄)| ≥
∫
v∈Ωδ

2k(d−1)/pβk

∫
w∈PvIk

|
∫
L(Pvx)

ψk| dwdv.

Now, we use Lemma 5.1 and derive that

|aIk,p(f̄)| ≥ C
∫
v∈Ωδ

2k(d−1)/pβk2−k2kd/p
′
meas(W (v, k))dv

≥ C meas(Ωδ)βk2k(d−1)/p2−k2kd/p
′
2−k(d−1) = Cβk2−k/p.

Hence, we get

(
∑
I∈Dk

|aI,p(f̄)|p)1/p ≥ |aIk,p(f̄)| ≥ Cβk2−k/p,

and then
∞∑
k=0

(2k/p(
∑
I∈Dk

|aI,p(f̄)|p)1/p)q ≥ C
∞∑
k=1

βqk.

For every β ∈ `p, but not in `q, the right side is infinite and Remark 2.1 shows that
f̄ 6∈ B1/p

q (Lp(Rd)). This proves the theorem.

6. Weak-`1 estimates

In the proof of Theorem 1.2, we have not used any special properties of averaging
near L1. We have only used the fact that f ∈ L1(Rd×Ω) implies that f̄ is in L1(Rd).
In this section, we want to show that the condition f, g ∈ L1(Rd × Ω) gives extra
information about f̄ . We first consider domains Ω which satisfy

Ω ⊂ {v ∈ Rd : 0 < M ≤ |v| < M ′},(6.1)

for some positive numbers 0 < M < M ′.
To a function h ∈ L1(Rd) we associate the sequence

λ := λ(h) := (aI(h))I∈D+ ,

where aI is defined by (2.4). As we remarked earlier, for a general function h ∈
L1(Rd) and for any j ≥ 0, the sequence (aI(h))I∈Dj is in `1. However the combined
sequence λ(h) is not necessarily in `1 and in fact need not even be in weak-`1. We
shall show however that when f, g ∈ L1(Rd × Ω), then λ(f̄) is in weak-`1.

The main new ingredient in the weak-`1 estimate for wavelet coefficients is given
in the following lemma. For its formulation, we need to introduce some notation.
For any cube Q, we let `(Q) denote its side length. Given a vector v and a cube
Q, we denote by Q(v) the smallest (finite) cylinder which contains Q and has axis
passing through the center of Q and in the direction v . We recall our notation Ī
for the support cube associated to I (see (2.12)) and Pv for the projector along v
(see the paragraph preceding (5.3)). Given a dyadic cube I, the cube Ī together
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with some of its translates form a tiling of Rd. We let I ′ denote the union of Ī
with all of the neighboring cubes of Ī in this tiling. Each neighboring cube can be
written as J̄ for some dyadic cube J with |J | = |I|. Therefore,

I ′ =
µ⋃
j=1

Īj(6.2)

with the number µ of dyadic cubes in (6.2) depending only on d. We note that
Ī(v) ⊂ I ′ for all v ∈ Ω.

Lemma 6.1. Let Ω be any bounded domain in Rd and f, g ∈ L1(Rd × Ω). Then
for every I and J ∈ D, for which J̄ ⊂ Ī, we have∫

Ω

∫
J

|f(x, v)| dxdv ≤ C `(J̄)
`(Ī)

∫
Ω

∫
I′

(
|f(x, v)|+ `(Ī)

|g(x, v)|
|v|

)
dxdv,(6.3)

where C depends only on d and M .

Proof. We fix dyadic cubes I and J ∈ D for which J̄ ⊂ Ī. Note that J̄(v) ⊂ Ī(v)
for all v ∈ Ω. We fix v and consider any translate K := αv + J̄(v) of J̄(v) which is
contained in Ī(v). For every v ∈ Ω\{(0, . . . , 0)}, we can write g as g(·, v) = |v|Dvf ,
with Dvf the directional derivative of f(·, v) in the direction v

|v| . Then, for each
x ∈ J̄(v), we have

|f(x, v)| ≤ |f(x+ αv, v)| +
∫
L(Pvx)

|g(·, v)|
|v| ,(6.4)

where Pvx is the projection of x onto Hv and L(Pvx) is the line segment consisting
of all points in Ī(v) which project onto Pvx. When we integrate (6.4) over J̄(v) we
get ∫

J̄(v)

|f(x, v)| dx ≤
∫
K

|f(x, v)| dx + C`(J̄)
∫
Ī(v)

|g(x, v)|
|v| dx.(6.5)

There are at least C `(Ī)

`(J̄)
choices of α such that the sets K are disjoint. Therefore,

by summing the corresponding inequalities (6.5), we obtain

C
`(Ī)
`(J̄)

∫
J̄(v)

|f(x, v)| dx ≤
∫
Ī(v)

|f(x, v)| dx+ C`(Ī)
∫
Ī(v)

|g(x, v)|
|v| dx.

We have that J̄ ⊂ J̄(v) and Ī(v) ⊂ I ′ for all v, and therefore

C
`(Ī)
`(J̄)

∫
J̄

|f(x, v)| dx ≤
∫
I′

(
|f(x, v)|+ C`(Ī)

|g(x, v)|
|v|

)
dx.(6.6)

We integrate over v ∈ Ω and arrive at (6.3).

We shall use the two auxiliary sequences

b̃I := b̃I(f) := c0

∫
Ω

∫
Ī

(
|f(x, v)| + `(Ī)

|g(x, v)|
|v|

)
dx dv(6.7)

and

bI := bI(f) := c0

∫
Ω

∫
I′

(
|f(x, v)|+ `(Ī)

|g(x, v)|
|v|

)
dx dv,(6.8)
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where the constant c0 := 2d max(‖φ‖dL∞(R), ‖ψ‖dL∞(R)). It follows that

aI(f̄) ≤ b̃I(f) ≤ bI(f).(6.9)

To prove that (aI(f̄))I∈D+ is in weak-`1, it will be enough to estimate the number
of elements in the set

Λ(f, ε) := {I ∈ D+ : b̃I > ε}.
For this purpose, we define a cube I ∈ Λ(f, ε) to be special if

bI < 2µb̃I ,(6.10)

where the constant µ is defined by (6.2). We denote by Λs(f, ε) the collection of
special cubes in Λ(f, ε). The following lemma gives an estimate for the cardinality
of Λ(f, ε) in terms of special cubes.

Lemma 6.2. Let f and g ∈ L1(Rd × Ω) where Ω satisfies (6.1). Then for every
ε > 0 we have

#Λ(f, ε) ≤ C
∑

I∈Λs(f,ε)

(log
b̃I
ε

)d,(6.11)

where C depends only on d. Here and later log denotes logarithm to the base 2.

Proof. Let us observe that for every cube J ∈ D+ we have

b̃J ≤
C

M

∫
Ω

∫
J̄

|f(x, v)| + |g(x, v)| dxdv

≤ C

M
(‖f‖L1(Rd×Ω) + ‖g‖L1(Rd×Ω)),

(6.12)

because `(J̄) ≤ C and |v| ≥M for v ∈ Ω.
If J ∈ Λ(f, ε) is not a special cube, we have that

bJ ≥ 2µb̃J .(6.13)

It follows from (6.13) that there is a cube J̄1 with |J1| = |J |, which is one of the
cubes, participating in J ′ (see (6.2)), such that

b̃J1 ≥ 2b̃J .(6.14)

If J1 is a special cube, we stop. If not, we repeat the same procedure for J1 and
get a cube J2 (J2 6∈ {J, J1}) such that

b̃J2 ≥ 2b̃J1 ≥ 22b̃J ,

where in the last inequality we use (6.14). This process will terminate after a finite
number of steps, because from (6.12) it follows that on the n-th step we have

C

M
(‖f‖L1(Rd×Rd) + ‖g‖L1(Rd×Rd)) ≥ b̃Jn ≥ 2nb̃J .

Let I be the special cube which terminates this sequence, i.e. I = Jn and

b̃I ≥ 2nb̃J > 2nε.

Hence we have

n < log
b̃I
ε
.(6.15)
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Therefore, every J ∈ Λ(f, ε) is contained in a ball with center, the center of a special
cube I = I(J), and radius ≤ Cn`(J) ≤ C`(J) log b̃I

ε with C depending only on d.
This gives

#Λ(f, ε) ≤ C
∑

I∈Λs(f,ε)

(log
b̃I
ε

)d,

and the proof is complete.

To each special cube I ∈ Λs(f, ε) we associate an index m(I) := m(I, f, ε) as
follows. Let J be the smallest special cube in Λ(f, ε), such that

J̄ ⊆ Ī .(6.16)

Note that b̃J tends to 0 as |J | → 0 because f, g ∈ L1(Rd×Ω). Therefore, a smallest
J does exist. We define

m(I) := log2

(
|I|1/d
|J |1/d

)
.

Then, m(I) is an integer which represents the difference between the dyadic level
of I and J . Recall that since J is a special cube, we have b̃J > ε and 2µb̃J > bJ .

Lemma 6.3. Let f, g ∈ L1(Rd × Ω). If I ∈ Λs(f, ε) is a special cube, then

b̃I > C2m(I)ε,(6.17)

where C is a constant, depending only on c0, ` and d.

Proof. Let I ∈ Λs(f, ε) and let J be the smallest special cube in Λs(f, ε), such that
J̄ ⊂ Ī. Then `(J̄)2m(I) = `(Ī) and b̃J > ε. We multiply this last inequality by
2m(I) and obtain

`(Ī)
`(J̄)

c0

∫
Ω

∫
J̄

|f(x, v)| dxdv + c0

∫
Ω

∫
J̄

`(Ī)
|g(x, v)|
|v| dxdv > 2m(I)ε.

Now we use (6.3) of Lemma 6.1 and derive

C

∫
Ω

∫
I′

[
|f(x, v)|+ `(Ī)

|g(x, v)|
|v|

]
dxdv + c0

∫
Ω

∫
J̄

`(Ī)
|g(x, v)|
|v| dxdv > 2m(I)ε.

Since J̄ ⊂ Ī ⊂ I ′, the above inequality gives

C

∫
Ω

∫
I′

[
|f(x, v)|+ `(Ī)

|g(x, v)|
|v|

]
dxdv > 2m(I)ε.

But the cube I is special (see (6.10)) and therefore

b̃I ≥ (2µ)−1bI = (2µ)−1c0

∫
Ω

∫
I′

[
|f(x, v)|+ `(Ī)

|g(x, v)|
|v|

]
dxdv > C2m(I)ε.

This proves the lemma.

The next theorem gives us the weak-`1 estimate.

Theorem 6.4. If f ∈ L1(Rd × Ω), g := v · ∇xf ∈ L1(Rd × Ω) and Ω satisfies
assumption (6.1), then λ(f̄) is in weak-`1 and

‖λ(f̄)‖`1,∞ ≤
C

M

[
‖f‖L1(Rd×Ω) + ‖g‖L1(Rd×Ω)

]
,(6.18)

where C is a constant, depending only on c0, ` and d.
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Proof. Given any ε > 0, we need to show that

#Λ(f, ε) ≤ C

Mε

[
‖f‖L1(Rd×Ω) + ‖g‖L1(Rd×Ω)

]
.(6.19)

Lemma 6.2 gives that

#Λ(f, ε) ≤ C
∑

I∈Λs(f,ε)

(log
b̃I
ε

)d =
C

ε

∑
I∈Λs(f,ε)

(log b̃I
ε )d

( b̃Iε )
b̃I .

Since for I ∈ Λ(f, ε), we have b̃I > ε, there is an absolute constant C such that

(log b̃I
ε )d

( b̃Iε )
≤ C

(
b̃I
ε

)−1/2

,

and therefore

#Λ(f, ε) ≤ C

ε

∑
I∈Λs(f,ε)

(
b̃I
ε

)−1/2

b̃I .(6.20)

For each I ∈ Λs(f, ε), Lemma 6.3 gives(
b̃I
ε

)−1/2

< C2−m(I)/2.(6.21)

Also, for v ∈ Ω and I ∈ D+, we have

b̃I ≤
C

M

∫
Ω

∫
Rd

(|f(x, v)|+ |g(x, v)|)χĪ (x) dxdv.(6.22)

When we combine (6.20), (6.21), and (6.22), we obtain

#Λ(f, ε) ≤ C

εM

∫
Ω

∫
Rd

(|f(x, v)| + |g(x, v)|)K(x) dxdv,

where

K(x) :=
∑

I∈Λs(f,ε)

2−m(I)/2χI(x).

We will use Lemma 2.2 to show that K is bounded, which will complete the
proof. We let Γ(i, f, ε) := Λs(f, ε) ∩ Γi, i = 1, . . . , γ. Then, we can write

K =
γ∑
i=1

Ki,

where

Ki :=
∑

I∈Γ(i,f,ε)

2−m(I)/2χI ,

and it is enough to show that each of the functions Ki is bounded. In other words,
we need to show that for every x ∈ Rd∑

I∈Γ∗(i,f,ε,x)

2−m(I)/2 ≤ C, i = 1, 2, . . . , γ,(6.23)

where Γ∗(i, f, ε, x) := {I ∈ Γ∗(i, f, ε) : x ∈ Ī}. To prove this inequality, we fix a
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point x for which the sum in (6.23) is not zero. We make the following observations
about the cubes appearing in this sum:

(i) There is a smallest cube I∗ ∈ Γ∗(i, f, ε, x) (because f, g ∈ L1(Rd × Rd)).
(ii) There is at most one I ∈ Dj , j ≥ 0, in Γ∗(i, f, ε, x) because of the defining

property of the sets Γi.
(iii) If I ∈ Γ∗(i, f, ε, x), then m(I) ≥ m(I∗)+q, where q is the difference between

the dyadic level of Ī and Ī∗.
It follows from (i)–(iii) that∑

I∈Γ∗(i,f,ε,x)

2−m(I)/2 ≤
∞∑
n=0

2−n/2 ≤ C,

as desired.

Notice that the smaller the M in (6.1), the bigger the constant C
M in (6.18).

However, one can allow M to go to zero if we restrict our attention only to certain
wavelet coefficients as the following result shows.

We fix an arbitrary n ≥ 0 and consider domains Ω such that

Ω ⊂ {v ∈ Rd : 2−n ≤ |v| ≤M ′}, n ≥ 0.(6.24)

For f ∈ L1(Rd × Ω), let

λn(f̄) := (aI(f̄))I∈D+
n
, with D+

n :=
⋃
j≥n
Dj .

Corollary 6.5. Let f ∈ L1(Rd × Ω) and g := v · ∇xf ∈ L1(Rd × Ω) where Ω
satisfies assumption (6.24). Then, λn(f̄) is in weak-`1 and

‖λn(f̄)‖`1,∞ ≤ C
[
‖f‖L1(Rd×Ω) + ‖g‖L1(Rd×Ω)

]
,

where C is an absolute constant.

Proof. This can be proved by dilation or alternatively by repeating the proof of
Theorem 6.4 and using the fact that for v ∈ Ω and I ∈ D+

n , we have `(Ī)
|v| ≤ C.
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