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DEFINABLE SETS, MOTIVES AND p-ADIC INTEGRALS

JAN DENEF AND FRANÇOIS LOESER

Introduction

0.1. Let X be a scheme, reduced and separated, of finite type over Z. For p a
prime number, one may consider the set X(Zp) of its Zp-rational points. For every
n in N, there is a natural map πn : X(Zp)→ X(Z/pn+1) assigning to a Zp-rational
point its class modulo pn+1. The image Yn,p of X(Zp) by πn is exactly the set of
Z/pn+1-rational points which can be lifted to Zp-rational points. Denote by Nn,p
the cardinality of the finite set Yn,p. By a result of the first author [7], the Poincaré
series

Pp(T ) :=
∑
n∈N

Nn,p T
n(0.1.1)

is a rational function of T . Later Macintyre [24], Pas [26] and Denef [10] proved that
the degrees of the numerator and denominator of the rational function Pp(T ) are
bounded independently of p. One task of the present paper is to prove a much
stronger uniformity result by constructing a canonical rational function Par(T )
which specializes to Pp(T ) for almost all p. It follows in particular from our results
that there exist, for every n in N, varieties Zn,i and rational numbers rn,i in Q,
1 ≤ i ≤ mn, such that, for almost all p and every n,

Nn,p =
∑

1≤i≤mn

rn,i cardZn,i(Fp).(0.1.2)

Hence a natural idea would be to try to construct Par(T ) as a series with co-
efficients in K0(SchQ) ⊗ Q, with K0(SchQ) the “Grothendieck ring of algebraic
varieties over Q”, defined in 1.2. However, since different varieties over a num-
ber field may have the same L-function, and we want the function Par(T ) to be
canonical, we have to replace the varieties Zn,i by Chow motives and the naive
Grothendieck ring K0(SchQ)⊗Q by the ring Kv

0 (MotQ,Q̄)⊗Q, with Kv
0 (MotQ,Q̄)

the image of K0(SchQ) in the Grothendieck ring of Chow motives with coefficients
in Q̄, as defined in 1.3.

We can now state our uniformity result on the series Pp(T ) as follows.

0.2. Theorem. Given X as above, there exists a canonical series Par(T ) with coef-
ficients in Kv

0 (MotQ,Q̄)⊗Q, which is a rational function of T and which specializes
- after taking the trace of the Frobenius on an étale realization - onto the p-adic
Poincaré series Pp(T ), for almost all prime numbers p.
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In fact, one constructs in 9.2, forX a variety over any field k of characteristic zero,
a canonical series Par(T ) with coefficients in the Grothendieck ring Kv

0 (Motk,Q̄)⊗Q
- defined in 1.3 - which is equal to the former one when k = Q and, furthermore,
the series Par(T ) is rational in a precise sense (Theorem 9.2.1).

0.3. Now assume X is a subscheme of the affine space Am
Z defined by f1 = . . . =

fr = 0, with f1, . . . , fr in Z[x1, . . . , xm]. The starting point in the proof of the
rationality of the series Pp(T ) in [7] is the relation Pp(p−m−1p−s) = p

p−1Ip(s), with

Ip(s) =
∫
Wp

|w|sp|dx|p|dw|p,

where Wp is defined as

Wp :=
{

(x,w) ∈ Zmp × Zp
∣∣∣

∃y ∈ Zmp : x ≡ y mod w, and fi(y) = 0, for i = 1, . . . , r
}
.

In particular, Wp is defined by a formula in the first order language of valued
fields independently of the prime p.

More generally, let k be a finite extension of Q with ring of integers O and
R = O[ 1

N ], with N a nonzero multiple of the discriminant. For x a closed point of
SpecR, we denote by Ox the completion of the localization of R at x, by Kx its
fraction field, and by Fx the residue field at x, a finite field of cardinality qx. Let
f(x) be a polynomial in k[x1, . . . , xm] (or more generally a definable function in
the first order language of valued fields with variables and values taking place in
the valued field and with coefficients in k) and let ϕ be a formula in the language
of valued fields with coefficients in k, free variables x1, . . . , xm running over the
valued field and no other free variables. Now set Wx := {y ∈ Omx |ϕ(y) holds inKx}
and define

Iϕ,f,x(s) =
∫
Wx

|f(y)|sx|dy|x,

for x a closed point of SpecO, with similar notation as before. In Theorem 8.5.1 we
show more generally that there exists a canonical rational function Iϕ,f,mot(T ) with
coefficients in an appropriate Grothendieck ring of motives, such that, for almost
all closed points x in SpecO, Iϕ,f,mot(T ) specializes - after taking the trace of the
Frobenius on an étale realization and after setting T = q−sx - to the p-adic integral
Iϕ,f,x(s).

0.4. Let k be a field of characteristic zero. In section 3, to every formula ϕ in
the first order language of rings with coefficients in k we associate, in a canonical
way, a virtual motive χc(ϕ) in the ring Kv

0 (Motk,Q̄)⊗Q. This virtual motive χc(ϕ)
depends only on the sets defined by ϕ over the pseudo-finite fields containing k.
When k is of finite type over Q, one recovers the number of points of the sets defined
by ϕ over the residual fields at almost all finite places of k by taking the trace of
the corresponding Frobenius on an étale realization of χc(ϕ). It is quite amazing to
note that, since virtual motives have Euler characteristic and Hodge numbers (with
compact supports), it follows from our results that every formula with coefficients
in k has an Euler characteristic in Q and also Hodge numbers in Q. One of the
simplest examples is the formula (∃y)x = yn which has Euler characteristic 1

n and
Hodge polynomial 1

nuv.
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0.5. The construction in section 3 relies on the work of Fried, Haran, Jarden and
Sacerdote on Galois stratifications and quantifier elimination for pseudo-finite fields
[19], [16], [18]. More precisely, quantifier elimination for pseudo-finite fields allows
us to replace our original formula by a quantifier free Galois formula, i.e. a quantifier
free formula in the language of rings and constants in k, extended by Artin symbols
ArW/U (x) corresponding to the decomposition subgroup of Gal(W/U) at x modulo
conjugation, with x a variable running over the rational points of U . Here W is an
étale Galois cover of a normal algebraic variety U . Then, by using Artin’s theorem
on induced representation - a tool already present in the work of Fried and Jarden
[18] - and also recent results on motives [20], [21], [2], we are able to associate a
canonical virtual motive to every quantifier free Galois formula.

0.6. In a previous paper [12], we developed a general theory of integration - called
motivic integration - on the space of arcs of an algebraic variety X . More precisely,
let X be an algebraic variety over a field k of characteristic zero. The space of
arcs L(X) is a k-scheme whose K-rational points L(X)(K) are exactly formal arcs
SpecK[[t]]→ X , for every field K containing k. We also introduced in [12] an im-
portant boolean subalgebra BX of the algebra of subsets of L(X), the subalgebra
of semi-algebraic subsets of L(X). Semi-algebraic subsets of L(X) are definable in
the language of valued fields. We defined a measure µ on BX with values - following
ideas of Kontsevich - into the ring K̂0(Schk) which is a certain completion of the
localization of the ring K0(Schk) with respect to the class of the affine line. In
fact, there exists a general notion of measurable subset of L(X) for µ, developed in
the appendix of [14], and µ may be extended in a natural way to these measurable
subsets. See also [11] and [13] for variants with values into Grothendieck groups of
motives. This theory, which maybe should be called geometric motivic integration,
is not well suited for the aims of the present paper, the main reason being that at
the residue field level, images by morphisms are considered geometrically, in the
sense of algebraic geometry, and not at the level of looking to rational points, which
corresponds to leaving the world of algebraic geometry (polynomial equations or
inequations) for the world of first order logic of fields (formulas with polynomials
and quantifiers). We are thus led to develop a different kind of motivic integration
theory, arithmetic motivic integration, which takes rationality properties into ac-
count. This theory assigns to every definable subset of L(X) an element in the ring
K̂v

0 (Motk,Q̄)⊗Q, where K̂v
0 (Motk,Q̄) is a certain completion of the localization of

Kv
0 (Motk,Q̄) with respect to the Lefschetz motive. Its very definition relies on our

construction of assigning a virtual motive χc(ϕ) to a formula ϕ in the first order lan-
guage of rings with coefficients in k, so it involves in an essential way arithmetical
tools such as decomposition subgroups, Chebotarev’s Theorem and pseudo-finite
fields.

0.7. Let us now briefly review the contents of the paper. After a first section
devoted to preliminaries, we develop in section 2 what we need on Galois stratifi-
cations. In section 3 we give our basic construction of assigning a virtual motive
to a formula in the first order language of rings. First order formulas define sub-
sets of the affine space. Since we need to perform some geometric constructions
like blowing ups, we introduce a new class of objects, which are more geometric in
nature than formulas, which we call “definable subassignments” since they are not
in general functors. Section 4 is devoted to definable subassignments for rings and
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section 5 to definable subassignments for power series rings. In section 6 we develop
the basic theory of arithmetic motivic integration. Section 7 is devoted to general
rationality results, in the spirit of [7] and [12]. We are then able in section 8 to prove
that arithmetic motivic integration specializes to p-adic integration. In section 9
we define the arithmetical Poincaré series Par(T ) for varieties X over a field k of
characteristic zero and we show it specializes to the p-adic Poincaré series when k
is a number field. The Poincaré series Par(T ) seems to contain much more inter-
esting geometric information about the variety X than its geometric counterpart
Pgeom(T ) introduced in [12]. As an example, we compute both series for branches
of plane curves in section 10. In that case the poles of Par(T ) completely determine
the Puiseux pairs of the branch, while Pgeom(T ) allows one only to recover the
multiplicity at the origin.
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1. Preliminaries

1.1. For any ring R, by the first order language of rings with coefficients in R we
shall mean the first order language (in the sense of logic), with symbols to denote
+, −, ×, 0, 1, and for each element of R a symbol to denote that element. As for
any first order language, formulas are built up from the above symbols together
with variables, the logical connectives ∧ (and), ∨ (or), ¬ (not), the quantifiers ∃, ∀
and the equality symbol =.

Let S be a scheme. By a variety over S or S-variety we shall mean a separated
and reduced scheme of finite type over S. When S = SpecR is affine we shall also
say variety over R or R-variety.

1.2. Let k be a field. We shall denote by K0(Schk) the Grothendieck ring of
algebraic varieties over k. It is the ring generated by symbols [S], for S an algebraic
variety over k, with the relations [S] = [S′] if S is isomorphic to S′, [S] = [S\S′]+[S′]
if S′ is closed in S and [S × S′] = [S] [S′]. Note that, for S an algebraic variety
over k, the mapping S′ 7→ [S′] from the set of closed subvarieties of S extends
uniquely to a mapping W 7→ [W ] from the set of constructible subsets of S to
K0(Schk), satisfying [W ∪W ′] = [W ] + [W ′] − [W ∩W ′]. We set L := [A1

k] and
K0(Schk)loc := K0(Schk)[L−1].



DEFINABLE SETS, MOTIVES AND p-ADIC INTEGRALS 433

Let S be an algebraic variety over k. We write dimS ≤ n if all irreducible
components of S have dimension ≤ n. Similarly, for M in K0(Schk), we write
dimM ≤ n if M may be expressed as a linear combination of algebraic varieties with
dim ≤ n. For m in Z, we denote by FmK0(Schk)loc the subgroup of K0(Schk)loc

generated by elements of the form [S] L−i with i − dimS ≥ m. This defines a
decreasing filtration Fm on K0(Schk)loc. We denote by K̂0(Schk) the completion
of K0(Schk)loc with respect to that filtration. We do not know whether the natural
morphism K0(Schk)loc → K̂0(Schk) is injective or not. We denote by K0(Schk)loc

the image of K0(Schk)loc in K̂0(Schk).

1.3. We denote by Motk the category of Chow motives over k, with coefficients in
Q. It is a pseudo-abelian category and we denote by K0(Motk) its Grothendieck
group. It may also be defined as the abelian group associated to the monoid of
isomorphism classes of objects in Motk with respect to ⊕. Let us recall (see [28]
for more details) that objects in Motk are just triples (S, p, n) with S proper and
smooth over k, p an idempotent correspondence with coefficients in Q on S and n
in Z. The tensor product on Motk induces a product on K0(Motk) which provides
K0(Motk) with a natural ring structure.

Assume now that k is of characteristic zero. By a result of Gillet and Soulé [20]
and Guillén and Navarro Aznar [21] there exists a unique morphism of rings

χc : K0(Schk) −→ K0(Motk)

such that χc([S]) = [h(S)] for S projective and smooth, where h(S) denotes the
Chow motive associated to S, i.e. h(S) = (S, id, 0). Let us still denote by L the
image of L by χc. Since L = [(Spec k, id,−1)], it is invertible in K0(Motk), hence
χc can be extended uniquely to a ring morphism

χc : K0(Schk)loc −→ K0(Motk).

Let us denote by Motk,Q̄ the category of Chow motives over k, with coefficients
in Q̄, and by K0(Motk,Q̄) its Grothendieck group. Objects in Motk,Q̄ are triples
(S, p, n) with S proper and smooth over k, p an idempotent correspondence with
coefficients in Q̄ on X and n in Z; see, e.g., [11] for more details. We denote by
Kv

0 (Motk,Q̄), resp. Kv
0 (Motk,Q̄)loc, the image of K0(Schk), resp. K0(Schk)loc, in

K0(Motk,Q̄) by the morphism, which we will still denote by χc, obtained by com-
position of χc with the natural morphism K0(Motk) → K0(Motk,Q̄). We denote
by Fm the decreasing filtration on Kv

0 (Motk,Q̄)loc which is the image of the fil-
tration Fm on K0(Schk)loc, and by K̂v

0 (Motk,Q̄) the completion of Kv
0 (Motk,Q̄)loc

with respect to the filtration Fm. We also define K
v

0(Motk,Q̄)loc as the image of
Kv

0 (Motk,Q̄)loc in K̂v
0 (Motk,Q̄). We set

Kv
0 (Motk,Q̄)Q := Kv

0 (Motk,Q̄)⊗Q,Kv
0 (Motk,Q̄)loc,Q := Kv

0 (Motk,Q̄)loc ⊗Q,

K
v

0(Motk,Q̄)loc,Q := K
v

0(Motk,Q̄)loc ⊗Q and K̂v
0 (Motk,Q̄)Q := K̂v

0 (Motk,Q̄)⊗Q.

We denote by FmK̂v
0 (Motk,Q̄)Q the filtration on K̂v

0 (Motk,Q̄)Q naturally induced
by Fm .

If k′ is a field containing k and M belongs to Motk, we shall denote by M ⊗ k′
the same object but considered as an element of Motk′ . Similarly, one denotes by
M ⊗ k′ the image of an element M in any of the preceding rings relative to k in
the similar ring relative to k′.
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2. Galois stratifications

2.1. Galois stratifications. Let A be an integral and normal scheme. A mor-
phism of schemes h : C → A is a Galois cover if C is integral, h is étale (hence C is
normal) and there is a finite group G = G(C/A), the Galois group, acting on C such
that A is isomorphic to the quotient C/G in such a way that h is the composition
of the quotient morphism with the isomorphism. Isomorphisms of Galois covers are
defined in the usual way. If A′ is a locally closed integral and normal subscheme
of A, let C′ denote any connected component of C ∩ h−1(A′). One defines the
restriction of the Galois cover h : C → A to A′ as the Galois cover h′ : C′ → A′,
with h′ the restriction of h to C′. The Galois group G(C′/A′) is the decomposition
subgroup of G(C/A) at the generic point of C′. The choice of another connected
component would give an isomorphic Galois cover. We say that the Galois cover
h : C → A is colored if G(C/A) is equipped with a family Con of subgroups of
G(C/A) which is stable by conjugation under elements of G(C/A). The restriction
of a colored Galois cover h : C → A to A′, a locally closed integral and normal
subscheme of A, is defined by the family Con′ of subgroups of G(C′/A′) which
belong to Con.

Let S be an integral normal scheme and let XS be a variety over S. A normal
stratification of XS ,

A = 〈XS , Ci/Ai | i ∈ I〉,

is a partition of XS into a finite set of integral and normal locally closed S-
subschemes Ai, i ∈ I, each equipped with a Galois cover hi : Ci → Ai. A normal
stratification

A′ = 〈XS , C
′
i/A
′
i | i′ ∈ I ′〉

will be said to be finer than A if, for each i in I ′, A′i is contained in some Aj and
C ′i → A′i is isomorphic to the restriction of Cj → Aj to A′i as a Galois cover. We
will say that normal stratifications A and A′ are isomorphic if there exists a normal
stratification A′′ which is finer than both A and A′.

A normal stratification A may be augmented to a Galois stratification

A = 〈XS , Ci/Ai,Con(Ai) | i ∈ I〉

if, for each i ∈ I, Con(Ai) is a family of subgroups of G(Ci/Ai) which is stable by
conjugation under elements inG(Ci/Ai), i.e. (Ci → Ai,Con(Ai)) is a colored Galois
cover. One defines similarly as before finer and isomorphic Galois stratifications.
In general it will be harmless to identify isomorphic Galois stratifications.

To any S-constructible subset W of XS one may associate a well-defined (up
to isomorphism) Galois stratification by taking any normal stratification with all
strata contained either in W or in its complement, by taking the identity morphism
as Galois cover on each stratum, and taking for Con(Ai) the family consisting of
the group with one element if Ai ⊂W and the empty family otherwise.

We define the support Supp(A) of a Galois stratification

A = 〈XS , Ci/Ai,Con(Ai) | i ∈ I〉

as the union of the sets Ai with Con(Ai) nonempty. We define the dimension
dim(A) as the maximum of the dimensions of the sets Ai with Con(Ai) nonempty.
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2.2. Galois formulas. Let U = SpecR be an affine scheme, which we assume to
be integral and normal. For any variety XU over U and any closed point x of U ,
we denote by Fx the residual field of x on U and by Xx the fiber of XU at x. More
generally, for any field M containing Fx, we shall denote by Xx,M the fiber product
of XU and SpecM over x.

Let XU be a variety over U . Let A = 〈XU , Ci/Ai,Con(Ai) | i ∈ I〉 be a Galois
stratification of XU and let x be a closed point of U . Let M be a field contain-
ing Fx and let a be an M -rational point of Xx belonging to Ai,x. We denote
by Ar(Ci/Ai, x,a) the conjugacy class of subgroups of G(Ci/Ai) consisting of the
decomposition subgroups at a. We shall write

Ar(a) ⊂ Con(A)

for

Ar(Ci/Ai, x,a) ⊂ Con(Ai).

For x a closed point of U and M a field containing Fx, we consider the subset

Z(A, x,M) :=
{

a ∈ XU (M)
∣∣∣ Ar(a) ⊂ Con(A)

}
of XU (M).

Let A = 〈Am+n
U , Ci/Ai,Con(Ai) | i ∈ I〉 be a Galois stratification of Am+n

U . Let
Q1, . . . , Qm be quantifiers. We denote by ϑ or by ϑ(Y) the formal expression

(Q1X1) . . . (QmXm) [Ar(X,Y) ⊂ Con(A)]

with X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn). We call ϑ(Y) a Galois formula
over R in the free variables Y.

Now to a Galois formula ϑ, to a closed point x of U and to a field M containing
Fx, one associates the subset

Z(ϑ, x,M) :=
{

b = (b1, . . . , bn)∈Mn
∣∣∣ (Q1a1) . . . (Qmam) [Ar(a,b)⊂Con(A)]

}
of Mn, where the quantifiers Q1a1, . . . , Qmam run over M .

Let ϕ(Y1, . . . , Yn) be a formula in the first order language of rings with coeffi-
cients in the ring R and free variables Y1, . . . , Yn. For every closed point x in U
and every field M containing Fx we denote by Z(ϕ, x,M) the subset of Mn defined
by the (image over Fx of the) formula ϕ. Assume now ϕ is in prenex normal form,
i.e. a formula of the form

(Q1X1) . . . (QmXm)
[ k∨
i=1

l∧
j=1

fi,j(X,Y) = 0 ∧ gi,j(X,Y) 6= 0
]
,(2.2.1)

with fi,j and gi,j in R[X,Y]. The formula between brackets defines a U -construct-
ible subset A of Am+n

U to which one associates a Galois stratification as above. In
this way one obtains a Galois formula ϑ over R such that Z(ϑ, x,M) = Z(ϕ, x,M)
for every closed point x in U and every field M containing Fx.

2.3. Quantifier elimination for Galois formulas. We recall that a pseudo-
finite field F is a perfect infinite field which has exactly one extension of each
degree and such that every absolutely irreducible variety over F has a rational
point over F . J. Ax proved [1] that an infinite field F is pseudo-finite if and only if
every sentence1 in the first order language of rings which is true in all finite fields

1A sentence is a formula without free variables.
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is also true in F . We recall also that the property of being a pseudo-finite field is
stable by ultraproducts.2

There exist several versions of quantifier elimination for Galois formulas [19],
[16], [18]. The following seems to be best suited for the present work.

2.3.1. Theorem. Let k be a field. Let A be a Galois stratification of Am+n
k and

let ϑ be a Galois formula

(Q1X1) . . . (QmXm) [Ar(X,Y) ⊂ Con(A)]

with respect to A. There exists a Galois stratification B of An
k such that, for every

pseudo-finite field F containing k,

Z(ϑ, Spec k, F ) = Z(B, Spec k, F ).

Proof. Since pseudo-finite fields are Frobenius fields in the terminology of [18], the
result is a special case of Proposition 25.9 of [18].

2.3.2. Corollary. Let ϕ(Y1, . . . , Yn) be a formula in the first order language of
rings with coefficients in a field k and free variables Y1, . . . , Yn. There exists a
Galois stratification B of An

k such that, for every pseudo-finite field F containing
k,

Z(ϕ, Spec k, F ) = Z(B, Spec k, F ).

Proof. Take ϕ′ to be a formula in prenex normal form, which is logically equivalent
to ϕ. Since, for every pseudo-finite field F containing k, Z(ϕ, k, F ) = Z(ϕ′, k, F ),
the result follows from Theorem 2.3.1 and the observation made at the end of
2.2.

2.3.3. Remark. It follows from [18] that there is an effective algorithm to determine
a Galois stratification B in Theorem 2.3.1 and Corollary 2.3.2.

2.4. Let k be a field and let ϕ and ϕ′ be two formulas in the first order language
of rings with coefficients in k and free variables X1, . . . , Xn. Let F be a field
containing k. Recall that one says that ϕ and ϕ′ are equivalent in F if they define
the same subsets in Fn. We define the equivalence relation ≈ by ϕ ≈ ϕ′ if ϕ is
equivalent to ϕ′ in every pseudo-finite field F containing k. There is also a weaker
equivalence relation ≡ defined as follows. Let ϕ and ϕ′ be two formulas in the
first order language of fields with coefficients in k and free variables X1, . . . , Xn

and X1, . . . , Xn′ , respectively. We write ϕ ≡ ϕ′ if there exists a formula ψ in the
first order language of rings with coefficients in k and free variables X1, . . . , Xn+n′ ,
such that, for every pseudo-finite field F containing k, the subset Z(ψ, Spec k, F )
of Fn+n′ is the graph of a bijection between Z(ϕ, Spec k, F ) and Z(ϕ′, Spec k, F ).
In a few cases we shall write ≈k and ≡k to keep track of the field k.

To get a more concrete interpretation of the equivalence relations ≈ and ≡,
we shall assume now that k is a field of characteristic zero which is the field of
fractions of a normal domain R of finite type over Z. We set U = SpecR, and, for
any nonzero element f of R, we set Uf = SpecR[f−1]. Let AU be a normal (resp.
Galois) stratification of An

U . By base change over Spec k, one obtains a normal
(resp. Galois) stratification of An

k , which we will denote by AU ⊗ k. Conversely,
any normal or Galois stratification of An

k may be obtained in this way, at the cost
of replacing U by some localization Uf .

2See, e.g., [18] for the definition of ultraproducts.
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2.4.1. Proposition. (1) Let ϕ and ϕ′ be two formulas in the first order language
of rings with coefficients in k and free variables X1, . . . , Xn. Viewing ϕ and
ϕ′ as formulas in the first order language of rings with coefficients in Rf , for
a suitable f , we have ϕ ≈ ϕ′ if and only if, for a suitable nonzero multiple f ′

of f , Z(ϕ, x,Fx) = Z(ϕ′, x,Fx), for every closed point x of Uf ′ .
(2) Let ϕ and ϕ′ be two formulas in the first order language of rings with co-

efficients in k and free variables X1, . . . , Xn and X1, . . . , Xn′ , respectively.
Viewing ϕ and ϕ′ as formulas in the first order language of rings with coef-
ficients in Rf , for a suitable f , we have ϕ ≡ ϕ′ if and only if, for a suitable
nonzero multiple f ′ of f , there exists a formula ψ in the first order language
of rings with coefficients in Rf ′ and free variables X1, . . . , Xn+n′ , such that,
for every closed point x of Uf ′ , the subset Z(ψ, x,Fx) of Fn+n′

x is the graph
of a bijection between Z(ϕ, x,Fx) and Z(ϕ′, x,Fx).

Proof. This follows from Proposition 2.4.2 applied to the sentences

∀x(ϕ(x)←→ ϕ′(x))

and

[∀x(ϕ(x)→ ∃!x′ : (ϕ′(x′) ∧ ψ(x, x′)))] ∧ [∀x′(ϕ′(x′)→ ∃!x : (ϕ(x) ∧ ψ(x, x′)))],

in cases (1) and (2), respectively.

2.4.2. Proposition. Let k be a field of characteristic zero which is the field of
fractions of a normal domain R of finite type over Z. Let ϑ be a Galois formula
over R (as in 2.2) with no free variables. Then ϑ is true in every pseudo-finite field
F containing k if and only if there exists f in R \ {0}, such that, for every closed
point x in SpecRf , the formula ϑ is true in Fx, i.e. Z(ϑ, x,Fx) = A0

Fx
(Fx).

Proof. We first assume that ϑ is true in every pseudo-finite field F containing k.
If, for every f in R \ {0}, there exists a closed point x in SpecRf such that ϑ is
false in Fx, a suitable ultraproduct of the fields Fx would yield a pseudo-finite field
containing k in which ϑ is false, since the ultraproduct construction commutes in
the present case with the Artin symbol.

Conversely, suppose that there exists f in R\{0} such that, for every closed point
x in SpecRf , the formula ϑ is true in Fx. By the quantifier elimination Theorem
2.3.1, there exists a Galois formula B, over a suitable Rf , with no free variables
and no quantifiers, such that ϑ↔ B holds in every pseudo-finite field F containing
k. It follows from the first part of the proof that, maybe only after replacing f by
a multiple, ϑ↔ B holds also in Fx for every closed point x in SpecRf .

Thus we may suppose that ϑ has no quantifiers. LetA be the Galois stratification
over R belonging to ϑ. Because ϑ has no free variables, A⊗ k consists of only one
cover SpecL→ Spec k, with L a field which is Galois over k.

Assume now that there exists a pseudo-finite field F containing k in which ϑ
is false. Let σ be a topological generator of the absolute Galois group of F , and
denote by τ the restriction of σ to L. Then

Ar (SpecL/Spec k, 0, F ) =
{
α〈τ〉α−1

∣∣∣ α ∈ Gal (L/k)
}
,

where 〈τ〉 denotes the subgroup of Gal (L/k) generated by τ . Since we suppose
that ϑ is false in F , we have 〈τ〉 6⊂ Con(A). By Chebotarev’s Theorem for SpecR
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(see, e.g., [29]), there exists a closed point x of SpecRf such that

Ar (SpecL/Spec k, x, 0) =
{
α〈τ〉α−1

∣∣∣ α ∈ Gal (L/k)
}
.

Thus Ar (SpecL/Spec k, x, 0) 6⊂ Con(A), whence ϑ is false in Fx, which contradicts
our assumption that ϑ is true in Fx.

2.4.3. Lemma. Let ϕ and ϕ′ be two formulas in the first order language of rings
with coefficients in a field k. If ϕ ≈k ϕ′ (resp. ϕ ≡k ϕ′), then there exists a subfield
k0 of k, of finite type over its prime field and such that the coefficients in ϕ and ϕ′

belong to k0, such that ϕ ≈k0 ϕ
′ (resp. ϕ ≡k0 ϕ

′).

Proof. First consider the case where ϕ ≈k ϕ′. Let {ki | i ∈ Σ} be the set of all
subfields of k which are of finite type over the prime field of k and which contain
the constants in ϕ and ϕ′, and assume there exists for each i in Σ a pseudo-finite
field Fi containing ki in which ϕ is not equivalent to ϕ′. Choose an ultrafilter D
on Σ containing Si := {j | ki ⊂ kj}, for every i in Σ. Let F be the ultraproduct
of all the fields Fi with respect to D. Clearly F is a pseudo-finite field in which
ϕ is not equivalent to ϕ′. Moreover k is imbedded in F by the map a 7→ (ai)i∈I
mod D, where ai = a if a ∈ ki and ai = 0 if a 6∈ ki. This contradicts ϕ ≈ ϕ′. The
proof for ≡ is just the same, considering now the set {ki | i ∈ Σ} of all subfields
of k which are of finite type over the prime field of k and contain the constants in
ϕ, ϕ′ and ψ, where ψ is a formula satisfying the conditions in the definition of ≡
and replacing everywhere “ϕ is not equivalent to ϕ′ in the pseudo-finite field M”
by “Z(ψ, Spec k,M) is not the graph of a bijection between Z(ϕ, Spec k,M) and
Z(ϕ′, Spec k,M)”.

The following quantifier elimination statement follows directly from Theorem
2.3.1 and Proposition 2.4.2.

2.4.4. Proposition. Let U = SpecR be an affine scheme of finite type over Z,
integral, normal and of characteristic zero. Let A be a Galois stratification of Am+n

U

and let ϑ be a Galois formula

(Q1X1) . . . (QmXm) [Ar(X,Y) ⊂ Con(A)]

with Q1, . . . , Qm quantifiers. There exist a nonzero element f of R and a Galois
stratification B of An

Uf
such that, for every closed point x of Uf ,

Z(ϑ, x,Fx) = Z(B, x,Fx).

2.4.5. Corollary. Let ϕ(Y1, . . . , Yn) be a formula in the first order language of
rings with coefficients in the ring R and free variables Y1, . . . , Yn. There exist a
nonzero element f of R and a Galois stratification B of An

Uf
such that, for every

closed point x of Uf ,

Z(ϕ, x,Fx) = Z(B, x,Fx).

3. Assigning virtual motives to formulas

3.1. Motives and group action. Let k be a field of characteristic zero. Let G be
a finite group. Let X be an algebraic variety over k endowed with a G-action. We
sayX is a G-variety if the G-orbit of every closed point in X is contained in an affine
open subscheme (this condition is always satisfied when X is quasi-projective). One
defines in the usual way isomorphisms and closed immersions of G-varieties and so
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one may define a ring K0(Schk, G), the Grothendieck ring of G-varieties over k,
similarly as in 1.2.

Let α be the character of a representation G→ GL(Vα) defined over Q̄. Denote
by nα the dimension of Vα and consider

pα :=
nα
|G|

∑
g∈G

α−1(g)[g],

the corresponding idempotent in Q̄[G].
There is a natural ring morphism µ from Q̄[G] to the ring of correspondences on

X with coefficients in Q̄ sending a group element g onto the graph of multiplication
by g.

We will need the following equivariant version of the result of Gillet and Soulé [20]
and Guillén and Navarro Aznar [21]. We denote by RQ̄(G) the group of characters
of virtual representations of G defined over Q̄.

3.1.1. Theorem. Let G be a finite group. For every virtual character α in RQ̄(G),
there exists a unique morphism of rings

χc( , α) : K0(Schk, G) −→ K0(Motk,Q̄)

such that:
(1) If X is projective and smooth with G-action and α is the character of an

irreducible representation defined over Q̄, nαχc([X ], α) is equal to the class
of the motive (X,µ(pα), 0) in K0(Motk,Q̄).

(2) For every G-variety X,

χc(X) =
∑
α

nαχc(X,α),

where α runs over all irreducible characters of G.
(3) For every G-variety X, the function α 7→ χc(X,α) is a group morphism

RQ̄(G)→ K0(Motk,Q̄).

Proof. This is Theorem 6.1 of [2]. When G is abelian it is Theorem 1.3.1 of [11]
where the hypothesis G abelian was not used seriously in the proof.

We shall also use the following result.

3.1.2. Proposition. Let G be a finite group, let H be a subgroup of G and let X
be a G-variety.

(1) Assume H is a normal subgroup of G. Then, for every character α of G/H,

χc(X/H,α) = χc(X,α ◦ %),

where % is the projection G→ G/H.
(2) Let α be a character of H. Then

χc(X, IndGHα) = χc(X,α),

viewing X as an H-variety in the second term of the equality.
(3) Assume X is isomorphic as a G-variety to

⊕
s∈G/H sY , with Y an H-variety.

Then, for every character α of G,

χc(X,α) = χc(Y,ResGHα).
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Proof. Statements (1) and (3) follow from Proposition 6.3 of [2] applied to the
morphism % : G→ G/H and H → G, respectively. Similarly, statement (2) follows
from a dual form of Proposition 6.3 of [2] which is as follows (notation being as in
loc. cit.): for ψ : G → G′ a morphism of finite groups, α a character of G and X
a G′-variety, we have χc(ResψX,α) = χc(X, Indψα). The proof is just similar to
the proof of Proposition 6.3 of [2] using the projection formula Corollary 4.3 of [2]
and the fact that the functor hc of loc. cit. commutes with Resψ. Another way
to prove (2) and (3) would be to remark that when X is projective and smooth
it is just a consequence of Theorem 3.1.1 (1) together with elementary theory of
representations of finite groups and then to deduce the result for arbitrary X by
additivity of χc.

Let us denote by C(G, Q̄) the Q̄-vector space of Q̄-valued central functions on G.
For every W in K0(Schk, G), one defines by linearity a morphism of vector spaces
α 7→ χc(W,α) from C(G, Q̄) to K0(Motk,Q̄) ⊗ Q̄, expressing a central function
as a linear combination of irreducible characters. Now let us denote by C(G,Q)
the Q-vector space of Q-central functions G → Q, i.e. Q-linear combinations of
characters of Q-irreducible representations of G defined over Q. We recall that a
central function α : G → Q belongs to C(G,Q) if and only if α(x) = α(x′) for
each x, x′ in G such that 〈x〉 is conjugate to 〈x′〉. Here 〈x〉 denotes the subgroup
generated by x.

3.1.3. Proposition. Let G be a finite group. For every central function α : G→ Q
in C(G,Q) and every W in K0(Schk, G), the virtual motive χc(W,α) belongs to the
image of the morphism of Q-vector spaces

K0(Schk)⊗Q −→ K0(Motk,Q̄)⊗Q

induced by χc, i.e. is an element of Kv
0 (Motk,Q̄)Q.

Proof. By a classical result of Emil Artin, α is a Q-linear combination of characters
of the form IndGH1H with H a cyclic subgroup of G. It follows from Proposition
3.1.2 that, for every G-variety X ,

χc(X, IndGH1H) = χc(X, 1H) = χc(X/H),

where in the middle term X is viewed as an H-variety, whence χc(X, IndGH1H)
belongs to Kv

0 (Motk,Q̄).

3.2. Assigning virtual motives to Galois stratifications. Let k be a field of
characteristic zero and let A be a normal integral variety over k. Let h : C → A
be a Galois cover with Galois group G and let Con be a family of subgroups of G
which is stable by conjugation under elements in G. One may associate to these
data an element χc(C/A,Con) of Kv

0 (Motk,Q̄)Q as follows. Consider the central
function αCon on G defined by

αCon(x) =

{
1 if 〈x〉 ∈ Con,
0 if 〈x〉 /∈ Con.

Clearly αCon belongs to C(G,Q), hence, by Proposition 3.1.3, χc(C,αCon) belongs
to Kv

0 (Motk,Q̄)Q. We set χc(C/A,Con) := χc(C,αCon).
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Now let X be a variety over k and let A = 〈X,Ci/Ai,Con(Ai) | i ∈ I〉 be a Galois
stratification of X . We define the element

χc(A) :=
∑
i∈I

χc(Ci/Ai,Con(Ai))

in Kv
0 (Motk,Q̄)Q.

3.2.1. Proposition. Let X be a variety over k and let A be a Galois stratification
of X. The element χc(A) in Kv

0 (Motk,Q̄)Q depends only on the isomorphism class
of the Galois stratification A of X.

Proof. The proof follows directly from the additivity of χc and Proposition 3.1.2
(3).

3.2.2. Proposition. Let k be a field of characteristic zero which is the field of
fractions of a normal domain R of finite type over Z. Let A be a normal integral va-
riety over U := SpecR and consider a Galois stratification A = 〈A,C/A,Con(A)〉
consisting of a single colored Galois cover. Let C′ → C be a Galois cover such
that the induced map C′ → A is a Galois cover. Consider the family Con′(A)
of subgroups of G(C′/A) which are mapped onto subgroups in Con(A) by the pro-
jection % : G(C′/A) → G(C/A) and denote by A′ the Galois stratification A′ =
〈A,C′/A,Con′(A)〉.

(1) For every closed point x of U and every field M containing Fx, Z(A, x,M) =
Z(A′, x,M).

(2) We have

χc(A⊗ k) = χc(A′ ⊗ k).

Proof. The first statement is clear and the second follows from Proposition 3.1.2
(1), since αCon′(A) = αCon(A) ◦ %.

3.3. Frobenius action. We assume in this subsection that k is a field of charac-
teristic zero which is the field of fractions of a normal domain R of finite type over
Z. We again set U = SpecR.

Let us fix a prime number ` and denote by Gk the absolute Galois group of k.
We denote by K0(Q̄`, Gk) the Grothendieck group of the abelian category of finite
dimensional Q̄`-vector spaces with continuous Gk-action. For every closed point x
of U , we denote by Frobx the geometric Frobenius automorphism over the field Fx.
Taking the trace of Frobx on the invariants by inertia gives rise to a ring morphism

K0(Q̄`, Gk)⊗Q −→ Q̄`.

By composition with the morphism

Ét` : Kv
0 (Motk,Q̄)⊗Q −→ K0(Q̄`, Gk)⊗Q

induced by étale `-adic realization, one defines a ring morphism

Tr Frobx : Kv
0 (Motk,Q̄)⊗Q −→ Q̄`.

3.3.1. Proposition. Let XU be a variety over U and let A be a Galois stratifica-
tion of XU . There exists a nonzero element f in R such that, for every closed point
x of Uf ,

Tr Frobx(χc(A ⊗ k)) = cardZ(A, x,Fx).

Proof. The proof follows directly from the next lemma.
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3.3.2. Lemma. Let A be a normal variety over U , let h : C → A be a Galois
cover with Galois group G and let Con be a family of subgroups of G which is stable
by conjugation under elements in G. There exists a nonzero element f in R such
that, for every closed point x of Uf ,

Tr Frobx(χc(C/A⊗ k,Con)) = card
{
a ∈ A(Fx)

∣∣∣ Ar(C/A, x, a) ⊂ Con
}
.(3.3.1)

Proof. By its very definition, χc(C/A⊗ k,Con) is equal to χc(C ⊗ k, αCon). As in
the proof of Proposition 3.1.3 we may write αCon as a Q-linear combination

αCon =
∑
H

nHIndGH1H ,

with nH in Q and H running over the set of cyclic subgroups of G, and it follows
from Proposition 3.1.2 that the left hand side of (3.3.1) is equal to∑

H

nH
∑
i

(−1)iTr Frobx(Hi
c(C/H, Q̄`)).(3.3.2)

The right hand side of (3.3.1) is equal to∑
a∈A(Fx)

αCon(Froba)

with Froba the Frobenius automorphism at a (up to conjugation) and hence may
be rewritten as ∑

H

nHcard {a ∈ C/H(Fx)}.(3.3.3)

Now it follows from Grothendieck’s trace formula together with standard construc-
tibility and base change theorems for `-adic cohomology that there exists a nonzero
element f in R such that, for every closed point x of Uf , (3.3.2) is equal to (3.3.3).

In fact, the sets Z(A, x,Fx) completely determine the virtual motive χc(A⊗ k)
of a Galois stratification over U . More precisely:

3.3.3. Theorem. Let U = SpecR be an affine scheme of finite type over Z, inte-
gral, normal and of characteristic zero. Let XU be a variety over U and let A and
A′ be Galois stratifications of XU . Let f be a nonzero element of R. Assume that,
for every closed point x of Uf , the equality Z(A, x,Fx) = Z(A′, x,Fx) holds. Then

χc(A⊗ k) = χc(A′ ⊗ k).

Proof. After refining A andA′ one may assume I = I ′ and Ai = A′i for i ∈ I. Hence
it is sufficient to prove the following: Let A be an integral and normal U -scheme of
finite type and let h : C → A and h′ : C′ → A be Galois covers with Galois groups
G and G′, respectively, provided with a family of subgroups Con (resp. Con′) of G
(resp. G′) which is stable by conjugation under elements in G (resp. G′). Assume
there exists a nonzero element f in R such that for every closed point x in Uf and
every closed point y of Ax, Ar(C/A, x, y) ⊂ Con if and only Ar(C′/A, x, y) ⊂ Con′.
Then

χc(C ⊗ k, αCon) = χc(C′ ⊗ k, αCon′).

But this follows from the more general Lemma 3.3.4.
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3.3.4. Lemma. Let A be an integral and normal U -scheme of finite type and let
h : C → A and h′ : C′ → A be Galois covers with Galois groups G and G′,
respectively. Take α ∈ C(G,Q) and α′ ∈ C(G′,Q). Assume there exists a nonzero
f in R such that for every closed point x in Uf and every closed point y of Ax,

α(Froby) = α′(Froby).

Then

χc(C ⊗ k, α) = χc(C′ ⊗ k, α′).

Proof. Replacing α and α′ by multiples, we may assume that α and α′ are Z-linear
combinations of irreducible characters of G and G′, respectively. By Proposition
3.2.2, maybe after replacing U by Uf for some nonzero f in R, we can assume
C = C′ and G = G′ by going to a suitable common Galois cover of C and C′. By
Chebotarev’s Theorem, we then have α = α′, and the result follows.

More generally, the following result holds.

3.3.5. Theorem. Let U = SpecR be an affine scheme of finite type over Z, inte-
gral, normal and of characteristic zero. Let A and B be varieties over U and let
A and B be Galois stratifications of A and B, respectively. Assume there exists a
Galois stratification Z of A×B and a nonzero element f of R such that, for every
closed point x of Uf , Z(Z, x,Fx) is the graph of a bijection between Z(A, x,Fx)
and Z(B, x,Fx). Then

χc(A⊗ k) = χc(B ⊗ k).

Proof. It is enough to prove that χc(A⊗k) = χc(Z⊗k). Hence, by additivity of χc,
one may assume that the Galois stratification A consists of a single colored Galois
cover (C → A,Con(A)), with A a normal variety and Con(A) nonempty. Denote
by Z the support of Z and by p the restriction of the projection A×B → A to Z.
Write the Galois stratification Z as

Z = 〈A×B,Wi/Zi,Con(Zi) | i ∈ I〉.

It follows from Chebotarev’s Theorem and the Lang-Weil estimate [23] that the
morphism p : Z → A is generically finite and that p(Z) = A. Hence, maybe after
performing a finite partition of A into locally closed normal subschemes, we may
assume that, for every i in I, Zi is mapped by p onto A and that the restriction
of p to Zi is a finite étale morphism. Furthermore, maybe after replacing U by Uf
for a suitable nonzero f , we may, by Proposition 3.2.2, replace the Wi’s by suitable
Galois covers. It follows that, maybe after performing another finite partition of A
into locally closed normal subschemes, we may assume that the morphisms Wi → A
obtained by composition with p are all Galois covers and that they are all equal to
the same Galois cover W → A. Moreover we may assume that the cover W → A
coincides with the cover C → A. By assumption there exists a nonzero element
f of R such that, for every closed point x of Uf , the map p induces a bijection
between Z(Z, x,Fx) and Z(A, x,Fx). Hence, for such an f and such an x, a point
a belongs to Z(A, x,Fx) if and only if there exists i in I and σ in G(W/A) such that
σ〈Froba〉σ−1 belongs to Con(Zi). Furthermore, since a given point a in Z(A, x,Fx)
should be the image under p of a unique point in Z(Z, x,Fx), one deduces from
Chebotarev’s Theorem that, for a in a subset of closed points of A of Dirichlet
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density 1, the element i in I and the class of σ in G(W/A)/G(W/Zi) should both
be unique. Since, for such an a,

αCon(A)(Froba) =
∑
i∈I

IndG(W/A)
G(W/Zi)

αCon(Zi)(Froba),

it follows, again by Chebotarev’s Theorem, that

αCon(A) =
∑
i∈I

IndG(W/A)
G(W/Zi)

αCon(Zi).

By Proposition 3.1.2 (2), one deduces now that χc(A⊗ k) = χc(Z ⊗ k).

3.4. Assigning virtual motives to formulas. We assume first that k is a field
of characteristic zero which is of finite type over Q. We now associate a canonical
element χc(ϕ) in Kv

0 (Motk,Q̄)Q to every formula ϕ in the first order language of
rings with coefficients in k and free variables X1, . . . , Xn. The construction is as
follows. One may view ϕ as a formula in the first order language of rings with
coefficients in R, with R a normal subring of k which is of finite type over Z, and
whose fraction field is k. We again set U = SpecR. By Corollary 2.4.5 one may
associate to ϕ a Galois stratification A of An

Uf
, for a suitable nonzero f , such that,

for every closed point x of Uf ,

Z(ϕ, x,Fx) = Z(A, x,Fx).

Clearly, the Galois stratification A ⊗ k is not canonically associated to ϕ. Never-
theless, it follows directly from Theorem 3.3.3 that the virtual motive χc(A⊗ k) in
Kv

0 (Motk,Q̄)Q is canonically attached to ϕ. We shall denote it by χc(ϕ).
Now we investigate the behaviour of χc under field extensions.
Let k be a field of characteristic zero and let A be a normal integral variety over

k. Let h : C → A be a Galois cover with Galois group G . If k′ is a field containing
k, the restriction of the morphism h⊗k′ : C⊗k′ → A⊗k′ obtained by extension of
scalars to a connected component C′ of C⊗ k′ defines a Galois cover of A⊗ k′ with
Galois group G′, the decomposition subgroup of G at the generic point of C′, whose
isomorphism class is independent of the choice of C′. If the Galois cover is colored
by a family Con of subgroups of G which is stable by conjugation under elements in
G, one considers the family Con′ obtained by intersection with G′. In this way, for
A a Galois stratification of a k-variety X , one defines a Galois stratification A⊗ k′
of X ⊗ k′.

3.4.1. Lemma. Let k be a field of characteristic zero and let A be a Galois strat-
ification of a k-variety X. Then

χc(A⊗ k′) = χc(A)⊗ k′.

Proof. It is enough to prove the following: Let h : C → A be a Galois cover
of k-varieties with Galois group G, C′ a connected component of C ⊗ k′, G′ the
decomposition subgroup of G at the generic point of C′, and α a character of G.
Then χc(C,α) ⊗ k′ = χc(C′,ResGG′α). Since χc(C,α) ⊗ k′ = χc(C ⊗ k′, α), this
is equivalent to the equality χc(C ⊗ k′, α) = χc(C′,ResGG′α) which follows from
Proposition 3.1.2 (3).
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3.4.2. Lemma. Let k ⊂ k′ be fields of finite type over Q. Let ϕ be a formula in
the first order language of rings with coefficients in k and free variables X1, . . . , Xn.
We denote by ϕ⊗ k′ the same formula considered as a formula with coefficients in
k′. Then

χc(ϕ⊗ k′) = χc(ϕ)⊗ k′.
Proof. Using the preceding notations, take a Galois stratification A of An

Uf
, such

that, for every closed point x of Uf , Z(ϕ, x,Fx) = Z(A, x,Fx). By Proposition
2.4.2, Z(ϕ, Spec k, F ) = Z(A, Spec k, F ) for every pseudo-finite field F containing
k. Hence, Z(ϕ⊗ k′, Spec k′, F ) = Z(A⊗ k′, Spec k′, F ) for every pseudo-finite field
F containing k′. Let U ′ = SpecR′ with R′ the normalisation of R in k′. Again by
Proposition 2.4.2 we get that for some nonzero element f ′ of R′, Z(ϕ⊗ k′, x,Fx) =
Z(A ⊗ U ′f ′ , x,Fx), for every closed point x of U ′f ′ , with A ⊗ U ′f ′ the stratification
obtained by base change. Hence, by Theorem 3.3.3, χc(ϕ ⊗ k′) = χc(A ⊗ k′) and
the result follows by Lemma 3.4.1.

Let k be any field of characteristic zero. Let ϕ be a formula in the first order
language of rings with coefficients in k. We may now associate to ϕ a canonical
element χc(ϕ) in Kv

0 (Motk,Q̄)Q as follows. Take a subfield k0 of k which is of finite
type over Q such that ϕ may be viewed as a formula ϕ0 in the first order language
of rings with coefficients in k0. By Lemma 3.4.2, χc(ϕ0) ⊗ k does not depend on
the choice of k0, so we may set χc(ϕ) := χc(ϕ0)⊗ k.

3.4.3. Proposition. Let k be a field of characteristic zero and let ϕ and ϕ′ be two
formulas in the first order language of rings with coefficients in k. If ϕ ≡ ϕ′, then

χc(ϕ) = χc(ϕ′).

Proof. By Lemma 2.4.3 we may assume that k is of finite type over Q, so we may
apply Proposition 2.4.1 (2) to get a certain formula ψ and then, by Corollary 2.4.5,
we may replace the formula ψ by a Galois stratification and the result follows from
Theorem 3.3.5.

We shall denote by Formk the set of formulas in the first order language of rings
with coefficients in k. If ϕ is a formula in Formk with n free variables and ϕ′ is
a formula in Formk with n′ free variables, we shall denote by ϕ × ϕ′ the formula
with n + n′ free variables obtained by giving different names to the free variables
occurring in ϕ and ϕ′ and taking the conjunction of ϕ and ϕ′.

We now list a few properties of ϕ 7→ χc(ϕ).

3.4.4. Proposition. The function χc : Formk → Kv
0 (Motk,Q̄)Q satisfies the fol-

lowing properties.
(1) Let ϕ and ϕ′ be formulas with free variables (X1, . . . , Xn). Then

χc(ϕ ∨ ϕ′) = χc(ϕ) + χc(ϕ′)− χc(ϕ ∧ ϕ′).
(2) Let ϕ and ϕ′ be formulas with free variables (X1, . . . , Xn) and (X1, . . . , Xn′),

respectively. Then

χc(ϕ× ϕ′) = χc(ϕ)χc(ϕ′).

(3) If ϕ has n free variables, then

χc(¬ϕ) = Ln − χc(ϕ).

(4) χc(0 = 1) = 0.
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Proof. To prove (1) first observe that if ϕ and ϕ′ are formulas with free variables
(X1, . . . , Xn), and χc(ϕ) = χc(A) and χc(ϕ′) = χc(A′) with A and A′ Galois
stratifications of An

k with disjoint support, then χc(ϕ∨ϕ′) = χc(ϕ)+χc(ϕ′). Hence
we have

χc(ϕ ∨ ϕ′) = χc(ϕ ∧ ϕ′) + χc(¬ϕ ∧ ϕ′) + χc(ϕ ∧ ¬ϕ′),

χc(ϕ) = χc(ϕ ∧ ϕ′) + χc(ϕ ∧ ¬ϕ′)

and

χc(ϕ′) = χc(ϕ ∧ ϕ′) + χc(¬ϕ ∧ ϕ′),

whence the statement follows. (2) and (3) are proven by taking the product and
the complement (in the obvious sense), respectively, of the corresponding Galois
stratifications, while (4) is just evident.

3.5. New invariants of formulas. Every ring morphism

Kv
0 (Motk,Q̄)Q −→ R

composed with χc : Formk → Kv
0 (Motk,Q̄)Q will give rise to new invariants of

formulas with coefficients in k. Let us give some examples. They all come from
realization functors. Let H · be a cohomology theory on the category of smooth
projective varieties over k with values in a field containing Q̄. Then the realization
of a motive (S, p, n) in Motk,Q̄ is just p(H ·) ⊗ H2(P1

k)⊗n, with p(H ·) the image
of the projector p acting on cohomology. If one takes for H · Betti or de Rham
cohomology, taking the alternating sum of the ranks of the cohomology groups
gives rise to the Euler characteristic Eu : K0(Motk,Q̄) → Z and, after tensoring
with Q, to a morphism Eu : K0(Motk,Q̄)⊗Q→ Q, which restricts to a morphism
Eu : Kv

0 (Motk,Q̄)Q → Q. Hence every formula in Formk has an Euler characteristic
in Q.

By taking the Hodge realization, one associates to a motive M = (S, p, n) in
Motk,Q̄ its Hodge polynomial

Hodge(M) =
∑
i,j

hi,j(p(H ·(S)))uivj(uv)n

in Z[u, v, (uv)−1], with hi,j the rank of the (i, j)-part of p(H ·). So we have a
ring morphism Hodge : K0(Motk,Q̄) ⊗ Q → Q[u, v, (uv)−1], which restricts to a
morphism Hodge : Kv

0 (Motk,Q̄)Q → Q[u, v]. In this way one associates to every
formula in Formk canonical Hodge numbers in Q.

We already considered in 3.3 the Grothendieck group K0(Q̄`, Gk) of the abelian
category of finite dimensional Q̄`-vector spaces with continuous Gk-action, and the
morphism

Ét` : Kv
0 (Motk,Q̄)⊗Q −→ K0(Q̄`, Gk)⊗Q

induced by étale `-adic realization. Hence to every formula in Formk is associated a
canonical virtual Galois representation with rational coefficients in K0(Q̄`, Gk)⊗Q.
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3.6. When k is of finite type over Q, one has the following proposition.

3.6.1. Proposition. Let R be a normal domain of finite type over Z, with fraction
field k. Let ϕ be a formula in the first order language of rings with coefficients in
R. There exists a nonzero element f in R such that, for every closed point x of
SpecRf ,

Tr Frobx(χc(ϕ)) = cardZ(ϕ, x,Fx).

Proof. The proof follows directly from Proposition 3.3.1.

3.6.2. Remark. The fact that the number of points of definable sets in finite fields
may be expressed as a Q-linear combination of a number of points of varieties goes
back to [22]. For further results on the number of points of definable sets in finite
fields, see [4] and [17].

3.7. Grothendieck groups of first order theories. This subsection is not used
in the rest of the paper and its reading requires some mild familiarity with the basic
language of Model Theory.

Let L be a first order language and let T be a theory in the language L.
We denote by K0(T ) the quotient of the free abelian group generated by symbols

[ϕ] for ϕ a formula in L by the subgroup generated by the following relations:
(1) If ϕ is a formula in L with free variables x = (x1, . . . , xn) and ϕ′ is a formula

in L with free variables x′ = (x′1, . . . , x
′
n′), then [ϕ] = [ϕ′] if there exists a

formula ψ in L, with free variables (x, x′), such that

T |= [∀x(ϕ(x)→ ∃!x′ : (ϕ′(x′) ∧ ψ(x, x′)))]

∧ [∀x′(ϕ′(x′)→ ∃!x : (ϕ(x) ∧ ψ(x, x′)))].

(2) [ϕ ∨ ϕ′] = [ϕ] + [ϕ′]− [ϕ ∧ ϕ′], for ϕ and ϕ′ formulas in L.
Furthermore one puts a ring structure on K0(T ) by setting

(3) [ϕ(x)] · [ϕ′(x′)] = [ϕ(x) ∧ ϕ′(x′)], if ϕ and ϕ′ are formulas in L with disjoint
free variables x and x′.

For every interpretation of a theory T1 in a theory T2 there is a canonical mor-
phism of rings K0(T1)→ K0(T2), and this gives rise to a functor from the category
of theories in L, morphisms being given by interpretation, to the category of com-
mutative rings.

The previous constructions may now be rephrased in the following way.

3.7.1. Theorem. Let k be a field of characteristic zero. Let L be the first order
language of rings with coefficients in k and let T be the theory of pseudo-finite fields
containing k. There exists a canonical morphism of rings

χc : K0(T ) −→ Kv
0 (Motk,Q̄)Q

factorizing the morphism

χc : K0(Schk) −→ Kv
0 (Motk,Q̄)Q.

Proof. Indeed, this follows from Proposition 3.4.3 and Proposition 3.4.4.

3.7.2. Remark. If k is a field and Tac is the theory of algebraically closed fields
containing k, then K0(Tac) is isomorphic to K0(Schk). If TR is the theory of real
closed fields in the language of ordered rings, then K0(TR) is isomorphic to Z.
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Recently, Cluckers and Haskell [5] proved that the theory of any fixed p-adic field,
in the language of rings, has trivial Grothendieck group.

4. Definable subassignments for rings

4.1. Let h : C → Sets be a functor from a category C to the category of sets. We
shall call the data for each object C of C of a subset h′(C) of h(C) a subassignment
of h. The point in this definition is that h′ is not assumed to be a subfunctor of h.

For h′ and h′′ two subassignments of h, we shall denote by h′∩h′′ and h′∪h′′ the
subassignments C 7→ h′(C)∩h′′(C) and C 7→ h′(C)∪h′′(C), respectively. Similarly,
we denote by h \ h′ the subassignment C 7→ h(C) \ h′(C). We also write h ⊂ h′ if
h(C) ⊂ h′(C) for every object C of C.

If h′ is a subassignment of a functor h, and π : h → h0 is a natural trans-
formation of functors, then we denote by π(h′) the subassignment of h0 given by
C 7→ π(h′(C)).

Let R be a ring. We denote by FieldR the category of fields which are R-algebras.
For X a variety over SpecR, we consider the functor hX : k 7→ X(k) from FieldR
to the category of sets.

Let ϕ(X1, . . . , Xm) be a formula in the first order language of rings with
coefficients in R and free variables X1, . . . , Xm and let Am

R be the affine space
SpecR[X1, . . . , Xm]. For every field k in FieldR, we denote by Z(ϕ, k) the sub-
set of km = Am

R (k) defined by the formula ϕ. This gives rise to a subassignment
k 7→ Z(ϕ, k) of the functor hAm

R
. We call such a subassignment a definable sub-

assignment of hAm
R

. Let X be a variety over SpecR. Assume first X is affine and
embedded as a closed subscheme in Am

R . We shall say a subassignment of hX is
a definable subassignment if it is a definable subassignment of hAm

R
. Clearly, this

definition is independent of the choice of the embedding of X in an affine space. In
general, a subassignment h of hX will be said to be definable if there exists a finite
cover (Xi)i∈I of X by affine open subschemes and definable subassignments hi of
hXi , for i ∈ I, such that h =

⋃
i∈I hi. When X is affine this definition coincides

with the previous one.
We shall denote by DefR(X) the set of definable subassignments of hX . Clearly

DefR(X) is stable by finite intersection and finite union and by taking complements.

4.2. Now let k be a field of characteristic zero. Assume first X is a closed affine
subvariety of Am

k and let h be a definable subassignment of hX associated to a
formula ϕ with coefficients in k and m free variables. We set χc(h) = χc(ϕ). It
follows from Proposition 3.4.3 that χc(h) is independent of ϕ and the embedding
of X . In general, when X is a variety over k and h is a definable subassignment of
hX , one takes a finite cover (Xi)i∈I of X by affine open subschemes and definable
subassignments hi of hXi as in 4.1 and one sets

χc(h) =
∑
∅6=J⊂I

χc(
⋂
i∈J

hXi \
⋃
i/∈J

hXi),

which is well defined by Proposition 3.4.3 and Proposition 3.4.4. It also follows from
Proposition 3.4.4 that χc is additive, i.e. that χc(h∪h′) = χc(h)+χc(h′)−χc(h∩h′).

4.2.1. Remark. Of course we could also have defined χc(h) for h a definable sub-
assignment of hX by directly associating a Galois stratification to h, without con-
sidering formulas.
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4.3. Let R be a normal domain of finite type over Z, with fraction field k. Let X
be a variety over R and let h be a definable subassignment of hX . We shall denote
by h⊗ k the definable subassignment of hX⊗k obtained by extension of scalars.

The following result follows directly from Proposition 3.6.1.

4.3.1. Proposition. Let R be a normal domain of finite type over Z, with fraction
field k. Let X be a variety over R and let h be a definable subassignment of hX .
There exists a nonzero element f in R such that, for every closed point x of SpecRf ,

Tr Frobx(χc(h⊗ k)) = cardh(Fx).

4.4. Let R be a ring and let X be an R-variety. Let h and h′ be definable sub-
assignments of hX . We shall write h ≈ h′ if h(k) = h′(k) for every k in FieldR
which is a pseudo-finite field. More generally, if X and X ′ are R-varieties, and h
and h′ are definable subassignments of hX and hX′ , respectively, we write h ≡ h′ if
there exists a definable subassignment h′′ of hX⊗X′ such that, for every field k in
FieldR which is a pseudo-finite field, h′′(k) is the graph of a bijection between h(k)
and h′(k). Clearly ≈ and ≡ are equivalence relations.

Let R be a normal domain and let X be a variety over R. Let A be a Galois
stratification of X . We can associate to A a subassignment hA of hX by defining,
for k in FieldR, as in 2.2,

hA(k) :=
{

a = (a1, . . . , an) ∈ X(k)
∣∣∣ Ar(a) ⊂ Con(A)

}
.

We shall call such subassignments Galois subassignments of hX .
In this language Corollary 2.3.2 can be reformulated as follows.

4.4.1. Proposition. Let k be a field and let X be a variety over k. Let h be a
definable subassignment of hX . Then there exists a Galois subassignment h′ of hX
such that h ≈ h′.

The following result follows directly from Proposition 3.4.3.

4.4.2. Proposition. Let k be a field and let X and X ′ be k-varieties. If h and h′

are definable subassignments of hX and hX′ , respectively, such that h ≡ h′, then
χc(h) = χc(h′).

4.5. Let h be a subassignment of hX for X a variety over k. We say that h is of
dimension ≤ r if there exists a closed subvariety S of X of dimension ≤ r such that
h is a subassignment of hS .

5. Definable subassignments for power series rings

5.1. Quantifier elimination for valued fields. Let K be a valued field, with
valuation ord : K → Γ ∪ {∞}, where Γ is an ordered abelian group. We denote by
OK the valuation ring, by P the valuation ideal, by U the group of units in OK , by
κ the residue field, and by Res : OK → κ the canonical projection. We assume that
K has an angular component map. By this we mean a map ac : K → κ such that
ac 0 = 0, the restriction of ac to K× is multiplicative and the restriction of ac to U
coincides with the restriction of Res. From now on we fix that angular component
map ac.

We consider 3-sorted first order languages3 of the form

L = (LK ,Lκ,LΓ, ord, ac),

3See, e.g., [15], pp. 277–281, for more information concerning many-sorted first order logic.
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consisting of

(i) the language LK = {+,−,×, 0, 1} of rings as valued field sort,
(ii) the language Lκ = {+,−,×, 0, 1} of rings as residue field sort,
(iii) a language LΓ, which is an extension of the language {+, 0,∞,≤} of ordered

abelian groups with an element ∞ on top, as the value sort,
(iv) a function symbol ord from the valued field sort to the value sort, which

stands for the valuation,
(v) a function symbol ac from the valued field sort to the residue field sort, which

stands for the angular component map.

In the following we shall assume that K is henselian and that κ is of characteristic
zero. We consider (K,κ,Γ ∪ {∞}, ord, ac) as a structure for the language L, the
interpretations of symbols being the standard ones. By a henselian L-extension
of K, we mean an extension (K ′, κ′,Γ′ ∪ {∞}, ord′, ac′) of the structure (K,κ,Γ ∪
{∞}, ord, ac) with respect to the language L, with K ′ a henselian valued field.
(By an extension, we mean a structure for the language L which contains the
original structure as a substructure.) By abuse of language we shall say that K ′ is
a henselian L-extension of K.

We may now state the quantifier elimination theorem of Pas [26].

5.1.1. Theorem. Let K be a valued field which satisfies the previous conditions.
For every L-formula ϕ there exists an L-formula ϕ′ without quantifiers over the val-
ued field sort such that ϕ is equivalent in K ′ to ϕ′, for every henselian L-extension
K ′ of K.

Proof. This follows from Theorem 4.1 of [26] together with the observation at the
begining of section 3 of [26].

In particular, when the value group is Z, we shall use the language

LPas = (LK ,Lκ,LPR∞, ord, ac),

where LPR∞ = LPR ∪ {∞} and LPR is the Presburger language

LPR = {+, 0, 1,≤} ∪ {≡n |n ∈ N, n > 1},

where ≡n will be interpreted as “congruent modulo n” in Γ. We call a subset of
Zn which is definable in the language LPR a Presburger subset of Zn. Similarly,
we call a function Zm → Zr a Presburger function if its graph is definable in LPR.

5.1.2. Corollary. Let K be a valued field with value group Γ elementary equiv-
alent4 to Z in the language of ordered abelian groups and satisfying the previous
conditions for L replaced by the language LPas. For every LPas-formula ϕ there ex-
ists an LPas-formula ϕ′ without quantifiers over the valued field sort and the value
sort such that ϕ is equivalent in K ′ to ϕ′, for every henselian LPas-extension K ′ of
K with value group elementary equivalent to Z.

Proof. Indeed, it follows from Theorem 5.1.1, since, by a classical result of Pres-
burger [27], Z has quantifier elimination in the language LPR.

4See, e.g., [18] for this notion.
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5.2. We assume from now on that K = k((t)), that κ = k, with k a field of
characteristic zero, and that ord and ac have their classical meaning for formal
power series: if ϕ belongs to k((t)), ord(ϕ) will denote the order in t of ϕ and ac(ϕ)
the coefficient of tord(ϕ) in ϕ, with the convention ac(0) = 0. In particular, the
hypotheses of Corollary 5.1.2 are satisfied in the language LPas.

Let R be a subring of k. By an LPas-formula with coefficients in R in the valued
field sort and in the residue field sort we mean a formula in the language obtained
from LPas by adding, for every element of R, a new symbol to denote it in the
valued field sort and in the residue field sort. Note that Corollary 5.1.2 remains
valid for such formulas. We shall consider LPas-formulas with coefficients in R in
the valued field sort and in the residue field sort, free variables x1, . . . , xm running
over the valued field sort and no free variables running over the residue field or the
value sort. We shall call such formulas formulas on R[[t]]m. The reason for that
denomination is that later we shall view the free variables x1, . . . , xm as running
over R[[t]]. More generally, an LPas-formula with coefficients in R in the valued
field sort and in the residue field sort, free variables x1, . . . , xm running over the
valued field sort, no free variables running over the residue field sort and r free
variables running over the value sort give rise by specialization of the value sort
variables to Zr (resp. Nr or N∪ {∞} when r = 1) to what we shall call a formula
on R[[t]]m depending on parameters in Zr (resp. Nr or N ∪ {∞}).

We shall deduce the following statement of Ax/Ax-Kochen-Eršov type from the
Theorem of Pas.

5.2.1. Proposition. Let R be a normal domain of finite type over Z with field
of fractions k. Let σ be a sentence in the language LPas with coefficients in R in
the valued field sort and in the residue field sort. The following statements are
equivalent:

(1) The sentence σ is true in F ((t)) for every pseudo-finite field F containing k.
(2) There exists f in R \ {0} such that, for every closed point x in SpecRf , the

sentence σ is true in Fx((t)).

If, furthermore, k is a finite extension of Q, the previous statements are also equiv-
alent to the following:

(3) There exists f in R \ {0}, multiple of the discriminant of k/Q, such that, for
every closed point x in SpecRf , the sentence σ is true in kx,

where kx denotes the completion of k at x. Remark that, the extension k/Q being
nonramified at x, the field kx admits a canonical uniformizing parameter, hence
also a canonical angular component map.

Proof. Let us first prove the equivalence of (1) and (2). By Corollary 5.1.2, there
exists an LPas-sentence σ′ without quantifiers over the valued field sort and the
value sort such that σ is equivalent in K ′ to σ′, for every henselian LPas-extension
K ′ of k((t)). Hence there exists f in R \ {0} such that, for every closed point x
in SpecRf , the sentence σ is equivalent to σ′ in Fx((t)). Indeed, if this would not
be the case, a suitable ultraproduct of the fields Fx((t)) would yield a henselian
LPas-extension K ′ of k((t)) in which σ would not be equivalent to σ′. Hence we
may assume σ is a sentence (i.e. is without free variables) and has quantifiers only
over the residue field sort, in which case the result follows from Proposition 2.4.2.
The proof of the equivalence of (1) and (3) is completely similar.
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5.3. We shall call a formula on R[[t]]m a special formula on R[[t]]m if it is obtained
by repeated application of conjunction and negation from formulas of the form

ordf1(x1, . . . , xm) ≥ ordf2(x1, . . . , xm) + a,(5.3.1)

ordf1(x1, . . . , xm) ≡ a mod b(5.3.2)

and

ϑ(ac(f1(x1, . . . , xm)), . . . , ac(fm′(x1, . . . , xm))),(5.3.3)

where the fi are polynomials with coefficients in R, a and b are in Z, and ϑ is a
formula in m′ free variables in the first order language of rings with coefficients in
R.

Replacing a in the above formulas by L(a1, . . . , ar) with L a polynomial with
coefficients in Z and degree ≤ 1, one gets the definition of special formulas on
R[[t]]m depending on parameters in Zr (resp. Nr or N ∪ {∞}).

5.4. Let k be a field. For X a variety over k, we will denote by L(X) the scheme
of germs of arcs on X . It is a scheme over k and, for every field extension k ⊂ K,
there is a natural bijection,

L(X)(K) ' Mork-schemes(SpecK[[t]], X),

between the set of K-rational points of L(X) and the set of germs of arcs with
coefficients in K on X . We will call the K-rational points of L(X), for K a field
extension of k, arcs on X , and ϕ(0) will be called the origin of the arc ϕ. More
precisely, the scheme L(X) is defined as the projective limit,

L(X) := lim←−Ln(X),

in the category of k-schemes of the schemes Ln(X) representing the functor

R 7→ Mork-schemes(SpecR[t]/tn+1R[t], X),

defined on the category of k-algebras. (The existence of Ln(X) is well known (cf.
[12]), and the projective limit exists since the transition morphisms are affine.) We
shall denote by πn the canonical morphism corresponding to truncation of arcs,

πn : L(X) −→ Ln(X).

The schemes L(X) and Ln(X) will always be considered to have their reduced
structure.

5.5. Let R be a ring and let X be a variety over SpecR. We consider the functor
hL(X) : k 7→ X(k[[t]]) from FieldR to the category of sets.

Let ϕ be a formula on R[[t]]m. For every field k in FieldR, denote by Z(ϕ, k[[t]])
the subset of all x in k[[t]]m = Am

R (k[[t]]) for which ϕ(x) is true in k((t)). This
defines a subassignment k 7→ Z(ϕ, k[[t]]) of the functor hL(Am

R ). We call such a
subassignment a definable subassignment of hL(Am

R ). We now proceed in a similar
way as in 4.1 to define definable subassignments of hL(X), for X a variety over
SpecR. When X is affine and embedded as a closed subscheme in Am

R , we shall
say a subassignment of hL(X) is a definable subassignment if it is a definable sub-
assignment of hL(Am

R ). In general a subassignment h of hL(X) will be said to be
definable if there exists a finite cover (Xi)i∈I of X by affine open subschemes and
definable subassignments hi of hL(Xi) such that h =

⋃
i∈I hi. Similarly, one defines
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definable subassignments ha of hL(X) depending on parameters a = (a1, . . . , ar) in
Zr, in Nr, or in N ∪ {∞}.

We shall denote by DefR(L(X)) the set of definable subassignments of hL(X).
Clearly DefR(L(X)) is stable by finite intersection and finite union and by taking
complements.

We shall use the symbol
·
∪ to denote finite or infinite union of pairwise disjoint

subassignments of hL(X).
For a ring morphism R → R′ and h a functor or a subassignment from FieldR

to the category of sets, we denote by h⊗R′ the restriction of h to FieldR′ .
The following statement is a direct consequence of Corollary 5.1.2.

5.5.1. Proposition. Let k be a field of characteristic zero. Let ϕ be a formula
(resp. a formula depending on parameters) on k[[t]]m. Then there exists a spe-
cial formula (resp. a special formula depending on parameters) ϕ′ on k[[t]]m such
that ϕ and ϕ′ define the same definable subassignment (resp. the same definable
subassignment depending on parameters) of hL(Am

k ).

5.6. Let k be a field and let X be a k-variety. Let h be a definable subassignment
of hL(X). By a definable partition of h, with parameters in Z, N, or N ∪ {∞}, we
mean the data of definable subassignments hi, depending on the parameter i ∈ Z,
N, or N∪{∞}, which are pairwise disjoint and such that h =

⋃
ihi. Similarly, if hn

already depends on a parameter n, a definable partition of the subassignments hn,
with parameters in Z, N, or N∪{∞}, will be the data of definable subassignments
hn,i, depending on the parameter (n, i), such that, for each n, the subassignments
hn,i are pairwise disjoint and hn =

⋃
ihn,i.

5.7. Truncation of definable subassignments. Let k be a field of characteristic
zero and let X be a variety over k. For n in N, we have a canonical truncation
morphism πn : L(X) → Ln(X). Hence if h is a subassignment of hL(X) (resp. of
hLn(X)) we may consider πn(h) : K 7→ πn(h(K)) (resp. π−1

n (h) : K 7→ π−1
n (h(K)))

which is a subassignment of hLn(X) (resp. of hL(X)).

5.7.1. Proposition. Let h be a definable subassignment of hL(X). Then, for every
n in N, πn(h) is a definable subassignment of hLn(X) in the sense of section 4 and
π−1
n πn(h) is a definable subassignment of hL(X).

Proof. One may assume X = Am
k and h is associated to a formula ϕ on k[[t]]m.

Then π−1
n πn(h) is associated to the formula

∃ y1 . . . ∃ ym
(

(ord(x1 − y1) > n) ∧ · · · ∧ (ord(xm − ym) > n) ∧ ϕ(y1, . . . , ym)
)

and it follows from Corollary 5.1.2 that π−1
n πn(h) is a definable subassignment

of hL(X) associated to a special formula on k[[t]]m - without quantifiers in the
valued field sort - say ψ. One can formally write xi =

∑
j≥0 a

(i)
j tj and then, by

expanding the variables xi into series in the formulas of type (5.3.1), (5.3.2) and
(5.3.3) appearing in ψ, one obtains an infinite set of conditions in the variables a(i)

j .

If one substitutes in these conditions a(i)
j = 0 whenever i > n, then only a finite

number of conditions which involve only coefficients a(i)
j with j ≤ n remain. In this

way one obtains from the formula ψ a formula τn(ψ) with coefficients in k and free
variables a(i)

j , j ≤ n, and πn(h) is the definable subassignment of hLn(X) associated
to τn(ψ).



454 JAN DENEF AND FRANÇOIS LOESER

5.8. Stable definable subassignments. Let k be a field of characteristic zero
and let X be a variety over k. Let h be a definable subassignment of hL(X). We
say h is weakly stable at level n if h = π−1

n πn(h) and that h is weakly stable if it is
weakly stable at some level.

5.8.1. Lemma. Let h and hi, i ∈ N, be weakly stable definable subassignments of
hL(X). Assume that

h =
⋃
i∈N

hi.

Then there exists a natural number n such that

h =
⋃
i≤n

hi.

Proof. The proof of Lemma 2.4 in [12] using ultraproducts may be directly adapted
to the present situation. Indeed, we may assume X is a closed subvariety of Am

k ,
and it is enough to prove that if ki, i ∈ N, are weakly stable definable subassign-
ments of hL(X) such that, for every finite subset Σ of N,

⋂
i∈Σ ki is not the empty

subassignment, i.e. for some field KΣ,
⋂
i∈Σ ki(KΣ) is not empty, then

⋂
i∈N ki is

not the empty subassignment. Since every weakly stable definable subassignment
of hL(X) may be defined by an infinite conjunction of formulas in the language of
rings with coefficients in k each involving only a finite number of coefficients of
the power series xi, 1 ≤ i ≤ m (cf. the proof of Proposition 5.7.1), it follows that⋂
i∈N ki(K∗) is not empty for K∗ the ultraproduct of the fields KΣ with respect to

a suitable ultrafilter.

Let π : X → Y be a morphism of algebraic varieties over k and let h and h′ be
definable subassignments of hX and hY , respectively. Assume π(h) ⊂ h′. We say
that π induces a piecewise trivial fibration h→ h′ with fiber a k-variety F , if there
exists a finite family of locally closed subsets Si, i ∈ I, of Y , such that π−1(Si)
is locally closed in X , with h′ ⊂

⋃
i∈I hSi , such that there is an isomorphism

π−1(Si) ' Si × F , with π corresponding under the isomorphism to the projection
Si × F → Si, inducing, for every L in Fieldk, a bijection between (h∩ hπ−1(Si))(L)
and (h′ ∩ hSi)(L)× hF (L).

Let X be an algebraic variety over k of dimension d ≥ 0 and let h be a definable
subassignment of hL(X). We say h is stable at level n ∈ N, if h is weakly stable at
level n and the canonical morphism Lm+1(X)→ Lm(X) induces a piecewise trivial
fibration πm+1(h)→ πm(h) with fiber Ad

k for every m ≥ n.
We say h is stable if it is stable at some level n. The set Defk(L(X))st of stable

definable subassignments of hL(X) is stable by taking finite intersections and finite
unions.

5.8.2. Remark. If h is a weakly stable subassignment of hL(X) and h ∩ hL(X0) = ∅,
with X0 the union of the singular locus of X and its irreducible components of
dimension < d, then h is stable, as follows from Lemma 5.8.1 and Lemma 4.1
of [12]. In particular, if X is smooth of pure dimension d, every weakly stable
subassignment of hL(X) is stable.

5.8.3. Lemma. If h is stable at level n, then, for every n′ ≥ n,

χc(πn′ (h)) L−(n′+1)d = χc(πn(h)) L−(n+1)d.

Proof. Clear.
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5.9. Let R be a ring and let X be an R-variety. Let h and h′ be subassignments
of hL(X). We shall write h ≈ h′ if h(k) = h′(k) for every k in FieldR which is a
pseudo-finite field. If h ≈ h′, then πn(h) ≈ πn(h′) for every n in N.

6. Arithmetic motivic integration on definable sets

6.1. Let k be a field of characteristic 0 and let X be a variety over k of dimension
d. By Lemma 5.8.3 there exists a unique function

ν̃ : Defk(L(X))st −→ Kv
0 (Motk,Q̄)loc,Q

such that

ν̃(h) = χc(πn(h)) L−(n+1)d

if h is stable of level n.

6.1.1. Proposition. Let h and h′ be in Defk(L(X))st. Then
(1) ν̃(h ∪ h′) = ν̃(h) + ν̃(h′)− ν̃(h ∩ h′).
(2) If h ≈ h′, then ν̃(h) = ν̃(h′).

Proof. The first assertion follows directly from Proposition 3.4.4. The second as-
sertion is a consequence of Proposition 4.4.2, together with the fact that πn(h) ≈
πn(h′) if h ≈ h′.

Now let h be a stable definable subassignment of hL(X) and consider a definable
partition of h with parameters in Z such that each hn is stable. Then, by Lemma
5.8.1, ν̃(hn) = 0 for |n| � 0 and the sum

∑
n∈Z L−nν̃(hn) is finite. We denote that

sum by
∫

L−nhndν̃.
In general, for h a definable subassignment of hL(X) which is possibly not stable,

one has to use a limit process to define a “motivic measure” of h. To achieve this
aim, one needs the following lemma.

6.1.2. Lemma. Let X be a variety over k of dimension d and let h be a definable
subassignment of hL(X). Then there exist definable subassignments ki, stable at
level ni, depending on the parameter i ∈ N, and a closed subvariety S of dimension
< d of X such that

h =
·⋃
i

ki
·
∪ (h ∩ hL(S)), lim

i→∞
(dimπni(ki)− (ni + 1)d) = −∞,

with the definition of 4.5, and such that the denominators of the elements χc(πni(ki))
in Kv

0 (Motk,Q̄)Q, i ∈ N, are bounded. Furthermore, if hn, n ∈ Z, is a definable
partition of h, it is possible to choose the ki’s in such a way that, for every i, ki is
contained in some hn.

Proof. One reduces first to the case when X is affine irreducible with a closed
immersion X → Am

k , and then, by Proposition 5.5.1, we may assume h is associated
to a special formula ϕ on k[[t]]m which is obtained by repeated application of
conjunction and negation from formulas of the form (5.3.1), (5.3.2) and (5.3.3).
Choose a nonzero regular function g on X which vanishes on the singular locus of X
and let f denote the product of g and all the polynomials fi, assumed to be nonzero,
occurring in (5.3.1), (5.3.2) and (5.3.3). Now set ψi = ϕ ∧

⋂
(ordtf = i) and define

S as the locus of f = 0. The definable subassignments ki defined by ψi are stable
by Remark 5.8.2 and the statement on dimension follows from Lemma 4.4 of [12].
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We still have to check that the denominators of χc(πni (ki)) in Kv
0 (Motk,Q̄)Q are

bounded. For that it is enough to know that one can uniformly bound the degree
of the coverings in the Galois stratifications associated by quantifier elimination
(Corollary 2.3.2) to πni(ki). But consider the Galois stratifications associated by
Corollary 2.3.2 to the formulas ϑ occurring in (5.3.3) and let d be the maximum of
the degrees of the coverings appearing in these Galois stratifications. The Galois
stratifications associated to πni(ψi) may be expressed in terms of the former ones,
and the integer d is still a bound for the degrees of the coverings. For definable
partitions, the construction of the ψi’s is done in exactly the same way.

6.1.3. Definition-Theorem. There exists a unique mapping

ν : Defk(L(X)) −→ K̂v
0 (Motk,Q̄)Q

satisfying the following properties.
(1) If h is a stable definable subassignment of hL(X), then ν(h) is equal to the

image of ν̃(h) in K̂v
0 (Motk,Q̄)Q.

(2) If h and h′ are definable subassignments of hL(X), then

ν(h ∪ h′) = ν(h) + ν(h′)− ν(h ∩ h′).
(3) If h ≈ h′, then ν(h) = ν(h′).
(4) Let h be a definable subassignment of hL(X). If there exists a subvariety S of

X with dimS ≤ d− 1 such that h ⊂ hL(S), then ν(h) = 0.
(5) Let hn be a definable partition of a definable subassignment h with parameter

n ∈ N. Then the series
∑
n∈N ν(hn) is convergent in K̂v

0 (Motk,Q̄)Q and

ν(h) =
∑
n∈N

ν(hn).

(6) Let h and h′ be definable subassignments of hL(X). Assume h ⊂ h′. If ν(h′)
belongs to F eK̂v

0 (Motk,Q̄)Q, then ν(h) also belongs to F eK̂v
0 (Motk,Q̄)Q.

We call ν(h) the arithmetic motivic volume of h.

Proof. The proof is just the same as the proof of Definition-Proposition 3.2 in [12],
if one replaces Lemma 2.4 and Lemma 3.1 of loc. cit. by Lemma 5.8.1 and Lemma
6.1.2.

Let hn be a definable partition of a definable subassignment h with parameter
n ∈ Z. We say that L−nhn is integrable if the series∫

L−nhndν :=
∑
n∈Z

L−nν(hn)

converges in K̂v
0 (Motk,Q̄)Q. It follows from 6.1.3 (6) that if hn is a definable par-

tition of a formula h with parameter n ∈ N (or in N ∪ {∞} with the convention
L−∞ν(h∞) = 0), then L−nhn is integrable.

The following result is the analogue of Theorem 7.1 of [12] in the present context.

6.1.4. Theorem. Let X be a variety over k of dimension d. Let h be a definable
subassignment of hL(X). Then

lim
n→∞

χc(πn(h)) L−(n+1)d = ν(h)

in K̂v
0 (Motk,Q̄)Q.
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Proof. Again the proof is essentially the same as the proof of Theorem 7.1 in [12],
if one replaces Lemma 2.4 and Lemma 3.1 of loc. cit. by Lemma 5.8.1 and Lemma
6.1.2.

6.2. Change of variable formula. Let X be an algebraic variety over k of di-
mension d, and let I be a coherent sheaf of ideals on X . We denote by ordtI
the function ordtI : L(X) → N ∪ {∞} given by ϕ 7→ ming ordtg(ϕ), where the
minimum is taken over all g in the stalk Iπ0(ϕ) of I at π0(ϕ). Let Ω1

X be the sheaf
of differentials on X and let ΩdX be the d-th exterior power of Ω1

X . If X is smooth
and F is a coherent sheaf on X together with a natural morphism ι : F → ΩdX ,
we denote by I(F) the sheaf of ideals on X which is locally generated by func-
tions ι(ω)/dx with ω a local section of F and dx a local generator of ΩdX . For
n ∈ N ∪ {∞}, we shall denote by ordtF = n the definable subassignment

K 7−→
{
x ∈ X(K[[t]])

∣∣∣ ordtI(F) (x) = n
}
.

The subassignments ordtF = n, n ∈ N ∪ {∞}, form a definable partition of the
functor hL(X).

6.2.1. Theorem. Let X and Y be irreducible algebraic varieties over k of dimen-
sion m. Assume Y is smooth. Let p : Y → X be a proper birational morphism. Let
hn be a definable partition of a definable subassignment h of hL(X) with parameter
n ∈ N. Consider the definable subassignment kn of hL(Y ) defined by

kn :=
⋃

i+j=n

p−1(hi) ∩ (ordtp∗ΩdX = j).

The kn’s, n ∈ N ∪ {∞}, form a definable partition of p−1(h) and∫
L−nhndνX =

∫
L−nkndνY .

Furthermore, if h ∩ hL(p(E)) = ∅, with E the exceptional locus of p, and h and the
hn’s are weakly stable (hence stable by Remark 5.8.2), then p−1(h) and the kn’s are
stable and the above formula still holds when ν is replaced by ν̃.

Proof. The proof follows from Lemma 3.4 in [12] similarly as the proof of Lemma
3.3 in [12].

7. Rationality results

In this section we prove analogues of rationality results in [12].

7.1. We consider the ring K̂v
0 (Motk,Q̄)Q[[T ]] of power series in the variable T =

(T1, . . . , Tr) with coefficients in K̂v
0 (Motk,Q̄)Q. We denote by

K
v

0(Motk,Q̄)loc,Q[[T ]]rat

the subring of K̂v
0 (Motk,Q̄)Q[[T ]] generated by K

v

0(Motk,Q̄)loc,Q[T ], (Li−1)−1 and
(1− L−a T b)−1, with i ∈ N \ {0}, a ∈ N, and b ∈ Nr \ {0}.
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7.1.1. Theorem. Let X be an algebraic variety over k of dimension d. Let hn be
a definable subassignment of hL(X) depending on the parameter n ∈ Nr, and let
hn,i be a definable partition of the hn’s depending on the parameter (n, i) ∈ Nr×N.
Then the power series ∑

n∈Nr

∫
L−i hn,i dν T n(7.1.1)

in the variable T = (T1, . . . , Tr) belongs to K
v

0(Motk,Q̄)loc,Q[[T ]]rat.

7.1.2. Corollary. For every definable subassignment h of hL(X), the measure ν(h)
belongs to the subring K

v

0(Motk,Q̄)loc,Q[((Li − 1)−1)i≥1] of K̂v
0 (Motk,Q̄)Q.

7.2. Let us denote by Kv
0 (Motk,Q̄)loc,Q[[T ]]rat the subring of Kv

0 (Motk,Q̄)loc,Q[[T ]]
generated by Kv

0 (Motk,Q̄)loc,Q[T ] and the series (1 − L−aT b)−1, with a ∈ N and
b ∈ Nr \ {0}.

7.2.1. Theorem. Let X be an algebraic variety over k of dimension d. Let hn be
a definable subassignment of hL(X) depending on the parameter n ∈ Nr, and let
hn,i be a definable partition of the hn’s depending on the parameter (n, i) ∈ Nr×N.
Assume hn ∩hL(X0) = ∅, for every n ∈ Nr, with X0 the union of the singular locus
of X and its irreducible components of dimension < d and that the subassignments
hn and hn,i are all weakly stable (hence stable by Remark 5.8.2). Then the power
series ∑

n∈Nr

∫
L−i hn,i dν̃ T n(7.2.2)

in the variable T = (T1, . . . , Tr) belongs to Kv
0 (Motk,Q̄)loc,Q[[T ]]rat.

7.3. For the proof of Theorem 7.2.1 one needs the following technical lemma on
bounded representations.

We shall say that a definable subassignment h`, depending on parameters ` ∈ Nn,
of hL(X) has a bounded representation if there exists a covering of X by affine
Zariski open sets Xi embedded in Ami

k such that h` ∩ hL(Xi) is associated to a
special formula on k[[t]]mi which is obtained by repeated application of conjunction
and negation from formulas of the form (5.3.1), (5.3.2) and (5.3.3) with ordtfi
bounded on h` ∩ hL(Xi) for each fixed `. Here by “bounded” we mean there exists
a number κ depending on ` such that ordtfi ≤ κ, for every γ in h` ∩ hL(Xi)(L) and
every L in Fieldk.

Clearly, if the family h` has a bounded representation, then each h` is weakly
stable.

7.3.1. Lemma. Let X be a quasi-projective algebraic variety over k and let h`,
` ∈ Nn, be a definable subassignment of hL(X) depending on parameters ` ∈ Nn.
Assume that h` is weakly stable for each `. Then the family h` is a finite boolean
combination of definable subassignments of hL(X) depending on parameters which
have bounded representations.

Proof. The proof of Lemma 2.8 of [12] may be directly adapted to carry over to the
present situation.
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7.4. The proofs of Theorems 7.1.1 and 7.2.1 are quite similar to the ones of The-
orem 5.1 and Theorem 5.1′ in [12]. We give details which will be used in section
8.

Proof of Theorems 7.1.1 and 7.2.1. Let us first prove Theorem 7.2.1. By Theorem
6.2.1 one may use a resolution of singularities and assume that X is smooth. Also
we may assume X is affine. By Pas’s Theorem, Corollary 5.1.2, and Lemma 5.8.1,
there exists a Presburger function θ : Nr → N such that the series (7.2.2) is equal
to ∑

i≤θ(n),n∈Nr

ν̃(hn,i) L−i T n.(7.4.3)

By Lemma 7.3.1 one reduces as in [12] to the case where the family (hn,i)(n,i) has
bounded representation. Furthermore, one may assume X = Xi in the bounded
representation of the family (hn,i)(n,i) by special formulas obtained by repeated
application of conjunction and negation from formulas of the form (5.3.1), (5.3.2)
and (5.3.3). We denote by F the product of all the polynomials fi, assumed to
be nonzero, occurring in these formulas of the form (5.3.1), (5.3.2) and (5.3.3) and
we consider an embedded resolution of singularities γ : Y → X of the locus of
F = 0 in X , with exceptional locus contained in γ−1(F−1(0)). The variety Y
admits a covering by affine open subsets U on which there exist regular functions
z1, . . . , zd inducing an étale map U → Ad

k such that on U each fi ◦ γ is a monomial
in z1, . . . , zd multiplied by a regular function with no zeros on U . One may assume
furthermore that the variables zi appearing in at least one of these monomials are
exactly z1, z2, . . . , zd0 .

Now for w a definable subassignment of h(A1
k\{0})d0×U and `1, . . . , `d0 in N, we

denote by hw,`1,... ,`d0
the definable subassignment of hL(U) defined by

(7.4.4) K 7−→
{
x ∈ L(U)(K)

∣∣ ordtzi(x) = `i, 1 ≤ i ≤ d0,

and ((ac(zi(x))), π0(x)) ∈ w(K)
}
.

It now follows from Theorem 6.2.1 and the fact that ordtF is bounded on hn,i
that, uniformly in n, i, ν̃(hn,i) is a finite Z-linear combination of terms of the form∑

`1,... ,`d0∈N
θ(`1,... ,`d0 ,n,i)

L−β(`1,... ,`d0) ν̃(hw,`1,... ,`d0
),(7.4.5)

where θ(`1, . . . , `d0 , n, i) is a condition defining a Presburger subset of Zd0+r+1,
β is a linear form with coefficients in N, and w is a definable subassignment of
h(A1

k\{0})d0×U , for U as above. Since ordtF is bounded on hn,i, the sum in (7.4.5)
is finite.

Let us denote by w̄ the definable subassignment of h(A1
k\{0})d0×U defined as

w̄ = w ∩ hU ′ with U ′ the subvariety of (A1
k \ {0})d0 × U defined as the locus of

points (w1, . . . , wd0 , y) in (A1
k \ {0})d0 × U such that zi(y) = 0 when `i > 0 and

zi(y) = wi when `i = 0. But, by Lemma 4.1 of [12], with n = e = 0, we have

ν̃(hw,`1,... ,`d0
) = χc(w̄) L−(

∑d0
i=1 `i)−d,(7.4.6)
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hence we can rewrite, uniformly in n, i, ν̃(hn,i) as a finite Z-linear combination of
terms of the form

L−d
∑

`1,... ,`d0∈N
θ(`1,... ,`d0 ,n,i)

L−β(`1,... ,`d0) χc(w̄),(7.4.7)

with θ, β and w̄ as above.
As in [12], one may now conclude the proof by using Lemma 5.2 and Lemma 5.3

of [12].
The proof of Theorem 7.1.1 is similar except for the fact that we have to re-

place ν̃ by ν and the finite sums are replaced by infinite sums which converge in
K̂v

0 (Motk,Q̄)Q[[T ]]. In particular, ν(hn,i) is still a finite Z-linear combination of
terms of the form (7.4.7), but the number of terms in the series (7.4.7) may now
be infinite.

8. Arithmetic motivic integration specializes to p-adic integration

8.1. Again let U = SpecR denote an affine scheme of finite type over Z, which is
assumed to be integral and normal, with fraction field k of characteristic zero.

8.1.1. Lemma. The morphism

Ét` : Kv
0 (Motk,Q̄)loc,Q −→ K0(Gk, Q̄`)⊗Q

induced by étale `-adic realization factorizes through a morphism

Ét` : K
v

0(Motk,Q̄)loc,Q −→ K0(Gk, Q̄`)⊗Q.

In particular, for x in U , the morphism

Tr Frobx : Kv
0 (Motk,Q̄)loc,Q −→ Q̄`

factorizes through a morphism

Tr Frobx : K
v

0(Motk,Q̄)loc,Q −→ Q̄`.

Proof. For α in Kv
0 (Motk,Q̄)loc, denote by Pα,x(T ) the “characteristic polynomial”

det(1 − FrobxT ) of Frobx on Ét`(α) (since we are dealing with virtual represen-
tations, Pα,x(T ) is a rational function). Assume α is in

⋂
m F

mKv
0 (Motk,Q̄)loc for

every m in Z. By the part of the Weil conjectures proven by Deligne [6], we then
have Pα,x(T ) = 1 for x in a set of Dirichlet density 1. Since a virtual `-adic repre-
sentation of Gk is determined by the corresponding characteristic polynomials, we
deduce from Chebotarev’s Theorem that Ét`(α) = 1. The result follows.

We may extend the morphism

Tr Frobx : K
v

0(Motk,Q̄)loc,Q −→ Q̄`

to a morphism

Tr Frobx : K
v

0(Motk,Q̄)loc,Q[((Li − 1)−1)i≥1] −→ Q̄`,

by sending (Li − 1)−1 to (qix − 1)−1, with qx the cardinality of Fx.

8.1.2. Remark. Let α be in one of the rings Kv
0 (Motk,Q̄)loc,Q, K

v

0(Motk,Q̄)loc,Q, or
K
v

0(Motk,Q̄)loc,Q[((Li−1)−1)i≥1]. For x in a dense open subset of U , Tr Frobx(α) is
in fact a rational number, since it is a Q-linear combination of numbers of rational
points of varieties over the residual field Fx. In particular, it follows from Corollary
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7.1.2 that, for every definable subassignment h of hL(X), Tr Frobx(ν(h)) is a rational
number for x in a dense open subset of U .

Similarly, the morphism Tr Frobx may be naturally extended to a morphism

Tr Frobx : K
v

0(MotQ,Q̄)loc,Q[[T ]]rat −→ Q̄`(T ).

8.2. Let K be the field of fractions of a complete discrete valuation ring OK with
finite residue field FK . We set q = card FK and we fix a uniformizing parameter π.
We normalize the valuation ord on K by ord(π) = 1, and we define, for x 6= 0 in K,
acx = π−ord(x)x mod π and |x| = q−ord(x), and ac 0 = |0| = 0. We obtain in this
way a structure for the language LPas. By a definable subset of OnK = An(OK),
we shall mean a subset defined by an LPas-formula with coefficients in K in the
valued field sort and coefficients in FK in the residue field sort, n free variables
running over K and no other free variables. More generally, for X an algebraic
variety over OK , one defines definable subsets of X (OK) by taking covers by affine
open subvarieties. Similarly, one defines definable subsets of X (OK) depending on
parameters in Zr, Nr, or N ∪ {∞}.

Let d be the Krull dimension of X⊗K. There is a natural d-dimensional measure
on X (OK) (cf. [30], [25]), which we shall denote by νK , for which all definable
subsets of X (OK) are measurable, when K is of characteristic zero (cf. [8], [9],
[31]). This measure is defined by requiring that the fibers of the reduction map
modulo π have measure q−d.

8.3. We assume now k is a finite extension of Q with ring of integers O and
R = O[ 1

N ], for some nonzero integer N which is a multiple of the discriminant of k.
For x a closed point of SpecR, we denote by OKx the completion of the localization
of R at x, by Kx its field of fractions and by Fx the residue field at x.

Let ϕ be a formula over R[[t]]m. We denote by Z(ϕ,OKx) the subset of OmKx
defined by the formula ϕ. By Proposition 5.2.1, if ϕ′ is another formula over R[[t]]m

defining the same definable subassignment of hL(Am
R ) as ϕ, we have

Z(ϕ,OKx) = Z(ϕ′,OKx)

for almost all x. Now let X be a variety over R and let h be a definable subassign-
ment of hL(X ). Take a covering of X by affine open subvarieties Ui together with
formulas ϕi defining h on Ui. By the preceding observation, for almost all closed
points x of SpecR, the subsets Z(ϕi,OKx) of Ui(OKx) may be glued together to
define a subset of X (OKx), which we will denote by h[OKx ]. This subset h[OKx ]
depends on choices, but two different choices yield the same h[OKx ] for almost all
x.

As the following result shows, p-adic integration may be viewed as a specializa-
tion of arithmetic motivic integration.

8.3.1. Theorem. Let k be a finite extension of Q with ring of integers O and
R = O[ 1

N ], for some nonzero integer N . Let X be a variety over R and let h be a
definable subassignment of hL(X ). Then there exists a nonzero multiple N ′ of N ,
such that, for every closed point x of SpecO[ 1

N ′ ],

Tr Frobx
(
ν(h⊗ k)

)
= νKx

(
h[OKx ]

)
.

More generally, if hn is a definable subassignment of hL(X ) depending on the pa-
rameter n ∈ Nr, and if hn,i is a definable partition of the hn’s depending on the
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parameter (n, i) ∈ Nr ×N, there exists a nonzero multiple N ′ of N , such that, for
every closed point x of SpecO[ 1

N ′ ], the series
∑

i∈N q−ix νKx(hn,i[OKx ]) converges
in R to a rational number, for every n in Nr, and the following equality of power
series holds in Q(T ):

Tr Frobx
( ∑
n∈Nr

∫
L−i(hn,i ⊗ k)dν T n

)
=
∑
n∈Nr

∑
i∈N

q−ix νKx

(
hn,i[OKx ]

)
T n.

(8.3.1)

Proof. We shall prove directly the more general second statement. The proof will
proceed by comparison with the proof of Theorems 7.1.1 and 7.2.1. We shall make
no notational difference here between h and h⊗k and between hn,i and hn,i⊗k. We
set X = X ⊗ k. In loc. cit. we first used a resolution of singularities of X to reduce
to the smooth case, and then considered an embedded resolution of a divisor F = 0
on some affine open subsets of X . By Theorem 2.4 of [10], there exists a nonzero
multiple N ′ of N such that these resolutions extend over SpecO[ 1

N ′ ] to resolutions
with good reduction mod Px, for every closed point x in SpecO[ 1

N ′ ], in the sense
of [10]. Here Px denotes the maximal ideal at x. Now, by the local calculations
of p-adic integrals on resolutions with good reduction in [10], we deduce that, for
every closed point x in SpecO[ 1

N ′ ], νKx(hn,i[OKx ]) is a finite Z-linear combination
of terms of the form

q−dx
∑

`1,... ,`d0∈N
θ(`1,... ,`d0 ,n,i)

q
−β(`1,... ,`d0)
x card w̄(Fx),(8.3.2)

where θ, β and w̄ are the same as in (7.4.7), and furthermore the coefficients of
the terms (8.3.2) in νKx(hn,i[OKx ]) are the same as the coefficients of the terms
(7.4.7) in ν(hn,i). Indeed, we may assume X is affine and, by Proposition 5.2.1,
we may also assume, maybe after replacing N by some nonzero multiple, that the
subassignments hn,i are defined by repeated application of conjunction and negation
from formulas of the form

ordf1(x1, . . . , xm) ≥ ordf2(x1, . . . , xm) + L(n, i),(8.3.3)

ordf1(x1, . . . , xm) ≡ L(n, i) mod b(8.3.4)

and

ϑ(ac(f1(x1, . . . , xm)), . . . , ac(fm′(x1, . . . , xm))),(8.3.5)

where fi are regular functions, L is a polynomial with coefficients in Z and degree
≤ 1, b is in Z, and ϑ is an Lk-formula in m′ free variables. Furthermore we may
assume there exist regular functions z1, . . . , zd onX inducing an étale map X → Ad

k

such that on X each fi is a monomial in z1, . . . , zd multiplied by a regular function
with no zeros on X , and that the variables zi appearing in at least one of these
monomials are exactly z1, z2, . . . , zd0 .

With the notations from 7.4, we deduce from the local calculations in 7.4.7 that
ν(hn,i) is a Z-linear combination of terms of the form

L−d
∑

`1,... ,`d0∈N
θ(`1,... ,`d0 ,n,i)

L−β(`1,... ,`d0) χc(w̄),(8.3.6)
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with θ(`1, . . . , `d0 , n, i) a condition defining a Presburger subset of Zd0+r+1, β a lin-
ear form with coefficients in N, and w̄ a definable subassignment of h(A1

k\{0})d0×X .
Here θ and β depend only on the monomials appearing in the functions fi, the
coefficients of the polynomials L and the integers b, and w̄ depends furthermore on
ϑ. In the good reduction case, local calculation of p-adic integrals as performed in
[10] just provides the same expression for νKx(hn,i[OKx ]) as a Z-linear combination
of terms of the form

q−d
∑

`1,... ,`d0∈N
θ(`1,... ,`d0 ,n,i)

q−β(`1,... ,`d0) card w̄(Fx),

with the same coefficients in Z as for ν(hn,i), and for each term the same functions
θ and β and the same definable subassignment w̄ as in (8.3.6). The result now
follows, since, by Proposition 4.3.1,

Tr Frobx(χc(w̄)) = card w̄(Fx),

for every closed point x in SpecO[ 1
N ′′ ], for a suitable nonzero multiple N ′′ of N ′.

The following variant of Theorem 8.3.1 is proved in the same way.

8.3.2. Theorem. Let k be a field of characteristic zero which is the field of frac-
tions of a normal domain R of finite type over Z. Let X be a variety over R and
let h be a definable subassignment of hL(X ). Then there exists a nonzero element
f of R, such that, for every closed point x of SpecRf , h(Fx) is νFx[[t]]-measurable
and

Tr Frobx
(
ν(h⊗ k)

)
= νFx[[t]]

(
h(Fx)

)
.

More generally, if hn is a definable subassignment of hL(X ) depending on the pa-
rameter n ∈ Nr, and if hn,i is a definable partition of the hn’s depending on the
parameter (n, i) ∈ Nr ×N, then there exists a nonzero element f of R, such that,
for every closed point x of SpecRf , all the sets hn,i(Fx) are νFx[[t]]-measurable, the
series

∑
i∈N q−ix νFx[[t]](hn,i(Fx)) converges in R to a rational number, for every n

in Nr, and the following equality of power series holds in Q(T ):

Tr Frobx
( ∑
n∈Nr

∫
L−i(hn,i ⊗ k)dν T n

)
=
∑
n∈Nr

∑
i∈N

q−ix νFx[[t]]

(
hn,i(Fx)

)
T n.

(8.3.7)

8.4. Again, let k be a finite extension of Q with ring of integers O. Consider a
polynomial f(x) ∈ k[x1, . . . , xm] and let ϕ be an LPas-formula with coefficients in
k in the valued field sort and in the residue field sort, free variables x1, . . . , xm
running over the valued field sort and no other free variables. Let x be a closed
point of SpecO not dividing the discriminant of k and set

Wx := {y ∈ OmKx |ϕ(y) holds inKx}.
We consider the p-adic integral

Iϕ,f (s, x) :=
∫
Wx

|f(y)|sx|dy|x,

where | |x and |dy|x denote the p-adic norm on Kx and volume form on Km
x , respec-

tively. By a result of Denef [7], Iϕ,f (s, x) is a rational function of q−sx . Macintyre
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[24], Pas [26] and Denef [10] proved that the degrees of the numerator and denom-
inator of this rational function are bounded independently of x.

8.5. We will now show that a much stronger uniformity statement holds: the
integrals Iϕ,f (s, x) may be interpolated in a canonical way by a “motivic rational
function”.

Let k be a field of characteristic zero. Let f(x) be a polynomial in k[x1, . . . , xm],
or more generally a definable function in the valued field variables and with values in
the valued field with coefficients in k (in the valued field sort and in the residue field
sort) in the language LPas, and let ϕ be an LPas-formula with coefficients in k in the
valued field sort and in the residue field sort, free variables x1, . . . , xm running over
valued field variables and no other free variables. Consider, for n ∈ N ∪ {∞}, the
definable subassignment hϕ,n of hL(Am

k ) associated to the formula ϕ ∧ ordf = n.
The hϕ,n’s form a definable partition of the definable subassignment of hL(Am

k )

defined by ϕ. Now set

Iϕ,f,mot(T ) :=
∑
n∈N

ν(hϕ,n)T n.

8.5.1. Theorem. Let k be a finite extension of Q with ring of integers O. Let
f(x) be a polynomial in k[x1, . . . , xm], or more generally a definable function in
the valued field variables and with values in the valued field with coefficients in k
(in the valued field sort and in the residue field sort) in the language LPas, and let ϕ
be an LPas-formula with coefficients in k in the valued field sort and in the residue
field sort, free variables x1, . . . , xm running over valued field variables and no other
free variables. Then the series Iϕ,f,mot(T ) is canonically associated to ϕ and f , it is
a rational function belonging to K

v

0(Motk,Q̄)loc,Q[[T ]]rat, and, for almost all closed
points x in SpecO, the equality

Tr Frobx(Iϕ,f,mot(T )) = Iϕ,f (s, x)

holds after setting T = q−sx . Furthermore, if ϕ′ is another LPas-formula with co-
efficients in k in the valued field sort and in the residue field sort, free variables
x1, . . . , xm running over valued field variables and no other free variables, then

(1) Iϕ∨ϕ′,f,mot(T ) = Iϕ,f,mot(T ) + Iϕ′,f,mot(T )− Iϕ∧ϕ′,f,mot(T ).
(2) If ϕ ≈ ϕ′, Iϕ,f,mot(T ) = Iϕ′,f,mot(T ).

Proof. The rationality of Iϕ,f,mot(T ) follows from Theorem 7.1.1 and the fact that it
satisfies the required specialization property follows from Theorem 8.3.1. Assertions
(1) and (2) just follow from 6.1.3 (2) and (3).

9. Arithmetic Poincaré series versus geometric Poincaré series

9.1. The geometric Poincaré series Pgeom. Let k be a field of characteristic 0
and let X be a variety over k. Let us remind the reader that we denote by πn the
morphism of truncation of arcs,

πn : L(X) −→ Ln(X).

In the paper [12], we considered the Poincaré series

Pgeom,X(T ) :=
∑
n∈N

[πn(L(X))]T n,
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and, more generally, for W closed in X , the series

Pgeom,X,W (T ) :=
∑
n∈N

[πn(L(X) ∩ π−1
0 (W ))]T n.

One of our main results was the following rationality statement:

9.1.1. Theorem. The series Pgeom,X,W (T ), considered as a power series over
K0(Schk)loc, belongs to the subring of K0(Schk)loc[[T ]] generated by K0(Schk)loc[T ]
and the series (1− La T b)−1 with a ∈ Z and b in N \ {0}.
9.2. The arithmetic Poincaré series Par. Let X be a variety defined over a
field k of characteristic 0. Let W be a closed subvariety of X defined over k. Now
we set

Par,X,W (T ) :=
∑
n∈N

χc(πn(hL(X) ∩ π−1
0 (hW )))T n

in Kv
0 (Motk,Q̄)Q[[T ]].

9.2.1. Theorem. Let h be a definable subassignment of hL(X). Then the series∑
n∈N

χc(πn(h))T n

belongs to Kv
0 (Motk,Q̄)loc,Q[[T ]]rat. In particular, the series Par,X,W (T ) belongs to

Kv
0 (Motk,Q̄)loc,Q[[T ]]rat.

Proof. One reduces to the case where X is a closed subvariety of Am
k . Then the

result follows from Theorem 7.2.1, since

χc(πn,X(h)) L−(n+1)m = ν̃L(Am
k )(π−1

n,Am
k

(πn,X(h)))

and the subassignments π−1
n,Am

k
(πn,X(h)) are stable definable subassignments of

hL(Am
k ) depending on the parameter n ∈ N. Here πn,X and πn,Am

k
denote the

truncation morphisms associated to X and Am
k , respectively.

Now assume k is a finite extension of Q with ring of integers O. Let R = O[ 1
N ]

with N a nonzero integer. Let X be a variety over R and let W be a subvariety.
We set X := X ⊗ k and W :=W ⊗ k and denote by d the dimension of X . For x a
closed point of SpecR, and n ∈ N, we consider the canonical morphisms

πn : X (OKx) −→ X (OKx/πn+1
x OKx),

where πx is a uniformizing parameter of OKx , and we denote by Nn,x(X ,W) the
cardinality of the finite set πn(X (OKx) ∩ π−1

0 (W(Fx))). By [7] the Poincaré series

Px,X ,W(T ) :=
∑
n∈N

Nn,x(X ,W)T n

is the expansion of a rational function in Q(T ).

9.2.2. Theorem. Let k be a finite extension of Q with ring of integers O and
R = O[ 1

N ], for some nonzero integer N . Let X be a variety over R and let W be
a subvariety. Then there exists a nonzero multiple N ′ of N , such that, for every
closed point x of SpecO[ 1

N ′ ],

Tr Frobx
(
Par,X,W (T )

)
= Px,X ,W(T )

in Q(T ).
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Proof. We may assume X is a closed subvariety of Am
R defined by fi = 0, 1 ≤ i ≤ r,

and that W is defined by gi = 0, 1 ≤ i ≤ s, hi 6= 0, 1 ≤ i ≤ t, with fi, gi, hi in
R[x1, . . . , xm]. We may also assume that N is a multiple of the discriminant of k.

Consider the following formula ϕ in LPas in the m + 1 free variables x =
(x1, . . . , xm) and w over the valued field sort:∧

i

(ord(gi(x)) > 0) ∧
∧
i

(ord(hi(x)) = 0)

∧ ∃(y1, . . . , ym)
(∧
i

(ord(xi − yi) ≥ ord(w)) ∧
∧
i

(fi(y) = 0)
)
.

For every closed point x in SpecR, the equality

Px,X ,W(q−m−1
x q−sx ) =

qx
qx − 1

Iϕ,w(s, x)

holds, as a direct calculation shows (cf. Lemma 3.1 of [7]). Similarly, the equality

Par,X,W (L−m−1 T ) =
L

L− 1
Iϕ,w,mot(T )

follows from the very definitions, hence the result is a direct consequence of Theorem
8.5.1.

10. An example: Branches of plane curves

10.1. Let k be a field of characteristic zero. Consider a formal branch of a plane
curve

X :

{
x = wm,

y =
∑

j≥m ajw
j ,

with coefficients aj in k. We can assume that gcd{j|aj 6= 0} = 1. We define
e0 = m, β1 = inf{j|aj 6= 0 and e0 - j}, e1 = (e0, β1), and, by induction, βi =
inf{j|aj 6= 0 and ei−1 - j}, ei = (ei−1, βi). The sequence of the integers ei being
strictly decreasing, for some smallest integer g, eg = 1. We also define ni, for
1 ≤ i ≤ g, by ei−1 = niei, and set Ni :=

∏
1≤j≤i nj. We set β0 = m, βg+1 = {∞}

and N0 = 1.
For any integer r ≥ 1, we denote by µ(r) the group of r-th roots of unity in C.

The following well-known lemma is stated for convenience.

10.1.1. Lemma. Let ζ be an m-th root of unity. Then ordw(y(w) − y(ζw)) = βi
if and only if ζ ∈ µ(ei−1) \ µ(ei), for i ≥ 1.

10.2. The definition of L(X), Ln(X) and πn is extended in a straightforward way
to formal varieties to set Xn := πn(Ln(X)∩π−1

0 (0)). We define the Poincaré series

Pgeom,X,0(T ) :=
∑
n≥0

[Xn]T n.

When X is an analytically irreducible algebraic curve this definition coincides with
the one given in 9.1.

To define Par in this situation we consider the formula ϕn in the free variables
x1, . . . , xn and y1, . . . , yn

∃w
(

ordt(x− wm) > n ∧ ordt(y −
∑

m≤j≤n
ajw

j) > n
)
,
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with x =
∑

1≤i≤n xit
i, y =

∑
1≤i≤n yit

i and w =
∑

1≤i≤n wit
i, and set

Par,X,0(T ) =
∑
n≥0

χc(ϕn)T n.

When X is an analytically irreducible algebraic curve this definition coincides with
the one given in 9.2.

10.2.1. Proposition. Let k be a field of characteristic zero. Consider a formal
branch of a plane curve

X :

{
x = wm,

y =
∑
j≥m ajw

j ,

with coefficients aj in k. Assume k contains all m-th roots of unity. Then

Pgeom,X,0(T ) =
1

1− T +
L− 1

1− LT
Tm

1− Tm
and

Par,X,0(T ) =
1

1− T +
L− 1

1− LT

[ 1
m

Tm

1− Tm +
∑

1≤i≤g

Ni −Ni−1

m

Lβi−mT βi

1− Lβi−mT βi

]
.

In particular, the poles of the rational function Par,X,0(T ) of the form T = Lα, α
in Q \ {0,−1}, are exactly T = L

m
βi
−1, 1 ≤ i ≤ g.

Proof. For every integer ` such that 0 < ` ≤ n
m , we set Xn,` = Xn ∩ {(x, y)|ordtx =

`m}, with x =
∑

1≤i≤n xit
i and y =

∑
1≤i≤n yit

i. Similarly, we consider the formula
ϕn,` = ϕn ∧ (ordtx = `m). So we have [Xn] = 1 +

∑
0<`≤ n

m
[Xn,`] and χc(ϕn) =

1 +
∑

0<`≤ n
m
χc(ϕn,`), and the result follows directly from the next lemma.

10.2.2. Lemma. Fix an integer ` ≤ n
m . Let i be the unique integer 0 ≤ i ≤ g such

that n
βi+1

< ` ≤ n
βi

. Then

[Xn,`] = (L− 1) Ln−`m and χc(ϕn,`) =
Ni
m

(L− 1) Ln−`m.

Proof. We consider the variety W = Gm,k × An−`m
k with coordinate w` on the

first factor and (w`+1, . . . , wn−`m+`) on the second factor. There is a morphism
h : W → An

k × An
k sending a point (w`, . . . , wn−`m+`) to the first n coefficients

of the series wm and
∑

j`≤n ajw
j . Let Z be the image of W by h. It is a locally

closed subvariety of An
k ×An

k . It follows from Lemma 10.1.1 that h : W → Z is a
Galois cover with group G = µ(ei) acting by multiplication on W . By construction,
χc(ϕn,`) is equal to χc(W, δ), with δ the central function on G which takes value
1 at the identity and zero elsewhere. But now remark that χc(W,α) = 0 for α
a nontrivial irreducible character of G and that χc(W,α) = (L − 1) Ln−`m when
α is the trivial character (cf. Lemma 1.4.3 of [11]). The second equality follows,
since, when δ is expressed as a Q-linear combination of irreducible characters, the
coefficient of the trivial character is e−1

i = Ni
m . For the first equality it is enough to

remark that Z = Xn,` and that [W/µ(ei)] = (L− 1) Ln−`m.

10.2.3. Remark. The calculation of the p-adic Poincaré series for branches of plane
curves was carried out in [3].
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3. D. Bollaerts, On the Poincaré series associated to the p-adic points on a curve, Acta Arith.,

51 (1988), 9–30. MR 89i:11130
4. Z. Chatzidakis, L. van den Dries, A. Macintyre, Definable sets over finite fields, J. Reine

Angew. Math., 427 (1992), 107–135. MR 94c:03049
5. R. Cluckers, D. Haskell, The Grothendieck ring of the p-adic numbers, preprint (5 pages).

6. P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 273–307.
MR 49:5013
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1983–84, 25–47, Progr. Math., 59, Birkhäuser Boston, Boston, Mass., 1985. MR 88j:11031

10. J. Denef, On the degree of Igusa’s local zeta function, Amer. J. Math., 109 (1987), 991–1008.
MR 89d:11108

11. J. Denef, F. Loeser, Motivic Igusa zeta functions, J. Algebraic Geom., 7 (1998), 505–537.
MR 99j:14021

12. J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration,
Invent. Math., 135 (1999), 201–232. MR 99k:14002

13. J. Denef, F. Loeser, Motivic exponential integrals and a motivic Thom-Sebastiani Theorem,
Duke Math. J., 99 (1999), 285–309. MR 2000k:14006

14. J. Denef, F. Loeser, Motivic integration, quotient singularities and the McKay correspondence,
preprint February 1999.

15. H. Enderton, A mathematical introduction to logic, Academic Press (1972), New York-London.
MR 49:2239

16. M. Fried, D. Haran, M. Jarden, Galois stratifications over Frobenius fields, Adv. in Math.,
51 (1984), 1–35. MR 86c:12007

17. M. Fried, D. Haran, M. Jarden, Effective counting of the points of definable sets over finite

fields, Israel J. Math., 85 (1994), 103–133. MR 95k:12016
18. M. Fried, M. Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3.

Folge Band 11 (1986), Springer-Verlag, Berlin, Heidelberg. MR 89b:12010
19. M. Fried, G. Sacerdote, Solving diophantine problems over all residue class fields of a number

field and all finite fields, Ann. of Math., 100 (1976), 203–233. MR 58:10722
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