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AN EULERIAN-LAGRANGIAN APPROACH
FOR INCOMPRESSIBLE FLUIDS: LOCAL THEORY

PETER CONSTANTIN

1. Introduction

The three dimensional Euler equations are evolution equations for the three
velocity components u(x, t),

∂u

∂t
+ u · ∇u +∇p = 0,(1)

coupled with a fourth equation, ∇ · u = 0, expressing incompressibility. In this
Eulerian formulation the velocity u and pressure p are recorded at fixed locations
x ∈ R3. The velocities and pressure vanish at infinity or are periodic. The pressure
is determined using incompressibility. The equation is conservative and the total
kinetic energy,

∫
|u|2dx, is a constant of motion.

The Euler equations can be studied in terms of the vorticity ([1]). The vorticity is
a vector ω = ∇×u corresponding to the anti-symmetric part of the gradient matrix
∇u. It obeys a quadratic equation, whose nature is such that the magnitude of the
vorticity may increase in time. If the amplification is not rapid enough, then a
well-known criterion ([2]) guarantees that no blow up can occur: if∫ T

0

sup
x
|ω(x, t)|dt <∞

and the initial data are smooth, then the solution is smooth on the time interval
[0, T ]. The vorticity equation can be interpreted as the vanishing of a commutator

[Dt,Ω] = 0(2)

where

Dt =
∂

∂t
+ u · ∇

is the material derivative and

Ω = ω · ∇.
The characteristics of the first order differential operator Ω are vortex lines; the
characteristics of the material derivative Dt are Lagrangian particle paths. The
Lagrangian variables are the path maps a 7→ X(a, t). The connection between the
Lagrangian description and the Eulerian one is given by the relations

u(x, t) =
∂X(a, t)

∂t
, x = X(a, t).
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In this paper we discuss a description of the Euler equations as a system of three
coupled active vector equations. The description concerns Lagrangian quantities
computed in Eulerian variables and thus combines the physical significance of
the Lagrangian description with the analytical advantages of the Eulerian descrip-
tion. The description bears similarities to the Clebsch variable representation. The
Clebsch variables are a pair of scalars, θ, ϕ, that are constant on particle paths and
can be used to reconstruct the velocity via

ui(x, t) = θ(x, t)
∂ϕ(x, t)
∂xi

− ∂n(x, t)
∂xi

.

This interesting representation is somewhat restrictive: not all solutions can be
represented in this manner. That is because the Clebsch variables impose special
constraints on helicity. Helicity is the scalar product of velocity and vorticity h =
u · ω. Although h itself is not conserved on particle paths, the integrals∫

T

h(x, t)dx = c

are constants of motion, for any vortex tube T . A vortex tube T is a time evolving
region in space (not necessarily simply connected) whose boundary is at each point
parallel to the vorticity, ω · ν = 0 where ν is the normal to ∂T at x ∈ ∂T . The
constants c reflect the degree of topological complexity of the flow ([3]) and in
general are nontrivial but they vanish identically for flows that admit a Clebsch
variables representation. Indeed, for such flows the helicity is the divergence of
a field that is parallel to the vorticity h = −∇ · (nω). Topological properties
of streamlines and vortex tubes are relevant to hydrodynamic stability ([4]) and
turbulence ([5], [6]). The description of the flow that allows for arbitrary vortex
structures is based on formula (15) ([7], [8], [9], [10]) that was used for numerical
computations. Somewhat related Hamiltonian formulations have been introduced
by several authors ([11], [12], [13], [14]).

2. Eulerian-Lagrangian description

The Lagrangian formulation of the Euler equations describes the flow in terms of
a volume preserving diffeomorphism, the map a 7→ X(a, t). The curve t 7→ X(a, t)
is the Lagrangian path at label a and obeys Newton’s law

∂2X(a, t)
∂t2

= FX(a, t).(3)

The incompressibility condition for the map is

det (∇aX) = 1.(4)

The initial condition sets the labels at the initial time:

X(a, 0) = a.

The forces FX in (3) are

FX(a, t) = −(∇xp)(X(a, t)) = −
[
(∇aX(a, t))∗

]−1 (∇ap̃)(a, t)(5)

with p̃(a, t) = p(X(a, t)) and where p is the Eulerian pressure. The notation M∗

means the transpose of the matrix M , (M∗)−1 its inverse. Multiplying (3) by
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(∇aX)∗ we obtain

∂2X(a, t)
∂t2

(∇aX(a, t))∗ = −(∇ap̃)(a, t)(6)

or, on components

∂2Xj(a, t)
∂t2

∂Xj(a, t)
∂ai

= −∂p̃(a, t)
∂ai

.(7)

Pulling out a time derivative in the left-hand side we obtain

∂

∂t

[
∂Xj(a, t)

∂t

∂Xj(a, t)
∂ai

]
= −∂q̃(a, t)

∂ai
(8)

where

q̃(a, t) = p̃(a, t)− 1
2

∣∣∣∣∂X(a, t)
∂t

∣∣∣∣2 .(9)

We integrate (8) in time, fixing the label a:

∂Xj(a, t)
∂t

∂Xj(a, t)
∂ai

= ui(0)(a)− ∂ñ(a, t)
∂ai

(10)

where

ñ(a, t) =
∫ t

0

q̃(a, s)ds(11)

and

u(0)(a) =
∂X(a, 0)

∂t
(12)

is the initial velocity. Note that ñ has dimensions of circulation or of kinematic
viscosity (length squared per time). The conservation of circulation∮

γ

∂X(γ, t)
∂t

· dγ =
∮
γ

∂X(γ, 0)
∂t

· dγ

follows directly from the form (10). Let us consider

A(x, t) = X−1(x, t),(13)

the “back-to-labels” map, and note that it forms a vector of active scalars (an active
vector)

DtA =
∂A

∂t
+ u · ∇A = 0.(14)

Turning to (10), multiplying by
[
(∇aX(a, t))∗

]−1 and reading at a = A(x, t) we
obtain the formula

ui(x, t) =
(
uj(0)(A(x, t))

) ∂Aj(x, t)
∂xi

− ∂n(x, t)
∂xi

(15)

where

n(x, t) = ñ(A(x, t)).(16)
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Equation (15) shows that the general Eulerian velocity can be written in a form
that generalizes the Clebsch variable representation:

u = (∇A)∗B −∇n(17)

where B = u(0)(A(x, t)) is also an active vector,

DtB = 0.(18)

Conversely, and somewhat more generally, if one is given a pair of active vectorsA =
(A1(x, t), · · · , AM (x, t)) and B = (B1(x, t), · · · , BM (x, t)) of arbitrary dimension
M , such that the active vector equations (14) and (18) hold, and if u is given by

u(x, t) =
M∑
k=1

Bk(x, t)∇xAk(x, t)−∇xn(19)

with some function n, then it follows that u solves the Euler equations
∂u

∂t
+ u · ∇u+∇π = 0

where

π = Dtn+
1
2
|u|2.

Indeed, the only thing one needs is the kinematic commutation relation

Dt∇xf = ∇xDtf − (∇xu)∗∇xf(20)

that holds for any scalar function f . The kinematic commutation relation (20) is a
consequence of the chain rule, so it requires no assumption other than smoothness.
Differentiating (19) and using the active vector equations (14), (18) it follows that

Dt(u) = −
M∑
k=1

((∇xu)∗∇xAk)Bk −∇x(Dtn) + (∇xu)∗∇n

= −∇x(Dtn)− (∇xu)∗
[
M∑
k=1

(∇xAk)Bk −∇xn
]

= −∇x(Dtn)− (∇xu)∗u = −∇x(π).

3. The active vector formulation

The previous calculations can be summarized as follows: A function u(x, t) solves
the incompressible Euler equations if and only if it can be represented in the form
u = uA with

uiA(x, t) = φm (A(x, t))
∂Am(x, t)

∂xi
− ∂nA(x, t)

∂xi
(21)

and

∇ · uA = 0(22)

where A(x, t) solves the active vector equation

(∂t + uA · ∇)A = 0,(23)

with initial data

A(x, 0) = x.
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The function φ represents the initial velocity and the function nA(x, t) is determined
up to additive constants by the requirement of incompressibility, ∇ · uA = 0:

∆nA(x, t) =
∂

∂xi

{
φm(A(x, t))

∂Am(x, t)
∂xi

}
.

The periodic boundary conditions are

A(x+ Lej , t) = A(x, t) + Lej, nA(x+ Lej, t) = nA(x, t)(24)

with ej the standard basis in R3. In this case

δA(x, t) = x−A(x, t),(25)

nA(x, t), and uA(x, t) are periodic functions in each spatial direction. One may
consider also the case of decay at infinity, requiring that δA, uA, and nA vanish
sufficiently fast at infinity. The equation of state (21), (22) can be written as

uA = P {φm (A(·, t))∇Am(·, t)} = P
{

(∇A)∗ φ(A)
}

(26)

where

P = 1−∇∆−1∇ ·(27)

is the Leray-Hodge projector (with appropriate boundary conditions) on divergence
free functions.

The Eulerian pressure is determined, up to additive constants, by

p(x, t) =
∂nA(x, t)

∂t
+ uA(x, t) · ∇nA(x, t) +

1
2
|uA(x, t)|2.

The Jacobian obeys

det (∇A(x, t)) = 1.

The vorticity

ωA(x, t) = ∇× uA

satisfies the Helmholtz equation

DA
t ωA = ωA · ∇uA(28)

and is given by the Cauchy formula

ωA(x, t) = [∇A(x, t)]−1 ζ(A(x, t))(29)

where ζ = ∇× φ is the initial vorticity.
The advantage of an active vector formulation is that A has conserved distribu-

tion, that is, for any function Φ∫
Φ(A(x, t))dx = const;

in particular ‖A(·, t)‖L∞loc(dx) is constant in time.
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4. Local existence

The proof of local existence of solutions to the Euler equations in the active
vector formulation is relatively simple and the result can be stated economically.
There exist of course other well-known proofs of local existence results in Lagrangian
([15]) and Eulerian ([16]) coordinates.

Theorem 1. Let φ be a divergence free C1,µ periodic vector-valued function of three
variables. There exist a time interval [0, T ] and a unique C([0, T ];C1,µ) spatially
periodic vector-valued function δ(x, t) such that

A(x, t) = x+ δ(x, t)

solves the active vector formulation of the Euler equations,
∂A

∂t
+ u · ∇A = 0,

u = P {(∇A(x, t))∗φ(A(x, t))}
with initial datum A(x, 0) = x.

The same result holds if one replaces periodic boundary conditions with decay
at infinity. Differentiating the active vector equation (23) we obtain the equation
obeyed by the gradients

DA
t

(
∂Am

∂xi

)
+
∂ujA
∂xi

∂Am

∂xj
= 0.(30)

It is useful to denote by

Pjl = δjl − ∂j∆−1∂l(31)

the matrix elements of the Leray-Hodge operator. Differentiating in the represen-
tation (26) and using the fundamental property

Pjl
∂f

∂xl
= 0

we obtain
∂ujA
∂xi

= Pjl

(
Det

[
ζ(A);

∂A

∂xi
;
∂A

∂xl

])
.(32)

Recall that the function ζ is the curl of φ. This relation shows that the gradient
of velocity can be expressed without use of second order derivatives of A and is
the key to local existence: the equation (30) can be seen as a cubic quasi-local
equation on characteristics. Let us make these ideas more precise. We will consider
the periodic case first. We write Cj,µ, j = 0, 1, to denote the Hölder spaces of
real-valued functions that are defined for all x ∈ R3 and are periodic with period
L in each direction. We denote by ‖f‖0,µ the C0,µ norm:

‖f‖0,µ = sup
x
|f(x)| + sup

x 6=y

{
|f(x)− f(y)|

(
L

|x− y|

)µ}
(33)

and by ‖f‖1,µ the C1,µ norm:

‖f‖1,µ = ‖f‖0,µ + L‖∇f‖0,µ(34)

where the notation | · · · | refers to modulus, Euclidean norm, and Euclidean norm
for matrices, as appropriate.
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We break the solution of the problem into two parts, the map δ → u and the
map u→ δ. We denote the first one W :

W [δ, φ](x, t) = P {(I +∇δ(x, t))∗φ(x + δ(x, t))} .(35)

This map is linear in φ but nonlinear in δ.

Proposition 1. The map W [δ, φ] maps

W : (C1,µ)3 × (C1,µ)3 → (C1,µ)3

continuously. There exist constants C depending on µ alone so that

‖W [δ, φ]‖0,µ ≤ C‖φ‖0,µ {1 + ‖∇δ‖0,µ}2

and

‖∇W [δ, φ]‖0,µ ≤ C‖∇× φ‖0,µ {1 + ‖∇δ‖0,µ}3

hold for any δ ∈
(
C1,µ

)3, φ ∈
(
C1,µ

)3.

For the proof we note that W is made up from a number of operations. The first
operation is the composition φ(x) 7→ φ(x+ δ(x)). For a fixed δ ∈ (C1,µ)3 the map
x 7→ x+δ is Lipschitz. Composition with a Lipschitz change of variables maps C0,µ

into itself continuously (we say that it is a continuous endomorphism). The joint
continuity of [φ, δ] 7→ φ(x+ δ) in C1,µ follows naturally. The second operation is a
sum of products of functions (a matrix applied to a vector). This is a continuous
operation because the Hölder spaces Cj,µ, j = 0, 1, we chose are Banach algebras.
The third and last operation is the linear operator P, which is bounded in Hölder
spaces. We need to consider also derivatives of W . We use the formula (32) and
note that the expression for the gradient is made of similar operations as above and
apply the same kind of reasoning. This finishes the proof.

Time does not play any role in this proposition because the equation of state
(δ, φ) 7→W [δ, φ] is time independent. The second half of the procedure does depend
on time. Let us denote by Θ the map that associates to two continuous paths
t 7→ δ(·, t) and t 7→ φ(·, t) a new path t 7→ θ; the path t 7→ θ = Θ[δ, φ] is obtained
by solving the partial differential equation

∂θ

∂t
+ u · ∇θ + u = 0(36)

where

u = W [δ(·, t), φ(·, t)],
periodic boundary conditions are imposed on θ and zero initial data

θ(x, 0) = 0

are required. The Euler equation only requires the use of a time independent φ,
but allowing time dependent φ is very useful: one can thus treat more equations,
in particular the Navier-Stokes equation. Let us consider the space

PT = C([0, T ], (C1,µ)3)

of continuous (C1,µ)3 -valued paths defined on a time interval [0, T ], endowed with
the natural norm

‖θ‖1,P = sup
t
‖θ(·, t)‖1,µ.
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We will also consider the weaker norm

‖θ‖0,P = sup
t
‖θ(·, t)‖0,µ.

Θ is nonlinear in both arguments.

Proposition 2. The map Θ[δ, φ] maps

Θ : PT × PT → PT
and is continuous when the topology of the source space PT × PT is the natural
product C1,µ topology and the topology of the target space PT is the weaker C0,µ

topology. Moreover, there exists a constant C depending on µ alone so that

‖∇θ(·, t)‖0,µ ≤
(∫ t

0

‖∇u(·, s)‖0,µds
){

exp{C
∫ t

0

‖∇u(·, s)‖0,µds}
}

holds for each t ≤ T with u = W [δ, φ] and θ = Θ[δ, φ].

Proposition 2 states that the map Θ is bounded but not that it is continuous
in the strong C1,µ topology. The proof follows naturally from the idea to use
the classical method of characteristics and ODE Gronwall type arguments. Similar
ideas are needed below in the slightly more difficult proof of Proposition 3 and we
will sketch them there; therefore we leave the details of the proof of Proposition 2
to the interested reader.

In order to proceed let us now take a fixed φ, take a small number ε > 0 and
associate to it the set

I ⊂ PT
defined by

I = {δ(x, t); δ(x, 0) = 0, ‖∇δ(·, t)‖0,µ ≤ ε, ∀t ≤ T }.
Combining the bounds in the two previous propositions one can choose, for fixed
φ, a T small enough so that

δ 7→ Θ[δ, φ] = S[δ]

maps

S : I → I.
Inspecting the bounds it is clear that it is sufficient to require

T ‖∇× φ‖0,µ ≤ cε
with an appropriate c depending on µ alone. Leaving φ, ε and T fixed as above,
the map S is Lipschitz in the weaker norm C0,µ:

Proposition 3. There exists a constant C, depending on µ alone, such that, for
every δ1, δ2 ∈ I, the Lipschitz bound

‖S[δ1]− S[δ1]‖0,P ≤ C‖δ1 − δ2‖0,P
holds.

It is essential that δj ∈ I, so that they are smooth and their gradients are small,
but nevertheless this is a nontrivial statement. An inequality of the type

‖S[δ1]− S[δ1]‖0,P ≤ C‖δ1 − δ2‖1,P
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is easier to obtain, but loses one derivative. This kind of loss of one derivative is
a well-known difficulty in general compressible hyperbolic conservation laws. The
situation is complicated in addition by the fact that the constitutive lawW depends
on gradients. As we shall see, incompressibility saves one derivative. The heart of
the matter is

Proposition 4. Let φ ∈ (C1,µ)3 be fixed. There exists a constant depending on µ
alone so that

‖W [δ1, φ]−W [δ2, φ]‖0µ ≤ C‖δ1 − δ2‖0,µ‖φ‖1,µ
holds for any δj ∈ C1,µ with ‖δj‖1,µ ≤ 1.

One could use the condition δj ∈ C1,µ with ‖δj‖1,µ ≤ M but then C would
depend on M also.

Proof of Proposition 4. Denoting

u = W [δ1, φ]−W [δ2, φ],

δ = δ1 − δ2,

ψ(x) =
1
2

(φ(x + δ1(x)) + φ(x+ δ2(x))) ,

v(x) = φ(x+ δ1(x)) − φ(x + δ2(x)),

γ =
1
2

(δ1 + δ2)

we write

u = u1 + u2

with

u1 = P {(∇δ)∗ψ}

and

u2 = P {(I +∇γ)∗v} .

Now the bound

‖u2‖0,µ ≤ C‖δ‖0,µ‖φ‖1,µ
is obtained in the same way as the bound in Proposition 1. (Actually φ Lipschitz
is enough here.) The dangerous term is u1 because it contains ∇δ. But here we
can “integrate by parts” and write

u1 = −P {(∇ψ)∗δ}

because of incompressibility. The matrix ∇ψ is bounded in C0,µ and the bound fol-
lows again easily, as the bounds in Proposition 1. This ends the proof of Proposition
4. We draw attention to the fact that the presence of the ∗ (transpose) operation
is essential for “integration by parts” to be allowed.
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Returning to the proof of Proposition 3 we denote θj = Sδj , uj = W (δj , φ),
u = u1 − u2, θ = θ1 − θ2 and write

∂θ

∂t
+
u1 + u2

2
· ∇θ + u · ∇

(
θ1 + θ2

2

)
+ u = 0.

We consider the characteristics X(a, t) defined by
dX

dt
=
u1 + u2

2
(X, t), X(a, 0) = a,

and note that in view of Proposition 1 and the assumption δj ∈ I, the characteristics
are well defined for 0 ≤ t ≤ T , and their inverse A(x, t) = X−1(x, t) (the “back-to-
labels” map) is defined too. Moreover,

sup
t,a

∣∣∣∣∂X∂a
∣∣∣∣ ≤ C

and

sup
t,x

∣∣∣∣∂A∂x
∣∣∣∣ ≤ C

hold with a constant C depending on µ alone. Now consider the function

F (x, t) = u · ∇
(
θ1 + θ2

2

)
+ u.

Solving by the method of characteristics we obtain

θ(x, t) = −
∫ t

0

F (X(A(x, t), s), s)ds.

Using Proposition 4 in conjunction with the bounds in Propositions 1 and 2 we see
that F (x, t) is bounded (uniformly in time) in C0,µ:

sup
t
‖F (·, t)‖0,µ ≤ C‖φ‖1,µ‖δ‖0,P .

Compositions with the uniformly Lipschitz X and A are harmless and we obtain
the desired result:

‖θ‖0,P ≤ C‖δ‖0,P .
This ends the proof of Proposition 3. The proof of Theorem 1 now follows by using
successive approximations. Starting with a first guess δ1 ∈ I we define inductively

δn+1 = Sδn ∈ I.
Proposition 3 can be used to show that the sequence δn converges rapidly in the
C0,µ topology to a limit δ. Because I is convex it contains this weaker limit point,
δ ∈ I. Because S has the weak Lipschitz property of Proposition 3 it follows
that Sδ = δ. This actually means that A = x + δ(x, t) solves the active vector
formulation of the Euler equations and that u = W [δ, φ] solves the usual Eulerian
formulation.

Now let us consider the case of decay at infinity. This case is instructive to look
at because it illuminates the difference between φ, u,W on the one hand and x, δ,Θ
on the other hand; the function spaces need to be modified in a natural fashion to
accommodate this difference. The issue of decay at infinity is both a physical one
– the total kinetic energy must be defined, and a mathematical one – P must be
defined. But apart from this, the decay at infinity requirement does not hinder the
proof in any respect.
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Theorem 2. Let φ be a C1,µ velocity that is square integrable,∫
|φ(x)|2dx <∞,

and whose curl is integrable to some power 1 < q <∞,∫
|∇ × φ(x)|qdx <∞.

Then for ε sufficiently small there exist a time interval [0, T ] and a C1,µ function
δ(x, t) such that

sup
t
‖∇δ(·, t)‖0,µ ≤ ε

and such that x+ δ(x, t) solves the active vector formulation of the Euler equation.
The velocity corresponding to this solution belongs to C1,µ, is square integrable and
the vorticity is integrable to power q.

The proof follows along the same lines as above. Because φ enters linearly in the
expression for W and because we control ∇δ uniformly, issues of decay at infinity
do not arise. In other words, the function space for velocities does not need to be a
Banach algebra, rather a module over the Banach algebra of the δ variables, which
need not decay at infinity.

5. The blow up issue

Any solution of the Euler equation can be constructed using a sequence of near
identity transformations. One starts out with

φ = u0

and solves for an interval of time 0 ≤ t ≤ t1 the active vector equation
∂A

∂t
+ uA · ∇A = 0,

uA = P ((∇A)∗u0(A)) ,

A(x, 0) = x.

At time t = t1 one resets

φ = u1 = uA(·, t1)

and solves the system above again for a new time interval t1 ≤ t ≤ t2 and so one
continues the solution. The local existence result guarantees that

(tn+1 − tn)‖∇un‖0,µ ≥ c > 0

and during this time the solution A(x, t) remains close to the identity in the sense
that δ = A− x obeys

‖∇δ(·, t)‖0,µ ≤ ε
with a prescribed ε << 1. Formula (32) then implies that

‖∇un‖0,µ ≤ Kn‖∇u0‖0,µ
with a fixed K > 1. If the inequalities above would be sharp, then, of course,
the time steps would have to decrease exponentially and the procedure would di-
verge in finite time. It is possible that for certain initial data the bounds may be
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overly pessimistic and the solution may exist for a long time. But with the present
knowledge, if one desires long-lived solutions for arbitrary three dimensional data,
then one needs to smooth either at the end of each step or during each time step.
If one applies a smoothing procedure one evidently changes the problem and one
introduces an artificial dissipation. There are many ways one could conceivable
regularize the Euler equations. The physically correct energy dissipating equation
is the Navier-Stokes equation. Unfortunately it is not known in three dimensions
if the Navier-Stokes equations have globally defined unique solutions that converge
to solutions of the Euler equations. Even in two dimensions, where the existence
of smooth solutions is known for both the Euler and Navier-Stokes equations, the
situation is not entirely trivial ([17], [18]). The two dimensional situation is char-
acterized by the absence of vortex stretching. In the case of the three dimensional
Euler equations the vorticity magnitude evolves according to the stretching equa-
tion

Dt (|ω|) = α|ω|.(37)

The stretching factor α is related to the vorticity magnitude through a principal
value singular integral ([19]):

α(x, t) = P.V.

∫
D (ŷ, ξ(x, t), ξ(x + y, t)) |ω(x+ y, t)| dy|y|3 .(38)

Here ŷ is the unit vector in the direction of y, ξ(x, t) = ω
|ω| is the unit vector tangent

to the vortex line passing through x at time t and D is a certain geometric factor.
The geometric factor is a smooth function of three unit vectors, has zero average on
the unit sphere,

∫
DdS(ŷ) = 0 and vanishes pointwise when ξ(x, t) = ±ξ(x+ y, t).

Because α has the same order of magnitude as |ω|, dimensional reasoning suggests
blow up of the type one encounters in the ordinary differential equation dm

dt = m2,

sup
x
|ω(x, t)| ∼ 1

T − t .

But if the vorticity direction ξ is smooth, then a geometric depletion of α occurs;
this means that α is of the order of magnitude of velocity times the magnitude
of the spatial gradient of ξ (an inverse length scale, assumed to be finite). The
two dimensional Euler equations correspond to the case ξ = (0, 0, 1) and α = 0
identically. If ∫ T

0

sup
x
|α(x, t)|dt <∞,

then no blow up can occur. This idea of geometric depletion of nonlinearity has
been investigated theoretically and numerically for the Euler equations and for a
quasi-geostrophic active scalar equation ([19], [20], [21], [22], [23], [24]). In the
Eulerian-Lagrangian formulation of the Euler equation the role played by smooth
stratifications can be explained in the following manner. Consider functions w = wψ
of the form

wψ(x, t) = (∇A(x, t))∗ψ(A(x, t))(39)

associated to arbitrary vectors ψ. Alternately, one might consider solutions of

DA
t w + (∇uA)∗ w = 0(40)
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with initial data ψ. A particular example is provided by choosing ψ = φ, i.e.
wφ = wA,

wA = (∇A)∗φ(A)(41)

which obeys

∇× wA = ∇× uA = ωA.(42)

Because the vorticity

ωA = ∇× uA(43)

satisfies

ωA = (∇A)−1ζ(A)(44)

it follows that

ωA(x, t) · wψ(x, t) = ζ(A(x, t)) · ψ(A(x, t))(45)

holds for any ψ or, in other words,

Dt(ωA · w) = 0(46)

holds for any solution w(x, t) of (40). Global regularity of a solution of the Euler
equations would follow from (45) if one could find a sufficient family of vectors
ψ. By a sufficient family for the initial velocity φ and the time interval [0, T ] we
mean a family of vectors ψ such that there exists a nonnegative function γ(t) with∫ T

0
γdt <∞ such that

|ωA(x, t)| ≤ γ(t) sup
ψ
|ωA(x, t) · w(x, t)|

holds for 0 ≤ t ≤ T . A sufficient family for all two dimensional flows is provided
by just one ψ, ψ = (0, 0, 1), with γ = 1. Generalizations would consist of situations
in which one could find sufficient families that depend on the initial data and time
and take locally the role played in 2D by the vertical direction.

The blow up issue becomes, in terms of A, a question of formation of infinite
gradients in conserved quantities. This is similar to the case of hyperbolic conserva-
tion laws but with the significant difference that the underlying characteristic flow
is volume-preserving: det(∇A) = 1, the matrix ∇A is invertible and

((∇A(x, t))−1)ij =
1
2
εimnDet

[
ej ;

∂A

∂xm
;
∂A

∂xn

]
(47)

holds, where ej = (δjk) is the canonical basis in R3. Consider the Euler-Lagrange
label differentiation

LAj =
1
2

(
εimnεjkl

∂Ak
∂xm

∂Al
∂xn

)
∂

∂xi
.(48)

From the commutation relation (20) and the A equation (23) it follows that[
DA
t , L

A
j

]
= 0(49)

holds for any j = 1, 2, 3. This commutation relation simply says that in Lagrangian
coordinates, time and label derivatives commute. Note from formulas (44) and (47)
that

1
2
εpilDet

[
ζ(A);

∂A

∂xi
;
∂A

∂xl

]
= ωpA.(50)
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It is clear now that DA
t commutes with ΩA = ωA · ∇ because it is represented in

terms of LAj :

ΩA = ζj(A)LAj .(51)

Observe that, in view of the definition of the operators LAj ,

LAj =
(

(∇A(x, t))−1
)
kj

∂

∂xk
,(52)

it follows that (
(∇A(x, t))−1

)
ij

= LAj [xi];(53)

on the other hand

DA
t (xi) = uiA(54)

holds, so from the commutation relation (49) we obtain

DA
t

(
(∇A(x, t))−1

)
ij

= LAj (uiA).(55)

This equation, which could have been derived also directly from (30), implies the
vorticity equation because of (29):

DA
t ωA = ζj(A)LAj (uA) = ΩA(uA).(56)

Because of the result in [2] and (29), it is clear that the finiteness of∫ T

0

‖ (∇A(·, t))−1 ‖L∞(dx)dt

implies regularity. Or, using (47), we deduce that the finiteness of∫ T

0

‖∇A(·, t)‖2L∞(dx)dt

implies regularity. Let us now introduce the matrix

CAij (x, t; z) = (∇A(x + z, t))im
(

(∇A(x, t))−1
)
mj
,(57)

and call it the Euler-Lagrange calibrator. The formula

CAij(x, t; z) = L
A(x,t)
j (Ai(x+ z, t))(58)

shows that the calibrator measures the response of the Eulerian translation to an
infinitesimal Lagrangian translation. Note that

CAij(x, t; 0) = δij .(59)

The calibrator is a quotient of gradients at different locations and therefore locally
spatially uniform, temporally arbitrary changes like dilations do not affect it. The
vorticity equation (56) can be expressed in terms of the Euler-Lagrange calibrator
([25]):

DA
t ω

i
A =

{
1

4π
P.V.

∫
D(ζ, CAζ, CA.,p)σil(ẑ)

dz

|z|3

}
∂Ap(x, t)
∂xl

.(60)

Note that

ωiA
∂Ap(x, t)
∂xi

= ζp(A(x, t))
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is bounded. It is therefore natural to conjecture that the smoothness of CA prevents
finite time blow up for the Euler equations. This conjecture is true for the quasi-
geostrophic active scalar. The interested reader is referred to ([25]) for details.

The blow up question for the Euler equations remains open. Numerical calcu-
lations provide insight and hints, but the answer will have to be analytical. The
considerations above point towards a possible incompressible dispersive effect that
hinders blow up: as the gradients of A become large the resulting rapid (15) and
nonuniform (55) motion disperses the large gradients. This might cause instability
of blow up or perhaps its suppression.
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