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KAZHDAN-LUSZTIG POLYNOMIALS AND CHARACTER
FORMULAE FOR THE LIE SUPERALGEBRA gl(m|n)

JONATHAN BRUNDAN

1. Introduction

The problem of computing the characters of the finite dimensional irreducible
representations of the Lie superalgebra gl(m|n) over C was raised originally by
V. Kac in 1977 [Ka2], [Ka3]. Kac proved that the finite dimensional universal high-
est weight modules, known nowadays as Kac modules, are irreducible for so-called
typical highest weights, and gave a formula for their characters. After that, there
were several conjectures and partial results dealing with atypical highest weights
[BL], [BR], [Sg1], [JHKT1], [JHKT2], [HKJ], [KaW], [PS2], before the complete so-
lution to the problem was given by V. Serganova [S2], [S3] in 1995 using a mixture
of algebraic and geometric techniques.

In this article, we present a different, purely algebraic solution of the problem.
One consequence is a proof of a conjecture made by van der Jeugt and Zhang [JZ],
which is apparently closely related to the conjectures made in [HKJ]. In particular
the composition multiplicities of the Kac modules are all either 0 or 1, a fact which
does not seem to follow easily from Serganova’s formula since that involves certain
alternating sums. We also formulate for the first time a conjecture for the characters
of the infinite dimensional irreducible representations in the analogue of category
O for the Lie superalgebra gl(m|n).

Inspired by ideas of Lascoux, Leclerc and Thibon [LLT], our approach is to
relate the finite dimensional representation theory of gl(m|n) to the structure of
the module

Em|n :=
∧m

V ∗ ⊗
∧n

V ,

where V denotes the natural representation of the quantized enveloping algebra
Uq(gl∞). By work of Lusztig [L, Chapter 27], the module Em|n possesses a canoni-
cal basis {Uλ} and a dual canonical basis {Lλ} (see Theorems 3.6 and 3.13), which
for the purpose of this introduction we parametrize via (4.4) by the set X+(m|n)
of dominant integral weights for gl(m|n). The entries of the transition matrices be-
tween these bases and the natural monomial basis {Kλ} of Em|n define polynomials
uµ,λ(q) and lµ,λ(q) for each µ, λ ∈ X+(m|n):

Uλ =
∑

µ∈X+(m|n)

uµ,λ(q)Kµ, Lλ =
∑

µ∈X+(m|n)

lµ,λ(q)Kµ.
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The remarkable thing is that it is quite easy to compute these polynomials explic-
itly, because all the sl2-strings in the crystal graph underlying the module Em|n are
of length ≤ 2; see Corollary 3.39 for the explicit formulae. The main result of the
article shows that the polynomials uµ,λ(q) evaluated at q = 1 compute the composi-
tion multiplicities of the Kac modules; see Theorem 4.37 and (4.39). Moreover, the
polynomials lµ,λ(−q−1) coincide with the Kazhdan-Lusztig polynomials Kλ,µ(q)
defined originally by Serganova [S2], [S3], and so can be used to compute Ext’s
between Kac modules and irreducible modules; see Theorem 4.51 and Corollary
4.52.

The module Em|n is a summand of the tensor space

T m|n :=
⊗m

V ∗ ⊗
⊗n

V .

The latter also possesses a canonical basis {Tλ} and a dual canonical basis {Lλ}
(see Theorems 2.17 and 2.23), which we parametrize via (4.4) by the set X(m|n)
of all integral weights for gl(m|n). For λ ∈ X+(m|n) ⊂ X(m|n), the elements Lλ
here coincide with the images of the elements with the same name in the previous
paragraph under the embedding Em|n ↪→ T m|n. The entries of the transition
matrices between these bases and the natural monomial basis {Mλ} of T m|n give
us polynomials tµ,λ(q) and lµ,λ(q) for each µ, λ ∈ X(m|n):

Tλ =
∑

µ∈X(m|n)

tµ,λ(q)Mµ, Lλ =
∑

µ∈X(m|n)

lµ,λ(q)Mµ.

These should be viewed as the true combinatorial analogues for gl(m|n) of the
Kazhdan-Lusztig polynomials of [KL], [Deo]. We explain an explicit algorithm to
compute tµ,λ(q) in §2-j, and conjecture, based on calculations with this algorithm,
that our polynomials share the positivity properties of the usual Kazhdan-Lusztig
polynomials; see Conjecture 2.28. We conjecture moreover that the polynomials
tµ,λ(q) evaluated at q = 1 compute the composition multiplicities of the Verma
modules in category O; see Conjecture 4.32 and (4.34). This conjecture is true in
the case m = 0 by the original Kazhdan-Lusztig conjecture [KL] for the Lie algebra
gl(n) proved in [BB], [BrK]; see Theorem 4.31(i).

Returning to finite dimensional representations, let us now formulate the con-
jecture of van der Jeugt and Zhang proved here precisely, to give the flavor of the
combinatorics that arises. So let g denote the Lie superalgebra gl(m|n) over C,
labeling rows and columns of matrices in g by the ordered index set I(m|n) =
{−m, . . . ,−1, 1, . . . , n}. We work always with the standard choices h and b of Car-
tan and Borel subalgebras, consisting of diagonal and upper triangular matrices,
respectively. For i ∈ I(m|n), let δi ∈ h∗ denote the function picking out the ith
diagonal entry of a diagonal matrix. Put a symmetric bilinear form (.|.) on h∗ by
setting (δi|δj) = 1 if i = j > 0, −1 if i = j < 0, and 0 otherwise. Let W ∼= Sm×Sn
denote the Weyl group associated to g0̄, acting naturally on h∗. We also need the
dot action of W on h∗: w · λ = w(λ + ρ)− ρ where ρ = −

∑
i∈I(m|n) iδi.

Let X(m|n) ⊂ h∗ denote the set of all Z-linear combinations of the weights
{δi}i∈I(m|n), and let X+(m|n) ⊂ X(m|n) denote the dominant integral weights,
namely, the weights λ =

∑
i∈I(m|n) λiδi ∈ X(m|n) with λ−m ≥ · · · ≥ λ−1, λ1 ≥

· · · ≥ λn. Associated to λ ∈ X+(m|n), we have the Kac module K(λ) and its
unique irreducible quotient L(λ); see §4-a. We should note that there is no loss
of generality in restricting our attention to integral weights, since an arbitrary
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finite dimensional irreducible representation of gl(m|n) is either typical or can be
obtained from L(λ) for some λ ∈ X+(m|n) by tensoring with a one dimensional
representation.

Main Theorem. Let λ ∈ X+(m|n). Let r be maximal such that there exist −m ≤
i1 < · · · < ir < 0 < jr < · · · < j1 ≤ n with (λ+ρ|δis−δjs) = 0 for each s = 1, . . . , r.
Let (k1, . . . , kr) be the lexicographically smallest tuple of strictly positive integers
such that for all θ = (θ1, . . . , θr) ∈ {0, 1}r, λ +

∑r
s=1 θsks(δis − δjs) is conjugate

under the dot action of W to a dominant weight, denoted Rθ(λ) ∈ X+(m|n). Then,
for each µ ∈ X+(m|n),

[K(µ) : L(λ)] =
{

1 if µ = Rθ(λ) for some θ = (θ1, . . . , θr) ∈ {0, 1}r,
0 otherwise.

To prove the Main Theorem, we work with a different family of modules
{U(λ)}λ∈X+(m|n) called indecomposable tilting modules, following the general frame-
work developed by Soergel [So2] and extended to Lie superalgebras in [B2]. The
problem of computing the multiplicities of Kac modules in indecomposable tilting
modules is, roughly speaking, transpose to the problem of computing the com-
position multiplicities of Kac modules; see (4.16) for the precise relationship (a
twisted BGG reciprocity). The main step in the proof gives an explicit inductive
construction of the U(λ)’s starting from the typical case, when U(λ) = K(λ), and
applying certain special translation functors that arise from tensoring with the nat-
ural module and its dual. Actually, we see eventually that the indecomposable
tilting modules in this finite dimensional setting coincide with the indecomposable
projectives (also injectives), but they are parametrized by highest weight rather
than by their irreducible quotients. Though one could just as well choose to work
with the latter more familiar labeling, the alternate parameterization seems to be
the one that emerges naturally when considering canonical bases. There are also in-
decomposable tilting modules denoted {T (λ)}λ∈X(m|n) in category O, where again
they seem to correspond most directly to the canonical basis.

We now explain how the remainder of the article is organized. In sections 2 and 3,
we give the construction and properties of the canonical bases of the modules T m|n

and Em|n from a purely combinatorial standpoint. Then in section 4 we describe
the representation theory of gl(m|n), working in two natural categories Om|n and
Fm|n whose Grothendieck groups are identified with the spaces T m|n and Em|n,
respectively. In sections 2 and 3 we work exclusively in a ρ-shifted notation which
is more convenient for the combinatorics, replacing the set X(m|n) of weights with
the set Zm|n of functions I(m|n) → Z. See (4.4) for the rule to translate between
the two notations.

2. Tensor algebra

In this section, we define and study the canonical basis of the tensor space T m|n.
We will work throughout over the field Q(q) of rational functions, where q is an
indeterminate.

§2-a. Combinatorial notation. For m,n ≥ 0, let Sm|n denote the symmetric
group Sm × Sn acting on the set I(m|n) = {−m, . . . ,−1, 1, . . . , n} so that Sm
permutes {−m, . . . ,−1} and Sn permutes {1, . . . , n}. Thus Sm|n is generated by
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the basic transpositions

s−m+1 = (−m −m+1), . . . , s−1 = (−2 −1), s1 = (1 2), . . . , sn−1 = (n−1 n).

Let Zm|n be the set of all functions I(m|n)→ Z. We call f ∈ Zm|n antidominant if
f(−m) ≥ · · · ≥ f(−1), f(1) ≤ · · · ≤ f(n). Note that Sm|n acts on the right on Zm|n

by composition of functions, and every f ∈ Zm|n is conjugate under this action to
a unique antidominant function. We also have the ‘flip’ ω : Zm|n → Zn|m, where
ω(f) is the function I(n|m)→ Z, i 7→ f(−i).

Let P denote the free abelian group on basis {εa | a ∈ Z} endowed with a
symmetric bilinear form (., .) for which the εa form an orthonormal basis. We view
P as the integral weight lattice associated to the Lie algebra gl∞. The simple roots
are the elements εa− εa+1 ∈ P for a ∈ Z. The dominance ordering on P is defined
by µ ≤ ν if (ν − µ) is an N-linear combination of simple roots (here and later
N = {0, 1, 2, . . .}). Equivalently, µ ≤ ν if

(2.1)
∑
b≤a

(µ, εb) ≤
∑
b≤a

(ν, εb)

for all a ∈ Z with equality for a� 0.
For f ∈ Zm|n and j ∈ I(m|n), define

(2.2) wt(f) :=
∑

i∈I(m|n)

sgn(i)εf(i), wtj(f) :=
∑

j≤i∈I(m|n)

sgn(i)εf(i),

where sgn(i) ∈ {±1} denotes the sign of i. The degree of atypicality of f ∈ Zm|n is
defined to be

(2.3) #f :=
1
2

(
m+ n−

∑
a∈Z

∣∣(wt(f), εa)
∣∣) .

If #f = 0, then f is called typical. So f is typical if and only if

{f(−m), . . . , f(−1)} ∩ {f(1), . . . , f(n)} = ∅.

§2-b. Bruhat ordering. Introduce a partial ordering on Zm|n by declaring that
g � f if wt(g) = wt(f) and wtj(g) ≤ wtj(f) for all j ∈ I(m|n). It is immediate
that if g � f then #g = #f . Using (2.1), we see that g � f if and only if

(2.4)
∑

j≤i∈I(m|n)
g(i)≤a

sgn(i) ≤
∑

j≤i∈I(m|n)
f(i)≤a

sgn(i)

for all a ∈ Z and j ∈ I(m|n), with equality if either a � 0 or j = −m. From this,
one gets in particular that g � f if and only if ω(g) � ω(f). In proofs, it will be
convenient to have a shorthand for the sums appearing in the inequality (2.4), so
for f ∈ Zm|n, a ∈ Z and j ∈ I(m|n) we abbreviate

#(f, a, j) =
∑

j≤i∈I(m|n)
f(i)≤a

sgn(i).

Thus, g � f if and only if #(g, a, j) ≤ #(f, a, j) for all a ∈ Z and j ∈ I(m|n), with
equality for a� 0 or j = −m.
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Here is another description of the partial order. Let di ∈ Zm|n be the function
j 7→ sgn(i)δi,j , for each i ∈ I(m|n). Write f ↓ g if one of the following holds:

(1) g = f − di + dj for some −m ≤ i ≤ −1, 1 ≤ j ≤ n such that f(i) = f(j);
(2) g = f · (i j) for some 1 ≤ i < j ≤ n such that f(i) > f(j);
(3) g = f · (i j) for some −m ≤ i < j ≤ −1 such that f(i) < f(j).

Then:

Lemma 2.5. f � g if and only if there is a sequence h1, . . . , hr ∈ Zm|n such that
f = h1 ↓ · · · ↓ hr = g.

Proof. (⇐) Obvious.
(⇒) We show by induction on (m+n) that if f � g are neighbors in the ordering,

then f ↓ g. The case m+n = 0 is vacuous, so suppose m+n > 0. Replacing f, g by
ω(f), ω(g) if necessary, we may assume in fact that n > 0. If f(n) = g(n), then we
are done by induction, so we may assume that a = f(n) < g(n) = b. We consider
two cases.
Case one: there exists 0 < i < n with a < f(i) ≤ b. Pick the greatest such i, so
each f(j) for j = i + 1, . . . , n is either ≤ a or > b, and set c = f(i). We claim
that f � f · (i n) � g, whence f ↓ g as required since f and g are neighbors.
For i < j and a ≤ d < c, we have that #(f · (i n), d, j) = #(f, d, j) − 1, while
#(f · (i n), d, j) = #(f, d, j) for all other j, d. Therefore to prove the claim, we just
need to show that #(f, d, j) > #(g, d, j) for each i < j and each a ≤ d < c. But by
the choice of i, we have that #(f, d, j) = #(f, b, j) ≥ #(g, b, j) > #(g, d, j) since
g(n) = b.
Case two: each f(j) for j = 1, . . . , n is either ≤ a or > b. From (wt(g), εb) =
(wt(f), εb) ≤ 0, we deduce that there must exist −m ≤ i < 0 with g(i) = b. Take
the greatest such i. Now we claim that f � g + di − dn � g, so again f ↓ g as they
are neighbors. To prove the claim, note that #(g+ di− dn, d, j) = #(g, d, j) unless
j > i and d = b − 1, while #(g + di − dn, b − 1, j) = #(g, b − 1, j) + 1 for j > i.
Therefore we need to show that #(f, b− 1, j) > #(g, b− 1, j) for each j > i. Now
observe that #(f, b− 1, j) ≥ #(f, b, j) ≥ #(g, b, j) > #(g, b− 1, j). �

For example, writing elements of Z2|2 as tuples,

(1, 2|2, 1) ↓ (1, 2|1, 2) ↓ (1, 3|1, 3) ↓ (3, 1|1, 3).

It is worth pointing out that f ∈ Zm|n is minimal with respect to the ordering just
defined if and only if f is typical and antidominant.

§2-c. The quantum group. Recall that the quantum integer associated to n ≥ 0
is [n] := (qn − q−n)/(q − q−1) and the quantum factorial is [n]! := [n][n−1] . . . [2][1].
Let − : Q(q)→ Q(q) be the field automorphism induced by q 7→ q−1. We will call
an additive map f : V →W between Q(q)-vector spaces antilinear if f(cv) = cf(v)
for all c ∈ Q(q), v ∈ V .

Let U denote the quantum group Uq(gl∞). By definition, this is theQ(q)-algebra
on generators Ea, Fa,Ka,K

−1
a (a ∈ Z) subject to relations

KaK
−1
a = K−1

a Ka = 1,
KaKb = KbKa,

KaEbK
−1
a = q(εa,εb−εb+1)Eb,

KaFbK
−1
a = q(εa,εb+1−εb)Fb,
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EaFb − FbEa = δa,b
Ka,a+1 −Ka+1,a

q − q−1
,

EaEb = EbEa if |a− b| > 1,

E2
aEb + EbE

2
a = (q + q−1)EaEbEa if |a− b| = 1,

FaFb = FbFa if |a− b| > 1,

F 2
aFb + FbF

2
a = (q + q−1)FaFbFa if |a− b| = 1.

Here, for any a, b ∈ Z, Ka,b denotes KaK
−1
b . Also introduce the divided powers

F
(r)
a := F ra /[r]! and E(r)

a := Era/[r]!. We have the bar involution on U , namely, the
unique antilinear automorphism such that Ea = Ea, Fa = Fa,Ka = K−1

a .
We regard U as a Hopf algebra with comultiplication ∆ : U → U ⊗U defined

on generators by

∆(Ea) = 1⊗ Ea + Ea ⊗Ka+1,a,

∆(Fa) = Ka,a+1 ⊗ Fa + Fa ⊗ 1,

∆(Ka) = Ka ⊗Ka.

This is the comultiplication from Kashiwara [K2], and is different from the one in
Lusztig’s book [L]. The counit ε is defined by ε(Ea) = ε(Fa) = 0, ε(Ka) = 1, the
antipode S by S(Ea) = −EaKa,a+1, S(Fa) = −Ka+1,aFa, S(Ka) = K−1

a .

§2-d. The space T m|n. Let V be the natural U -module, with basis {va}a∈Z and
action defined by

Kavb = qδa,bvb, Eavb = δa+1,bva, Favb = δa,bva+1.

Let W = V ∗ be the dual U -module, with basis {wa}a∈Z related to the basis of V
by 〈wa, vb〉 = (−q)−aδa,b. The action of U on W satisfies

Kawb = q−δa,bwb, Eawb = δa,bwa+1, Fawb = δa+1,bwa.

Let T m|n := W ⊗m ⊗ V ⊗n, viewed as a U -module in the natural way. Recall that
Zm|n denotes the set of all functions I(m|n)→ Z. For f ∈ Zm|n, we let

Mf = wf(−m) ⊗ · · · ⊗ wf(−1) ⊗ vf(1) ⊗ · · · ⊗ vf(n).

The vectors {Mf}f∈Zm|n give a basis for T m|n. A vector v in a U -module M is
said to be of weight ν ∈ P if Kav = q(ν,εa)v for all a ∈ Z. The weight of the vector
Mf is wt(f), as defined in (2.2).

We will often work with a completion T̂ m|n of T m|n. To define this formally,
let Zm|n≤d denote the set of all f ∈ Zm|n with f(i) ≤ d for all i ∈ I(m|n). Let T

m|n
≤d

denote the subspace of T m|n spanned by {Mf}f∈Zm|n≤d , and let π≤d : T m|n → T
m|n
≤d

denote projection along the basis. The filtration (kerπ≤d)d∈Z induces a topology
on the abelian group T m|n; see [Bou, Chapter III, §2.5]. Let

T̂ m|n = lim←−T
m|n
≤d

denote the corresponding completion, and identify T m|n with its image in T̂ m|n.
The projections π≤d extend by continuity to give maps π≤d : T̂ m|n → T

m|n
≤d . As

usual, we will view elements of T̂ m|n as infinite Q(q)-linear combinations of the
basis elements {Mf}f∈Zm|n whose projections onto each T

m|n
≤d are finite sums. A
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homomorphism θ : T m|n → T̂ m|n of abelian groups satisfying the compatibility
condition

π≤d(u) = 0 implies π≤d(θ(u)) = 0 for all u ∈ T m|n and all d� 0

is automatically continuous, hence extends uniquely to a continuous endomorphism
of T̂ m|n. In particular, the action of U lifts uniquely to a continuous action on
T̂ m|n, since Ea, Fa and Ka commute with π≤d for all d > a.

§2-e. The Iwahori-Hecke algebra. Associated to the symmetric group Sm|n
we have the Iwahori-Hecke algebra Hm|n. This is defined as the Q(q)-algebra on
generators H−m+1, . . . , H−1, H1, . . . , Hn−1 subject to relations

H2
i = 1− (q − q−1)Hi,

HiHi+1Hi = Hi+1HiHi+1,

HiHj = HjHi if |i− j| > 1.

For x ∈ Sm|n, we have the corresponding element Hx ∈ Hm|n, where Hx =
Hi1 · · ·Hir if x = si1 · · · sir is a reduced expression for x. The bar involution on
Hm|n is the unique antilinear automorphism such that Hx = H−1

x−1 , in particular
Hi = Hi + (q − q−1).

We define a linear right action of Hm|n on T m|n by the formulae

MfHi =


Mf ·si if f ≺ f · si,
q−1Mf if f = f · si,
Mf ·si − (q − q−1)Mf if f � f · si.

Since the action of Hm|n commutes with all π≤d, it lifts by continuity to T̂ m|n. As
is well known (see e.g. [D2]), the actions of U and Hm|n on T m|n commute with
one another, hence the actions on the completion T̂ m|n also commute.

§2-f. Some (anti)automorphisms. Let σ, τ : U → U be the antiautomorphisms
and ω : U → U be the automorphism defined by

σ(Ea) = E−1−a, σ(Fa) = F−1−a, σ(Ka) = K−a,

τ(Ea) = q−1Ka+1,aFa, τ(Fa) = qEaKa,a+1, τ(Ka) = Ka,

ω(Ea) = Fa, ω(Fa) = Ea, ω(Ka) = K−1
a .

Let τ : Hm|n → Hm|n be the antiautomorphism and ω : Hm|n → Hn|m be the
isomorphism defined by τ(Hi) = Hi and ω(Hi) = H−i for i ∈ I(m − 1|n − 1).
Introduce the linear map

(2.6) ω : T m|n → T n|m, Mf 7→Mω(f),

where ω(f) is as in §2-a. Note that ω extends by continuity to a linear map
T̂ m|n → T̂ n|m. Next let (., .)T be the symmetric bilinear form on T m|n defined
by

(2.7) (Mf ,Mg)T = δf,g

for f, g ∈ Zm|n. Finally, define an antilinear map

(2.8) σ : T m|n → T m|n, Mf 7→M−f .

The form (., .)T and the map σ do not extend to the completion.
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Lemma 2.9. (i) ω(XuH) = ω(X)ω(u)ω(H) for all X ∈ U , H ∈ Hm|n and
u ∈ T̂ m|n.

(ii) (XuH, v)
T

= (u, τ(X)vτ(H))
T

for all X ∈ U , H ∈Hm|n and u, v ∈ T m|n.
(iii) σ(XuH) = τ(σ(X))σ(u)H for all X ∈ U , H ∈Hm|n and u ∈ T m|n.

Proof. These are all checked directly for Hm|n. To prove them for U , one first
checks that τ and − ◦ σ are coalgebra automorphisms and ω is a coalgebra antiau-
tomorphism of U . Hence it suffices to check (i)–(iii) when m+ n = 1. �

§2-g. Generation. We proceed to prove that T̂ m|n is generated as a topological
U -module by the vectors Mf for typical f ∈ Zm|n.

Lemma 2.10. Suppose that f ∈ Zm|n and 1 ≤ i1 < · · · < ir ≤ n are such that
f(i1) = · · · = f(ir) = a + 1 and f(j) 6= a, a + 1 for all j ∈ {i1, i1 + 1, . . . , n} −
{i1, . . . , ir}. Let f ′ be the function with f ′(i1) = · · · = f ′(ir) = a and f ′(j) = f(j)
for all j 6= i1, . . . , ir. Then, for any g � f ,

E(r)
a Mg ∈ δf,gMf ′ +

∑
g′≺f ′

Z[q, q−1]Mg′ .

Proof. Take g � f . Recall the definition of dj ∈ Zm|n from §2-a. Note that E(r)
a Mg

is a linear combination of Mg′ ’s where g′ = g − dj1 − · · · − djr for j1 < · · · < jr ∈
I(m|n) such that

g(js) =
{
a if js < 0,
a+ 1 if js > 0.

Let us show that for such a g′, we have that g′ � f ′. By (2.4), we need to show
that #(g′, b, j) ≤ #(f ′, b, j) for all b ∈ Z and j ∈ I(m|n). Since g � f , we know
that #(g, b, j) ≤ #(f, b, j). So we are done except possibly for b = a. Suppose
then that #(g′, a, j) > #(f ′, a, j) for some j. Say i1, . . . , is < j ≤ is+1, . . . , ir and
j1, . . . , jt < j ≤ jt+1, . . . , jr. Then,

#(f ′, a, j) < #(g′, a, j) = #(g, a, j) + (r − t) ≤ #(f, a, j) + (r − t)
= #(f ′, a, j)− (r − s) + (r − t) = #(f ′, a, j) + s− t.

Hence, we must have that s > t. This implies in particular that j > 0, and using
this we get that

#(g, a+ 1, j) ≥ #(g′, a, j) > #(f ′, a, j) = #(f, a+ 1, j),

which is a contradiction. So indeed we must have that g′ � f ′. Finally suppose that
g′ = f ′. The assumption that f(j) 6= a, a+1 for j ∈ {i1, i1 +1, . . . , n}−{i1, . . . , ir}
means that we must have j1 ≤ i1, . . . , jr ≤ ir. Hence, f � g. Since we started with
the assumption that g � f , we therefore have g = f which completes the proof. �

Twisting with ω using Lemma 2.9(i), we also have the analogous statement for
F

(r)
a :

Lemma 2.11. Suppose that f ∈ Zm|n and −m ≤ ir < · · · < i1 ≤ −1 are such that
f(i1) = · · · = f(ir) = a + 1 and f(j) 6= a, a+ 1 for all j ∈ {−m, 1−m, . . . , i1} −
{i1, . . . , ir}. Let f ′ be the function with f ′(i1) = · · · = f ′(ir) = a and f ′(j) = f(j)
for all j 6= i1, . . . , ir. Then, for any g � f ,

F (r)
a Mg ∈ δf,gMf ′ +

∑
g′≺f ′

Z[q, q−1]Mg′ .
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Theorem 2.12. We can write each Mf as a (possibly infinite) Z[q, q−1]-linear
combination of terms of the form F

(r1)
a1 · · ·F (rs)

as Mg for a1, . . . , as ∈ Z, r1, . . . , rs ≥ 1
and typical g ∈ Zm|n.

Proof. To prove the theorem, it suffices to show for each d ∈ Z and f ∈ Zm|n that
we can writeMf as a finite linear combination of terms of the form F

(r1)
a1 · · ·F (rs)

as Mg

for typical g ∈ Zm|n modulo kerπ≤d. So fix d ∈ Z and f ∈ Zm|n. There are only
finitely many g � f with π≤dMg 6= 0. So proceeding by induction on the dominance
ordering, we may assume that every Mg with g ≺ f can be expressed as a finite
linear combination of terms of the form F

(r1)
a1 · · ·F (rs)

as Mg for typical g ∈ Zm|n
modulo kerπ≤d.

Let {a1 < a2 < · · · < as} = {f(−m), . . . , f(−1)} and let rt = #{i ∈ I(m|0) |
f(i) = at} for each t = 1, . . . , s. Choose k � 0 so that every element of the set
{f(−m) + k, . . . , f(−1) + k} exceeds every element of the set {f(1), . . . , f(n)}.
Define g ∈ Zm|n by

g(i) =
{
f(i) if i > 0,
f(i) + k if i < 0.

Note that g is typical by the choice of k. Now consider

F (rs)
as · · ·F

(rs)
as+k−1F

(rs−1)
as−1

· · ·F (rs−1)
as−1+k−1 · · ·F

(r1)
a1
· · ·F (r1)

a1+k−1Mg.

One checks using Lemma 2.11 that this equals Mf plus a Z[q, q−1]-linear combina-
tion of Mh’s with h ≺ f . So we are done by the induction hypothesis. �

Corollary 2.13. Suppose θ : T̂ m|n → T̂ m|n is a continuous U ,Hm|n-bimodule
endomorphism fixing Mf for all typical antidominant f ∈ Zm|n. Then θ is the
identity map.

Proof. If f is antidominant, then MfHx = Mf ·x for all x ∈ Sm|n. So for typical
antidominant f we have that θ(Mf ·x) = θ(MfHx) = θ(Mf )Hx = MfHx = Mf ·x.
This shows that θ fixes Mg for all typical g ∈ Zm|n. Now using the continuity of θ
and Theorem 2.12, we get that θ fixes all Mf . Hence by continuity again, θ is the
identity map. �

§2-h. Canonical bases. We now follow ideas of Lusztig [L, Chapter 27] to define
a canonical topological basis of T̂ m|n. We should note that in loc. cit., Lusztig
only considers finite dimensional quantum groups, but the techniques generalize to
our situation on passing to the completion. The first step in the construction is
to introduce a bar involution on the space T̂ m|n that is compatible with the bar
involutions on U and on Hm|n. The definition of this in Lusztig’s work involves
the quasi-R-matrix associated to U . One gets from [L, §27.3] a bar involution
− : T̂ m|n → T̂ m|n that satisfies property (iv), hence (i), in the theorem below,
and that is compatible with the bar involution on U . One then checks easily using
Lusztig’s definition that it is also compatible with the bar involution on Hm|n,
giving the existence half of the proof of the theorem. We will sketch a direct
construction of the bar involution on T̂ m|n below, independent of Lusztig’s work.

Theorem 2.14. There exists a unique continuous, antilinear map − : T̂ m|n →
T̂ m|n such that

(i) Mf = Mf for all typical antidominant f ∈ Zm|n;
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(ii) XuH = X uH for all X ∈ U , u ∈ T̂ m|n, H ∈Hm|n.

Moreover,

(iii) bar is an involution;
(iv) Mf = Mf+(∗) where (∗) is a (possibly infinite) Z[q, q−1]-linear combination

of Mg’s for g ≺ f ;
(v) ω(u) = ω(u) for all u ∈ T̂ m|n.

Proof. Let us first explain how to prove the uniqueness, and also the fact that bar
is necessarily an involution. Suppose that we are given two continuous antilinear
maps −,∼: T̂ m|n → T̂ m|n satisfying properties (i) and (ii). Then we can consider
the composite map

ϕ : T̂ m|n → T̂ m|n, u 7→ ũ.

This is a continuous U ,Hm|n-bimodule endomorphism of T̂ m|n fixing Mf for all
typical, antidominant f . Hence, ϕ is the identity map by Corollary 2.13. In par-
ticular, this gives that u = u and ˜̃u = u for each u ∈ T̂ m|n. Finally, applying ∼ to
both sides of the equation ũ = u gives that u = ũ for all u, whence uniqueness.

To get existence without appealing directly to Lusztig’s work, we need a little
more notation. For a partition λ = (λ1 ≥ λ2 ≥ · · · ), let |λ| denote the sum of its
parts, r(λ) denote the total number of non-zero parts, and rs(λ) denote the total
number of parts equal to s. Also let

p(λ) = (1− q2)r(λ)(−q)−|λ|
∏
s≥1

qrs(λ)(rs(λ)−1)/2[rs(λ)]!.

Finally, for a ∈ Z and a partition λ, let am|nλ ∈ Zm|n denote the function i 7→
a + λ|i|. Let Dm|n

λ denote the set of minimal length stabSm|n(am|nλ )\Sm|n-coset
representatives. For example, if λ = (2, 1, 1), then

M
0
3|2
λ

= w1 ⊗ w1 ⊗ w2 ⊗ v2 ⊗ v1,

D
3|2
λ = {1, s−1, s−1s−2, s1, s−1s1, s−1s−2s1}.

Now define − : T m|n → T̂ m|n to be the unique antilinear map satisfying the
following properties:

(B1) For a ∈ Z, w⊗ma ⊗ v⊗na =
∑
λ with

r(λ)≤m,n

p(λ)
[ ∑
x∈Dm|nλ

q`(x)M
a
m|n
λ ·x

]
.

(B2) If x ∈ Sm|n is the unique element of minimal length such that f · x is
antidominant, then Mf = Mf ·xH

−1
x .

(B3) If all elements of {f(−m), . . . , f(−k − 1), f(l + 1), . . . , f(n)} are strictly
greater than all elements of {f(−k), . . . , f(−1), f(1), . . . , f(l)} for some 1 ≤
k ≤ m, 1 ≤ l ≤ n, then

Mf =
∑

g∈I(m−k|n−l)
h∈I(k|l)

agbhwg(k−m) ⊗ · · · ⊗ wg(−1) ⊗Mh ⊗ vg(1) ⊗ · · · ⊗ vg(n−l),
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where

wf(−m) ⊗ · · · ⊗ wf(−k−1) ⊗ vf(l+1) ⊗ · · · ⊗ vf(n) =
∑

g∈I(m−k|n−l)
agMg,

wf(−k) ⊗ · · · ⊗ wf(−1) ⊗ vf(1) ⊗ · · · ⊗ vf(l) =
∑

h∈I(k|l)
bhMh.

The following property is a consequence of (B1), and is useful in inductive argu-
ments. We omit the proof.

(B1)′ For m,n > 0 and a ∈ Z,

w⊗ma ⊗ v⊗na = wa ⊗ w⊗(m−1)
a ⊗ v⊗na

+ qm−n(q − q−1)
∑
l≥1

(−q)1−lwa+l ⊗ w⊗(m−1)
a ⊗ v⊗(n−1)

a ⊗ va+lX,

where X = 1 + qH−1
n−1 + · · ·+ qn−1H−1

n−1 · · ·H−1
1 .

For example:

w⊗ma = w⊗ma , v⊗na = v⊗na ,

wa ⊗ va = wa ⊗ va + (q − q−1)
∑
l≥1

(−q)1−lwa+l ⊗ va+l.

Now one checks easily that the map − : T m|n → T̂ m|n just defined satisfies (iv),
hence (i), and (v). In particular, (iv) implies that bar is continuous, so it extends
uniquely to a continuous antilinear map − : T̂ m|n → T̂ m|n. One finally needs to
show that it satisfies (ii). This is done by a lengthy—but elementary—verification,
using (B1), (B1)′, (B2) and (B3) directly. We omit the details. �

Now we appeal to the following general lemma originating in [KL], also used
implicitly in [L, §27.3]. See [D1, 1.2] for a short proof.

Lemma 2.15. Let (I,�) be a partially ordered set with the property that {j ∈ I |
j � i} is finite for all i ∈ I. Suppose that M is a Q(q)-vector space with basis
{ui}i∈I equipped with an antilinear involution − : M →M such that ui = ui + (∗)
for each i ∈ I, where (∗) is a Z[q, q−1]-linear combination of uj’s for j ≺ i. Then
there exist unique bases {xi}i∈I , {yi}i∈I for M such that

(i) xi = xi and yi = yi;
(ii) xi ∈ ui +

∑
j∈I qZ[q]uj and yi ∈ ui +

∑
j∈I q

−1Z[q−1]uj ,
for each i ∈ I. Moreover, the coefficient of uj in xi (resp. yi) is zero unless j � i.

Applying this to the space T
m|n
≤d for fixed d ∈ Z, the basis {Mf}f∈Zm|n≤d and the

antilinear involution π≤d ◦ − : T
m|n
≤d → T

m|n
≤d , we deduce:

Lemma 2.16. There exist unique bases {T (d)
f }f∈Zm|n≤d , {L(d)

f }f∈Zm|n≤d for T
m|n
≤d such

that

(i) π≤d(T
(d)
f ) = T

(d)
f and π≤d(L

(d)
f ) = L

(d)
f ;

(ii) T
(d)
f ∈Mf +

∑
g∈Zm|n≤d

qZ[q]Mg and L
(d)
f ∈Mf +

∑
g∈Zm|n≤d

q−1Z[q−1]Mg.

Moreover, the coefficient of Mg in T
(d)
f (resp. L(d)

f ) is zero unless g � f .
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Passing to the completion gives us bases for T̂ m|n:

Theorem 2.17. There exist unique topological bases {Tf}f∈Zm|n, {Lf}f∈Zm|n for
T̂ m|n such that

(i) Tf = Tf and Lf = Lf ;
(ii) Tf ∈Mf +

∑̂
g∈Zm|nqZ[q]Mg and Lf ∈Mf +

∑̂
g∈Zm|nq

−1Z[q−1]Mg.

Moreover,

(iii) Tf = Mf + (∗) and Lf = Mf + (∗∗), where (∗) and (∗∗) are (possibly
infinite) linear combinations of Mg’s for g ≺ f ;

(iv) ω(Tf ) = Tω(f) and ω(Lf ) = Lω(f).

Proof. Take e ≥ d and f ∈ Zm|n≤d . Consider the elements T (e)
f ∈ T

m|n
≤e and T

(d)
f ∈

T
m|n
≤d given by Lemma 2.16. We know that if π≤d(u) = 0 then π≤d(u) = 0. Hence

we have that π≤d(π≤d(u)− u) = 0 for all u ∈ T̂ m|n. Applying this to u = T
(e)
f we

deduce that π≤d(π≤d(T
(e)
f )) = π≤d(T

(e)
f ). Hence by the uniqueness in Lemma 2.16,

we have that π≤d(T
(e)
f ) = T

(d)
f . Similarly, π≤d(L

(e)
f ) = L

(d)
f . Hence, for all f ∈ Zm|n

there exist unique elements Tf , Lf ∈ T̂ m|n such that

π≤d(Tf ) = T
(d)
f , π≤d(Lf ) = L

(d)
f

for all d ∈ Z and all f ∈ Zm|n≤d . Using the lemma for each d ∈ Z, one now easily
checks that these satisfy (i)–(iii), while (iv) follows from Theorem 2.14(v). �

We call the basis {Tf}f∈Zm|n the canonical basis of T̂ m|n, and {Lf}f∈Zm|n is
the dual canonical basis. Let us introduce notation for the coefficients: let

(2.18) Tf =
∑

g∈Zm|n
tg,f (q)Mg, Lf =

∑
g∈Zm|n

lg,f (q)Mg

for polynomials tg,f (q) ∈ Z[q] and lg,f (q) ∈ Z[q−1]. We know that tg,f (q) =
lg,f (q) = 0 unless g � f , and that tf,f (q) = lf,f (q) = 1.

Example 2.19. If m = n = 1, the bases {Tf}f∈Zm|n and {Lf}f∈Zm|n are

{wa ⊗ vb | a, b ∈ Z, a 6= b} ∪ {wa ⊗ va + qwa+1 ⊗ va+1 | a ∈ Z},
{wa ⊗ vb | a, b ∈ Z, a 6= b} ∪ {wa ⊗ va − q−1wa+1 ⊗ va+1

+ q−2wa+2 ⊗ va+2 − · · · | a ∈ Z},

respectively.

§2-i. Duality. We wish next to explain the relationship between the bases
{Tf}f∈Zm|n and {Lf}f∈Zm|n. Recall the definitions (2.7) and (2.8). Define a new
bilinear form 〈., .〉

T
on T̂ m|n by

(2.20) 〈u, v〉
T

= (u, σ(v))
T

for u, v ∈ T̂ m|n. Note that this makes sense, even though the expression σ(v) may
not make sense in its own right. Indeed, it is clear that on expanding u and v in
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terms of the basis {Mf}, there are only finitely many f such that Mf is involved
in u and M−f is involved in v. So we can interpret (u, σ(v))T as∑

f∈Zm|n
(u,Mf)T (M−f , v)T ,

all but finitely many terms in the sum being zero.

Lemma 2.21. 〈XuH, v〉T = 〈u, σ(X)vτ(H)〉T for all X ∈ U , H ∈ Hm|n and
u, v ∈ T̂ m|n.

Proof. According to Lemma 2.9, we have that

〈XuH, v〉T = (XuH, σ(v))T = (u, τ(X)σ(v)τ(H))T

= (u, τ(σ(σ(X)))σ(v)τ(H))T = (u, σ(σ(X)vτ(H)))T
= (u, σ(σ(X)vτ(H)))T = 〈u, σ(X)vτ(H)〉T .

�

Lemma 2.22. The bilinear form 〈., .〉T is symmetric.

Proof. Let us first show that 〈u,Mf〉T = 〈Mf , u〉T for all u ∈ T̂ m|n and typical
antidominant f ∈ Zm|n. We need to show that (u,M−f)

T
= (u,M−f)

T
, for which it

suffices to consider the special case u = Mg. Then, (Mg,M−f)T = δg,−f . Consider
(Mg,M−f)

T
. By Theorem 2.14(iv), it is zero unless wt(g) = wt(−f). So since −f

is typical, g must be too. By Theorem 2.14(iv),

Mg = Mg + (a linear combination of Mh’s with h ≺ g).

Since f is antidominant, we deduce that (Mg,M−f )T = (Mg,M−f)T = δg,−f .
Now we show that 〈u,Mf 〉T = 〈Mf , u〉T for all u ∈ T̂ m|n and all typical f ∈

Zm|n. Let x ∈ Sm|n be of minimal length such that f ·x is antidominant. Then, by
the previous paragraph and Lemma 2.21, we have that

〈u,Mf 〉T = 〈u,Mf ·xTx−1〉T = 〈uTx,Mf ·x〉T
= 〈Mf ·x, uTx〉T = 〈Mf ·xTx−1 , u〉

T
= 〈Mf , u〉T ,

as required.
Now let us consider the general case. In view of Theorem 2.12, we may assume

that v = XMg for typical g and X = F
(r1)
a1 · · ·F (rs)

as ∈ U . Then, by the previous
paragraph and Lemma 2.21, we have that

〈u, v〉
T

= 〈u,XMg〉T = 〈σ(X)u,Mg〉T
= 〈Mg, σ(X)u〉T = 〈XMg, u〉T = 〈v, u〉T .

This completes the proof. �

The following theorem characterizes {Lf}f∈Zm|n uniquely as the dual basis to
{T−g}g∈Zm|n under the bilinear form 〈., .〉T .

Theorem 2.23. For f, g ∈ Zm|n, 〈Lf , T−g〉T = δf,g.
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Proof. Consider 〈Lf , T−g〉T = (Lf , σ(T−g))T . We observe that Lf is equal to Mf

plus a q−1Z[q−1]-linear combination of Mh’s with h ≺ f . Also σ(T−g) equals Mg

plus a q−1Z[q−1]-linear combination of Mh’s with h � g. Hence, 〈Lf , T−g〉T is zero
unless f � g, it is 1 if f = g and it is in q−1Z[q−1] if f � g.

On the other hand, by Lemma 2.22, 〈Lf , T−g〉T = (σ(Lf ), T−g)T . Hence, arguing
as in the previous paragraph, 〈Lf , T−g〉T is zero unless f � g, it is 1 if f = g and
it is in qZ[q] if f � g. Since qZ[q] ∩ q−1Z[q−1] = {0}, this completes the proof. �

Corollary 2.24. For f ∈ Zm|n,

Mf =
∑

g∈Zm|n
t−f,−g(q−1)Lg =

∑
g∈Zm|n

l−f,−g(q−1)Tg.

Proof. By the theorem, we can write Mf =
∑

g∈Zm|n〈Mf , T−g〉T Lg. Now a com-
putation from the definition (2.20) of the form 〈., .〉

T
gives that 〈Mf , T−g〉T =

t−f,−g(q−1). The second equality is proved similarly. �

§2-j. An algorithm. The goal in this subsection is to explain an algorithm to
compute T

(d)
f (cf. Lemma 2.16) for each d ∈ Z and f ∈ Zm|n≤d . Assuming a

certain positivity conjecture which ensures that the T (d)
f converge to Tf in finitely

many steps, the algorithm can be modified to actually compute the canonical basis
elements Tf themselves.

The algorithm proceeds by induction on the degree of atypicality #f of f . To
begin with, we describe the base of the induction by explaining how to compute Tf
(hence all T (d)

f ) for typical f . If f is typical and antidominant, then we have that
Tf = Mf and we are done. Otherwise, we can find i ∈ I(m − 1|n − 1) such that
f · si ≺ f . We may assume by induction that Tf ·si is already known, and consider
the bar invariant element Tf ·si(Hi + q), which we view as a first approximation to
Tf . It equals Mf plus a sum of terms pg,f (q)Mg for polynomials pg,f (q) ∈ Z[q]
and g with g ≺ f (there being only finitely many such g’s since f is typical). For
each such g with pg,f (0) 6= 0, we make a correction by subtracting pg,f (0)Tg from
our first approximation. The result is a bar invariant expression that equals Mf

plus a qZ[q]-linear combination of Mg’s. This must be Tf by the uniqueness in
Theorem 2.17.

We have just described the usual algorithm to compute the parabolic Kazhdan-
Lusztig polynomials associated to the Hecke algebra Hm|n [KL], [Deo]. To make
this precise, let us recall the definition of the latter, following [So1]. Let f ∈ Zm|n
be antidominant. Then, Sf := stabSm|n(f) is a parabolic subgroup of Sm|n. Let
Hf be the corresponding parabolic subalgebra of Hm|n. Let 1Hf

denote the one
dimensional right Hf -module on basis 1 with action 1Hi = q−11 for each Hi ∈Hf .
We consider the induced module 1Hf

⊗Hf
Hm|n. This has a basis given by the

elements M (f)
x := 1 ⊗ Hx as x runs over the set Df of minimal length Sf\Sm|n-

coset representatives. The bar involution on 1Hf
⊗Hf

Hm|n is the antilinear map
defined by 1⊗Hx := 1⊗Hx. The Kazhdan-Lusztig basis of 1Hf

⊗Hf
Hm|n is the

unique bar invariant basis {C(f)
x }x∈Df such that

C(f)
x ∈M (f)

x +
∑
y∈Df

qZ[q]M (f)
y .
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The corresponding parabolic Kazhdan-Lusztig polynomials are defined from

C(f)
x =

∑
y∈Df

m(f)
y,x(q)M (f)

y .

The relationship to our situation is as follows:

Lemma 2.25. Suppose that f is typical and antidominant. Then, for x ∈ Df and
g ∈ Zm|n,

tg,f ·x(q) =
{
m

(f)
y,x(q) if g = f · y for some y ∈ Df ,

0 otherwise.

Proof. Note that MfHi = q−1Mf for all Hi ∈ Hf . So we get from Frobenius
reciprocity a unique Hm|n-module homomorphism θ : 1Hf

⊗Hf
Hm|n → T m|n

under which M (f)
x maps to Mf ·x. By (B2) from the proof of Theorem 2.14, Mf ·x =

MfHx. So θ(u) = θ(u) for each u ∈ 1Hf
⊗Hf

Hm|n. Therefore, θ(C(f)
x ) is bar

invariant, and it equals Mf ·x plus a qZ[q]-linear combination of other Mg’s. Hence,
θ(C(f)

x ) = Tf ·x by the uniqueness. This shows that for each x ∈ Df ,

Tf ·x =
∑
y∈Df

m(f)
y,x(q)Mf ·y.

The lemma follows. �
Remark 2.26. In the case m = 0, this lemma shows that in type A the parabolic
Kazhdan-Lusztig polynomials coincide with the coefficients of the canonical basis
of V ⊗n. This is a well-known observation; see for example [FKK].

Now we describe the algorithm to compute T
(d)
f for atypical f . We assume

therefore that we are given d ∈ Z and f ∈ Zm|n≤d with #f > 0, and that we

have already constructed an algorithm to compute T (e)
g for each e ∈ Z and g with

#g < #f . Let us write f− = (f(−m), . . . , f(−1)) and f+ = (f(1), . . . , f(n)).
Define a1 to be the greatest integer that appears in both the tuples f− and f+.
Now we iterate a certain bumping procedure:

Let n1,1 be the number of entries equal to a1 appearing in the tuple f+, and
label all such entries. If there are no entries equal to (a1 +1) appearing to the right
of labeled a1’s, move on to the next paragraph. Otherwise, let n1,2 be the number
of entries equal to (a1 + 1) appearing to the right of labeled a1’s, and label all such
(a1 + 1)’s. Next, if there are no (a1 + 2)’s to the right of labeled (a1 + 1)’s, move on
to the next paragraph. Otherwise let n1,3 be the number of (a1 + 2)’s to the right
of labeled (a1 + 1)’s, and label all such (a1 + 2)’s. Continue in this way.

When the process just described terminates, we are left with a sequence n1,1,
n1,2, . . . , n1,k1 for some k1 ≥ 1, where there are n1,i labeled (a1 +i−1)’s in the tuple
f+. We define X1 := E

(n1,k1 )

a1+k1−1 · · ·E
(n1,2)
a1+1 E

(n1,1)
a1 and a2 := a1 + k1. If there are no

entries equal to a2 in the tuple f−, the bumping procedure is finished. Otherwise,
we need to repeat the bumping procedure but applied to f− instead, as follows.
Let n2,1 be the number of entries equal to a2 appearing in the tuple f−, and label
all such entries. If there are no entries equal to (a2 + 1) appearing to the left of
labeled a2’s, move on to the next paragraph. Otherwise, let n2,2 be the number
of entries equal to (a2 + 1) appearing to the left of labeled a2’s, and label all such
(a2 + 1)’s. Continue in this way until the process terminates.
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We are left with a sequence n2,1, n2,2, . . . , n2,k1 for some k2 ≥ 1, where there are
n2,i labeled (a2 + i−1)’s in the tuple f−. Let X2 := F

(n2,k2 )

a2+k2−1 · · ·F
(n2,2)
a2+1 F

(n2,1)
a2 and

a3 := a2 + k2. This time if there are no entries equal to a3 in the tuple f+, the
bumping procedure is finished. Otherwise, we repeat the whole process once more
from the beginning, but using a3 in place of a1, to construct X3, a4, X4, . . . and so
on.

When the bumping procedure finally ends, we are left with a sequence of mono-
mials X1, . . . , XN and integers a1 < a2 < · · · < aN+1. Increase all labeled entries in
the tuples f−, f+ by 1 and let h ∈ Zm|n be the corresponding function. Note that
#h < #f . So by induction, we can compute T (e)

h , where e = max(d, aN+1). Now
consider the bar invariant element π≤d(XN · · ·X1T

(e)
h ) ∈ T

m|n
≤d , which is our first

approximation to T (d)
f . By Lemmas 2.10 and 2.11, it equals Mf plus a finite linear

combination of terms pg,f (q)Mg for polynomials pg,f (q) ∈ Z[q, q−1] and g ∈ Zm|n≤d
with g ≺ f . Now we make corrections to the first approximation. Let g ≺ f be
maximal such that pg,f (q) /∈ qZ[q]. Let p′g,f (q) be the unique bar invariant ele-
ment of Z[q, q−1] such that p′g,f (q) ≡ pg,f (q) (mod qZ[q]). Proceeding by induction

on the ordering on Zm|n≤d , we may assume that T (d)
g is already known. Subtract

p′g,f (q)T (d)
g from the first approximation, to obtain a second approximation to T (d)

f .
Repeating the correction procedure, we reduce in finitely many steps to a bar in-
variant expression that equals Mf plus a qZ[q]-linear combination of Mg’s. This
must be T (d)

f by the uniqueness. We are done.

Example 2.27. We explain how to compute T (4)
(0,4,1|0,2,3) using the algorithm. The

bumping procedure proceeds as follows:

(0, 4, 1|0, 2, 3) a1=0−→ (0, 4, 1|0, 2, 3) a2=1−→ (0, 4, 1|0, 2, 3)
a3=2−→ (0, 4, 1|0, 2, 3) a4=4−→ (0, 4, 1|0, 2, 3).

Now, (0, 5, 2|1, 3, 4) is typical, so we can compute π≤4(F4E3E2F1E0T
(5)
(0,5,2|1,3,4)))

using the Kazhdan-Lusztig algorithm. It turns out that this equals M(0,4,1|0,2,3) +
M(1,4,1|1,2,3) plus a qZ[q]-linear combination of lower terms. Now one computes
T

(4)
(1,4,1|1,2,3) needed for the correction procedure by repeating the algorithm (which

is rather lengthy). Finally one obtains

T
(4)
(0,4,1|0,2,3) = M(0,4,1|0,2,3) + qM(1,4,0|0,2,3) + qM(4,0,1|0,2,3)

+ q2M(1,4,1|1,2,3) + q2M(4,1,0|0,2,3) + q3M(4,1,1|1,2,3).

Note that there is no reason why we chose to start the bumping procedure with
f+ in describing the algorithm. One could also start the bumping procedure with
f−, increasing all entries in f− equal to a1 by 1, and so on. In practice, one should
always choose to start with the side for which the resulting word XN · · ·X1 ∈ U
is as short as possible. In the present example, it is better to start the bumping
procedure with f−, since then there is only one step:

(0, 4, 1|0, 2, 3) a1=0−→ (0, 4, 1|0, 2, 3).
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Thus, we need to compute π≤4(F0T
(4)
(1,4,1|0,2,3)) instead, which is much quicker

as only one generator of U needs to be applied. It turns out that this equals
T

(4)
(0,4,1|1,2,3) directly (indeed it already equals T(0,4,1|1,2,3)), with no corrections

needed.

Computer calculations using the above algorithm support the following positivity
conjecture:

Conjecture 2.28. Let f ∈ Zm|n.
(i) The coefficients tg,f (q) of Tf when expanded in the basis {Mg}g∈Zm|n belong

to N[q].
(ii) The coefficients lg,f (q) of Lf when expanded in the basis {Mg}g∈Zm|n belong

to N[−q−1].
(iii) For each a ∈ Z, f ∈ Zm|n and r ≥ 1, the coefficients of E(r)

a Tf and F (r)
a Tf

when expanded in the basis {Tg}g∈Zm|n belong to N[q, q−1].
(iv) For each a ∈ Z, f ∈ Zm|n and r ≥ 1, the coefficients of E(r)

a Lf and F (r)
a Lf

when expanded in the basis {Lg}g∈Zm|n belong to N[q, q−1].

If this positivity conjecture is true, it follows in particular that each Tf belongs to
T m|n rather than the completion T̂ m|n, i.e. each Tf is a finite linear combination
of Mg’s. To see this, we modify the above algorithm to obtain an algorithm that
computes Tf itself (not just the T (d)

f ’s) in finitely many steps, as follows. To start
with, one follows the bumping procedure to obtain h and the elements X1, . . . , XN ∈
U exactly as above. Since #h < #f , we may assume that Th is known inductively
and is a finite sum of Mg’s. Consider XN · · ·X1Th ∈ T m|n, and choose e to be
minimal so that XN · · ·X1Th ∈ T

m|n
≤e . In view of Conjecture 2.28(iii), XN · · ·X1Th

equals Tf plus a N[q, q−1]-linear combination of Tg’s. So by Conjecture 2.28(i), we
must have that Tf ∈ T

m|n
≤e , hence Tf = T

(e)
f . Now follow the above algorithm to

compute T (e)
f .

§2-k. Crystal structures. Finally in this section, we review some results of
Kashiwara; see e.g. [K2] for the basic language used here. Let A be the subring of
Q(q) consisting of rational functions having no pole at q = 0. Evaluation at q = 0
induces an isomorphism A /qA → Q.

Let VA be the A -lattice in V spanned by the va’s, and let WA be the A -lattice
in W spanned by the wa’s. Then, VA together with the basis of the Q-vector
space VA /qVA given by the images of the va’s is a lower crystal basis for V at
q = 0 in the sense of [K2, 4.1]. Similarly, WA together with the basis for WA /qWA

given by the images of the wa’s is a lower crystal basis for W at q = 0. Let
T
m|n

A = W ⊗mA ⊗A V ⊗nA be the A -lattice in T m|n spanned by the Mf ’s. Then,
by [K2, Theorem 4.1], T

m|n
A together with the basis for T

m|n
A /qT

m|n
A given by

the images of the Mf for f ∈ Zm|n is a lower crystal basis for T m|n at q = 0.
Moreover, we can easily describe the associated crystal graph using Kashiwara’s
tensor product rule.

To do this, let us identify the set {Mf + qT
m|n

A }f∈Zm|n underlying the crystal
basis with the set Zm|n in the obvious way. Then, Kashiwara’s crystal operators
induce maps Ẽ′a, F̃ ′a : Zm|n → Zm|n t {∅}. (We are using Ẽ′a, F̃

′
a because Ẽa, F̃a

are used for something else later on.) Fix a ∈ Z and f ∈ Zm|n. The a-signature



202 JONATHAN BRUNDAN

(σ−m, . . . , σ−1, σ1, . . . , σn) of f is defined by

(2.29) σi =


+ if i > 0 and f(i) = a, or if i < 0 and f(i) = a+ 1,
− if i > 0 and f(i) = a+ 1, or if i < 0 and f(i) = a,
0 otherwise.

From this, we form the reduced a-signature by successively replacing subsequences
of the form +− (possibly separated by 0’s) in the signature with 00 until no −
appears to the right of a +. Recall the definition of dj ∈ Zm|n from §2-a. We define

Ẽ′a(f) =
{
∅ if there are no −’s in the reduced a-signature,
f − dj if the rightmost − is in position j ∈ I(m|n),

and

F̃ ′a(f) =
{
∅ if there are no +’s in the reduced a-signature,
f + dj if the leftmost + is in position j ∈ I(m|n).

Also let

ε′a(f) = max{r ≥ 0 | (Ẽ′a)r(f) 6= 0}
= the total number of −’s in the reduced a-signature,

ϕ′a(f) = max{r ≥ 0 | (F̃ ′a)r(f) 6= 0}
= the total number of +’s in the reduced a-signature.

Then, the datum (Zm|n, Ẽ′a, F̃ ′a, ε′a, ϕ′a,wt) is the crystal associated to the module
T m|n.

Example 2.30. Consider the function f = (3, 6, 2, 0, 2, 1|3, 2, 1) ∈ Z6|3. The 2-
signature is (+, 0,−, 0,−, 0|−,+, 0). Cancelling off +− pairs, we deduce that the
reduced 2-signature is (0, 0, 0, 0,−, 0|−,+, 0). Hence, the 2-string through f in the
crystal graph is

(3, 6, 2, 0, 3, 1|2, 2, 1)
F̃ ′2−→ (3, 6, 2, 0, 2, 1|2, 2, 1)

F̃ ′2−→ (3, 6, 2, 0, 2, 1|3, 2, 1)

F̃ ′2−→ (3, 6, 2, 0, 2, 1|3, 3, 1).

Theorem 2.31. Let f ∈ Zm|n and a ∈ Z.

(i) EaTf = [ϕ′a(f) + 1]TẼ′a(f) +
∑̂
g∈Zm|nu

a
g,fTg, where the coefficient uag,f be-

longs to q2−ϕ′a(g)Z[q] and is zero unless ε′b(g) ≥ ε′b(f) for all b ∈ Z.
(ii) FaTf = [ε′a(f)+1]TF̃ ′a(f)+

∑̂
g∈Zm|nv

a
g,fTg, where the coefficient vag,f belongs

to q2−ε′a(g)Z[q] and is zero unless ϕ′b(g) ≥ ϕ′b(f) for all b ∈ Z.

(In (i), resp. (ii), the first term on the right-hand side should be omitted if Ẽ′a(f),
resp. F̃ ′a(f), equals ∅.)

Proof. Fix d ∈ Z, and consider T = T
m|n
≤d , which is an integrable module in the

sense of [K1, 1.3] with respect to the subalgebra of U generated by all Ea, Fa,K±1
b

for a < d, b ≤ d. Let T0 (resp. TQ) be the A - (resp. Q[q, q−1]-)lattice in T
spanned by the basis elements {Mf}f∈Zm|n≤d . Let T∞ = π≤d(T0), an A -lattice in

T . The canonical map TQ ∩ T0 ∩ T∞ → T0/qT0 is an isomorphism; this follows
at once from Lemma 2.16 since that shows that all three lattices are generated by
the elements {T (d)

f }f∈Zm|n≤d . The preimage of the crystal basis element Mf + qT0
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is T (d)
f , for each f ∈ Zm|n≤d . In the language of Kashiwara [K1], this shows that

(TQ,T0,T∞) is a balanced triple, and that {T (d)
f }f∈Zm|n≤d is a lower global crystal

basis for T at q = 0.
Now we get from [K1, Proposition 5.3.1] (which is about upper global crystal

bases) and an argument involving duality [K1, §3.2], that

EaT
(d)
f = [ϕ′a(f) + 1]T (d)

Ẽ′a(f)
+

∑
g∈Zm|n≤d

uag,fT
(d)
g ,

where the coefficient uag,f belongs to q2−ϕ′a(g)Z[q] and is zero unless ε′b(g) ≥ ε′b(f)
for all b < d. Taking the limit as d→∞, we get (i). The proof of (ii) is similar. �

We will also meet certain dual crystal operators on Zm|n. Define

Ẽ∗a(f) := −F̃ ′−1−a(−f), F̃ ∗a (f) := −Ẽ′−1−a(−f),(2.32)

ε∗a(f) := ϕ′−1−a(−f), ϕ∗a(f) := ε′−1−a(−f).(2.33)

These can be described explicitly in a similar way to the above: for fixed a ∈ Z and
f ∈ Zm|n, let (σ−m, . . . , σ−1, σ1, . . . , σn) be the a-signature as defined in (2.29).
Form the dual reduced a-signature by successively replacing sequences of the form
−+ (possibly separated by 0’s) with 00 until no − appears to the left of a +. Then:

Ẽ∗a(f) =
{

0 if there are no −’s in the dual reduced a-signature,
f − dj if the leftmost − is in position j ∈ I(m|n),

and

F̃ ∗a (f) =
{

0 if there are no +’s in the dual reduced a-signature,
f + dj if the rightmost + is in position j ∈ I(m|n).

Also

ε∗a(f) = the total number of −’s in the dual reduced a-signature,

ϕ∗a(f) = the total number of +’s in the dual reduced a-signature.

In this way, we obtain the dual crystal structure (Zm|n, Ẽ∗a , F̃ ∗a , ε∗a, ϕ∗a,wt) on the
underlying set Zm|n.

Theorem 2.34. Let f ∈ Zm|n and a ∈ Z.

(i) EaLf = [ε∗a(f)]LẼ∗a(f) +
∑̂
g∈Zm|nw

a
g,fLg, where the coefficient wag,f belongs

to q2−ε∗a(f)Z[q] and is zero unless ϕ∗b(g) ≤ ϕ∗b(f) for all b ∈ Z.
(ii) FaLf = [ϕ∗a(f)]LF̃∗a (f) +

∑̂
g∈Zm|nx

a
g,fLg, where the coefficient xag,f belongs

to q2−ϕ∗a(f)Z[q] and is zero unless ε∗b(g) ≤ ε∗b(f) for all b ∈ Z.

Proof. Dualize Theorem 2.31 using Theorem 2.23 and Lemma 2.21. �

3. Exterior algebra

Now we descend from the tensor space T m|n to Em|n. We continue with the
same notation as in section 2.

§3-a. The space Em|n. Let w0 denote the longest element of Sm|n. Let

(3.1) H0 :=
∑

x∈Sm|n

(−q)`(x)−`(w0)Hx ∈Hm|n.
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The first lemma summarizes some elementary properties.

Lemma 3.2. The following properties hold:
(i) HiH0 = −qH0 = H0Hi for any i ∈ I(m− 1|n− 1);
(ii) H0 = H0;
(iii) H2

0 = −[m]![n]!H0;
(iv) H0 = τ(H0);
(v) the map ω : Hm|n →Hn|m maps H0 ∈Hm|n to H0 ∈Hn|m.

Proof. Part (i) is an easy exercise. For (ii), use [So1, Proposition 2.9] and apply
the map dia there. For (iii), one gets at once using (i) that

H2
0 =

∑
x∈Sm|n

(−q)`(x)−`(w0)HxH0 =
∑

x∈Sm|n

(−q)2`(x)−`(w0)H0.

Now use the well-known formula for the Poincaré polynomial of Sm|n to rewrite the
sum. Finally, (iv) and (v) are obvious. �

Let Em|n := T m|nH0, a U -submodule of T m|n. Note that Em|n is the q-
analogue of the exterior power

∧mW ⊗
∧nV . Form the completion Êm|n = T̂ m|nH0

as in §2-d. By Lemmas 2.9(i) and 3.2(v), the restriction of the map ω : T̂ m|n →
T̂ n|m is an isomorphism ω : Êm|n → Ê n|m.

We will call f ∈ Zm|n dominant if f(−m) < · · · < f(−1), f(1) > · · · > f(n).
We warn the reader that the inequality signs here are strict, unlike in the earlier
definition of antidominant! Let Zm|n+ denote the set of all dominant f ∈ Zm|n. For
f ∈ Zm|n+ , let

(3.3) Kf := Mf ·w0H0 ∈ Em|n.

The following lemma implies that the {Kf}f∈Zm|n+
form a basis for Em|n.

Lemma 3.4. Suppose f ∈ Zm|n and let x ∈ Sm|n be the unique element of minimal
length such that f · x is antidominant. Then,

MfH0 =
{

(−q)`(x)Kf ·xw0 if f · xw0 is dominant,
0 otherwise.

Proof. We have that Mf = Mf ·xHx−1 . So applying Lemma 3.2(i), MfH0 =
Mf ·xHx−1H0 = (−q)`(x)Mf ·xH0. Finally, note that if f · xw0 is not dominant,
then Mf ·xH0 = 0. �

§3-b. Canonical bases. Since H0 = H0 by Lemma 3.2(ii), the bar involution on
T̂ m|n leaves Êm|n invariant. Moreover, for dominant f , Kf = Mf ·w0H0. So using
Lemma 3.4 and the explicit description of Mf ·w0 given by (B1) and (B3) in the
proof of Theorem 2.14, we see that Kf = Kf +(∗), where (∗) is a (possibly infinite)
Z[q, q−1]-linear combination of Kg’s for g ∈ Zm|n+ with g ≺ f . Moreover, for typical
dominant f , we have that Kf = Kf . As in Theorem 2.14, these properties uniquely
characterize the bar involution on Êm|n:

Theorem 3.5. There exists a unique continuous, antilinear map − : Êm|n → Êm|n

such that
(i) Kf = Kf for all typical f ∈ Zm|n+ ;
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(ii) Xu = X u for all X ∈ U and u ∈ Êm|n.

Moreover,

(iii) bar is an involution;
(iv) Kf = Kf+(∗) where (∗) is a (possibly infinite) Z[q, q−1]-linear combination

of Kg’s for dominant g ≺ f ;
(v) ω(u) = ω(u) for all u ∈ Êm|n.

Proof. We have already proved the existence above. For uniqueness, note on apply-
ing H0 to the conclusion of Theorem 2.12 that we can write each Kf as a possibly
infinite linear combination of XgKg’s for Xg ∈ U and typical g ∈ Zm|n+ . Hence, as
in Corollary 2.13, the only continuous U -endomorphism of Êm|n that fixes Kf for
all typical f ∈ Zm|n+ is the identity map. Now using this one gets uniqueness by
exactly the same argument as in the proof of Theorem 2.14. �

Now applying the general principles used in the proof of Theorem 2.17, we de-
duce:

Theorem 3.6. There exist unique topological bases {Uf}f∈Zm|n+
, {Lf}f∈Zm|n+

for

Êm|n such that

(i) Uf = Uf and Lf = Lf ;
(ii) Uf ∈ Kf +

∑̂
g∈Zm|n+

qZ[q]Kg and Lf ∈ Kf +
∑̂
g∈Zm|n+

q−1Z[q−1]Kg.

Moreover,

(iii) Uf = Kf + (∗) and Lf = Kf + (∗∗), where (∗) and (∗∗) are (possibly
infinite) linear combinations of Kg’s for dominant g ≺ f ;

(iv) ω(Uf ) = Uω(f) and ω(Lf ) = Lω(f).

We use the following notation for the coefficients:

(3.7) Lf =
∑

g∈Zm|n+

lg,f (q)Kg, Uf =
∑

g∈Zm|n+

ug,f (q)Kg,

for polynomials lg,f (q) ∈ Z[q−1], ug,f (q) ∈ Z[q]. We know that lg,f (q) = ug,f (q) = 0
unless g � f , and lf,f (q) = uf,f (q) = 1.

Note that Kf = Mf + (∗), where (∗) is a q−1Z[q−1]-linear combination of Mg’s.
So the element Lf defined in Theorem 3.6 is bar invariant and equals Mf plus
a q−1Z[q−1]-linear combination of Mg’s. So by the uniqueness in Theorem 2.17,
the elements Lf and the polynomials lg,f (q) defined here are the same as the ones
defined in §2-h, for dominant g, f . Thus our notation is consistent with the earlier
notation. The relationship between the elements Uf here and the Tf ’s from before
is given by:

Lemma 3.8. For f ∈ Zm|n+ , Uf = Tf ·w0H0.

Proof. Note that Tf ·w0H0 is a bar invariant element of Êm|n. Recall that Tf ·w0

equals Mf ·w0 plus a qZ[q]-linear combination of Mg’s. So applying Lemma 3.4,
Tf ·w0H0 equals Kf plus a qZ[q]-linear combination of Kg’s. Hence Tf ·w0H0 = Uf
by the uniqueness in Theorem 3.6. �
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§3-c. Duality. Recall the antilinear involution σ : T m|n → T m|n defined in (2.8).
In view of Lemmas 2.9(iii) and 3.2(ii), this leaves the subspace Em|n invariant.
Indeed, by Lemma 3.4, we have that

(3.9) σ(Kf ) = (−q)`(w0)K−f ·w0

for each f ∈ Zm|n+ . Let (., .)E be the bilinear form on Em|n defined so that the
elements {Kf}f∈Zm|n+

are orthonormal. Note by Lemmas 2.9(ii) and 3.2(iii) that

(Kf ,Kg)T = (Mf ·w0H0,Mg·w0H0)
T

= −[m]![n]!(Mf ·w0H0,Mg·w0)
T

= −(−q)−`(w0)[m]![n]!δf,g.

Hence,

(3.10) (u, v)E = − (−q)`(w0)

[m]![n]!
(u, v)T

for all u, v ∈ Em|n. Finally, define a bilinear form 〈., .〉
E

on Êm|n by setting

(3.11) 〈u, v〉E := (−q)−`(w0)(u, σ(v))E
for all u, v ∈ Êm|n. Comparing with the definition of the form 〈., .〉

T
from (2.20)

and using (3.10), one sees immediately that

(3.12) 〈u, v〉E = − 1
[m]![n]!

〈u, v〉T

for all u, v ∈ Êm|n. Hence in particular we get from Lemma 2.22 that the form
〈., .〉E is symmetric.

Theorem 3.13. For f, g ∈ Zm|n+ , 〈Lf , U−g·w0〉E = δf,g.

Proof. Since Lf ∈ Êm|n, we have by Lemma 3.2(iii) that LfH0 = −[m]![n]!Lf . So
applying Theorem 2.23 and Lemmas 3.8 and 2.21, we have that

〈Lf , U−g·w0〉E = − 1
[m]![n]!

〈Lf , T−gH0〉T = − 1
[m]![n]!

〈LfH0, T−g〉T

= 〈Lf , T−g〉T = δf,g.

�
By the theorem and the argument used to prove Corollary 2.24, we get:

Corollary 3.14. For f ∈ Zm|n+ ,

Kf =
∑

g∈Zm|n+

u−f ·w0,−g·w0(q−1)Lg =
∑

g∈Zm|n+

l−f ·w0,−g·w0(q−1)Ug.

§3-d. Crystal structures. Next we describe the crystal structure on Êm|n, fol-
lowing the same language as in §2-k. Recalling (3.3), let

Ẽa(f) := (Ẽ′a(f · w0)) · w0, F̃a(f) := (F̃ ′a(f · w0)) · w0,(3.15)

εa(f) := ε′a(f · w0), ϕa(f) := ϕ′a(f · w0)(3.16)

for f ∈ Zm|n+ . Then, (Zm|n+ , Ẽa, F̃a, εa, ϕa,wt) is the crystal associated to the U -
module Em|n. Actually, the crystal structure is so simple in this case, that we can
list all the possibilities explicitly. There are ten possible configurations for edges of
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color a in the crystal graph, listed below. Here, . . . denotes entries different from
a, a+ 1.

(1) (. . . , a, a+ 1, . . . | . . . , a+ 1, a, . . . );

(2) (. . . , a, a+ 1, . . . | . . . , a, . . . ) F̃a−→ (. . . , a, a+ 1, . . . | . . . , a+ 1, . . . );

(3) (. . . , a+ 1, . . . | . . . , a+ 1, a, . . . ) F̃a−→ (. . . , a, . . . | . . . , a+ 1, a, . . . );

(4) (. . . , a+ 1, . . . | . . . , a, . . . ) F̃a−→ (. . . , a, . . . | . . . , a, . . . )
F̃a−→ (. . . , a, . . . | . . . , a+ 1, . . . );

(5) (. . . , a+ 1, . . . | . . . , a+ 1, . . . );
(6) (. . . , a, a+ 1, . . . | . . . );
(7) (. . . | . . . , a+ 1, a, . . . );

(8) (. . . | . . . , a, . . . ) F̃a−→ (. . . | . . . , a+ 1, . . . );

(9) (. . . , a+ 1, . . . | . . . ) F̃a−→ (. . . , a, . . . | . . . );
(10) (. . . | . . . ).

We also have the dual crystal (Zm|n+ , Ẽ∗a , F̃
∗
a , ε
∗
a, ϕ
∗
a,wt), where Ẽ∗a , F̃ ∗a , ε∗a and ϕ∗a are

the restrictions of the functions from §2-k to Zm|n+ . Combining (2.32) and (3.15),
we have that

(3.17) Ẽ∗a(−f · w0) = −F̃−1−a(f) · w0, F̃ ∗a (−f · w0) = −Ẽ−1−a(f) · w0.

Again, there are ten possible configurations for the edges in the corresponding dual
crystal graph, all of which are exactly the same as (1)–(10) above (replacing F̃a
with F̃ ∗a ) with the exception of (4) and (5) which change to

(4∗) (. . . , a+ 1, . . . | . . . , a, . . . ) F̃∗a−→ (. . . , a+ 1, . . . | . . . , a+ 1, . . . )
F̃∗a−→ (. . . , a, . . . | . . . , a+ 1, . . . );

(5∗) (. . . , a, . . . | . . . , a, . . . ).

Remark 3.18. In (3.31) and Lemma 3.32(v) below we will define mutually inverse
bijections L, R : Zm|n+ → Zm|n+ . By considering all the above cases (1)–(10) one by
one, it is not hard to check that L satisfies, indeed is characterized uniquely by, the
following properties

(1) if f ∈ Zm|n+ is typical then L(f) = f ;
(2) for every a ∈ Z and f ∈ Zm|n+ , Ẽ∗aL(f) = L(Ẽaf) and F̃ ∗a L(f) = L(F̃af);
(3) for every f ∈ Zm|n+ , wt(L(f)) = wt(f).

Hence, L : (Zm|n+ , Ẽa, F̃a, εa, ϕa,wt)→ (Zm|n+ , Ẽ∗a , F̃
∗
a , ε
∗
a, ϕ
∗
a,wt) is an isomorphism

of crystals with inverse R.

The crucial observation to be made from the above description of the crystal
graph is that all a-strings are of length at most 2. The following lemma is a
consequence of this particularly simple structure.

Lemma 3.19. Let f ∈ Zm|n+ and a ∈ Z.

(i) If εa(f) > 0, then EaUf = [ϕa(f) + 1]UẼa(f).
(ii) If ϕa(f) > 0, then FaUf = [εa(f) + 1]UF̃a(f).
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Proof. We prove (i), (ii) being similar. Dualizing Theorem 2.34(i) using Theo-
rem 3.13 and Lemma 2.21 (or by considering the effect of the Kashiwara opera-
tors directly and arguing as in the proof of Theorem 2.31) gives us that EaUf =
[ϕa(f) + 1]UẼa(f) +

∑̂
g∈Zm|n+

yag,fUg, where yag,f belongs to q2−ϕa(g)Z[q] and is zero

unless εb(g) ≥ εb(f) for all b ∈ Z. Suppose that yag,f 6= 0 for some g. By assumption,
εa(g) ≥ εa(f) ≥ 1, so ϕa(g) ≤ 1 since all a-strings are of length ≤ 2. Therefore,
0 6= yag,f ∈ qZ[q]. But yag,f is bar invariant, so this is a contradiction. �

§3-e. Two algorithms. In this subsection, we describe algorithms to compute
the canonical basis {Uf} and the coefficients {lg,f(q)} of the dual canonical basis of
Em|n explicitly. The first algorithm computes Uf , and is similar to the algorithm for
computing the Tf ’s explained in §2-j — but it is much simpler since no corrections
are needed thanks to Lemma 3.19.

Procedure 3.20. Suppose we are given f ∈ Zm|n+ with #f > 0. Compute h ∈ Zm|n+

and operators Xa, Ya ∈ {Ea, Fa}a∈Z by following the instructions below starting at
step (0).

(0) Choose the largest i ∈ {−m, . . . ,−1} such that f(i) = f(j) for some j ∈
{1, . . . , n}. Go to step (1).

(1) If i < −1 and f(i+ 1) = f(i) + 1, replace i by (i+ 1) and repeat step (1).
Otherwise, go to step (2).

(2) If f(i) + 1 = f(j) for some (necessarily unique) j ∈ {1, . . . , n} go to step
(1)′. Otherwise, set Xa = Ff(i), Ya = Ef(i) and h = f − di. Stop.

(1)′ If j > 1 and f(j − 1) = f(j) + 1, replace j by (j − 1) and repeat step (1)′.
Otherwise, go to step (2)′.

(2)′ If f(j) + 1 = f(i) for some (necessarily unique) i ∈ {−m, . . . ,−1} go to
step (1). Otherwise, set Xa = Ef(j), Ya = Ff(j) and h = f + dj . Stop.

The following lemma follows immediately from the nature of the above procedure
and Lemma 3.19.

Lemma 3.21. Take f ∈ Zm|n+ with #f > 0. Define h and operators Xa, Ya ∈
{Ea, Fa}a∈Z according to Procedure 3.20. Then, one of the following holds:

(i) #h = #f . In this case, the a-string through f is h X̃a−→ f , of length 1.
Moreover, XaUh = Uf , YaUf = Uh and XaKh = Kf .

(ii) #h = #f − 1. In this case, the a-string through f is h X̃a−→ f
X̃a−→ g, of

length 2. Moreover XaUh = Uf , YaUf = [2]Uh and XaKh = Kf +qKX̃∗a(h).

Case (ii) (when the atypicality gets strictly smaller) must occur after at most
(m + n − 1) repetitions of the procedure. Hence after finitely many recursions,
the procedure reduces f to a typical weight.

Lemma 3.21 implies the following algorithm for computing Uf . If f ∈ Zm|n+

is typical then Uf = Kf , since such f ’s are minimal in the ordering � in Zm|n+ .
Otherwise, apply Procedure 3.20 to get h ∈ Zm|n+ and Xa ∈ {Ea, Fa}a∈Z. Since
the procedure always reduces f to a typical weight in finitely many steps, we may
assume Uh is known recursively. Then Uf = XaUh.
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Example 3.22. Applying the algorithm repeatedly, we get that

U(0,1,3,4|2,1,0) = F4F3E2F1F5F4E3F2E1F0K(1,3,5,6|4,2,0)

= K(0,1,3,4|2,1,0) + qK(1,3,4,6|6,2,1) + qK(0,3,4,5|5,2,0) + q2K(3,4,5,6|6,5,2).

In the next subsection, we will apply the above algorithm to derive a closed
formula for Uf . We turn now to describing the second algorithm, which computes
the polynomials lg,f (q). It will not be needed until §4-f below. First we state a
variation on Procedure 3.20.

Procedure 3.23. Suppose we are given g ∈ Zm|n+ with #g > 0. Compute h ∈ Zm|n+

and operators Xa, Ya ∈ {Ea, Fa}a∈Z by following the instructions below starting at
step (0).

(0) Choose the smallest i ∈ {−m, . . . ,−1} such that g(i) = g(j) for some
j ∈ {1, . . . , n}. Go to step (1).

(1) If i > −m and g(i− 1) = g(i)− 1, replace i by (i− 1) and repeat step (1).
Otherwise, go to step (2).

(2) If g(i) − 1 = g(j) for some (necessarily unique) j ∈ {1, . . . , n} go to step
(1)′. Otherwise, set h = g + di, Xa = Eh(i) and Ya = Fh(i). Stop.

(1)′ If j < n and g(j + 1) = g(j)− 1, replace j by (j + 1) and repeat step (1)′.
Otherwise, go to step (2)′.

(2)′ If g(j)−1 = g(i) for some (necessarily unique) i ∈ {−m, . . . ,−1} go to step
(1). Otherwise, set h = g − dj , Xa = Fh(j) and Ya = Eh(j). Stop.

Lemma 3.24. Suppose g, f ∈ Zm|n+ with #g > 0. Define h and operators Xa, Ya ∈
{Ea, Fa}a∈Z according to Procedure 3.23. Then,

lg,f (−q−1) =

{
lh,Ỹ ∗a (f)(−q−1) if #h = #g,
lh,Ỹ ∗a (f)(−q−1) + qlX̃a(h),f (−q−1) if #h = #g − 1,

interpreting lh,Ỹ ∗a (f)(−q−1) as 0 if Ỹ ∗a (f) = ∅.

Proof. Let f, g ∈ Zm|n+ with #f > 0. Apply Procedure 3.20 to construct h and op-
erators Xa, Ya ∈ {Ea, Fa}a∈Z. Apply the operator Xa to both sides of the equation

Kh =
∑

k∈Zm|n+

l−h·w0,−k·w0(q−1)Uk

from Corollary 3.14. In the case that #h = #f , we know by Lemma 3.21 that h,
hence also all k ∈ Zm|n+ with the same weight as h, is at one end of an a-string of
length 1. So by Lemma 3.19, XaUk = UX̃a(k) for all k with l−h·w0,−k·w0(q−1) 6= 0.
Hence,

Kf = XaKh =
∑

k∈Zm|n+

l−h·w0,−k·w0(q−1)UX̃a(k).

On the other hand, if #h = #f − 1, then h, hence also all k of the same weight as
h, lies at one end of an a-string of length 2, so XaUk = UX̃a(k). We also know from
Lemma 3.21 that XaKh = Kf + qKX̃∗a (h). So in this case,

Kf =
∑

k∈Zm|n+

l−h·w0,−k·w0(q−1)UX̃a(k) − q
∑

h∈Zm|n+

l−X̃∗a(h)·w0,−g·w0
(q−1)Ug.
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Now compute the coefficient of Ug in the above expressions for Kf using Corol-
lary 3.14 again, to get

l−f ·w0,−g·w0(q−1) =


l−h·w0,−Ỹa(g)·w0

(q−1) if #h = #f ,
l−h·w0,−Ỹa(g)·w0

(q−1) if #h = #f − 1,
−ql−X̃∗a(h)·w0,−g·w0

(q−1)

interpreting l−h·w0,−Ỹa(g)·w0
(q) as 0 if Ỹa(g) = ∅. The lemma follows from this,

replacing f by −g · w0 and g by −f · w0 and using (3.17), since Procedure 3.23 is
just Procedure 3.20 twisted by the involution f 7→ −f · w0. �

Now to compute lg,f (−q−1), we have that lg,f (−q−1) = δg,f if g is typical, and
it is 0 if g 6� f . Otherwise, if #g > 0 and g � f , apply Procedure 3.23 and
Lemma 3.24 to write lg,f (−q−1) in terms of lh,Ỹ ∗a (f)(−q−1) and (in case #h =
#g−1) lX̃a(h),f(−q−1), and repeat. This process terminates in finitely many steps,
because h is closer to being typical than g in the sense of Procedure 3.23, and X̃a(h)
is closer than g to failing the condition g � f . Note that this algorithm shows in
particular that lg,f (−q−1) ∈ N[q], as also follows from the explicit description given
in Corollary 3.39(ii) below.

§3-f. Combinatorial description of canonical bases. We now introduce some
combinatorics to enable us to write down closed formulae for the canonical basis
and dual canonical basis elements. The material in this subsection was inspired
originally by [JZ]. Suppose f ∈ Zm|n is conjugate under the action of Sm|n to
an element of Zm|n+ . We will denote this “dominant conjugate” of f by f+. For
−m ≤ i < 0 < j ≤ n with f(i) = f(j), let

Li,j(f) := f − a(di − dj),(3.25)

where a is the smallest positive integer such that f − a(di − dj) and all Lk,l(f) −
a(di−dj) for i < k < 0 < l < j with f(k) = f(l) are conjugate to elements of Zm|n+ .
Similarly, let

Ri,j(f) := f + b(di − dj),(3.26)

where b is the smallest positive integer such that f + b(di − dj) and all Rk,l(f) +
b(di − dj) for −m ≤ k < i, j < l ≤ n with f(k) = f(l) are conjugate to elements of
Zm|n+ .

Now take f ∈ Zm|n+ . Let r = #f and −m ≤ i1 < · · · < ir < 0 < jr < · · · <
j1 ≤ n be the unique integers with f(is) = f(js) for each s = 1, . . . , r. For a tuple
θ = (θ1, . . . , θr) ∈ Nr, |θ| denotes θ1 + · · ·+ θr. Let

Lθ(f) =
(
Lθrir,jr ◦ L

θr−1
ir−1,jr−1

◦ · · · ◦ Lθ1
i1,j1

(f)
)+

,(3.27)

L′θ(f) =
(
Lθ1
i1,j1
◦ Lθ2

i2,j2
◦ · · · ◦ Lθrir ,jr (f)

)+

,(3.28)

Rθ(f) =
(
Rθ1
i1,j1
◦ Rθ2

i2,j2
◦ · · · ◦ Rθrir ,jr (f)

)+

,(3.29)

R′θ(f) =
(
Rθrir,jr ◦ R

θr−1
ir−1,jr−1

◦ · · · ◦ Rθ1
i1,j1

(f)
)+

.(3.30)
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Note that L′θ(f), Lθ(f) � f � Rθ(f), R′θ(f). The operators Lθ and Rθ will only ever
be used for θ belonging to the set {0, 1}r. In the special case that θ1 = · · · = θr = 1,
we let

(3.31) L(f) := Lθ(f), R(f) := Rθ(f).

The following combinatorial lemma lists some elementary properties of the lowering
and raising operators, which follow immediately from the definition.

Lemma 3.32. Let f ∈ Zm|n+ and r = #f .
(i) Suppose θ ∈ Nr and let ϕ = (θr, . . . , θ1). Then, Rθ(−f · w0) = −Lϕ(f) · w0

and R′θ(−f · w0) = −L′ϕ(f) · w0.
(ii) The sets {Lθ(f)}θ∈{0,1}r and {Rθ(f)}θ∈{0,1}r contain 2r distinct elements.
(iii) Suppose θ ∈ {0, 1}r and let ϕ = (1−θr, . . . , 1−θ1). Then, Lθ(R(f)) = Rϕ(f)

and Rθ(L(f)) = Lϕ(f). In particular, taking θ1 = · · · = θr = 1, the maps
L, R : Zm|n+ → Zm|n+ are mutually inverse bijections.

Example 3.33. Take f = (0, 1, 3, 4|2, 1, 0) as in Example 3.22, so #f = 2. Then
we have that L(0,0)(f) = (0, 1, 3, 4|2, 1, 0), L(1,0)(f) = (1, 3, 4, 6|6, 2, 1), L(0,1)(f) =
(0, 3, 4, 5|5, 2, 0) and L(1,1)(f) = (3, 4, 5, 6|6, 5, 2). Observe that these are exactly
the Kg’s appearing in the expression for Uf computed in Example 3.22.

The main theorem of the subsection is the following.

Theorem 3.34. For f ∈ Zm|n+ and r = #f ,

(i) Uf =
∑

θ∈{0,1}r
q|θ|KLθ(f);

(ii) Kf =
∑
θ∈Nr

(−q)|θ|UL′θ(f).

Proof. (i) If f is typical, then Uf = Kf and there is nothing to prove. So suppose
that #f > 0 and define h and Xa, Ya ∈ {Ea, Fa}a∈Z according to Procedure 3.20.
We may assume by induction that the result has already been established for h.
Recalling Lemma 3.21, we need to consider two cases. In the first case #h = #f ,
we know that Uh =

∑
θ∈{0,1}r q

|θ|KLθ(h). Applying Xa to both sides, noting that
XaUh = Uf and that XaKLθ(h) = KLθ(f) for each θ, gives the desired conclusion. In
the second case #h = #f−1. This time, we know that Uh =

∑
θ∈{0,1}r−1 q|θ|KLθ(h).

For each θ, Lθ(h) here has the form (. . . , a+ 1, . . . | . . . , a, . . . ), so

XaKLθ(h) = K(...,a,...|...,a,... ) + qK(...,a+1,...|...,a+1,... ) = KLθ∪0(f) + qKLθ∪1(f),

where θ ∪ x denotes (θ1, . . . , θr−1, x) ∈ {0, 1}r. So again we see on applying Xa to
both sides that Uf = XaUh =

∑
θ∈{0,1}r q

|θ|KLθ(f).
(ii) To deduce this from (i), we will work in the free Z[q, q−1]-module Mm|n on

basis {[f ]}
f∈Zm|n+ ·Sm|n

, completed to a topological Z[q, q−1]-module M̂m|n exactly

as in §2-d so that expressions of the form [f ]+(a possibly infinite linear combination
of [g]′s with g ≺ f) make sense. We define continuous linear maps U,K : M̂m|n →
Êm|n by letting U([f ]) = Uf+ ,K([f ]) = Kf+ . These maps have the right inverses
U−1,K−1 : Êm|n → M̂m|n with U−1(Uf ) = [f ],K−1(Kf ) = [f ] for each f ∈ Zm|n+ .
Finally, define continuous linear operators λi,j : M̂m|n → M̂m|n for each −m ≤
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i < 0 < j ≤ n by

λi,j([f ]) =
{

[Li,j(f)] if f(i) = f(j),
0 if f(i) 6= f(j),

for each f ∈ Zm|n+ · Sm|n. Now consider the maps

P := K ◦

 →∏
−m≤i<0<j≤n

(1 + qλi,j)

 ◦ U−1 : Êm|n → Êm|n,

Q := U ◦

 ←∏
−m≤i<0<j≤n

1
1 + qλi,j

 ◦K−1 : Êm|n → Êm|n,

where
→∏

is taken in some ordering with i’s decreasing and j’s increasing from left

to right and
←∏

is taken in the opposite ordering, and 1
1+qλi,j

denotes (1 − qλi,j +
q2λi,j − · · · ). By (i) and the definition of the operator Li,j , the map P sends Uf to
Uf , so P = id. On the other hand the result we are trying to prove is equivalent to
the statement that Q sends Kf to Kf . Therefore we will be done if we can show
that P ◦Q = id, i.e. that for every f ∈ Zm|n+ ,

K ◦

 →∏
−m≤i<0<j≤n

(1 + qλi,j)

 ◦ (U−1 ◦U) ◦

 ←∏
−m≤i<0<j≤n

1
1 + qλi,j

 ([f ]) = Kf .

This is obvious if we can show that the inside map (U−1 ◦ U) : [g] 7→ [g+] on the
left-hand side can be omitted. For this, we check that
(3.35)

K ◦

 →∏
−m≤i<0<j≤n

(1 + qλi,j)

 ([g+]) = K ◦

 →∏
−m≤i<0<j≤n

(1 + qλi,j)

 ([g])

for every g ∈ Zm|n such that [g] is involved in
(←∏

1
1+qλi,j

)
([f ]) with non-zero

coefficient. Suppose we have such a g. The crucial observation is that whenever
there exist −m ≤ i′ < i < 0 < j < j′ ≤ n with g(j) = g(i) < g(i′) = g(j′), one can
find c with g(i) < c < g(i′) that does not arise in the tuple g. Given this it is not
hard to see that (3.35) holds. �

Corollary 3.36. For f ∈ Zm|n+ ,

(i) Kf =
∑
g q
−|θg|Lg where the sum is over all g ∈ Zm|n+ such that Rθg(g) = f

for some (unique) θg ∈ {0, 1}#g;
(ii) Lf =

∑
g,θ(−q)−|θ|Kg where the sum is over all g ∈ Zm|n+ and θ ∈ N#g

such that R′θ(g) = f .

Proof. (i) Recall from Corollary 3.14 that the coefficient of Lg in Kf is equal to
u−f ·w0,−g·w0(q−1). By Theorem 3.34(i) and Lemma 3.32(ii), u−f ·w0,−g·w0(q−1) =
q−|θ| if −f · w0 = Lθ(−g · w0) for some (necessarily unique) θ ∈ {0, 1}#g, and is
zero otherwise. Equivalently, invoking Lemma 3.32(i), u−f ·w0,−g·w0(q−1) = q−|θ| if
f = Rθ(g) for some θ, and is zero otherwise.
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(ii) By Corollary 3.14 again, lg,f (q−1) is equal to the coefficient of U−f ·w0 in
K−g·w0 . By Theorem 3.34(ii), this equals

∑
θ(−q)|θ| where the sum is over all

θ ∈ N#g with L′θ(−g · w0) = −f · w0, equivalently, R′θ(g) = f . �

Example 3.37. Suppose f = (−m, . . . ,−2,−1| − 1,−2, . . . ,−n), so r = #f =
min(m,n). We observe that any g � f can be represented as L′θ(f) for a unique
element θ ∈ Nr with θ1 ≤ · · · ≤ θr. Moreover, this θ is also the unique element of
Nr with the property that f = R′θ(g). We deduce from Corollary 3.36(ii) that

(3.38) Lf =
∑

θ=(θ1≤···≤θr)∈Nr
(−q)−|θ|KL′θ(f).

Recalling the definitions from (3.7), we can restate Theorem 3.34(i) and Corol-
lary 3.36(ii) as follows:

Corollary 3.39. For g, f ∈ Zm|n+ ,

(i) ug,f (q) = q|θ| if g = Lθ(f) for some θ ∈ {0, 1}#f, ug,f (q) = 0 otherwise;
(ii) lg,f (−q−1) =

∑
θ q
|θ| summing over all θ ∈ N#g with R′θ(g) = f .

Example 3.40. Using Corollary 3.39(ii) and arguing by induction on n, one gets
that lg,f (−q−1) = q2(1 + q2)n−1, for f = (0, 2, . . . , 2n − 2|2n − 2, . . . , 2, 0) and
g = (2, 4, . . . , 2n|2n, . . . , 4, 2).

Corollary 3.41. For f, g ∈ Zm|n+ , u−g·w0,−f ·w0(q) = q#fug,R(f)(q−1).

Proof. Let r = #f . By Corollary 3.39(i) and Lemma 3.32(i), we know that
u−g·w0,−f ·w0(q) = q|θ| if g = Rθ(f) for some θ ∈ {0, 1}r and is zero otherwise.
Similarly, by Lemma 3.32(iii), ug,R(f)(q) is q|θ| = qr−|ϕ| if g = Lθ(R(f)) = Rϕ(f) for
some θ ∈ {0, 1}r and ϕ = (1− θr, . . . , 1− θ1) and is zero otherwise. �

§3-g. Length function. We now consider some further properties of the polyno-
mials lg,f (q).

Lemma 3.42. Let g, f ∈ Zm|n+ with g � f and set r = #g = #f . There exists a
unique θ = θ(g, f) ∈ Nr such that

(i) f = R′θ(g);
(ii) if f = R′ϕ(g) for some θ 6= ϕ ∈ Nr then |ϕ| < |θ| and |ϕ| ≡ |θ| (mod 2).

Given in addition h ∈ Zm|n+ with h � g � f , θ(h, f) = θ(h, g) + θ(g, f).

Proof. We just explain how to construct θ, and leave the rest of the proof to the
reader. Define −m ≤ i1 < · · · < ir < 0 < jr < · · · < j1 ≤ n such that g(is) = g(js)
for each s = 1, . . . , r, and −m ≤ i′1 < · · · < i′r < 0 < j′r < · · · < j′1 ≤ n such that
f(i′s) = f(j′s) for each s = 1, . . . , r. For 0 ≤ s ≤ r, let

gs = g +
s∑
t=1

(g(is)− f(i′s))(dis − djs),

so g0 = g and (gr)+ = f . Now for each s = 1, . . . , r, let θs be the unique non-
negative integer such that Rθsis,js(gs−1) = gs, recalling (3.26), and take θ = θ(g, f)
to be the tuple (θ1, . . . , θr). �
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Using Lemma 3.42, we can introduce a length function on Zm|n+ . Suppose to
start with that g � f . Let `(g, f) = |θ(g, f)|, where θ(g, f) is the tuple defined in
the lemma. Notice that if h � g � f , then

(3.43) `(h, g) + `(g, f) = `(h, f),

as follows from the stronger fact that θ(h, g) + θ(g, f) = θ(h, f) established by
Lemma 3.42. This allows us to extend the notion of length to arbitrary g, f ∈ Zm|n+

with wt(g) = wt(f): pick h ∈ Zm|n+ with h � g and h � f and set `(g, f) =
`(h, f)− `(h, g). To check that this is well defined, suppose h′ ∈ Zm|n+ also satisfies
h′ � g and h′ � f . Choose another k ∈ Zm|n+ with k � h and k � h′. Then using
(3.43),

`(h, f)− `(h, g) = (`(k, h) + `(h, f))− (`(k, h) + `(h, g))

= `(k, f)− `(k, g) = `(h′, f)− `(h′, g),

as required. So we have now defined `(g, f), the length of f relative to g, for
arbitrary g, f ∈ Zm|n+ with wt(g) = wt(f). It is immediate from the definition that
(3.43) holds for all h, g, f ∈ Zm|n+ with wt(h) = wt(g) = wt(f).

Finally we can somewhat arbitrarily introduce an absolute notion of length. For
each weight γ of Em|n, we fix a choice of “origin” oγ ∈ Zm|n+ with wt(oγ) = γ. Then
for any f ∈ Zm|n+ , we define

(3.44) `(f) := `(oγ , f)

where γ = wt(f). The important thing is that if wt(g) = wt(f), then `(g, f) =
`(f)− `(g), so we can recover the length of f relative to g from the absolute lengths
of f and g. In this notation, Lemma 3.42(ii) and Corollary 3.39(ii) combine to
show:

Corollary 3.45. For g, f ∈ Zm|n+ with g � f , the polynomial lg,f (−q−1) belongs to
q`(f)−`(g)N[q−2], and the coefficient of q`(f)−`(g) is 1.

4. Representations of gl(m|n)

We now relate the combinatorics developed in sections 2 and 3 to two natural
categoriesOm|n and Fm|n of representations of gl(m|n). For basic notions regarding
Lie superalgebras, we follow [Ka1]. We denote the parity of a vector v in a vector
superspace by v̄ ∈ Z2. For a Lie superalgebra g = g0̄ ⊕ g1̄ and g-supermodules
M,N , the space Homg(M,N) has a canonical Z2-grading, and the category of all
g-supermodules is a superadditive category in the sense of [M, Chapter 3, §2.7].
We will use the notation M ' N as opposed to the usual M ∼= N to indicate that
there is an even isomorphism between M and N . Also Π denotes the parity change
functor.

§4-a. Two categories. From now on, we let g denote the Lie superalgebra gl(m|n).
So g consists of (m+n)×(m+n) matrices over C, where we label rows and columns
of such matrices by the ordered index set I(m|n) = {−m, . . . ,−1, 1, . . . , n} as in
the introduction. For i ∈ I(m|n), let ī = 0̄ if i > 0 and 1̄ if i < 0. Then, the parity
of the ij-matrix unit ei,j ∈ g is ī+ j̄, and the superbracket satisfies

(4.1) [ei,j , ek,l] = δj,kei,l − (−1)(̄i+j̄)(k̄+l̄)δi,lek,j .
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Note that the subalgebra g0̄ of g is isomorphic to gl(m) ⊕ gl(n). We will need
some other important subalgebras: let h denote the standard Cartan subalgebra of
g consisting of all diagonal matrices, let b be the standard Borel subalgebra of all
upper triangular matrices, and let p = g0̄ + b.

For λ ∈ h∗ and a g-supermodule M , we define the λ-weight space Mλ of M
with respect to h as usual: Mλ = {m ∈ M | hm = λ(h)m for all h ∈ h}. Given
a g-supermodule M such that M =

⊕
λ∈h∗Mλ, we can consider the graded dual

M? :=
⊕

λ∈h∗ HomC(Mλ,C) with the usual Z2-grading and g-action. Twisting
the g-action on M? with the automorphism X 7→ −Xst, where st : g → g is the
supertranspose ei,j 7→ (−1)ī(̄i+j̄)ej,i, we obtain a new g-supermodule denoted M τ .
If all the weight spaces are finite dimensional, then there are natural isomorphisms
(M?)? 'M and (M τ )τ 'M .

Let {δi}i∈I(m|n) be the basis for h∗ dual to the basis {ei,i}i∈I(m|n) for h. Define
a symmetric bilinear form (.|.) on h∗ by declaring that (δi|δj) = (−1)īδi,j . The
Weyl group W associated to the reductive Lie algebra g0̄ can be identified with
the symmetric group Sm|n from §2-a. It acts linearly on h∗ so that xδi = δxi for
x ∈ W, i ∈ I(m|n). As before, we write w0 for the longest element of W . We will
also need the dot action of W on X(m|n) defined by x · λ := x(λ + ρ)− ρ, where

(4.2) ρ = −
∑

i∈I(m|n)

iδi.

The root system of g is the set R = {δi − δj | i, j ∈ I(m|n), i 6= j}. We write
R = R0̄ ∪R1̄, where R0̄ consists of all even roots δi− δj with ī = j̄, and R1̄ consists
of the remaining odd roots. Corresponding to the Borel subalgebra b, we have the
standard choice of positive roots R+ = R+

0̄
∪R+

1̄
= {δi−δj |i, j ∈ I(m|n), i < j}. The

dominance ordering on h∗ is defined by λ ≤ µ if (µ− λ) is an N-linear combination
of positive roots.

From now on, we will restrict our attention to the integral weights, i.e. the
weights belonging to the subset X(m|n) of h∗ consisting of all Z-linear combinations
of {δi}i∈I(m|n). For λ =

∑
i∈I(m|n) λiδi ∈ X(m|n), we define its parity

(4.3) λ̄ := λ−m + · · ·+ λ−2 + λ−1 ∈ Z2.

Let X+(m|n) be the set of all dominant integral weights, namely, the λ =∑
i∈I(m|n) λiδi ∈ X(m|n) such that λ−m ≥ · · · ≥ λ−1 and λ1 ≥ · · · ≥ λn. De-

fine a bijection

(4.4) X(m|n)→ Zm|n, λ 7→ fλ,

where fλ ∈ Zm|n is the function defined by fλ(i) = (λ+ρ|δi) for i ∈ I(m|n). Under
this bijection, X+(m|n) maps onto Zm|n+ ; see §3-a. Also fx·λ = fλ · x−1 for each
x ∈ W = Sm|n, i.e. the dot action of W on X(m|n) corresponds to the action
of Sm|n on Zm|n introduced in §2-a. Now we lift all the remaining combinatorial
definitions involving Zm|n directly to X(m|n). For instance, recalling (2.3), we
define the degree of atypicality #λ of λ ∈ X(m|n) by #λ := #fλ; this is the same
notion as in [S3, (1.1)]. Similarly, let wt(λ) := wt(fλ), an element of the weight
lattice P (see (2.2)), and write λ � µ if fλ � fµ; see §2-b. This ordering on X(m|n)
plays the role of the Bruhat ordering; see e.g. Theorem 4.31(ii) below. It should
not be confused with the dominance ordering ≤: we have that λ � µ⇒ λ ≤ µ but
not conversely.
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We are ready to introduce two categories of representations of g. All the results
summarized in the remainder of this subsection are taken from [B2, section 7],
where they are deduced from a general framework for representations of graded Lie
superalgebras similar to that of Soergel [So2].

The first category is denoted Om|n, and is the (integral weight) analogue of the
[BGG] category O for a semisimple Lie algebra. By definition, Om|n is the category
of all finitely generated g-supermodules M that are locally finite dimensional over
b and satisfy

(4.5) M =
⊕

λ∈X(m|n)

Mλ.

An object P ∈ Om|n is projective if every (not necessarily even) morphism from
P to a quotient of an object M ∈ Om|n lifts to a morphism from P to M . By
[B2, Lemma 7.3], the category Om|n has enough projectives, i.e. every object is a
quotient of a projective object. Moreover, Om|n is finite, i.e. every object has a
composition series. For each λ ∈ X(m|n), we have the Verma module

(4.6) M(λ) := U(g)⊗U(b) Cλ,

where Cλ is the one dimensional b-module of weight λ concentrated in degree λ̄.
The significance of the choice of parity here will be explained in §4-e below. As
usual, M(λ) has a unique irreducible quotient denoted L(λ), and {L(λ)}λ∈X(m|n)

is a complete set of pairwise non-isomorphic irreducibles in Om|n.
We say that an object M ∈ Om|n has a Verma flag if it has a filtration 0 = M0 <

· · · < Mr = M such that each Mi/Mi−1 is ∼= M(λi) for some λi ∈ X(m|n). If M
has a Verma flag and µ ∈ X(m|n), we let

(4.7) (M : M(µ)) = dim HomOm|n(M,M(µ)τ ).

By [B2, (6.1)], this computes the number of subquotients of a Verma flag of M that
are ∼= M(µ). There is an obvious refinement of these multiplicities: for p ∈ Z2,

(4.8) (M : M(µ))p := dim HomOm|n(M,M(µ)τ )p

counts the number of subquotients of a Verma flag of M that are ' ΠpM(µ).
By [B2, Theorem 6.3], there is for each λ ∈ X(m|n) a unique (up to even isomor-

phism) indecomposable module T (λ) ∈ Om|n satisfying the following properties:

(T1) T (λ) has a Verma flag starting with M(λ) at the bottom;
(T2) Ext1

Om|n(M(µ), T (λ)) = 0 for all µ ∈ X(m|n).

Moreover, by [B2, (7.4)], the multiplicity of M(µ) in a Verma flag of T (λ) is equal
to the composition multiplicity of L(−λ− 2ρ) in M(−µ− 2ρ), i.e.

(4.9) (T (λ) : M(µ)) = [M(−µ− 2ρ) : L(−λ− 2ρ)],

for λ, µ ∈ X(m|n). In particular, (T (λ) : M(λ)) = 1 and (T (λ) : M(µ)) = 0 unless
µ ≤ λ. Consequently, we call T (λ) the infinite dimensional tilting module of highest
weight λ. Finally, note that for every λ ∈ X(m|n),

(4.10) f−λ−2ρ = −fλ,

so the involution λ 7→ −λ−2ρ onX(m|n) appearing in the formula (4.9) corresponds
to the involution f 7→ −f on Zm|n in ρ-shifted notation.
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The second category we shall consider is the category Fm|n of all finite dimen-
sional g-supermodules satisfying (4.5). Again, this is finite and has enough pro-
jectives. As is well known, the irreducible finite dimensional g0̄-supermodules with
integral highest weights are parametrized by the set X+(m|n). For λ ∈ X+(m|n),
let us write L′(λ) for the corresponding irreducible highest weight representation of
g0̄ concentrated in degree λ̄. Then, for each λ ∈ X+(m|n), we have the Kac module

(4.11) K(λ) := U(g)⊗U(p) L
′(λ),

where we are viewing L′(λ) here as a p-supermodule with elements of p0̄ = g0̄ act-
ing as given and elements of p1̄ acting trivially. For λ ∈ X+(m|n), the irreducible
module L(λ) defined earlier can also be realized as the unique irreducible quo-
tient of K(λ), and {L(λ)}λ∈X+(m|n) is a complete set of pairwise non-isomorphic
irreducibles in Fm|n.

When working in Fm|n, we will talk about Kac flags in place of Verma flags. If
M has a Kac flag, the number of subquotients of a Kac flag of M that are ∼= K(µ)
is denoted (M : K(µ)), and can be computed by

(4.12) (M : K(µ)) = dim HomFm|n(M,K(µ)τ ).

Like in (4.8), there is a refinement denoted (M : K(µ))p for p ∈ Z2, counting the
number of subquotients of a Kac flag of M that are ' ΠpK(µ). By [B2, (7.6)] or
[Z, Proposition 2.5], the projective cover P (λ) of L(λ) in the category Fm|n has a
Kac flag with K(λ) appearing at the top, satisfying the BGG reciprocity

(4.13) (P (λ) : K(µ)) = [K(µ) : L(λ)].

There are also indecomposable tilting modules in category Fm|n, denoted U(λ) for
λ ∈ X+(m|n). Here, by [B2, Theorem 6.3], U(λ) ∈ Fm|n is the unique (up to even
isomorphism) indecomposable object such that

(U1) U(λ) has a Kac flag starting with K(λ) at the bottom;
(U2) Ext1

Fm|n(K(µ), U(λ)) = 0 for all µ ∈ X+(m|n).

Let β = n(δ−m+ · · ·+ δ−1)−m(δ1 + · · ·+ δn) be the sum of the positive odd roots.
Then, by [B2, (7.7)–(7.8)] and parity considerations, we have that

K(λ)? ' K(β − w0λ),(4.14)

U(λ)? ' P (β − w0λ).(4.15)

Note that (4.13), (4.14) and (4.15) together imply

(4.16) (U(λ) : K(µ)) = [K(β − w0µ) : L(β − w0λ)],

for λ, µ ∈ X+(m|n). In particular, (U(λ) : K(λ)) = 1 and (U(λ) : K(µ)) = 0
unless µ ≤ λ. Accordingly, we will call U(λ) the finite dimensional tilting module
of highest weight λ. We remark finally that

(4.17) fβ−w0λ = −fλ · w0 − (m+ n+ 1)1,

where 1 ∈ Zm|n is the constant function i 7→ 1. Thus, up to a constant shift which
can usually be ignored, the involution λ 7→ β − w0λ on X+(m|n) appearing in the
formula (4.16) corresponds to the involution f 7→ −f · w0 on Zm|n+ .

§4-b. Translation functors. We need some basic facts about central characters.
Let Z be the (even) center of U(g). The fixed choices of h ⊂ b determine a Harish-
Chandra homomorphism ϕ : Z → U(h); see [Dix, 7.4.3]. Each λ ∈ h∗ yields
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a central character χλ defined by χλ(z) = λ(ϕ(z)). To parametrize the integral
central characters, i.e. the χλ for λ ∈ X(m|n), we use the following consequence of
results of Sergeev [Sg2], [Sg3]; see [S3, Corollary 1.9]:

Lemma 4.18. Given λ, µ ∈ X(m|n), we have that χλ = χµ if and only if wt(λ) =
wt(µ) (where wt(λ) = wt(fλ); see (2.2)).

For each central character χ, let Oχ denote the full subcategory of Om|n consist-
ing of the modules all of whose composition factors have central character χ. We
have the block decomposition

Om|n =
⊕
χ

Oχ

as χ runs over all integral central characters. Lemma 4.18 shows that we can
parametrize the integral characters χ instead by the weights γ ∈ P arising non-
trivially in the tensor space T m|n of §2-d. Let us introduce some notation to do
this formally. Suppose that γ ∈ P . Let Oγ = {0} if γ is not a weight of T m|n; else
let Oγ = Oχλ , where λ ∈ X(m|n) is such that wt(λ) = γ. Then, we can rewrite
the above block decomposition as

(4.19) Om|n =
⊕
γ∈P
Oγ ,

where Oγ is non-zero if and only if γ is a weight of T m|n. We let prγ : Om|n → Oγ
be the natural projection functor. In an entirely similar way, we have the block
decomposition of Fm|n,

(4.20) Fm|n =
⊕
γ∈P
Fγ ,

where this time Fm|n is non-zero if and only if γ is a weight of Em|n; see §3-a.
Let V be the natural g-supermodule. So, V is the vector superspace on basis

{vi}i∈I(m|n), where v̄i := ī, and the action of the matrix unit ei,j ∈ g is given by
ei,jvk = δj,kvi. For r ≥ 0, let SrV be the rth supersymmetric power of V , a finite
dimensional irreducible representation of g. Let SrV ? = Sr(V ?) ' (SrV )?. For
a ∈ Z and r ≥ 0, we define additive functors F (r)

a , E
(r)
a : Om|n → Om|n as follows.

It suffices by additivity to define them on objects belonging to Oγ for each γ ∈ P .
So if M ∈ Oγ , we let

F (r)
a M := prγ−r(εa−εa+1)(M ⊗ SrV ),(4.21)

E(r)
a M := prγ+r(εa−εa+1)(M ⊗ SrV ?).(4.22)

On a morphism θ : M → N , F (r)
a θ and E

(r)
a θ are defined simply to be the restric-

tions of the natural maps θ⊗ id. Clearly, the restrictions of F (r)
a and E(r)

a to Fm|n
give functors F (r)

a , E
(r)
a : Fm|n → Fm|n too. The first well-known lemma gives the

elementary properties.

Lemma 4.23. On either category Om|n or Fm|n, F (r)
a and E(r)

a are exact functors,
they commute with the τ-duality, and are both left and right adjoint to each other.

The next lemma is also quite standard, though we have included a proof since
we wish to keep track of parity information.
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Lemma 4.24. Let ν1, . . . , νN be the set of weights of SrV ordered so that νi >
νj ⇒ i < j. Let λ ∈ X(m|n).

(i) M(λ) ⊗ SrV has a multiplicity-free Verma flag with subquotients '
M(λ+ ν1), . . . ,M(λ+ νN ) in order from bottom to top.

(ii) M(λ) ⊗ SrV ? has a multiplicity-free Verma flag with subquotients '
M(λ− ν1), . . . ,M(λ− νN ) in order from top to bottom.

Proof. We prove (i), (ii) being entirely similar. By the tensor identity,

M(λ) ⊗ SrV = (U(g)⊗U(b) Cλ)⊗ SrV ' U(g)⊗U(b) (Cλ ⊗ SrV ).

So it suffices by exactness of the functor U(g)⊗U(b)? to show that M := Cλ ⊗ SrV
has a filtration 0 = M0 < M1 < · · · < MN = M as a b-module with Mi/Mi−1 '
Cλ+νi . Let x1, . . . , xN be a basis for SrV , where xi is of weight νi. Then 1⊗ xi ∈
Cλ ⊗ SrV is of weight λ + νi and degree λ̄ + x̄i = λ̄ + ν̄i = λ+ νi (recall (4.3)).
So taking Mi to be the subspace spanned by 1 ⊗ x1, . . . , 1 ⊗ xi gives the required
filtration. �
Corollary 4.25. Let λ ∈ X(m|n) and a ∈ Z. Let (σ−m, . . . , σ−1, σ1, . . . , σn) be
the a-signature of fλ; see (2.29).

(i) F
(r)
a M(λ) has a multiplicity-free Verma flag with subquotients 'M(λ+δi1+
· · ·+ δir ) for all distinct i1, . . . , ir ∈ I(m|n) such that σi1 = · · · = σir = +.

(ii) E
(r)
a M(λ) has a multiplicity-free Verma flag with subquotients 'M(λ−δj1−
· · · − δjr ) for all distinct j1, . . . , jr ∈ I(m|n) such that σj1 = · · · = σjr = −.

In both (i) and (ii), the Verma flag can be chosen so that subquotients appear in
order refining dominance, most dominant at the bottom.

Proof. The Verma module M(λ) has central character χλ and so belongs to Owt(λ)

by Lemma 4.18. Applying the exact functor prwt(λ)−r(εa−εa+1) to the filtration

in Lemma 4.24(i), we deduce that F (r)
a M(λ) has a Verma flag with subquotients

being the M(λ+ νi) such that wt(λ+ νi) = wt(λ)− r(εa− εa+1). This implies that
νi = δi1 + · · · + δis for distinct i1, . . . , is ∈ I(m|n) such that σi1 = · · · = σis = +,
giving (i). Part (ii) is similar. �

There is an analogous statement in the finite dimensional setting.

Corollary 4.26. Let λ ∈ X+(m|n) and a ∈ Z. Let (σ−m, . . . , σ−1, σ1, . . . , σn) be
the a-signature of fλ; see (2.29).

(i) F
(r)
a K(λ) has a multiplicity-free Kac flag with subquotients ' K(λ+ δi1 +
· · ·+ δir ) for all distinct i1, . . . , ir ∈ I(m|n) such that λ + δi1 + · · ·+ δir ∈
X+(m|n) and σi1 = · · · = σir = +.

(ii) E
(r)
a K(λ) has a multiplicity-free Kac flag with subquotients ' K(λ− δj1 −
· · · − δjr ) for all distinct j1, . . . , jr ∈ I(m|n) such that λ− δj1 − · · · − δjr ∈
X+(m|n) and σj1 = · · · = σjr = −.

In both (i) and (ii), the Kac flag can be chosen so that subquotients appear in order
refining dominance, most dominant at the bottom.

Proof. We prove (i). By universal properties, K(λ) is the largest finite dimensional
quotient of M(λ). So since F (r)

a is exact, F (r)
a K(λ) is a quotient of F (r)

a M(λ) and
Corollary 4.25 implies that F (r)

a K(λ) has a filtration with subquotients being finite
dimensional quotients of M(λ + δi1 + · · · + δir ) for all distinct i1, . . . , ir ∈ I(m|n)
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such that σi1 = · · · = σir = +. But such a quotient is zero unless λ+δi1 + · · ·+δir ∈
X+(m|n). Hence, F (r)

a K(λ) has a filtration with subquotients being quotients of
the Kac modules K(λ+ δi1 + · · ·+ δir ) for all distinct i1, . . . , ir ∈ I(m|n) such that
λ + δi1 + · · · + δir ∈ X+(m|n) and σi1 = · · · = σir = +. Finally the fact that
each factor is actually isomorphic to the corresponding Kac module, rather than a
proper quotient, follows by a character calculation using the Kac character formula
for K(µ), the Pieri formulae [Mac, (5.16), (5.17)] and Lemma 4.18. �
Corollary 4.27. Let a ∈ Z and r ≥ 1.

(i) For each λ ∈ X(m|n), each indecomposable summand of F (r)
a T (λ) or of

E
(r)
a T (λ) is ' T (µ) for µ ∈ X(m|n).

(ii) For each λ ∈ X+(m|n), each indecomposable summand of F (r)
a U(λ) or of

E
(r)
a U(λ) is ' U(µ) for µ ∈ X+(m|n).

Proof. We prove (i) for E(r)
a , the other cases being similar. Let T be an indecom-

posable summand of E(r)
a T (λ). We need to show that it has a Verma flag with

subquotients 'M(ν) for various ν ∈ X(m|n), and that Ext1
Om|n(M(µ), T ) = 0 for

all µ ∈ X(m|n). The first statement is immediate since E(r)
a T (λ) has such a Verma

flag by Corollary 4.25, and summands of modules with a Verma flag also have a
Verma flag; see [B2, Corollary 4.3]. For the second statement, Lemma 4.23 and
a standard argument (see e.g. [J2, I.4.4]) show that Ext1

Om|n(M(µ), E(r)
a T (λ)) '

Ext1
Om|n(F (r)

a M(µ), T (λ)). To see that the right-hand side is zero, note that

F
(r)
a M(µ) has a Verma flag by Corollary 4.25. By induction on length using the

long exact sequence and the defining property (T2) of T (λ), Ext1
Om|n(M,T (λ)) = 0

for every M ∈ Om|n with a Verma flag. �

Let O∆
m|n be the full subcategory of Om|n consisting of all modules possessing

a Verma flag. Let K(O∆
m|n) denote the Grothendieck group of the superadditive

category O∆
m|n in the sense of [BK, §2-c]. Note that K(O∆

m|n) is a free Z-module on
basis {[M(λ)]}λ∈X(m|n). Similarly, let F∆

m|n be the full subcategory of Fm|n consist-
ing of all modules possessing a Kac flag, and let K(F∆

m|n) denote its Grothendieck
group. Thus, K(F∆

m|n) is a free Z-module on basis {[K(λ)]}λ∈X+(m|n). In view of

Corollaries 4.25 and 4.26, the functors F (r)
a and E

(r)
a map objects in O∆

m|n (resp.
F∆
m|n) to objects in O∆

m|n (resp. F∆
m|n). Moreover, they preserve short exact se-

quences in O∆
m|n (resp. F∆

m|n). Hence they induce Z-linear operators on K(O∆
m|n)

and on K(F∆
m|n).

Now we make the connection to the modules T m|n and Em|n from sections 2
and 3 of the article. Actually we need to specialize these modules at q = 1. So let
T
m|n
Z[q,q−1] be the Z[q, q−1]-lattice in T m|n spanned by {Mf}f∈Zm|n , in the notation

of §2-d. Let E
m|n
Z[q,q−1] be the Z[q, q−1]-lattice in Em|n spanned by {Kf}f∈Zm|n+

, in

the notation of §3-a. Viewing Z as a Z[q, q−1]-module so that q acts as 1, we define

T
m|n
Z := Z⊗Z[q,q−1] T

m|n
Z[q,q−1],

E
m|n
Z := Z⊗Z[q,q−1] E

m|n
Z[q,q−1].
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We write Mf (1) (resp. Kf(1)) for the basis element 1⊗Mf of T
m|n
Z (resp. 1⊗Kf

of E
m|n
Z ). Similarly, we define Tf (1) = 1 ⊗ Tf and Uf (1) = 1 ⊗ Uf (in the case of

Tf(1), recall that as a consequence of Conjecture 2.28 we expect it is a finite sum
of Kg(1)’s and so belongs to T

m|n
Z , but without this we mean here to work in the

completion T̂
m|n
Z constructed as in §2-d).

Note that the generators E(r)
a and F

(r)
a of U = Uq(gl∞) specialize at q = 1

to the usual divided powers Era/r! and F ra /r! in the Chevalley generators of the
Lie algebra gl∞, so we can view T

m|n
Z (resp. E

m|n
Z ) as modules over the Kostant

Z-form UZ for the universal enveloping algebra U(gl∞).

Theorem 4.28. Identify K(O∆
m|n) with T

m|n
Z via the Z-module isomorphism

i : K(O∆
m|n)→ T

m|n
Z , [M(λ)] 7→Mfλ(1).

Then, the representation theoretically defined operators F (r)
a , E

(r)
a act in the same

way as the Chevalley generators F (r)
a , E

(r)
a of UZ.

Proof. Corollary 4.25 shows that the operators induced by the functors F (r)
a , E

(r)
a

act on [M(λ)] ∈ K(O∆
m|n) in exactly the same way as F (r)

a , E
(r)
a ∈ UZ act on

Mfλ(1) ∈ T
m|n
Z . �

An entirely similar argument, using Corollary 4.26 instead, gives the analogous
theorem for category F∆

m|n:

Theorem 4.29. Identify K(F∆
m|n) with E

m|n
Z via the Z-module isomorphism

j : K(F∆
m|n)→ E

m|n
Z , [K(λ)] 7→ Kfλ(1).

Then, the representation theoretically defined operators F (r)
a , E

(r)
a act in the same

way as the Chevalley generators F (r)
a , E

(r)
a of UZ.

§4-c. Tilting modules in category Om|n. We proceed to prove some results
and formulate some conjectures about the infinite dimensional tilting modules T (λ).
For λ ∈ X(m|n), write

M ′(λ) := U(g0̄)⊗b0̄ Cλ
for the purely even Verma module for g0̄ concentrated in degree λ̄, and L′(λ) for
its unique irreducible quotient. We will need the following result of Kac [Ka3,
Proposition 2.9]. Actually in loc. cit., Kac is only concerned with finite dimensional
representations, but the same argument works for the general case stated here.

Lemma 4.30. If λ ∈ X(m|n) is typical, then L(λ) ' U(g)⊗U(p) L
′(λ).

Recall the definition of the polynomials tg,f (q) and lg,f (q) from (2.18). We
use the bijection (4.4) to shift notation, letting tµ,λ(q) := tfµ,fλ(q) and lµ,λ(q) :=
lfµ,fλ(q). The first part of the following theorem is a reformulation of the Kazhdan-
Lusztig conjecture [KL] for gl(m)⊕ gl(n), proved in [BB], [BrK].

Theorem 4.31. Let λ ∈ X(m|n).
(i) If λ is typical then (T (λ) : M(µ)) = tµ,λ(1) for each µ ∈ X(m|n).
(ii) For arbitrary λ, each subquotient of a Verma flag of T (λ) is ' M(µ) for

µ � λ.
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Proof. (i) For the proof, we will assume instead that λ ∈ X(m|n) is typical with
λ + ρ ∈ X+(m|n). Let Wλ be the stabilizer in W ∼= Sm|n of λ under the dot
action, and let Dλ be the set of all maximal length W/Wλ-coset representatives.
Let wλ be the longest element of Wλ. By the Kazhdan-Lusztig conjecture for the
Lie algebra g0̄ proved in [BB], [BrK], combined with the translation principle [J1]
(see also [BGS, Theorem 3.11.4]), we have that

[M ′(x · λ) : L′(y · λ)] = Px,y(1)

for arbitrary x, y ∈ Dλ. Here, Px,y(1) denotes the usual Kazhdan-Lusztig polyno-
mial associated to x, y ∈W evaluated at 1; see [KL].

We claim that Px,y(1) = t−x·λ−2ρ,−y·λ−2ρ(1) for all x, y ∈ Dλ. To see this, let
f := −fλ, which is antidominant in the sense of §2-a. Define Sf , Df as in §2-j.
We will use the fact that the map Dλ → Df , x 7→ wλx

−1 is a bijection. Observe
using (4.10) that f−y·λ−2ρ = f · wλy−1. So by Lemma 2.25, t−x·λ−2ρ,−y·λ−2ρ(1) =
tf ·wλx−1,f ·wλy−1(1) = m

(f)
wλx−1,wλy−1(1). Noting that m(f)

wλx−1,wλy−1(1) is the same
as the element with the same name in [So1], [So1, Remark 2.6] and [So1, Proposition
3.4], show that m(f)

wλx−1,wλy−1(1) = Px−1,y−1(1) = Px,y(1). This proves the claim.
Now M(x · λ) ' U(g) ⊗U(p) M

′(x · λ) by associativity of tensor product, while
Lemma 4.30 shows that L(y ·λ) ' U(g)⊗U(p)L

′(y ·λ). So, as the functor U(g)⊗U(p)?
is exact, we deduce from the previous two paragraphs that

[M(x · λ) : L(y · λ)] = t−x·λ−2ρ,−y·λ−2ρ(1).

Note moreover that this argument shows that every subquotient of M(x · λ) that
is ∼= L(y · λ) is actually ' L(y · λ). Finally applying (4.16) gives that

(T (−y · λ− 2ρ) : M(−x · λ− 2ρ)) = t−x·λ−2ρ,−y·λ−2ρ(1).

Part (i) of the theorem follows easily from this and central character considerations.
Moreover, by an obvious refinement of (4.16) keeping track of parity information
too, we see that every subquotient of a Verma flag of T (−y · λ − 2ρ) that is ∼=
M(−x · λ− 2ρ) is actually 'M(−x · λ− 2ρ).

(ii) We proceed by induction on #λ. The case that λ is typical follows from (i).
So suppose that #λ > 0 and the theorem has been proved for all µ with #µ < #λ.
Let i : K(O∆

m|n)→ T
m|n
Z be the map defined in Theorem 4.28. Apply the algorithm

explained in §2-j to f = fλ to construct h = fν for ν ∈ X(m|n) with #ν < #λ and
a sequence X1, . . . , XN of monomials in E

(r)
a and F

(r)
a . Let M := XN · · ·X1T (ν).

Note by Corollary 4.25 that M has a Verma flag, and each subquotient of a Verma
flag of M is 'M(µ) for some µ ∈ X(m|n). By the induction hypothesis, i([T (ν)])
equals Mh(1) plus a linear combination ofMg(1)’s with g ≺ h. By Lemmas 2.10 and
2.11, we deduce that XN · · ·X1i([T (ν)]) equals Mf(1) plus a linear combination of
Mg(1)’s with g ≺ f . So by Theorem 4.28,

[M ] = [M(λ)] + (a linear combination of [M(µ)]’s with µ ≺ λ).

By Corollary 4.27(i), T (λ) is a summand of M , and the result follows. �

Motivated by the theorem, we formulate the following conjecture.

Conjecture 4.32. Let i : K(O∆
m|n)→ T

m|n
Z be the map defined in Theorem 4.28.

Then, i([T (λ)]) = Tfλ(1) for each λ ∈ X(m|n).
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In view of (4.9) this conjecture is equivalent to either of the statements

(T (λ) : M(µ)) = tµ,λ(1),(4.33)

[M(λ) : L(µ)] = t−λ−2ρ,−µ−2ρ(1)(4.34)

for all λ, µ ∈ X(m|n). By Corollary 2.24 and (4.10), the unitriangular matrices
(lµ,λ(1))µ,λ∈X(m|n) and (t−λ−2ρ,−µ−2ρ(1))µ,λ∈X+(m|n) are inverse to each other, so
inverting (4.34) also gives that

(4.35) ch L(λ) =
∑

λ∈X(m|n)

lµ,λ(1)chM(µ).

Although the summation is infinite here, it involves only finitely many non-zero
contributions to the dimensions of each fixed weight space of L(λ); thus it can be
viewed as a conjectural character formula for irreducibles in Om|n.

Further evidence for Conjecture 4.32 is given by the main theorem in the next
subsection. We finally mention one other result which is in keeping with the con-
jecture; compare in particular with Theorem 2.34. Recall the definition of the dual
crystal operators Ẽ∗a , F̃

∗
a , ε
∗
a and ϕ∗a from §2-k. Again, we lift these directly to

X(m|n) via the bijection (4.4).

Theorem 4.36 (Kujawa). Let λ ∈ X(m|n) and a ∈ Z.
(i) FaL(λ) 6= 0 if and only if ϕ∗a(λ) 6= 0, in which case it is a τ-self-dual in-

decomposable module with irreducible socle and cosocle ' L(F̃ ∗a (λ)). More-
over, FaL(λ) is irreducible if and only if ϕ∗a(λ) = 1.

(ii) EaL(λ) 6= 0 if and only if ε∗a(λ) 6= 0, in which case it is a τ-self-dual in-
decomposable module with irreducible socle and cosocle ' L(Ẽ∗a(λ)). More-
over, EaL(λ) is irreducible if and only if ε∗a(λ) = 1.

Theorem 4.36 is a result of Jon Kujawa that will form part of his PhD thesis
[Ku]. The proof, which will hopefully appear elsewhere, is similar to the proof given
in [B1] of Kleshchev’s modular branching rules from [Kv]. It involves some explicit
calculations with certain lowering operators in U(g).

§4-d. Tilting modules in category Fm|n. Now we study the finite dimensional
tilting modules U(λ). Lift the crystal operators Ẽa, F̃a, εa, ϕa from §3-d to X+(m|n)
through the bijection (4.4), as well as the mutually inverse bijections L and R from
(3.31).

Theorem 4.37. Let j : K(F∆
m|n) → E

m|n
Z be the map defined in Theorem 4.29.

Then, j([U(λ)]) = Ufλ(1) for each λ ∈ X+(m|n). Moreover:
(i) Each subquotient of a Kac flag of U(λ) is ' K(µ) for L(λ) � µ � λ;
(ii) U(λ) ' P (L(λ));
(iii) U(λ) ' U(λ)τ .

Proof. If #λ = 0 then Lemma 4.30 implies that U(λ) = P (λ) = K(λ) = L(λ)
and the theorem follows in this case. Now suppose that #λ > 0. Let f = fλ
and define h = fν for ν ∈ X+(m|n) and operators Xa ∈ {Ea, Fa}a∈Z according to
Procedure 3.20. We may assume by induction that the theorem has been proved
for ν.

ConsiderXaU(ν). Theorem 4.29, Lemma 3.21 and the induction hypothesis show
that j([XaU(ν)]) = XaUfν (1) = Ufλ(1). So we get from the explicit description of
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Ufλ(1) in Theorem 3.34(i) that [XaU(ν)] = [K(λ)] + (∗) + [K(L(λ))], where (∗) is
a sum of [K(µ)]’s for L(λ) ≺ µ ≺ λ. Using Corollary 4.26, we deduce from this and
the induction hypothesis that XaU(ν) has a Kac flag with subquotients ' K(λ),
K(L(λ)) and all other subquotients ' K(µ) for L(λ) ≺ µ ≺ λ. So XaU(ν) must
have a summand that is ' U(λ), recalling Lemma 4.27(ii). Also U(ν) ' U(ν)τ is
projective by the induction hypothesis, hence XaU(ν) ' (XaU(ν))τ is projective by
Lemma 4.23. Thus, XaU(ν) must have a summand that is ' P (L(λ)). To complete
the proof, it just remains to show that XaU(ν) is indecomposable. For this, we
give two different arguments, the first based on Theorem 4.36 and the second using
instead a fundamental fact proved by Serganova in [S3].

Method one. Suppose the space

HomFm|n(XaU(ν), L(µ)) ' HomFm|n(U(ν), YaL(µ))

is non-zero for some µ ∈ X+(m|n). By the choice of a in Procedure 3.20, λ is
not at the end of an a-string of length 2 in the crystal graph. Since we must have
that wt(µ) = wt(λ) by Lemma 4.18, it follows that µ is also not at the end of
an a-string of length 2. Theorem 4.36 now implies immediately that YaL(µ) '
L(Ỹ ∗a (µ)). By the induction hypothesis, U(ν) is the projective cover of L(L(ν)), so
we deduce from the non-vanishing of the right-hand hom space above that Ỹ ∗a (µ) =
L(ν). Hence, µ = X̃∗a(L(ν)) = L(X̃a(ν)) = L(λ), using Remark 3.18(2) for the
penultimate equality. We have now shown that cosocg(XaU(ν)) ' L(L(λ)), so it is
indecomposable.

Method two. Suppose XaU(ν) is decomposable. Then, by what we have shown
already, we can write XaU(ν) = T1 ⊕ T2, where T1 ' U(λ) and T2 6= 0 is a direct
sum of indecomposable tilting modules. Note that YaTi 6= 0 for each i; indeed we
have by adjointness that

HomFm|n(U(ν), YaTi) ' HomFm|n(XaU(ν), Ti) 6= 0.

Recalling Lemma 3.21, we now consider two cases. First, suppose that ν is at
the end of an a-string of length 1. Then, we have that YaUfλ(1) = Ufν (1), i.e.
[YaXaU(ν)] = [U(ν)]. Since YaXaU(ν) is a direct sum of indecomposable tilting
modules, we deduce that U(ν) ∼= YaXaU(ν) ∼= YaT1 ⊕ YaT2, a contradiction since
U(ν) is indecomposable. Otherwise, we have that ν is at the end of an a-string of
length 2, and [YaXaU(ν)] = 2[U(ν)]. Hence this time we must have that YaT1

∼=
YaT2

∼= U(ν). In particular, we get that [YaU(λ) : L(ν)] = 1. We now show that
[YaU(λ) : L(ν)] ≥ 2, to get the desired contradiction.

Let µ = X̃∗a(ν), so µ = λ − α for some α ∈ R+
1̄

with (λ + ρ|α) = 0. By [S3,
Theorem 5.5] and (4.16), we have that [K(λ) : L(µ)] ≥ 1 and that (U(λ) : K(µ)) =
[K(β − w0µ) : L(β − w0λ)] ≥ 1. Hence, [U(λ) : L(µ)] ≥ 2, since it has a Kac flag
involving both K(λ) and K(µ), each of which have L(µ) as a composition factor.
Now XaK(ν) has a two-step filtration with K(λ) at the bottom and K(µ) at the
top, hence

HomFm|n(K(ν), YaL(µ)) ' HomFm|n(XaK(ν), L(µ)) 6= 0.

This shows that [YaL(µ) : L(ν)] ≥ 1. Finally applying the exact functor Ya to U(λ)
and combining our two facts [U(λ) : L(µ)] ≥ 2 and [YaL(µ) : L(ν)] ≥ 1 gives that
[YaU(λ) : L(ν)] ≥ 2 as required. �
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Now recall the definition of the polynomials ug,f (q) and lg,f (q) from (3.7). As
usual we shift notation, writing uµ,λ(q) := ufµ,fλ(q) and lµ,λ(q) := lfµ,fλ(q). Com-
bining the theorem with (4.16), we get that

(U(λ) : K(µ)) = uµ,λ(1),(4.38)

[K(λ) : L(µ)] = uβ−w0λ,β−w0µ(1).(4.39)

The Main Theorem stated in the introduction follows immediately from the second
of these formulae and Corollary 3.36(i), since in view of (4.17) and Corollary 3.14
that gives an explicit formula for uβ−w0λ,β−w0µ(1). In particular, [K(λ) : L(µ)] ≤ 1
for all λ, µ ∈ X+(m|n), as was conjectured in [HKJ, Conjecture 7.2], and L(µ)
appears as a composition factor in exactly 2#µ different Kac modules K(λ), as was
conjectured in [HKJ, Corollary 7.3].

By Corollary 3.14 and (4.17), the unitriangular matrix (lµ,λ(1))µ,λ∈X+(m|n) is
the inverse of (uβ−w0λ,β−w0µ(1))µ,λ∈X+(m|n). So on inverting (4.39), we also get
that

(4.40) ch L(λ) =
∑

µ∈X+(m|n)

lµ,λ(1)chK(µ).

This can be viewed as a character formula for the finite dimensional irreducible
gl(m|n)-supermodules with integral highest weight. The explicit description of the
coefficients lµ,λ(1) given by Corollary 3.39(ii) seems to be quite different from the
explicit description given by Serganova [S3, Theorem 2.3], and I have been unable
to prove combinatorially that they are equivalent.

To conclude the subsection, let us record one more consequence of Theorem 4.37.

Corollary 4.41. For λ ∈ X+(m|n), L(λ)? ' L(β − w0R(λ)).

Proof. By (4.15) and Theorem 4.37, P (β − w0R(λ)) ' U(R(λ))? ' P (λ)? and it
is self-dual under the duality τ . Hence L(β − w0R(λ)) ' socgP (β − w0R(λ)) '
socgP (λ)? ' (cosocgP (λ))? ' L(λ)?. �
Remark 4.42. A different description of the highest weight of L(λ)? can be derived
using Serganova’s odd reflections; see [S1], [PS1, Lemma 0.3] and [BKu, Theorem
4.5]. In view of (4.39) and (4.14), Corollary 4.41 implies (indeed is equivalent to) the
equality uβ−w0µ,β−w0λ(1) = uµ,R(λ)(1); see Corollary 3.41 for a stronger statement.

§4-e. Highest weight categories. Let F 0̄
m|n (resp. F 1̄

m|n) be the full subcategory
of Fm|n consisting of the modules all of whose composition factors are ' L(λ)
(resp. ' ΠL(λ)) for λ ∈ X+(m|n). Obviously, the parity change functor Π defines
an isomorphism between F 0̄

m|n and F 1̄
m|n. Since each EndFm|n(L(λ)) is concentrated

in degree 0̄, each HomFm|n(M,N) for M,N ∈ F 0̄
m|n is also concentrated in degree

0̄, hence F 0̄
m|n is an abelian category.

Lemma 4.43. For λ ∈ X+(m|n), each of the objects U(λ), P (λ),K(λ) and L(λ)
belongs to F 0̄

m|n. Moreover, the dualities ? and τ and the functors F (r)
a and E

(r)
a

map objects in F 0̄
m|n to objects in F 0̄

m|n.

Proof. By Theorem 4.37(i), each subquotient of a Kac flag of U(λ) is ' K(µ) for
some µ ∈ X+(m|n). We deduce using (4.14)–(4.15) that each subquotient of a
Kac flag of P (λ) is ' K(µ) for some µ ∈ X+(m|n). By the obvious refinement
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of (4.13) keeping track of parities, it follows that each composition factor of K(µ)
is ' L(λ) for some λ ∈ X+(m|n). Combining these statements shows that all
of U(λ), P (λ),K(λ) and L(λ) belong to F 0̄

m|n. For the remaining statement, we
obviously have that L(λ)τ ' L(λ), hence τ leaves F 0̄

m|n invariant. The same thing
for ? follows from Corollary 4.41. Finally, Corollary 4.26 shows that the exact
functors F (r)

a and E
(r)
a send K(λ) to an object in F 0̄

m|n, and L(λ) is a quotient of
K(λ) so they must also send L(λ) to an object in F 0̄

m|n. �

Corollary 4.44. For any M,N ∈ F 0̄
m|n and i ≥ 0, the space ExtiFm|n(M,N) is

concentrated in degree 0̄.

Proof. We have already noted this is the case if i = 0. To get the general case from
this, note by the lemma that every composition factor of every term of the obvious
minimal projective resolution of M belongs to F 0̄

m|n. �

It follows easily from the corollary that every object M ∈ Fm|n decomposes
uniquely as M = M 0̄ ⊕M 1̄ with Mp ∈ Fpm|n for each p ∈ Z2. We deduce that

there is a decomposition Fm|n = F 0̄
m|n ⊕ ΠF 0̄

m|n allowing us to reconstruct the
superadditive category Fm|n from the additive category F 0̄

m|n. For example, for
M,N ∈ Fm|n and i ≥ 0, we have that

ExtiFm|n(M,N)0̄ = ExtiF 0̄
m|n

(M 0̄, N 0̄)⊕ ExtiF 0̄
m|n

(ΠM 1̄,ΠN 1̄),(4.45)

ExtiFm|n(M,N)1̄ = ExtiF 0̄
m|n

(M 0̄,ΠN 1̄)⊕ ExtiF 0̄
m|n

(ΠM 1̄, N 0̄).(4.46)

At this point, we refer the reader to [CPS1], [CPS2] for the definition of a highest
weight category with duality.

Theorem 4.47. The category F 0̄
m|n is a highest weight category with weight poset

(X+(m|n),�) and duality τ . For λ ∈ X+(m|n), U(λ), P (λ),K(λ) and L(λ) are the
indecomposable tilting, projective, standard and irreducible modules parametrized by
λ, respectively.

Proof. We have seen in Theorem 4.37 that (P (λ) : K(µ)) 6= 0 ⇒ λ � µ. Given
this and (4.13) it is a routine matter to check that F 0̄

m|n satisfies the axioms for a
highest weight category with duality. �

Remark 4.48. In an entirely similar fashion, we define O0̄
m|n to be the full subcate-

gory ofOm|n consisting of the objectsM all of whose composition factors are' L(λ)
for λ ∈ X(m|n). Using Theorem 4.31(ii) and the refined versions of (4.9) and BGG
reciprocity [B2, (6.6)] keeping track of parity, one can prove analogues of all the re-
sults in this subsection for O0̄

m|n: there is a decomposition Om|n = O0̄
m|n⊕ΠO0̄

m|n,
andO0̄

m|n is a highest weight category with weight poset (X(m|n),�) and duality τ .

§4-f. Kazhdan-Lusztig polynomials. In this subsection, we explain the true
significance of the polynomials lµ,λ(q) = lfµ,fλ(q) for µ, λ ∈ X+(m|n).
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Lemma 4.49. Let µ ∈ X+(m|n). Then, K(µ) has a projective resolution · · · →
P1(µ)→ P0(µ)→ K(µ)→ 0 in F 0̄

m|n such that for every λ ∈ X+(m|n),∑
i≥0

dim HomFm|n(Pi(µ), L(λ))qi = lµ,λ(−q−1).

Proof. We first explain how to construct for fixed d ≥ 0 an exact sequence Pd(µ)→
· · · → P0(µ) → K(µ) → 0 with each Pi(µ) projective. In case #µ = 0, K(µ) is
already projective, so we can simply take P0(µ) = K(µ) and Pi(µ) = 0 for i > 0.
Now suppose #µ > 0. Let g = fµ and apply Procedure 3.23 to construct h = fν
and operators Xa, Ya ∈ {Ea, Fa}a∈Z. Since Procedure 3.23 reduces µ to a typical
weight in finitely many steps, we may assume inductively that we have already
constructed an exact sequence

(4.50) Pd(ν) −→ · · · −→ P0(ν) −→ K(ν) −→ 0.

Now we consider two cases. Suppose first that #ν = #µ. Then XaK(ν) ' K(µ),
so applying Xa to (4.50) gives us the desired sequence with Pi(µ) = XaPi(ν).
In the second case, #ν = #µ − 1, and XaK(ν) has a two step filtration with
K(µ) at the top and K(X̃a(ν)) at the bottom. Applying Xa to (4.50) gives us an
exact sequence XaPd(ν) → · · · → XaP0(ν) → XaK(ν) → 0. By induction on d,
we may assume in addition that we have already constructed an exact sequence
Pd−1(X̃a(ν)) → · · · → P0(X̃a(ν)) → K(X̃a(ν)) → 0. Applying the comparison
theorem [W, 2.2.6] to the embedding i : K(X̃a(ν)) ↪→ XaK(ν), we get vertical
maps making the diagram commute:

· · · −−−−→ P1(X̃a(ν)) −−−−→ P0(X̃a(ν)) −−−−→ K(X̃a(ν)) −−−−→ 0y y yi
· · · −−−−→ XaP1(ν) −−−−→ XaP0(ν) −−−−→ XaK(ν) −−−−→ 0

The total complex of this double complex is exact by the acyclic assembly lemma
[W, 2.7.3]. Factoring out K(X̃a(µ)) yields the required exact sequence

· · · −→ XaP1(ν)⊕ P0(X̃a(ν)) −→ XaP0(ν) −→ K(µ) −→ 0.

This time, Pi(µ) = XaPi(ν) ⊕ Pi−1(X̃a(ν)).
Replacing d by (d+1), the same procedure constructs an exact sequence Pd+1(µ)

→ Pd(µ) → · · · → P0(µ) → K(µ) → 0, where we can always ensure that the first
d terms are the same as the ones constructed before. Now letting d→∞ we get a
projective resolution of K(µ). We note moreover by the construction that whenever
P (λ) is a summand of Pi(µ) for some i ≥ 0, i.e. HomFm|n(Pi(µ), L(λ)) 6= 0, we
must have that µ � λ.

Finally let pµ,λ(q) =
∑

i≥0 dim HomFm|n(Pi(µ), L(λ))qi. To complete the proof,
we need to show that pµ,λ(q) = lµ,λ(−q−1) for each µ, λ ∈ X+(m|n). For this,
we show that the polynomials pµ,λ(q) satisfy the same relations as the polynomials
lµ,λ(−q−1) in Lemma 3.24. Once this is established, the algorithm explained at
the end of §3-e to compute lµ,λ(−q−1) also computes pµ,λ(q), hence pµ,λ(q) =
lµ,λ(−q−1). So take λ, µ ∈ X+(m|n) with #µ > 0, where we may assume that
wt(λ) = wt(µ), since otherwise pµ,λ(q) = 0 and the conclusion holds trivially.
Apply Procedure 3.23 to g = fµ to get h = fν and operators Xa, Ya, and consider
the two cases #ν = #µ or #ν = #µ − 1, just like above. Let us just explain the
argument in the second case, the first case being easier. Since wt(λ) = wt(µ) and µ
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is not at the end of an a-string of length 2 in the dual crystal graph, Theorem 4.36
shows that YaL(λ) equals L(Ỹ ∗a (λ)), interpreted as 0 if Ỹ ∗a (λ) = ∅. So we get that∑

i≥0

dim HomFm|n(XaPi(ν), L(λ))qi =
∑
i≥0

dim HomFm|n(Pi(ν), YaL(λ))qi

=
∑
i≥0

dim HomFm|n(Pi(ν), L(Ỹ ∗a (λ)))qi = pν,Ỹ ∗a (λ)(q),

interpreted as 0 in case Ỹ ∗a (λ) = ∅. We noted above that Pi(µ) = XaPi(ν) ⊕
Pi−1(X̃a(ν)), hence we get that pµ,λ(q) = pν,Ỹ ∗a (λ)(q) + qpX̃a(ν),λ(q), which is what
we wanted in this case; cf. Lemma 3.24. �

Now choose a length function on Zm|n+ as explained in §3-g, and lift it to X+(m|n)
by setting `(λ) := `(fλ).

Theorem 4.51. For µ, λ ∈ X+(m|n), the superspace ExtiFm|n(K(µ), L(λ)) is con-
centrated in degree 0̄, and∑

i≥0

dim ExtiFm|n(K(µ), L(λ))qi = lµ,λ(−q−1).

Hence, Ext•Fm|n(K(µ), L(λ)) 6= 0 if and only if µ � λ, in which case

(i) ExtiFm|n(K(µ), L(λ)) 6= 0⇒ i ≤ `(λ)− `(µ), i ≡ `(λ) − `(µ) (mod 2);

(ii) Ext`(λ)−`(µ)
Fm|n (K(µ), L(λ)) is exactly one dimensional;

(iii) Ext1
Fm|n(K(µ), L(λ)) is at most one dimensional.

Proof. Apply the functor HomFm|n(?, L(λ)) to the projective resolution constructed
in Lemma 4.49 and use Corollaries 3.45, 3.39(ii) and 4.44. �

By [Z, Theorem 7.6], Theorem 4.51 shows that the polynomials lµ,λ(−q−1) de-
fined here agree with the Kazhdan-Lusztig polynomials Kλ,µ(q) defined by Serga-
nova in [S2], [S3]. (It also proves [JZ, Conjecture 4.4], and answers a question raised
at the end of [Z].) Thus we have a cohomological interpretation of the polynomial
lµ,λ(−q−1), analogous to Vogan’s interpretation [V, Conjecture 3.4] of Kazhdan-
Lusztig polynomials in category O for a semisimple Lie algebra. The even-odd
vanishing established in Theorem 4.51(i) is especially important: in the language
of [CPS3], it shows that the highest weight category F 0̄

m|n has a “Kazhdan-Lusztig
theory”. Applying [CPS4, Corollary 3.9] (and Corollary 4.44 again), we obtain:

Corollary 4.52. For µ, λ ∈ X+(m|n), the superspace ExtiFm|n(L(µ), L(λ)) is con-
centrated in degree 0̄, and∑

i≥0

dim ExtiFm|n(L(µ), L(λ))qi =
∑

ν∈X+(m|n)

lν,µ(−q−1)lν,λ(−q−1).

In particular, ExtiFm|n(L(µ), L(λ)) 6= 0⇒ i ≡ `(λ)− `(µ) (mod 2).

Example 4.53. Take µ = λ = 0 and let r = min(m,n). In this case, the poly-
nomials lν,µ(−q−1) are computed explicitly in Example 3.37. Combining this with
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Corollary 4.52, one deduces that dim Ext2i
Fm|n(C,C) equals the number of partitions

of i with at most r non-zero parts. Hence:

(4.54)
∑
i≥0

dim ExtiFm|n(C,C)qi =
1

(1− q2)(1− q4) · · · (1− q2r)
.
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MR 94m:17016

[Mac] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical
Monographs, second edition, OUP, 1995. MR 96h:05207

[M] Yu I. Manin, Gauge field theory and complex geometry, Grundlehren der mathematis-
chen Wissenschaften 289, second edition, Springer, 1997. MR 99e:32001

[PS1] I. Penkov and V. Serganova, Representations of classical Lie superalgebras of type I,
Indag. Math. (N. S.) 3 (1992), 419–466. MR 93k:17006

[PS2] I. Penkov and V. Serganova, Generic irreducible representations of finite dimensional
Lie superalgebras, Internat. J. Math. 5 (1994), 389–419. MR 95c:17015

[S1] V. Serganova, Automorphisms of complex simple Lie superalgebras and affine Kac-
Moody algebras, PhD thesis, Leningrad State University, 1988.

[S2] V. Serganova, Kazhdan-Lusztig polynomials for the Lie superalgebra GL(m|n), Adv.
Sov. Math. 16 (1993), 151–165. MR 94k:17005

[S3] V. Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superal-
gebra gl(m|n), Selecta Math. 2 (1996), 607–651. MR 98f:17007

[Sg1] A. Sergeev, Tensor algebra of the identity representation as a module over the Lie super-
algebras GL(n,m) and Q(n), Math. USSR Sbornik 51 (1985), 419–427. MR 85h:17010

[Sg2] A. Sergeev, Enveloping algebra centre for Lie superalgebras GL and Q, PhD thesis,
Moscow State University, 1987.

[Sg3] A. Sergeev, The invariant polynomials on simple Lie superalgebras, Represent. Theory
3 (1999), 250-280. MR 2000k:17012

[So1] W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Rep-
resent. Theory 1 (1997), 83–114. MR 98d:17026

http://www.ams.org/mathscinet-getitem?mr=81m:17011
http://www.ams.org/mathscinet-getitem?mr=89c:20001
http://www.ams.org/mathscinet-getitem?mr=92b:17049
http://www.ams.org/mathscinet-getitem?mr=91j:17046
http://www.ams.org/mathscinet-getitem?mr=2000a:17008
http://www.ams.org/mathscinet-getitem?mr=58:5803
http://www.ams.org/mathscinet-getitem?mr=56:3075
http://www.ams.org/mathscinet-getitem?mr=80f:17006
http://www.ams.org/mathscinet-getitem?mr=96j:11056
http://www.ams.org/mathscinet-getitem?mr=94b:17024
http://www.ams.org/mathscinet-getitem?mr=97a:17016
http://www.ams.org/mathscinet-getitem?mr=81j:20066
http://www.ams.org/mathscinet-getitem?mr=96m:20019
http://www.ams.org/mathscinet-getitem?mr=97k:17019
http://www.ams.org/mathscinet-getitem?mr=94m:17016
http://www.ams.org/mathscinet-getitem?mr=96h:05207
http://www.ams.org/mathscinet-getitem?mr=99e:32001
http://www.ams.org/mathscinet-getitem?mr=93k:17006
http://www.ams.org/mathscinet-getitem?mr=95c:17015
http://www.ams.org/mathscinet-getitem?mr=94k:17005
http://www.ams.org/mathscinet-getitem?mr=98f:17007
http://www.ams.org/mathscinet-getitem?mr=85h:17010
http://www.ams.org/mathscinet-getitem?mr=2000k:17012
http://www.ams.org/mathscinet-getitem?mr=98d:17026


KAZHDAN-LUSZTIG POLYNOMIALS 231

[So2] W. Soergel, Character formulas for tilting modules over Kac-Moody algebras, Represent.
Theory 2 (1998), 432–448. MR 2000c:17048

[V] D. Vogan, Irreducible representations of semisimple Lie groups II: the Kazhdan-Lusztig
conjectures, Duke Math. J. 46 (1979), 805–859. MR 81f:22024

[W] C. Weibel, An introduction to homological algebra, CUP, 1994. MR 95f:18001
[Z] Y. M. Zou, Categories of finite dimensional weight modules over type I classical Lie

superalgebras, J. Algebra 180 (1996), 459–482. MR 97e:17012

Department of Mathematics, University of Oregon, Eugene, Oregon 97403

E-mail address: brundan@darkwing.uoregon.edu

http://www.ams.org/mathscinet-getitem?mr=2000c:17048
http://www.ams.org/mathscinet-getitem?mr=81f:22024
http://www.ams.org/mathscinet-getitem?mr=95f:18001
http://www.ams.org/mathscinet-getitem?mr=97e:17012

	1. Introduction
	2. Tensor algebra
	3. Exterior algebra
	4. Representations of gl(m|n)
	Acknowledgements
	References

