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GROWTH OF SOLUTIONS
FOR QG AND 2D EULER EQUATIONS

DIEGO CORDOBA AND CHARLES FEFFERMAN

1. Introduction

The work of Constantin-Majda-Tabak [1] developed an analogy between the
Quasi-geostrophic and 3D Euler equations. Constantin, Majda and Tabak pro-
posed a candidate for a singularity for the Quasi-geostrophic equation. Their
numerics showed evidence of a blow-up for a particular initial data, where the
level sets of the temperature contain a hyperbolic saddle. The arms of the saddle
tend to close in finite time, producing a sharp front. Numerics studies done later
by Ohkitani-Yamada [8] and Constantin-Nie-Schorghofer [2], with the same initial
data, suggested that instead of a singularity the derivatives of the temperature were
increasing as double exponential in time.

The study of collapse on a curve was first studied in [1] for the Quasi-geostrophic
equation where they considered a simplified ansatz for classical frontogenesis with
trivial topology. At the time of collapse, the scalar θ is discontinuous across the
curve x2 = f(x1) with different limiting values for the temperature on each side of
the front. They show that under this topology the directional field remains smooth
up to the collapse, which contradicts the following theorem proven in [1]:

If locally the direction field remains smooth as t
approaches T∗, then no finite singularity is possible

as t approaches T∗.

The simplified ansatz with trivial topology studied in [1] does not describe a hy-
perbolic saddle.

Under the definition of a simple hyperbolic saddle, in [3], it was shown that the
angle of the saddle cannot decrease faster than a double exponential in time.

The criterion obtained in [5] for a sharp front formation for a general two-
dimensional incompressible flow is:

A necessary condition to have a sharp front at time T is∫ T

0

|u|L∞(s)ds =∞.
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For the Quasi-geostrophic equation it is not known if the quantity
∫ T

0
|u|L∞(s)ds

diverges or not, and the criterion does not say how fast the arms of a saddle can
close.

In this paper we do not assume anything on the velocity field, and we show that
under a semi-uniform collapse the distance between two level curves cannot decrease
faster than a double exponential in time. The semi-uniform collapse assumption
greatly weakens the assumptions made in [1] for an ansatz for classical frontogenesis,
and the simple hyperbolic saddle in [3].

In the case of 2D incompressible Euler equations we are interested in the large
time behavior of solutions.

The two equations we discuss in this paper have in common the property that
a scalar function is convected by the flow, which implies that the level curves
are transported by the flow. The possible singular scenario is due to level curves
approaching each other very fast which will lead to a fast growth on the gradient
of the scalar function. Below we study the semi-uniform collapse of two level sets
on a curve. By semi-uniform collapse we mean that the distance of the two curves
at any point are comparable.

The equations we study are as follows:

The Quasi-geostrophic (QG) Equation

Here the unknowns are a scalar θ(x, t) and a velocity field u(x, t) = (u1(x, t),
u2(x, t)) ∈ R2, defined for t ∈ [0, T ∗) with T ∗ ≤ ∞, and for x ∈ Ω where Ω = R2

or R2/Z2. The equations for θ, u are as follows:

(∂t + u · ∇x) θ = 0,(1.1)

u = ∇⊥x ψ and ψ = (−4x)−
1
2 θ,

where ∇⊥x f = (− ∂f
∂x2

, ∂f∂x1
) for scalar functions f . The initial condition is θ(x, 0) =

θ0(x) for a smooth initial datum θ0.

The Two-Dimensional Euler Equation

The unknown is an incompressible velocity field u(x, t) as above with vorticity
denoted by ω. The 2D Euler equation may be written in the form

(∂t + u · ∇x)ω = 0,(1.2)

u = ∇⊥x ψ and ψ = (−4x)−1ω,

with u(x, 0) equal to a given smooth divergence free u0(x).

2. Results

Asssume that q = q(x, t) is a solution to (1.1) or (1.2), and that a level curve of
q can be parameterized by

x2 = φρ(x1, t) for x1 ∈ [a, b](2.1)

with φρ ∈ C1([a, b] ∩ [0, T ∗)), in the sense that

q(x1, φρ(x1, t), t) = G(ρ) for x1 ∈ [a, b],(2.2)

and for certain ρ to be specified below.
The stream function ψ satisfies

∇⊥ψ = u.(2.3)
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From (2.1) and (2.2), we have

∂q

∂x1
+

∂q

∂x2

∂φρ
∂x1

= 0,(2.4)

∂q

∂t
+

∂q

∂x2

∂φρ
∂t

= 0.(2.5)

By (1.1), (1.2), (2.3), (2.4) and (2.5) we obtain

∂φρ
∂t

= −
∂q
∂t
∂q
∂x2

=
〈− ∂ψ

∂x2
, ∂ψ∂x1
〉 · 〈 ∂q∂x1

, ∂q∂x2
〉

∂q
∂x2

= 〈− ∂ψ
∂x2

,
∂ψ

∂x1
〉 · 〈

∂q
∂x1

∂q
∂x2

, 1〉

= 〈− ∂ψ
∂x2

,
∂ψ

∂x1
〉 · 〈−∂φρ

∂x1
, 1〉.

Next
∂

∂x1
(ψ(x1, φρ(x1, t), t)) =

∂ψ

∂x1
+
∂ψ

∂x2

∂φρ
∂x1

= 〈− ∂ψ

∂x2
,
∂ψ

∂x1
〉 · 〈−∂φρ

∂x1
, 1〉.

Therefore
∂φρ
∂t

=
∂

∂x1
(ψ(x1, φρ(x1, t), t)) .(2.6)

With this formula we can write an explicit equation for the change of time of
the area between two fixed points a, b and two level curves (φρ1 , φρ2):

d

dt

(∫ b

a

[φρ2 (x1, t)− φρ1(x1, t)]dx1

)
= ψ(b, φρ2 (b, t), t)− ψ(a, φρ2(a, t), t)
+ψ(a, φρ1(a, t), t)− ψ(b, φρ1(b, t), t).(2.7)

Assume that two level curves φρ1 and φρ2 collapse when t tends to T ∗ uniformly
in a ≤ x1 ≤ b, i.e.

φρ2(x1, t)− φρ1(x1, t) ∼
1

b− a

∫ b

a

[φρ2 (x1, t)− φρ1(x1, t)]dx1.

In other words, the distance between two level sets are comparable for a ≤ x1 ≤ b.
Let

δ(x1, t) = |φρ2 (x1, t)− φρ1 (x1, t)|
be the thickness of the front.

We define semi-uniform collapse on a curve if (2.1) and (2.2) holds and there
exists a constant c, independent of t, such that

min δ(x1, t) ≥ c ·max δ(x1, t)

for a ≤ x1 ≤ b, and for all t ∈ [0, T ∗).
We call the length b− a of the interval [a, b] the length of the front.
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Now we can state the following theorem.

Theorem 2.1. For a QG solution with a semi-uniform front, the thickness δ(t)
satisfies

δ(t) > e−e
At+B

for all t ∈ [0, T ∗).

Here, the constants A and B may be taken to depend only on the length of the front,
the semi-uniformity constant, the initial thickness δ(0), and the norm of the initial
datum θ0(x) in L1 ∩ L∞.

Proof. From (9) we have

| d
dt
A(t)| < C

b− a sup
a≤x1≤b

|ψ(x1, φρ2(x1, t), t)− ψ(x1, φρ2(x1, t), t)|(2.8)

where

A(t) =
1

b− a

∫ b

a

[φρ2 (x1, t)− φρ1(x1, t)]dx1,

and C is determined by the semi-uniformity constant c.
The estimate of the difference of the value of the stream function at two different

points that are close to each other is obtained by writing the stream function as
follows:

ψ(x, t) = −
∫

Ω

θ(x+ y, t)
|y| dy,

and this is because ψ = (−4x)−
1
2 θ.

Therefore

ψ(z1, t)− ψ(z2, t) =
∫

Ω

θ(y)(
1

|y − z1|
− 1
|y − z2|

)dy

=
∫
|y−z1|≤2τ

+
∫

2τ<|y−z2|≤k
+
∫
k<|y−z1|

≡ I1 + I2 + I3,

where τ = |z1 − z2|.
Furthermore

|I1| ≤ ||θ||L∞ ·
∫
|y−z1|≤2τ

(
1

|y − z1|
+

1
|y − z2|

)dy

≤ Cτ.

We define s to be a point in the line between z1 and z2; then |y − z1| ≤ 2|y − s|
and I2 can be estimated by

|I2| ≤ Cτ ·
∫

2τ<|y−z1|≤k
max
s
|∇(

1
|y − s| )|dy

≤ Cτ ·
∫

2τ<|y−z1|≤k
max
s

1
|y − s|2 dy

≤ Cτ · | log τ |.
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We use the conservation of energy to estimate I3 by

|I3| ≤ C · τ.
Finally, by choosing τ = |z1 − z2| we obtain

|ψ(z1, t)− ψ(z2, t)| ≤M |z1 − z2|| log |z1 − z2||(2.9)

where M is a constant that depends on the initial data θ0. (See details in [3].)
Then we have

| d
dt
A(t)| ≤ M

b− a sup
a≤x1≤b

|φρ2(x1, t)− φρ1(x1, t)|| log |φρ2(x1, t)− φρ1(x1, t)||

≤ C ·M
(b − a)

|A(t)|| logA(t)|

and therefore

A(t) >> A(0)e−e
C·M
(b−a) t

.

Theorem 2.2. For a 2D Euler solution with a semi-uniform front, the thickness
δ(t) satisfies

δ(t) > e−[At+B] for all t ∈ [0, T ∗).

Here, the constants A and B may be taken to depend only on the length of the front,
the semi-uniformity constant, the initial thickness δ(0), and the norm of the initial
vorticity in L1 ∩ L∞.

The proof of Theorem 2.2 is similar to that of Theorem 2.1 with the difference
that instead of the estimate (2.9), we have

|ψ(z1, t)− ψ(z2, t)| ≤M |z1 − z2|
where M is a constant that depends on the initial data u0. (See details in [3].)

A consequence of Theorem 2.2 is that it rules out an exponential growth on
the derivatives of the velocity for 2D Euler equations by a semi-uniform front.
Similar estimates can be obtained for the 2D ideal Magneto-hydrodynamics (MHD)
Equation, with the extra assumption that

∫ T∗
0 |u|L∞(s)ds is bounded up to the

time of the blow-up. These estimates are a consequence of applying the mean value
theorem in (2.8). Nevertheless in the case of MHD these estimates improve the
results obtained in [6].
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