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Part 1. Introduction

In this paper we study the long time stability of multidimensional planar viscous
shocks with energy estimates. We introduce degenerate symmetrizers as the main
new tool for proving the estimates.

1. Guide to the paper

1.1. Ideal shocks and viscous shocks. Consider a system of conservation laws

ut +
d∑

j=1

f j(u)xj = 0,(1.1)

where u, f j ∈ Rn, and a planar (ideal) shock (UR, UL, s) moving in the x1 direction
with speed s. This means that the triple (UR, UL, s) is constant and satisfies

s[U ] − [f1(U)] = 0,(1.2)

where [U ] = UR −UL. Condition (1.2), known as the Rankine-Hugoniot condition,
is necessary and sufficient for the function u defined by

u =

{
UR, x1 > st,

UL, x1 < st
(1.3)

to be a weak solution of (1.1) in R
d+1
t,x .

Redefining x1, f
1 as x̃1 = x1 − st and f̃1(u) = f1(u) − su, we can and will

henceforth assume s = 0.
Consider also a corresponding system of viscous conservation laws

ut +
d∑

j=1

f j(u)xj = �u,(1.4)

where

�u =
d∑

j=1

∂2
xj

u,

and a steady state solution ψ(x1) connecting the endstates UR, UL:

lim
x1→+∞

ψ(x1) = UR, lim
x1→−∞

ψ(x1) = UL.(1.5)

Note that ψ satisfies the travelling wave ODE

ψ′ = f1(ψ) − f1(UL).(1.6)

It is easy to check that the Rankine-Hugoniot condition is a necessary condition
for the existence of such a ψ. We refer to ψ variously as a connection, a profile, and
a viscous shock.

1.2. Nonlinear stability. We wish to understand the stability of the profile ψ(x1)
under multidimensional perturbations. Let A denote some set of admissible per-
turbations to be specified later.
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Definition 1.1. For v0 ∈ A let u(x, t) be the solution to the system (1.4) with
initial data at t = 0 given by

u0(x) = ψ(x1) + εv0(x).(1.7)

We say that ψ is nonlinearly stable with respect to perturbations in A if there exists
an ε0 > 0 (depending on |v0|A) such that for ε ≤ ε0, the solution u(x, t) exists for
all time and

|u(x, t) − ψ(x1)|L∞(x) → 0 as t → ∞.(1.8)

1.3. The eigenvalue equation. Let Aj(x1) = df j(ψ(x1)) and x′ = (x2, . . . , xd).
(Later, we will switch to a more convenient (x, y) = (x1, x

′) notation.) After a
transfer of initial data to forcing carried out in Section 2, the key step turns out to
be the proof of good estimates for the linear problem

(a) ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju −�u = f,

(b) u|t=0 = 0.

(1.9)

Because of the initial condition, if we extend u and f by zero into t < 0, the
extensions satisfy (1.9) on R1+d. We may take the Fourier transform in (t, x′) to
obtain the eigenvalue equation for û(x1, λ, ξ′):

ûx1x1 − (A1(x1)û)x1 − s(x1, λ, ξ′)û = f̂(x1, λ, ξ′)(1.10)

where (τ, ξ′) is dual to (t, x′), λ = iτ + γ with γ ≥ 0 and

s(x1, λ, ξ′) =
d∑

j=2

Aj(x1)iξj + λI + |ξ′|2I.

The existence of “eigenvalues” λ in the unstable half-space �λ > 0, that is, values
of λ for which there exist nontrivial solutions û(x1, λ, ξ′) of (1.10) (with f̂ = 0)
decaying at both ±∞ , is easily seen to rule out any useful stability estimate for
(1.9) (see Remark 2.4). In Section 2 we recall the definition of the Evans function
D(λ, ξ′) corresponding to the viscous profile ψ. This function is a Wronskian of
solutions to the homogeneous version of (1.10) with the property that eigenvalues
of (1.10) in �λ > 0 correspond to zeros of D(λ, ξ′).

It is easy to check that ψ′(x1) itself is a solution of the eigenvalue equation when
(λ, ξ′) = (0, 0) (differentiate (1.6) twice), so the Evans function (suitably extended)
vanishes at (λ, ξ′) = (0, 0). One of the main hypotheses of this paper is that D
vanishes to precisely first order at (0, 0) and has no other zeros in �λ ≥ 0. This is
stated precisely as assumption (H4) in Section 2.

The same Evans assumption has already been shown to imply long time stability
of viscous profiles in the 1D case in [KK] for zero mass perturbations and [Z2,
MaZ1, MaZ2, MaZ3, MaZ4, MaZ5, Z3, HZ, Ra] for general perturbations, and in
the multidimensional case in [Z1, Z3, Z4] (for general perturbations); see also the
important groundwork of [GZ, ZH, ZS] and [K1, K2, KS, LZe, H1, H2]. A treatment
of the scalar multidimensional case (for which the Evans assumption always holds,
by the maximum principle) may be found in [HoZ2, HoZ3]. We say more about the
relation of [KK] and [Z1] to this work below.

We also mention the earlier works [Go1, Go2, MN, KMN] in which stability under
zero mass perturbations was proved for sufficiently weak (i.e., small amplitude)
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shocks in 1D, [SX] in which stability under general perturbations was proved for
weak shocks in 1D, and [Go3, GM] in which the stability of weak planar shock
solutions for viscous scalar multidimensional conservation laws was demonstrated.
See also the important partial results of [L1] and [L2] for weak shocks in 1D, in
which the modern picture of 1D asymptotic behavior of a perturbed shock profile
(verified for strong shocks in [Ra]) was first set out, and the treatment of special non-
Lax shocks in [LX, FL, LZ1, LZ2] (extended to general strong shocks in [HZ, Ra]).
There is little contact either in techniques or ideas between the 1D weak shock
theory and our present analysis, which is closer to the inviscid theory of Kreiss
and Majda [K, M1, M2]. Our treatment of stability in 2D has some conceptual
roots in [Go3, GM], as described further in [Z1], but at a technical level it is again
essentially unrelated.

Remark 1.1. Recent work by Freistühler and Szmolyan [FS] and independently by
Plaza and Zumbrun [PZ] shows that Evans condition (H4) holds for sufficiently
small amplitude Lax shocks, under the mild structural assumptions of symmetriz-
ability plus strict concavity/convexity of the characteristic associated with the
shock; see [FM, Met1, Met2] for the analogous study of small-amplitude invis-
cid stability. In general, (H4) may fail for large-amplitude or non-Lax shocks; see
[ZS, GZ, FZ].

1.4. Reformulation as a doubled boundary problem. Rewrite the second
order n × n eigenvalue equation as a 2n × 2n first order system on Rx1 depending
on frequency (λ, ξ′):(

û
v̂

)
x

=
(

A1(x1) I
s(x1, λ, ξ′) 0

) (
û
v̂

)
+

(
0

f̂(x1, λ, ξ′)

)
,(1.11)

or

Ux1 = GU + F(1.12)

for short.

Notation 1.1. If f(x1) is any function defined on R, define f± for x1 ≥ 0 by

f+(x1) = f(x1),

f−(x1) = f(−x1).
(1.13)

Now on x1 ≥ 0 let

U(x, λ, ξ′) = (U+,U−),

G(x, λ, ξ′) =
(
G+ 0
0 −G−

)
,

F =
(

F+

−F−

)
, and

ΓU = U+ − U−.

(1.14)

Note that U(x1, λ, ξ′) satisfies (1.12) on R if and only if U satisfies the 4n × 4n
first order system on x1 ≥ 0:

Ux1 − G(x1, λ, ξ′)U = F on x1 ≥ 0,

ΓU = 0 on x1 = 0.
(1.15)
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The boundary condition in (1.15) just expresses the continuity of U (in (1.12)) at
x1 = 0. Usually, we will drop the script notation and write U = (U+, U−).

Having rewritten the eigenvalue equation as a boundary problem on half-space,
we are now in a position to use the machinery of Kreiss symmetrizers to prove
energy estimates. But the most serious obstacle remains, namely, the dependence
of G on x1. Trouble is caused, for example, by the fact that as x1 varies from −∞
to +∞, one of the eigenvalues of A1(x1) changes sign (the kth eigenvalue if the
inviscid shock is a k shock).

1.5. Conjugation. To deal with the x1 dependence, we use a tool introduced in
[MZ1]. Observe that since the x1 dependence of G enters only through the profile
ψ(x1), there is a well-defined limiting problem corresponding to (1.15) which is
obtained simply by letting x1 → +∞ in G. Call the limit matrix G(∞, λ, ξ′). One
can replace (1.15) with a constant coefficient problem by constructing a matrix
W (x1, λ, ξ′) with the properties

W (x1, λ, ξ′) = I + O(e−θx1), θ > 0,

∂x1W = G(x1)W (x1) − W (x1)G(∞).
(1.16)

The substitution U = WV then transforms the problem (1.15) into

Vx1 − G(∞, λ, ξ′)V = W−1F,

Γ̃(x1, λ, ξ′)V = 0 on x1 = 0,
(1.17)

where Γ̃(x1, λ, ξ′)V = ΓW (x1, λ, ξ′)V . Thus, estimates for (1.17) imply estimates
for (1.15).

1.6. Degenerate symmetrizers. Kreiss symmetrizers have long [K] been used to
obtain L2 estimates for hyperbolic boundary problems with nonvanishing Lopatin-
ski determinants. In [MZ1] the use of such symmetrizers was extended to the
Dirichlet problem for “hyperbolic + viscosity” operators and applied to study the
stability of multidimensional viscous Dirichlet boundary layers, a situation where
the Lopatinski determinant is nonvanishing. Standard symmetrizers adapted to
hyperbolic-parabolic operators are recalled in Section 5.

The linear algebraic preparation needed for the construction of both standard
and degenerate symmetrizers is given in Part 2.

As we have seen, the Evans function in the viscous shock problem vanishes for
zero frequency. When the eigenvalue problem on the whole space is reformulated as
a doubled boundary problem on a half space, the vanishing of the Evans function
translates into vanishing of the Lopatinski determinant for the boundary problem
(1.17).

In Section 7 of this paper we construct degenerate symmetrizers to cope with
the degeneracy of the Lopatinski determinant in the viscous shock problem. The
Lopatinski determinant is nonvanishing for frequencies bounded away from zero, so
most of our efforts are focused on the small frequency region. The critical estimate
for (1.17) is the small frequency estimate (8.12), where the norm is an L2(x1) norm,
the functions U , F depend on (x1, λ, ξ′), and ρ = |λ, ξ′|. Note that the estimate is
quite singular at ρ = 0.
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1.7. Zero mass perturbations. Our first application of this estimate is a proof
of the long time stability of multidimensional planar shocks under zero mass per-
turbations in dimensions ≥ 3. This means we take v0(x) in (1.7) of the form

v0 = div V(1.18)

for sufficiently well-behaved V (see assumption (H5)).
There is no restriction on the size of the shocks, but they are required to satisfy

the Evans assumption (H4). To deal with the singularity at ρ = 0 in the main
estimate (8.12), we are led to introduce mixed norms corresponding to the space
L2(x1, L

1(t, x′)) (x1 = 0 is the boundary). We are then able to carry out in higher
dimensions the strategy used in [KK] for handling zero mass perturbations in 1D,
with our mixed norm playing the role of their L1 norm. The strategy uses the
zero mass assumption to write the forcing in divergence form (Remark 2.2). First
one solves an auxiliary problem (10.3) and then reduces to considering a problem
with ρF forcing (10.5). Clearly, such forcing is advantageous in the region where
ρ is small. A more detailed description of this strategy is given at the beginning
of Section 9. The full linear stability estimate for (1.9) in this case is (taking
f = div F)

|u, ut, ux′ |L2(t,x) + |ux1 |L2(t,x) ≤ C(|F|L2(x1,L1(t,x′)) + |F|L2(t,x)).(1.19)

This is (10.1). The zero mass result is Theorem 4.1.

1.8. Nonzero mass perturbations. Let |τ, ξ′| = r ≤ ρ. Since Lebesgue measure
in d-dimensional (τ, ξ′) space is

dτdξ′ = rd−1drdω,

the mixed norm argument used to prove (8.22) works more easily in higher dimen-
sions: rd−1 cancels the singularity at ρ = 0 in the main estimate (8.12). In fact,
for d ≥ 5 more general perturbations not in divergence form can be handled by an
argument that is simpler than the one just described. There is no need to consider
an auxiliary problem. In place of (1.19) the estimate for (1.9) is now

|u, ut, ux′|L2(t,x) + |ux1 |L2(t,x) ≤ C(|f |L2(x1,L1(t,x′)) + |f |L2(t,x)).(1.20)

Observe that there is a gain of two derivatives in (1.19) but a gain of only one in
(1.20). The result for nonzero mass perturbations in d ≥ 5 is Theorem 4.3.

1.9. L1 − Lp estimates. Of course, one wants to prove nonlinear stability for
nonzero mass perturbations in all dimensions d ≥ 2. However, the small frequency
estimate of Part 3, (8.12), does not appear adequate to handle the problem of long
time stability under nonzero mass perturbations in space dimensions 2, 3, and 4.
Thus, we are led in Part 3 to prove more refined L1 − Lp estimates (p ≥ 2) by a
combination of degenerate symmetrizer and duality arguments. These are crucial
for the treatment of long time stability, and as far as we know are the first such
multidimensional symmetrizer estimates between norms other than L2. Previous
attempts had been foiled by the presence of glancing modes. Indeed, such modes
present the main obstacle to be overcome in Section 11. The bounds we obtain
by our symmetrizer estimates match those obtained by direct integration of the
pointwise resolvent kernel bounds obtained by explicit computation in [Z1].
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In Section 11 we define an adjoint doubled boundary problem dual to the original
forward problem and observe that L2 − L∞ estimates for the dual problem are
equivalent to L1 − L2 estimates for the forward problem. Section 11 is devoted
to the proof of L2 − L∞ estimates for the dual problem. In order to obtain these
estimates we must add the structural assumption (H6) of [Z1] that the glancing set
associated with the shock have constant rank; see our (H6) below.

In place of (1.20) we obtain for nonzero mass perturbations in dimensions d ≥ 3:

|u, ut, ux′ |L2(t,x) + |ux1 |L2(t,x) ≤ C(|f |L1(t,x) + |f |L2(t,x)).(1.21)

The corresponding nonlinear stability result in d ≥ 3 is Theorem 4.4.
The passage from the linear stability estimates (1.19), (1.20), (1.21) to the corre-

sponding nonlinear stability results in Theorems 4.1, 4.3, and 4.4 is in each case by
an argument similar to the scheme in [KK]. These arguments are given in Sections
9 and 10.

The endgame in dimension two seems to require a special argument similar to the
one in [Z1]. This is given in Section 12. The corresponding nonlinear stability result
is Theorem 4.5. Here, the inverse Laplace transform is estimated on a parabolic
contour �λ = −C−1(|ξ′|2+|�λ|2), rather than the flat contour �λ = 0 considered in
[KK], to take into account the additional decay due to diffusion in the parabolic case.
By contrast, the [KK] endgame takes into account (and requires) only estimates
like those in the hyperbolic case, which for general (nonzero mass) perturbations
are sufficient in large enough dimension, but fail in dimensions one and two.

1.10. Assessment. The stability of multidimensional planar shocks has already
been carefully studied in [Z1] by construction of Green’s functions. [Z1] proves
long time stability under nonzero mass perturbations and gives rates of decay in
time. Apart from the fact that in Theorems 4.1 and 4.3 we are able to do without
the structural assumption (H6) of [Z1], we believe that the main interest of the
long time stability results here lies in the new methods used to obtain them, which
apart from their independent interest also illuminate and unify previous theory. In
particular, Theorem 4.2 gives a natural extension to multidimensions of the zero
mass approach of [KK] and, in combination with Theorem 4.5, clarifies the relation
of this approach to the one used in [Z1] to treat general perturbations; Theorem
4.4 shows that the approach of [KK] can succeed also for general perturbations in
sufficiently high dimensions d ≥ 3. Moreover, in contrast to the Green’s function
methods of [Z1], the conjugation and degenerate symmetrizer arguments can be
readily extended to curved shocks with the aid of pseudodifferential operators.
Indeed, in the sequels [GMWZ1, GMWZ2, GMWZ3] we apply such arguments to
give a rigorous justification of the small viscosity limit for curved multidimensional
shocks.

2. Assumptions

2.1. Assumptions on the equations.
(H1): f j ∈ C∞(Rn, Rn).
(H2):

∑d
j=1 df j(UR,L)ξj has simple real eigenvalues for ξ ∈ Rd \ 0

(strict hyperbolicity of UR,L).
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Observe that (H2) implies

the eigenvalues β of − i
d∑

j=1

df j(UR,L)ξj − |ξ|2 satisfy �β = −|ξ|2.(2.1)

2.2. Assumption on the shock.
(H3) (UR, UL, s) satisfies the Lax shock inequalities [La].

Remark 2.1. (1) (H3) implies the eigenvalues of df1(UR,L) are nonzero, so x1 = 0
is noncharacteristic. Let k (resp. l) be the number of positive (resp. negative)
eigenvalues of df1(UR) (resp. df1(UL)). Then (H3) implies

k + l = n − 1.(2.2)

(2) The hyperbolicity hypothesis can be weakened, and more general viscosities
and types of shocks can be handled by the methods here. In particular, (H2) may
be weakened to allow the case of nonstrictly hyperbolic but constant multiplicity
systems with stable viscosity matrices treated in [MZ2]; extensions to the variable-
multiplicity case are discussed in [MZ2, GMWZ4]. Also, (H3) may be weakened to
allow overcompressive shocks as in [Z1]; see Remark 10.1 below. (As described in
[Z1], undercompressive shocks require a slightly different treatment.) Since most
of the difficulties are already present under the above simple assumptions, we will
work with these in order to lighten the exposition. We plan to treat more general
situations in a future work.

An important consequence of (H3) is:

Proposition 2.1. ψ decays at exponential rate to its endstates. There exist positive
constants C, β such that

|ψ(x1) − UR| ≤ Ce−βx1 for x1 > 0,

|ψ(x1) − UL| ≤ Ceβx1 for x1 < 0.
(2.3)

Proof. Since the eigenvalues of df1(UR,L) are nonzero, the center manifold of (1.6)
at the rest points UR,L is trivial. �
2.3. Reduction to a forward problem. Consider the problem

ut +
d∑

j=1

f j(u)xj = �u,

u|t=0 = ψ(x1) + εv0(x),

(2.4)

and look for u(x, t) of the form

u(x, t) = ψ(x1) + εv(x, t).(2.5)

Write

f j(ψ + εv) = f j(ψ) + εAj(x1)v + ε2gj(ψ, v, ε), for j = 1, . . . , d,(2.6)

where

Aj(x1) = df j(ψ(x1)),(2.7)

and note that gj is a smooth function of its arguments satisfying

|gj(ψ, v, ε)| ≤ CM |v|2 for |v| ≤ M.(2.8)
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Usually, we will set A(x1) ≡ A1(x1). In view of Proposition 2.1 the matrices Aj(x1)
decay exponentially to their limiting values at ±∞.

The problem satisfied by v(x, t) is then

vt + (A(x1)v)x1 +
d∑

j=2

Aj(x1)∂jv + ε

d∑
j=1

(gj(ψ, v, ε))xj = �v,

v|t=0 = v0.

(2.9)

Next, as in [KK] to obtain a problem with zero initial data we look for v(x, t) =
ũ + e−tv0(x). Drop the tilde on u, suppress the harmless ε dependence in gj , and
write

gj(ψ, u + e−tv0) = gj(ψ, e−tv0) + Bj(x, t)u + hj(x, t, u),(2.10)

where

Bj(x, t) = ∂ugj(ψ, e−tv0),

|hj(x, t, u)| ≤ CM |u|2 when |v0, u| ≤ M.
(2.11)

The problem satisfied by u can now be written

ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju + εdivx(B(x, t)u) + εdivx(h(x, t, u))

= �u + e−tv0 − divxA(x, t) − εdivx(g(ψ, e−tv0)) + divx(e−t∇xv0),

u|t=0 = 0

(2.12)

where

A(x, t) = (A1(x1)e−tv0, . . . , Ad(x1)e−tv0),

B(x, t)u = (B1(x, t)u, . . . , Bd(x, t)u), etc.
(2.13)

Remark 2.2. Note that if v0 = divxV for some V = (V1, . . . , Vd), the problem (2.12)
takes the following form with conservative forcing:

ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju + εdivx(B(x, t)u) + εdivx(h(x, t, u))

= �u + divxF(x, t),

u|t=0 = 0,

(2.14)

where

F = e−tV −A− εg(ψ, e−tv0) + e−t∇xv0.(2.15)

In Part 2 we obtain energy estimates for the following linear problem correspond-
ing to (2.12):

(a) ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju −�u = f,

(b) u|t=0 = 0.

(2.16)
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2.4. Evans function. We will work mostly in frequency variables so we change
notation, replacing (x1, x2, . . . , xd) by (x, y2, . . . , yd) and letting (τ, η) be dual to
(t, y). We will take the Laplace transform in t and set λ = iτ + γ, where γ ≥ 0.

Extend u and f in (2.16) by zero in t < 0 and take Fourier-Laplace transforms
in (t, y) to get the eigenvalue equation:

ûxx − (A(x)û)x − s(x, λ, η)û = f̂(x, λ, η)(2.17)

where

s(x, λ, η) =
d∑

j=2

Aj(x)iηj + λI + |η|2I.

Next rewrite this as a 2n × 2n first order system on R depending on frequency(
û
v̂

)
x

=
(

A(x) I
s(x, λ, η) 0

) (
û
v̂

)
+

(
0

f̂(x, λ, η)

)
,(2.18)

or

Ux = GU + F(2.19)

for short.

Notation 2.1. (1) Set ζ = (τ, γ, η). We will sometimes write (with slight abuse)
ζ = (λ, η) and f(λ, η) = f(ζ).

(2) Introduce polar coordinates

ζ = ρζ̂, where ζ̂ = (τ̂ , γ̂, η̂) and ζ̂ ∈ Sd.(2.20)

We will always take γ ≥ 0, so define Sd
+ = Sd ∩ {γ̂ ≥ 0}.

Remark 2.3. Observe that smooth functions f(ζ) of ζ ∈ Rd+1 can be rewritten
as smooth functions f(ζ̂ , ρ) with (ζ̂ , ρ) ∈ Sd × R+. However, when f(ζ̂, 0) is not
constant on Sd, the function f(ζ) corresponding to f(ζ̂ , ρ) is not continuous at
ζ = 0.

In order to define the Evans function we recall the following lemma from [ZS]:

Lemma 2.1. For η ∈ Rd−1, �λ > 0, there exist bases of solutions

{UR
1 , · · · ,UR

n }, {UL
1 , · · · ,UL

n }(2.21)

of (2.19) with F = 0, spanning the stable/unstable manifolds at x = +∞/ − ∞,
respectively, such that

D(λ, η) ≡ det(UR
1 , · · · ,UR

n ,UL
1 , · · · ,UL

n )|x=0(2.22)

is analytic in (λ, η) and continuously extendible to �λ = 0.

Definition 2.1. D is called the Evans-Lopatinski determinant (or Evans function
for short) for the problem (2.19). Here and henceforth we always normalize the
columns appearing in (2.22) so that they of are of size ∼ 1 for ρ near 0.

Remark 2.4. (1) Note that nonvanishing of D in �λ > 0 is necessary even for
linearized stability. Linear dependence implies existence of a solution U = (û, v̂)
to the homogeneous problem decaying at both ±∞, and thus of an exponentially
unstable solution ŵ(x, t, η) = eλtû(x, λ, η) of (2.16)(a) with f = 0.

(2) In ρ > 0 we may write D(ζ) = D(ζ̂ , ρ). In Lemma 5.1 in [ZS] it is shown
that D(ζ̂ , ρ) is analytic in {γ̂ > 0, ρ > 0}. In view of Remark 7.1 below, D and Dρ
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are continuously extendible to {γ̂ ≥ 0, ρ ≥ 0}. In addition, Proposition 5.3 of [ZS]
implies

D(ζ̂ , ρ) = Cβ∆(ζ̂)ρ + o(ρ)(2.23)

as ρ → 0, for some C 
= 0. Here β is nonvanishing if and only if the stable/unstable
manifolds for UR/UL of the travelling wave ODE (1.6) are transverse at the connec-
tion ψ, while ∆(ζ̂) is the Lopatinski-Kreiss-Majda determinant for the ideal shock
problem linearized at (UR, UL, s).

The computation giving (2.23) shows that

D(ζ̂ , ρ) ∈ C(Sd
+, C1(R+)).(2.24)

(3) The vanishing of D(ζ̂ , 0) reflects the fact that at ρ = 0 the homogeneous
version of (2.19) has the solution U = (φ, 0), where φ = ψ′ (differentiate (1.6)
twice). This solution is fast decaying at both ±∞. It will be convenient later to
normalize

UR
1 (x, ζ̂, 0) = UL

n (x, ζ̂, 0) = (φ(x), 0).(2.25)

(4) Lemma 2.1 follows from the Gap Lemma of [GZ] and Proposition 5.1 below.

2.5. Assumption on the viscous profile.
(H4) D(ζ̂ , ρ) vanishes to precisely first order at ρ = 0 (where it must vanish) for all
ζ̂ ∈ Sd

+ and has no other zeros in Sd
+ × R+.

Remark 2.5. In view of the above remarks D(ζ̂ , ρ) vanishes to precisely first order
at ρ = 0 if and only if both β 
= 0 and ∆(ζ̂) 
= 0 on Sd

+, i.e., the viscous profile is a
transversal connection of the travelling-wave ODE and the ideal shock (UR, UL, s)
satisfies Majda’s uniform Lopatinski condition.

2.6. Admissible perturbations.

Notation 2.2. Consider v(x, y) defined for (x, y) ∈ Rd.
(1) 〈v〉22;p =

∑
|α|≤p |∂α

(x,y)v(x, y)|2L2(x,y).
(2) 〈v〉2(2,1);p =

∑
|α|≤p |∂α

(x,y)v(x, y)|2L2(x,L1(y)).
(3) 〈v〉1;p =

∑
|α|≤p |∂α

(x,y)v(x, y)|L1(x,y).

Remark 2.6. We caution the reader not to confuse the above notation with the com-
monly used W k,p notation for Sobolev spaces, where k is an order of differentiation
and p is an Lp exponent.

In each of our three main theorems we will use perturbations from one of the
following admissible classes.
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Definition 2.2. For p ∈ {0, 1, 2, . . .} define the sets of perturbations AI
p, AII

p ,
AIII

p , AIV
p , AV

p by

AI
p = {v0(x, y) = div(x,y)V, where V = (V1, . . . , Vd),

satisfies 〈V 〉2;p+2 + 〈V 〉(2,1);2 < ∞},
AII

p = {v0(x, y) : 〈v0〉2;p+2 + 〈v0〉(2,1);2 < ∞},
AIII

p = {v0(x, y) : 〈v0〉2;p+2 + 〈v0〉1;2 < ∞},
AIV

p = {v0(x, y) = div(x,y)V, where V = (V1, . . . , Vd)

satisfies 〈V 〉2;p+2 + 〈V 〉1;2 < ∞},
AV = {v0(x, y) : 〈v0〉∞;0 + 〈v0〉1;0 < ∞}.

(2.26)

2.7. Assumption on the perturbation v0. Each theorem will make one of the
following assumptions:

(H5)I v0 ∈ AI
p for some p > d

2 .
(H5)II v0 ∈ AII

p for some p > d
2 .

(H5)III v0 ∈ AIII
p for some p > d

2 .
(H5)IV v0 ∈ AIV

p for some p > d
2 .

(H5)V v0 ∈ AV .

3. Auxiliary assumption on the shock

In parts of our treatment of nonzero mass perturbations, we shall have to aug-
ment the above assumptions with an additional structural assumption (H6) as in
[Z1] (also called (H6) there). Let (ξ, τ, η) denote (real) variables dual to (x, t, y).

Notation 3.1. Let A(±∞) = limx→±∞ A(x) and define Aj(±∞), j = 2, . . . , d,
similarly. Let the matrix symbols of the linearized invisicid limiting operators be

L±(ξ, τ, η) = iτI + A(±∞)iξ +
d∑

j=2

Aj(±∞)iηj(3.1)

and the corresponding scalar symbols be

p±(ξ, τ, η) = detL±(ξ, τ, η).(3.2)

Definition 3.1. Define the glancing set G to be the set of (τ, η) ∈ Rd \ 0 such
that for at least one choice of sign the equation p±(ξ, τ, η) = 0 has a real root ξ of
multiplicity ≥ 2.

Clearly, at any point (τ0, η0) ∈ G at least one real root ξ of p±(ξ, τ, η) = 0 has
a branch singularity. (The degree of singularity with respect to τ (η held fixed) is
equal to the integer s in (3.5) below.)

The hyperbolicity assumption (H2) implies there exist real functions τ±
1 (ξ, η), . . . ,

τ±
n (ξ, η), smooth and homogeneous of degree one in (ξ, η) 
= 0, such that

τ±
1 < · · · < τ±

n and

p±(τ, ξ, η) = in(τ − τ±
1 (ξ, η)) · · · (τ − τ±

n (ξ, η)).
(3.3)
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If (τ0, η0) ∈ G, there exist ξ0 and for at least one choice of sign a τ±
j (with j

uniquely determined by the choice of ± and (ξ0, τ0, η0)) such that (dropping ±)

τ0 = τj(ξ0, η0) and

∂ξτj(ξ0, η0) = 0.
(3.4)

Moreover, the multiplicity of ξ0 as a root of p(ξ0, τ0, η0) = 0, and thus the degree
of singularity (with respect to τ) of the associated branch point, is equal to s
(2 ≤ s ≤ n) if and only if

∂k
ξ τj(ξ0, η0) = 0, for k = 1, . . . , s − 1, but

∂s
ξτj(ξ0, η0) 
= 0.

(3.5)

Note that this implies at the same time that ∂ξτj(·, η0) has no roots nearby ξ0 other
than ξ0 itself.

Clearly, (3.5) and the implicit function theorem imply that for any such (τ0, ξ0, η0)
and function τj , there exists a function ξ(η) such that locally near (ξ0, η0)

∂s−1
ξ τj(ξ, η) = 0 precisely when ξ = ξ(η).(3.6)

Note that ξ(η) is smooth and homogeneous of degree one away from η = 0. We can
now state the auxiliary assumption (H6):

(H6) For any (τ0, η0) ∈ G, corresponding root ξ0 of multiplicity s, and functions
τj and ξ(η) as above, we have

∂k
ξ τj(ξ(η), η) = 0 for k = 1, . . . , s − 1 and η near η0.(3.7)

In other words ξ0 persists as a root ξ(η) of multiplicity s of

p(ξ(η), τj(ξ(η), η), η) = 0

for η near η0, and (by the remark below (3.5)) there are no other nearby roots of
multiplicity > 1.

A compactness argument using the fact that G is a closed conic set shows that
under the assumption (H6) all such branch singularities are confined to a finite
union of surfaces

τ = τj,l(η) ≡ τj(ξl(η), η)
on which the singularity (with respect to τ) has order equal to sl, the multiplicity
of the root ξl(η); this is the version of (H6) stated in [Z1]. We will usually relabel
and replace the double index j, l by a single index as in τ = τk(η). Note that graphs
τk may well intersect.

Remark 3.1. (1) The statements of this subsection require only slight modification
when the assumption of strict hyperbolicity (H2) is relaxed to the following more
general hypothesis of [Z1], [MZ1]:

(H2′):
∑d

j=1 df j(UR,L)ξj has semisimple real eigenvalues of constant multiplicity
for ξ ∈ Rd \ 0 (nonstrict hyperbolicity with constant multiplicity).

In this case the multiplicity of ξ0 as a root of p(ξ0, τ0, η0) = 0 is some integer
multiple of s as in (3.5).

(2) Condition (H6) is automatic in the cases d = 1, 2 and also in any dimension
for rotationally invariant problems. In 1D the glancing set is empty. In the 2D case
the homogeneity of τj and its derivatives implies that the ray through (ξ0, η0) is
the graph of ξ(η) and that (H6) holds there. (H6) also clearly holds if no real root
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ξ of p(ξ, τ, η) = 0 has multiplicity > 2, in particular in the case that all eigenvalues
τj(ξ, η) are linear or convex/concave in their dependence on ξ.

(3) In the equations of gas- and magnetohydrodynamics (MHD), all character-
istics are linear combinations of (ξ, η) and |ξ, η|, hence the above results show that
(H6) is valid whenever the constant multiplicity assumption (H2′) applies. Thus,
we see that (H6), though mathematically restrictive, nonetheless allows important
physical applications.

(4) The word glancing is used in Definition 3.1 since null bicharacteristics of p
through points (ξ, τ, η) with ξ a root of multiplicity ≥ 2 run parallel to x = 0.

(5) In [Z1], there were made besides (H6) two additional auxiliary assumptions
(H5) (different from our (H5) here) and (H7); however, these hold automatically
in the case of uniform stability considered here (uniform inviscid stability, in the
language of the reference). Thus, within the context under consideration, we make
here exactly the same assumptions as were made in [Z1], and we will obtain the
same results, though by quite different techniques.

4. Main results

Recall the definition of nonlinear stability of the viscous profile ψ with respect
to a family of perturbations (Definition 1.1).

Theorem 4.1 (Zero mass, d ≥ 3). Assume (H1), (H2), (H3), (H4), and (H5)I ,
where the number of space dimensions is d ≥ 3. Then the viscous profile ψ is
nonlinearly stable with respect to AI

p.

Theorem 4.2 (Zero mass, d ≥ 1). Assume (H1), (H2), (H3), (H4), (H5)IV , and
(H6), where the number of space dimensions is d ≥ 1. Then the viscous profile ψ
is nonlinearly stable with respect to AIV

p .

Theorem 4.3 (Nonzero mass, d ≥ 5). Assume (H1), (H2), (H3), (H4), and
(H5)II , where the number of space dimensions is d ≥ 5. Then the viscous pro-
file ψ is nonlinearly stable with respect to AII

p .

Theorem 4.4 (Nonzero mass, d ≥ 3). Assume (H1), (H2), (H3), (H4), (H5)III ,
and (H6), where the number of space dimensions is d ≥ 3. Then the viscous profile
ψ is nonlinearly stable with respect to AIII

p .

Theorem 4.5 (Nonzero mass, d ≥ 2). Assume (H1), (H2), (H3), (H4), (H5)V ,
and (H6), where the number of space dimensions is d ≥ 2. Then the viscous profile
ψ is nonlinearly stable with respect to AV . Moreover, the perturbation u decays in
Lp, p ≥ 2, at the rate |u|p(t) ≤ C(p, d)(1+t)−

d−1
2 (1− 1

p ) of a (d−1)-dimensional heat
kernel, where C(p, d) is monotone increasing in p, finite for p < ∞, and uniformly
bounded for d ≥ 3.

Remark 4.1. (1) Clearly, Theorem 4.5 implies Theorem 4.4; however, we shall
prove them by rather different arguments, and so we maintain the distinction for
easy referencing.

(2) The nonzero mass case for d = 1 is treated by estimation of Green’s functions
in [ZH], [Z2].

(3) We can drop (H6) in the above theorems when d = 1 or 2 (Remark 3.1(2)).
(4) (H1) can be weakened to f j ∈ C

[d]
2 +5(Rn, Rn) for Theorems 4.1–4.4 and

f j ∈ C2 for Theorem 4.5.
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Part 2. Algebraic preparation

5. Doubling and conjugation

As explained in the introduction, we want to rewrite the 2n × 2n system (2.19)
on R as an equivalent 4n × 4n “doubled” boundary problem on x ≥ 0. We have
(with (x, y) in place of (x1, x

′))

Ux − G(x, λ, η)U = F,

ΓU = 0 on x = 0,
(5.1)

where in the ± notation (1.1),

U(x, λ, η) = (U+,U−),

G(x, λ, η) =
(
G+ 0
0 −G−

)
,

F =
(

F+

−F−

)
, and

ΓU = U+ − U−.

(5.2)

Recall, for x ≥ 0

G±(x, λ, η) =
(

A(±x) I
s(±x, λ, η) 0

)
.(5.3)

Henceforth, we will drop the script notation and write U = (U+, U−).

Remark 5.1. Both here and in the sequel [GMWZ1] there are several advantages
to working with the doubled boundary problem. Instead of having two distinct
limiting problems (as x → ±∞), after doubling we have just one (5.13). This will
allow us to conjugate the original problem on the whole line to a single constant
coefficient problem on x ≥ 0. The doubled boundary formulation allows one readily
to construct high order approximate solutions for the small viscosity problem with
prepared data ([GW]). Perhaps most important, we are now in a position to use
the machinery of Kreiss-type symmetrizers to prove energy estimates.

The limiting constant coefficient problem plays an essential role in our analysis,
and we must first understand the spectral properties of the limiting matrix:

G(∞, λ, η) =
(
G+(∞, λ, η) 0

0 −G−(∞, λ, η)

)
,(5.4)

where

G±(∞, λ, η) = lim
x→+∞

G±(x, λ, η) =
(

A(±∞) I
s(±∞, λ, η) 0

)
.

Proposition 5.1 (Spectral properties of G(∞, λ, η), [Z1],[ZS]).
(1) When ρ > 0 and γ ≥ 0, G(∞, λ, η) has 2n eigenvalues counted with multi-

plicities in �µ > 0 and 2n eigenvalues in �µ < 0.
(2) G(∞, 0, 0) has 0 as a semisimple eigenvalue of multiplicity 2n. The nonva-

nishing eigenvalues ( fast modes) are those of A(+∞) (k positive, n − k negative)
and −A(−∞) (l positive, n − l negative).

(3) Consider the multiple zero eigenvalue of G(∞, ζ̂ , 0) (polar coordinates). For
γ̂ > δ > 0, this eigenvalue splits for ρ > 0 small into k + l = n − 1 slow decaying
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modes

µ = cδρ + O(ρ2) where �cδ < 0(5.5)

and (n − k) + (n − l) = n + 1 slow growing modes (�cδ > 0).

Here “decaying” and “growing” refer to the corresponding exponential solutions
eµxv.

Proof. (1) We focus on G+(∞, λ, η); a parallel argument handles −G−(∞, λ, η).
Note that µ is an eigenvalue of G+(∞, λ, η) if and only if[

µ2 − |η|2 − µA(+∞) − i

d∑
2

Aj(+∞)ηj − λ

]
v = 0(5.6)

for some nonzero v. Setting µ = iη1, η1 ∈ R yields

det

[
−|η1, η|2 − i

d∑
1

Aj(+∞)ηj − λ

]
= 0,(5.7)

which by (2.1) has no solution with �λ ≥ 0, except for (η1, η) = 0, λ = 0. Thus,
there are no eigenvalues with �µ = 0 when ρ > 0, γ ≥ 0, and the number of
eigenvalues in each of �µ > 0 and �µ < 0 is constant then. We may choose
τ = 0, η = 0 and γ large to obtain an obvious count.

(2) This is clear since G+(∞, 0, 0) =
(

A(+∞) I
0 0

)
.

(3) Consider the characteristic equation in polar coordinates (drop the hats)[
µ2 − ρ2|η|2 − µA(+∞) − iρ

d∑
2

Aj(+∞)ηj − ρλ

]
v = 0,(5.8)

and posit the expansions

µ = cρ + O(ρ2), v = r + O(ρ).(5.9)

Compare terms of order ρ to obtain(
cA(+∞) + i

d∑
2

Aj(+∞)ηj + λ

)
r = 0, or[

c +

(
i

d∑
2

Aj(+∞)ηj + λ

)
A(+∞)−1

]
A(+∞)r = 0.

(5.10)

Thus, c is an eigenvalue of −(i
∑d

2 Aj(+∞)ηj +λ)A(+∞)−1, which by hyperbolicity
has no center manifold for γ > 0. So the stable/unstable roots �c < 0/�c > 0
separate to first order in ρ. They may be counted by setting η = 0 and using the
fact that A(+∞) has k positive eigenvalues. �

The conjugation argument is based on the following lemma [MZ1]:

Lemma 5.1. Let Ω = {(λ, η) : |λ, η| ≤ C, γ ≥ 0}. There is a matrix W (x, λ, η)
defined and smooth on [0,∞) × Ω such that

(a) W−1 is uniformly bounded and there is a θ > 0 such that

W (x, λ, η) = I + O(e−θx).(5.11)
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(b) W satisfies

∂xW = G(x)W (x) − W (x)G(∞).(5.12)

The proof involves an application of the Gap Lemma [GZ] to the operator
adG(∞) = [G(∞), ·].

The substitution U = WV transforms the equation (5.1) into

Vx − G(∞, λ, η)V = W−1F,

Γ̃(x, λ, η)V = 0 on x = 0,
(5.13)

where Γ̃(x, λ, η)V = ΓW (x, λ, η)V . Thus, estimates for (5.13) imply estimates for
(5.1).

We will refer to W as the MZ conjugator.

6. Block structure and standard symmetrizers

6.1. Block structure. In this subsection we present some results for the viscous
shock problem whose proofs are essentially identical to results in [MZ1] for the
viscous Dirichlet problem. We will recall or sketch some proofs and otherwise refer
the reader to [MZ1]. G(∞) is the limiting 4n × 4n constant coefficient matrix
defined in (5.4). Recall ζ = (τ, γ, η).

Lemma 6.1. There is a C∞ invertible matrix T (ζ) defined on a neighborhood of
ζ = 0 such that T−1G(∞)T has the block diagonal form

T−1G(∞)T =


PR 0 0 0
0 HR 0 0
0 0 PL 0
0 0 0 HL

 ≡ G1(∞),(6.1)

where HR, HL, PR, and PL are C∞ functions of ζ satisfying

HR(0) = 0, HL(0) = 0, PR(0) = A(+∞), PL(0) = −A(−∞),

HR(ζ) = −s(+∞, ζ)A(+∞)−1 + O(|ζ|2),
HL(ζ) = s(−∞, ζ)A(−∞)−1 + O(|ζ|2),

(6.2)

and

T (0) =


I −A(+∞)−1 0 0
0 I 0 0
0 0 I A(−∞)−1

0 0 0 I

 .(6.3)

The eigenvalues of PR(ζ) and PL(ζ) satisfy |�µ| > C > 0 on some neighborhood
of ζ = 0.

Proof. We give the argument for the G+(∞, ζ) block in (5.4), the other block being
treated similarly.

Proposition 5.1 (including its proof) shows that for small |ζ|, the eigenvalues
of G+(∞, ζ) may be grouped into n fast modes and n slow modes (fast and slow
having been defined in that proposition). The nonvanishing (i.e., fast) eigenvalues
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are those of A(+∞), so there is a smooth family of matrices TR(ζ) defined for ζ
small such that

T−1
R G+(∞, ζ)TR =

(
PR 0
0 HR

)
,(6.4)

where HR(0) = 0, PR(0) = A(+∞). Here TR is of course not uniquely determined,
but it may be chosen such that

TR(0) =
(

I −A(+∞)−1

0 I

)
.(6.5)

This together with a direct perturbation computation shows that the eigenvalues
of G+(∞, ζ) close to 0 correspond to a matrix of the form HR(ζ) given in (6.2).

The eigenvalues of PR(ζ) have the stated property since the eigenvalues of
A(+∞) are nonvanishing. �

Remark 6.1. (1) Observe that the matrix −s(+∞, ζ)A(+∞)−1 appeared already
in the last paragraph of the proof of Proposition 5.1.

(2) Our expressions for T (0) and HR(ζ) differ slightly from the corresponding
expressions in Lemma 2.7 of [MZ1]. For example, A(+∞)−1 occurs to the right of
−s(+∞, ζ) in (6.2) instead of to the left as in [MZ1]. This is because our reduction
to a first order system leads to G(x, λ, η) as in (2.18), while the corresponding
matrix in [MZ1] (in our notation) is (

0 I
s A

)
.

In the following proposition we use the polar coordinate notation introduced in
(2.20). Set

HR(ζ) = ρĤR(ζ̂ , ρ)(6.6)

and do similiarly for HL(ζ). Conjugation by a constant coefficient matrix T1 (with
only zeros and ones) changes G1 in (6.1) to T−1

1 G1T1 =

G2(∞, ζ) =


PR 0 0 0
0 PL 0 0
0 0 HR 0
0 0 0 HL

 .(6.7)

Proposition 6.1 (Block structure). For all ζ̂ with γ̂ ≥ 0 there is a neighborhood
ω of (ζ̂ , 0) in Sd ×R+ and there are C∞ matrices T2(ζ̂ , ρ) on ω such that T−1

2 G2T2

has the block diagonal structure

T−1
2 G2T2 =

P+(ζ) 0 0
0 P−(ζ) 0
0 0 HB(ζ̂ , ρ)

 ≡ GB(∞).(6.8)

Here the eigenvalues of P+ (resp. P−) belong to a compact set in �µ > 0 (resp.
�µ < 0) and in addition

�P+ =
1
2
(P+ + P ∗

+) ≥ cI and −�P− ≥ cI on ω(6.9)

for some c > 0.
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We have HB(ζ̂ , ρ) = ρĤB(ζ̂ , ρ) with

ĤB(ζ̂ , ρ) =

Q1 · · · 0
...

. . .
...

0 · · · Qp

 (ζ̂ , ρ).(6.10)

The blocks Qk are νk × νk matrices which satisfy one of the following conditions:
(i) �Qk is positive definite.
(ii) �Qk is negative definite.
(iii) νk = 1, �Qk = 0 when γ̂ = ρ = 0, and ∂γ̂(�Qk)∂ρ(�Qk) > 0.
(iv) νk > 1, Qk has purely imaginary coefficients when γ̂ = ρ = 0, there is

µk ∈ R such that

Qk(ζ̂ , 0) = i


µk 1 0

0 µk
. . . 0

. . .
. . . 1
· · · µk

 ,(6.11)

and the lower left corner a of Qk satisfies ∂γ̂(�a)∂ρ(�a) > 0.
Moreover, the matrix T2 can be taken of the form

T2(ζ̂ , ρ) =
(

TP (ζ) 0
0 TH(ζ̂ , ρ)

)
,(6.12)

for C∞ functions TP and TH (recall Remark 2.3).

Sketch of proof. The ability to choose TP (ζ) conjugating the (PR, PL) block in G2 to
the (P+, P−) block in GB follows directly from the nonvanishing of the eigenvalues
of PR, PL as described in Proposition 6.1.

The blocks HR and HL are conjugated separately to block structure as in [MZ1].
Thus, there is a k0 such that the blocks Q1, . . . , Qk0 in ĤB correspond to HR, while
blocks Qk0+1, . . . , Qp correspond to HL.

The argument in [MZ1] is a modification of the classic perturbation argument of
Kreiss [K], the difference being that now the perturbation is performed with respect
to the parameters γ̂ and ρ, instead of just γ̂ as in [K]. A key point, here as in [MZ1],
is that the assumptions on the original parabolic system, in particular (2.1), imply
that the derivatives appearing in (iii) and (iv) above are nonzero and of the same
sign. In [K] there was one derivative to consider, ∂γ̂�Qk (resp. ∂γ̂�a), and this was
nonzero as a consequence of his strict hyperbolicity assumption. The sign condition
in (iii) and (iv) allows one to construct symmetrizers by a small modification of the
ansatz used in [K]. (An extra term is added to the kth block of the symmetrizer
corresponding to the extra ρ parameter.) �

Definition 6.1. Blocks satisfying condition (iv) in the above theorem will be re-
ferred to as glancing blocks. These correspond to coalescing eigenvalues.

6.2. Decompositions of C4n. The conjugation of G(∞, ζ) to block structure in-
duces decompositions of C4n that are important in the construction of the sym-
metrizer.

Definition 6.2. For ζ 
= 0 let F±(ζ) denote the direct sum of the generalized
eigenspaces of G(∞, ζ) corresponding to eigenvalues µ with ±�µ > 0.
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By Proposition 5.1 the spaces F±(ζ) each have dimension 2n and

C
4n = F+(ζ) ⊕ F−(ζ),(6.13)

but the projections are generally not locally uniformly bounded with respect to ζ.
Indeed, if the basepoint X0 = (ζ̂ , 0) in Proposition 6.1 is such that ĤB(X0) has one
or more glancing blocks, the projections do blow up near X0.

F±(ζ) do not vary continuously near ζ = 0, so it is better to write F±(ζ̂ , ρ), where
ζ̂ ∈ Sd and (initially) ρ > 0. In [Z1] it is shown that these spaces vary smoothly
(even analytically) in {ρ > 0, γ̂ > 0}. In addition, they extend continuously to
{ρ ≥ 0, γ̂ ≥ 0} (this can be seen by arguing as in [CP], Chapter 7). For ρ > 0,
F±(ζ̂ , ρ) are the spaces of boundary values at x = 0 of growing (resp. decaying)
solutions of

Ux − G(∞, ζ)U = 0 on x ≥ 0.

For T, T1, T2 as defined earlier in this section, set T = TT1T2 and observe that
the block form (6.8) of GB(∞) = T −1G(∞)T corresponds to a partition of the
vectors U = T −1V = (u+, u−, u1, . . . , up). Denote by αj the number of eigenvalues
of Qj with �µ < 0 for γ̂ > 0 (or ρ > 0), and write

uj = (uj−, uj+)(6.14)

where uj− consists of the first αj components of uj.
Next set

UP+ = (u+, 0, 0, . . . , 0),

UP− = (0, u−, 0, . . . , 0),

UH+ = (0, 0, (0, u1+), . . . , (0, up+)),

UH− = (0, 0, (u1−, 0), . . . , (up−, 0)),

(6.15)

and write
U = UP+ + UP− + UH+ + UH− ,

U± = UP± + UH± ,

UP = UP+ + UP− ,

UH = UH+ + UH− .

(6.16)

Corresponding to (6.15) we have the decomposition

C
4n = EP+ ⊕ EP− ⊕ EH+ ⊕ EH− ,(6.17)

where EP+ is the subspace of all vectors of the form (u+, 0, 0, . . . , 0), etc.
Proposition 5.1 shows these subspaces have dimensions

dimEP+ = k + l = n − 1,

dimEP− = (n − k) + (n − l) = n + 1,

dimEH+ = (n − k) + (n − l) = n + 1,

dimEH− = k + l = n − 1.

(6.18)

Applying T (ζ̂ , ρ) to (6.17), we obtain the smooth decomposition with uniformly
bounded projections

C
4n = FP+(ζ̂ , ρ) ⊕ FP−(ζ̂ , ρ) ⊕ FH+(ζ̂ , ρ) ⊕ FH−(ζ̂, ρ),(6.19)

where FP+ = T (ζ̂ , ρ)EP+, etc.
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Recall that T is C∞ and defined locally near some basepoint X0 = (ζ̂ , 0) ∈
Sd

+ × R+. Block by block analysis (see [CP], Chapter 7, Remark 3.6) using the
special form (6.11) of Q(X0) shows that

FP−(X0) ⊕ FH− (X0) = F−(X0)(6.20)

where F−(ζ̂ , ρ) is the continuous extension to Sd
+ × R+ of the space introduced in

Definition 6.2.

Remark 6.2. (1) We stress that the analogue of (6.20) is not true for F+(X0). It is
clear that such a property would be inconsistent with the fact that the projections
in (6.19) are uniformly bounded near X0, while those in (6.13) are generally not.

(2) If the basepoint X0 is such that none of the blocks Qk(X0) in (6.10) are
glancing, then (6.20) remains true for (ζ̂ , ρ) near X0. Otherwise (6.20) is not
necessarily true for nearby points distinct from X0.

More precisely, we can decompose FH−(ζ̂ , ρ) by blocks in the obvious way

FH−(ζ̂ , ρ) =
p⊕

j=1

FHj− (ζ̂, ρ).(6.21)

Here

FHj− (ζ̂ , ρ) = T (ζ̂ , ρ)EHj− ,(6.22)

where EHj− is the subspace of EH− consisting of all vectors of the form (0, 0, 0, . . . ,
(uj−, 0), 0, . . . ). We have

FHj− (X0) ⊂ F−(X0),(6.23)

but the same is not necessarily true for nearby points different from X0 when the
Qj block is glancing.

In constructing degenerate symmetrizers we sometimes need a decomposition for
which properties like (6.23) hold in a full neighborhood of the basepoint. For this
we need a further conjugation, this time by a matrix T3(ζ̂ , ρ) that is generally not
C∞ but merely continuous. The following lemma is essentially Lemma 2.6 of [K].

Lemma 6.2. Let Qk in (6.10) be a glancing block of size νk. There exists a uni-
tary matrix TQk

(ζ̂ , ρ), defined in a neighborhood of X0 and with uniformly bounded
inverse, such that TQk

(X0) = I and

T−1
Qk

QkTQk
(ζ̂ , ρ) =


κk1 ∗ · · · ∗ ∗
0 κk2 ∗ · · · ∗
...

...
. . . . . .

...
0 · · · · · · κkνk−1 ∗
0 · · · · · · 0 κkνk

 .(6.24)

TQk
can be chosen so that for γ̂ > 0 the eigenvalues κkj with �κkj < 0 stand in the

first rows. TQk
is C∞ in ρ > 0 but just continuous up to ρ = 0.

Definition 6.3. Define T3 to be a block diagonal matrix with the same number
and size of blocks as GB(∞), where each glancing block Qk of GB is replaced by
TQk

and each nonglancing block of GB is replaced by an identity matrix of the
same size.
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Using T3, we obtain a slight modification of the decomposition (6.17)

C
4n = EP+ ⊕ EP− ⊕ EH+,c(ζ̂ , ρ) ⊕ EH−,c(ζ̂, ρ),

U = UP+ + UP− + UH+,c + UH−,c ,
(6.25)

where EH±,c(ζ̂, ρ) = T3(ζ̂ , ρ)EH± . The subscript “c” is a reminder that T3 is merely
continuous up to ρ = 0.

Apply T = TT1T2 to this decomposition to obtain a continuous decomposition
near (6.19)

C
4n = FP+(ζ̂ , ρ) ⊕ FP−(ζ̂ , ρ) ⊕ FH+,c(ζ̂ , ρ) ⊕ FH−,c(ζ̂, ρ),(6.26)

where FH±,c(ζ̂ , ρ) = T (ζ̂ , ρ)EH±,c(ζ̂, ρ). Here again the projections are uniformly
bounded.

In place of (6.20) we now have

FP−(ζ̂ , ρ) ⊕ FH−,c(ζ̂ , ρ) = F−(ζ̂, ρ)(6.27)

for (ζ̂, ρ) in a neighborhood of X0.
Corresponding to (6.23) we have

FHj−,c (ζ̂ , ρ) ⊂ F−(ζ̂, ρ)(6.28)

near X0, where

FHj−,c (ζ̂ , ρ) = T (ζ̂, ρ)T3(ζ̂ , ρ)EHj− .(6.29)

Definition 6.4. Let EHj− be as in (6.22) and similarly define EHj+ . Denote the
images of these spaces under T3(ζ̂ , ρ) by EHj−,c and EHj+,c , respectively. Thus, we
have decompositions

EH± =
p⊕

j=1

EHj± ,

EH±,c =
p⊕

j=1

EHj±,c ,

(6.30)

EHj = EHj+ ⊕ EHj− = EHj+,c(ζ̂ , ρ) ⊕ EHj−,c(ζ̂ , ρ),(6.31)

and with obvious notation
UHj = UHj+ + UHj− ,

UHj = UHj+,c + UHj−,c .
(6.32)

6.3. Standard symmetrizers. The n × n second order initial value problem we
begin with leads to a 4n × 4n doubled first order boundary problem on x ≥ 0.

Recall the doubled boundary problem (5.1)

Ux − G(x, λ, η)U = F,

ΓU = 0 on x = 0,
(6.33)

where Γ is a 2n × 4n matrix giving the doubled boundary conditions.
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MZ conjugation using W (x, ζ) (Lemma 5.1) transforms G(x, ζ) to the constant
coefficient matrix G(∞, ζ), and further conjugation using T = TT1T2 leads to
GB(∞) as in Proposition 6.1. In place of (6.33) we must now study

Ux − GB(∞, ζ̂ , ρ)U = F,

Γ1(ζ̂ , ρ)U = 0 on x = 0,
(6.34)

where Γ1 = ΓWT .
Here we wish to illustrate the use of Kreiss symmetrizers to prove estimates

(especially in the low frequency region) in a simpler situation where Γ1 is replaced by
an artificial boundary condition Γa that satisfies the uniform Lopatinski condition
near the basepoint X0.

Let F−(ζ̂ , ρ) be the 2n-dimensional continuous extension of the decaying gener-
alized eigenspace for G(∞, ζ) defined before, and set

E−,c(ζ̂, ρ) = T −1
F−(6.35)

which is the same as EP− ⊕ EH−,c(ζ̂ , ρ) in the notation of (6.25).

Definition 6.5. A boundary operator Γa(ζ̂ , ρ) depending continuously on (ζ̂ , ρ) is
said to satisfy the uniform Lopatinski condition at X0 = (ζ̂ , 0) ∈ Sd

+ × R+ if there
exists C > 0 such that

|Γa(X0)u| ≥ C|u|(6.36)

for u ∈ E−,c(X0).

Remark 6.3. (1) By continuity of Γa and E−,c, if Γa satisfies the uniform Lopatinski
condition at X0, it satisfies (6.36) uniformly in a neighborhood of X0.

(2) Let

E− = EP− ⊕ EH− ,(6.37)

the summands on the right being as in (6.17). Since T3(X0) = I, T3 is continuous
at X0, and E−,c = T3E−, it follows that if Γa satisfies the uniform Lopatinski
condition at X0, we also have

|Γa(ζ̂ , ρ)u| ≥ C|u|(6.38)

for u ∈ E− uniformly near X0.
(3) Γ1 in (6.34) fails to satisfy the uniform Lopatinski condition at X0 (see

Corollary 7.1). This degeneracy forces us to be careful in Part 2 (Lemma 7.1, e.g.)
about the distinction between E−,c and E−, since it prevents us from simply arguing
by continuity as above to justify interchanging these two spaces.

The symmetrizer for the problem

Ux − GB(∞)U = F,

ΓaU = g on x = 0
(6.39)
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is a 4n × 4n matrix constructed by blocks in a neighborhood of X0

S(ζ̂, ρ) =


S+(ζ)

S−(ζ)
S1(ζ̂ , ρ)

. . .
Sp(ζ̂ , ρ)

 ,(6.40)

where the S±, Sj are C∞ functions of their arguments. We will sometimes write

S =
(

SP

SH

)
,(6.41)

where in fact SP can be taken to be simply

SP =
(

CI
−I

)
(6.42)

for some large C > 0.
In the following discussion U = U(x, ζ), 〈 , 〉 denotes the inner product in C

4n,

(U(x, ζ), V (x, ζ)) ≡
∫ ∞

0

〈U(x, ζ), V (x, ζ)〉dx,(6.43)

and
|U |2 = |U(x, ζ)|L2(x),

|U | = |U(0, ζ)|.(6.44)

In [MZ1] the Sj are constructed so that S = S∗, with interior estimates

(Re SGB(∞)UP , UP ) ≥ C|UP |22,
(Re SGB(∞)UHj , UHj ) ≥ (γ + ρ2)|UHj |22,

(6.45)

as well as boundary estimates

(a) (SUP , UP ) ≥ C|UP+ |2 − |UP− |2,
(b) (SUHj , UHj ) ≥ C|UHj+ |2 − |UHj− |2,

(6.46)

both holding uniformly near the basepoint X0.
Assuming Γa satisfies the uniform Lopatinski condition at X0, we have

|U−|2 ≤ C|ΓaU−|2 ≤ C(|ΓaU |2 + |U+|2)(6.47)

at X0 and in fact uniformly near X0 in view of Remark 6.3(2).
Using the previous two estimates, we obtain

(SU, U) ≥ C|U+|2 − |U−|2 = C|U+|2 + |U−|2 − 2|U−|2

≥ C|U+|2 + |U−|2 − C1(|ΓaU |2 + |U+|2)
≥ C2|U+|2 + |U−|2 − C1|ΓaU |2,

(6.48)

provided C was big enough.
From (6.45), (6.48), and the identity

−〈SU(0), U(0)〉 =
∫ ∞

0

∂x〈SU, U〉dx = (2�SGBU, U) + 2�(SF, U),(6.49)
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we obtain the [MZ1]-type estimate

(|UP |22 + (γ + ρ2)|UH |22) + |U |2

≤ C

(
|FP |22 +

1
(γ + ρ2)

|FH |22
)

+ C|ΓaU |2,
(6.50)

uniformly near X0. Here we have used

|(SF, U)| ≤ (Cδ|FP |22 + δ|UP |22) +
(

Cδ

(γ + ρ2)
|FH |22 + δ(γ + ρ2)|UH |22

)
.(6.51)

7. Evans function for the doubled boundary problem

In this section we will show how the first order vanishing of the Evans function
D(ζ) for the 2n× 2n system (2.19) on R implies a degenerate Lopatinski condition
for the 4n× 4n doubled boundary problem (5.1)

Ux − G(x, ζ)U = F,

ΓU = 0 on x = 0,
(7.1)

where U = (U+, U−) and ΓU = U+ − U−. We should mention that whenever U
represents a solution to (7.1), the notation U± is that of (5.2), so

U+ = (U1, . . . , U2n), U− = (U2n+1, . . . , U4n).

The U± notation of (6.16) is reserved for solutions U to the problem (∂x − GB).
The Evans function for (7.1), D(ζ̂ , ρ), is a determinant that measures the degree

of linear dependency between two 2n-dimensional subspaces of C4n, namely, ker Γ
and E−(ζ̂, ρ). The latter space is defined for γ̂ > 0, ρ > 0 as the space of boundary
values at x = 0 of decaying solutions to the homogeneous problem

Ux − G(x, ζ)U = 0.(7.2)

Like F−(ζ̂, ρ) (recall Definition 6.2), E−(ζ̂, ρ) has a continuous extension to γ̂ ≥ 0,
ρ ≥ 0. In fact it is easy to check that we have

E−(ζ̂ , ρ) = W (0, ζ̂, ρ)F−(ζ̂, ρ),(7.3)

where W is the MZ conjugator of Lemma 5.1.

Remark 7.1. The individual functions UR,L
j (x, ζ̂, ρ) appearing in the definition of

D(ζ) are locally analytic in (ζ̂, ρ) on {γ̂ > 0, ρ > 0}. This is a consequence of a
standard contraction mapping argument [Co] together with the corresponding fact
for solutions to the systems obtained from (2.19) by taking limits as x → ±∞. This
argument also shows that the individual solutions corresponding to fast decaying
modes extend analytically to {γ̂ ≥ 0, ρ ≥ 0}. The fast decaying solutions are
independent of ζ̂ at ρ = 0 and so extend smoothly as functions of ζ as well.

Since the subspace E−(ζ̂ , ρ) has a continuous extension to {γ̂ ≥ 0, ρ ≥ 0}, we can
if necessary redefine the individual solutions UR,L

j corresponding to slowly decaying
modes so that they have continuous extensions to γ̂′ ≥ 0, ρ ≥ 0. Henceforth, we
assume this has been done.

Using Notation 1.1, we set for x ≥ 0

UR
j+(x, ζ̂, ρ) = UR

j (x, ζ̂, ρ),

UL
j−(x, ζ̂, ρ) = UL

j (−x, ζ̂, ρ).
(7.4)
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Let φ(x) as before be the derivative of the profile ψ. Let e1 ∈ C2n be the unit
vector

e1 =
(φ(0), 0)
|φ(0)| ,(7.5)

and extend to an orthonormal basis e1, . . . , e2n of C2n.

Definition 7.1. (1) Define the Evans function for the doubled boundary problem
(∂x − G, Γ) (7.1) as the 4n× 4n determinant

D(ζ̂ , ρ) = det
(

e1 · · · e2n UR
1+ · · · UR

n+ 0 · · · 0
e1 · · · e2n 0 · · · 0 UL

1− · · · UL
n−

)
|x=0.(7.6)

(2) Recalling the normalization (2.25), we set

E−,φ(ζ̂ , ρ) = span
(
UR

1+

UL
n−

)
|(0,ζ̂,ρ).(7.7)

For ε > 0 fixed denote by Ec
−,φ,ε(ζ̂ , ρ) any complementary subspace in E−(ζ̂, ρ)

varying continuously with (ζ̂, ρ) such that

E−(ζ̂ , ρ) = E−,φ(ζ̂ , ρ) ⊕ Ec
−,φ,ε(ζ̂, ρ)(7.8)

with uniformly bounded projections for 0 ≤ ρ ≤ ε.

Proposition 7.1. (1) Let D(ζ̂ , ρ) be the Evans function defined in Lemma 2.1.
Then

D(ζ̂ , ρ) = (−1)n
D(ζ̂ , ρ).(7.9)

(2) Under the Evans assumption (H4), we have the following.
(a) For any choice of 0 < δ < R there is a constant Cδ,R such that when δ ≤

ρ ≤ R,

|Γu| ≥ Cδ,R|u| for u ∈ E−(ζ̂, ρ).(7.10)

(b) There exist positive constants C1, C2, δ such that

C1ρ|u| ≤ |Γu| ≤ C2ρ|u| for u ∈ E−,φ(ζ̂, ρ)(7.11)

for 0 ≤ ρ ≤ δ.
(c) For Ec

−,φ,ε(ζ̂ , ρ) as in (7.8) there exists C > 0 such that

|Γu| ≥ C|u| for u ∈ Ec
−,φ,ε(ζ̂ , ρ)(7.12)

for 0 ≤ ρ ≤ ε.
(d) For any choice of R > 0 there is a constant CR such that for 0 ≤ ρ ≤ R,

|Γu| ≥ CRρ|u| for u ∈ E−(ζ̂ , ρ).(7.13)

Proof. (1) Let us denote the matrix in (7.6) by M. Perform the row operation of
subtracting the first row of M (which has 2n components) from the second to see
(7.9).

(2)(a) The assumption (H4) implies Γu is nonvanishing for nonzero u ∈ E−(ζ̂, ρ)
when ρ > 0. The existence of Cδ,R thus follows by continuity and compactness.
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(2)(b) Perform a column operation to replace the last column of M by
(
UR

1+

UL
n−

)
,

and call the resulting matrix M1. Observe that since these fast modes depend
analytically on ρ, we have(

UR
1+

UL
n−

)
(0, ζ̂ , ρ) =

(
(φ(0), 0)
(φ(0), 0)

)
+

(
c1(ζ̂)
c2(ζ̂)

)
ρ + O(ρ2).(7.14)

Recall the definition of e1 and use linearity of the determinant in the last column
to see that if the coefficient c1 − c2 were to vanish for some ζ̂, then (H4) would be
violated. Since

Γ
(
UR

1+

UL
n−

)
= UR

1+ − UL
n−,(7.15)

this gives (7.11).
(2)(c) Let v1(ζ̂, ρ), . . . , v2n(ζ̂ , ρ) be the last 2n columns of the matrix M1 defined

above. These vectors form a basis for E−(ζ̂ , ρ). Any vector in Ec
−,φ,ε(ζ̂ , ρ) has the

form of a linear combination with coefficients depending continuously on (ζ̂ , ρ)

w =
2n∑

j=1

cj,ε(ζ̂ , ρ)vj .(7.16)

Set c′ε = (c1,ε, . . . , c2n−1,ε). The condition that the projections in (7.8) are uniformly
bounded implies there is an ε0 > 0 such that

|c′ε(ζ̂ , ρ)| ≥ ε0|c2n,ε(ζ̂ , ρ)|,(7.17)

for 0 ≤ ρ ≤ ε.
In view of (H5) we just need to show that Γw is nonvanishing at ρ = 0 for w as

in (7.16), (7.17) with |(c′ε, c2n,ε)| = 1, since (7.12) then follows by continuity and
compactness. Suppose Γw = 0 at (ζ̂ , 0) for some such w. Because of (7.17) some
cj,ε with j ≤ 2n − 1, say c1,ε, satisfies

|c1,ε(ζ̂ , ρ)|2 ≥ 1
2
·
min(1

2 ,
ε20
2 )

2n − 1
(7.18)

for ρ near 0. Since Γw = 0 at ρ = 0 and w(ζ̂ , ρ) is continuous, we have

w(ζ̂ , ρ) =
(

a
a

)
(ζ̂) + o(1).(7.19)

Write vj = (vj+, vj−), use column operations to replace v1 in M1 by w, and call
the resulting matrix M2 =(

e1 · · · e2n a(ζ̂) + o(1) v2+ · · · v2n−1,+ (φ(0), 0) + O(ρ)
e1 · · · e2n a(ζ̂) + o(1) v2− · · · v2n−1,− (φ(0), 0) + O(ρ)

)
.(7.20)

(7.18) implies | detM2(ζ̂ , ρ)| ≥ C| detM1(ζ̂, ρ)| for some C > 0 uniformly near
(ζ̂, 0). But

detM2(ζ̂ , ρ) = O(ρ)o(1) as ρ → 0.(7.21)

This contradicts the assumed vanishing of detM = detM1 to exactly first order
at ρ = 0.
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(2)(d) For any fixed (ζ̂, ρ) let u∗ =
(

u+(ζ̂, ρ)
u−(ζ̂ , ρ)

)
∈ E−(ζ̂ , ρ) be an element where

the minimum

min
|u|=1,u∈E−(ζ̂,ρ)

|Γu|(7.22)

is attained. At the cost of modifying D(ζ̂ , ρ) by a nonvanishing factor α(ζ̂ , ρ) of
size ∼ 1, we can redefine the last 2n columns of M so that u∗ appears in (say) the
(2n + 1)st column of M. Next perform column operations to replace u∗ by(

u+(ζ̂ , ρ) − u−(ζ̂ , ρ)
0

)
=

(
Γu∗

0

)
.(7.23)

This shows that |D(ζ̂ , ρ)| ≤ C|Γu∗|, so (H4) implies the result. �
Next we need to rephrase these estimates in terms of the coordinates for the

problem (∂x−GB, Γ1) (6.30). Recall the decompositions of U ∈ C4n given in (6.16)
and (6.25)

U = UP+ + UP− + UH+ + UH− ,

U = UP+ + UP− + UH+,c + UH−,c ,
(7.24)

and set
U− = UP− + UH− ∈ E−,

U−,c = UP− + UH−,c ∈ E−,c(ζ̂, ρ).
(7.25)

Define the one-dimensional subspace EP1− (ζ̂, ρ) of EP− by

E−,φ = WT EP1− ,(7.26)

and for ε > 0 fixed, choose a smoothly varying complementary subspace EP2−,ε

such that
EP− = EP1−(ζ̂ , ρ) ⊕ EP2−,ε(ζ̂ , ρ),
UP− = UP1− + UP2−,ε

(7.27)

with uniformly bounded projections for 0 ≤ ρ ≤ ε. Then

Ec
−,φ,ε ≡ WT (EP2−,ε ⊕ EH−,c)(7.28)

is a choice that works in (7.8).
The next corollary is then an immediate consequence of Proposition 7.1. Here

and henceforth, we will often suppress in the notation the dependence of operators
and spaces on (ζ̂ , ρ). Recall Γ1 = ΓWT .

Corollary 7.1. There exist positive constants C1, . . . , C4 and δ0 such that for 0 ≤
ρ ≤ δ0

(a) |C1ρ|UP1,− | ≤ |Γ1UP1,− | ≤ C2ρ|UP1,− |,
(b) |Γ1(UH−,c + UP2,−,ε)| ≥ C3(|UH−,c | + |UP2,−,ε |),
(c) |Γ1U−,c| ≥ C4ρ|U−,c|.

(7.29)

These estimates hold uniformly near the basepoint X0.

Part (a) of the corollary shows that Γ1 fails to satisfy the uniform Lopatinski
condition near X0. The following lemma, which gives a more precise version of
(7.29)(c), is essential for the construction of degenerate symmetrizers.
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Lemma 7.1. There exists a constant δ > 0 such that for ρ sufficiently small we
have

|Γ1U−,c| ≥ δ(|UH−,c | + ρ|UP− |),(7.30)

uniformly near X0.

Proof. We will deduce (7.30) from the stronger inequality (7.31) below. We have
in view of (7.29)(a), (b)

|Γ1U−,c| = |Γ1UH−,c + Γ1UP1,− + Γ1UP2,−,ε |
≥ C(|UH−,c | + |UP2,−,ε |) − Cρ|UP1,− |.

Adding a sufficiently small multiple of this inequality to the inequality (7.29)(c)

|Γ1U−,c| ≥ Cρ|U−,c| = Cρ(|UH−,c | + |UP1,− | + |UP2,−,ε |),
we obtain for ρ small

|Γ1U−,c| ≥ δ(|UH−,c | + ρ|UP1,− | + |UP2,−,ε |),(7.31)

which implies (7.30). �

Part 3. Zero mass perturbations

8. Degenerate symmetrizer for small frequencies

We are now in a position to construct a degenerate symmetrizer for the problem
Ux − GB(∞, ζ)U = F,

Γ1U = g on x = 0,
(8.1)

where Γ1 = ΓWT . We will use the same notation for pairings and norms as in the
earlier discussion of the problem (∂x − GB , Γa), and we shall focus mainly on the
new points.

As before we construct a symmetrizer S = S∗ of the form (6.40) for GB(∞)
working block by block. Let

S =
(

SP 0
0 SH

)
.(8.2)

The main difference here is that we take the SP block to be degenerate

SP =
(

CI 0
0 −ρ2

)
,(8.3)

where the two subblocks have sizes n − 1 and n + 1, respectively (recall (6.18)).
The construction of the SH block proceeds just as before, except that now in

place of (6.46)(b) we need

(SUHj , UHj ) ≥ C|UHj+,c |2 − |UHj−,c |2(8.4)

uniformly near the basepoint X0. Here UHj±,c is as in (6.32). This can be arranged
by the usual procedure (see Chapter 7 in [CP] or [K]). Summing (8.4) gives

(SUH , UH) ≥ C|UH+,c |2 − |UH−,c |2.(8.5)

Thus, we obtain interior estimates

(Re SGB(∞)UP , UP ) ≥ C|UP+ |22 + ρ2|UP− |22,
(Re SGB(∞)UH , UH) ≥ (γ + ρ2)|UH |22,

(8.6)
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as well as boundary estimates

(SUP , UP ) ≥ C|UP+ |2 − ρ2|UP− |2,
(SUH , UH) ≥ C|UH+,c |2 − |UH−,c |2,

(8.7)

uniformly near X0.
Now, Lemma 7.1 implies

|UH−,c |2 + ρ2|UP− |2 ≤ C|Γ1U−,c|2 ≤ C(|Γ1U |2 + |U+,c|2),(8.8)

where U+,c = UP+ + UH+,c . Using (8.7) and (8.8), we obtain for ρ small

(SU, U) ≥ C|U+,c|2 − (|UH−,c |2 + ρ2|UP− |2)
= C|U+,c|2 + (|UH−,c |2 + ρ2|UP− |2) − 2(|UH−,c |2 + ρ2|UP− |2)
≥ C|U+,c|2 + |UH−,c |2 + ρ2|UP− |2 − C1(|Γ1U |2 + |U+,c|2)
≥ C2|U+,c|2 + |UH−,c |2 + ρ2|UP− |2 − C1|Γ1U |2

≥ C3(|U+|2 + |UH− |2) + ρ2|UP− |2 − C1|Γ1U |2

(8.9)

provided C was big enough.
In addition we have

|(SF, U)| ≤ |(SFP+ , UP+)| + |(SFP− , UP−)| + |(SFH , UH)|
≤ (Cδ|FP+ |22 + δ|UP+ |22) + ρ2(Cδ|FP− |22 + δ|UP− |22)

+
(

Cδ

(γ + ρ2)
|FH |22 + δ(γ + ρ2)|UH |22

)
.

(8.10)

Plugging these estimates into the usual symmetrizer argument (recall (6.49)),
we obtain after absorbing terms in the usual way the key small frequency estimate

(|UP+ |22 + ρ2|UP− |22 + (γ + ρ2)|UH |22)
+ (|U+|2 + |UH− |2 + ρ2|UP− |2)

≤ C

(
|FP+ |22 + ρ2|FP− |22 +

1
(γ + ρ2)

|FH |22
)

+ C|Γ1U |2
(8.11)

uniformly near X0.
Assuming Γ1U = 0 as in (6.30), we deduce immediately from (8.11) our main

estimate with F as forcing

|U |22 ≤ C
|F |22

ρ2(γ + ρ2)
.(8.12)

In particular with ρF forcing we obtain

|U |22 ≤ C
|F |22

(γ + ρ2)
.(8.13)

In the mid-frequency region an argument identical to that for the nondegenerate
problem (6.39) gives

|U |22 ≤ C|F |22.(8.14)

In this region the same estimate on traces as in (6.50) also holds.
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Remark 8.1. (1) Direct calculation using the explicit pointwise bounds on the re-
solvent kernel obtained in [Z1] reveals that bounds (8.11) and (8.14) are sharp.

(2) Using (7.31) in place of (7.30), we obtain instead of (8.9) the more precise
estimate

((S + Γ∗
1Γ1)U, U) ≥ C(|U+|2 + |UH− |2 + |UP2,−,ε |2) + ρ2|UP1,− |2.(8.15)

This refinement is put to important use in [GMWZ1].

Remark 8.2. In view of the close relation between small-viscosity and low-frequency
limits (see, e.g., discussion in Section 1.3 of [Z1] or Section 12 of [GMWZ1]), it is
interesting to compare the small-frequency bounds (8.11) to the standard inviscid
bounds of, e.g., [M1, Met2], which involve an additional variable ϕ(x′, t) recording
shock location. Formally replacing this term ϕ in the estimate for the inviscid
problem with a viscous layer ϕ(x′, t)ψ′(x) ∼ ψ(x + ϕ(x′, t)) − ψ(x), we obtain a
slightly sharpened version of (8.11) which could have been obtained by segregating
degenerate decaying parabolic modes in our analysis. However, we cannot make
conclusions in the other direction by the present approach; that is, our bounds are
consistent with but do not (quite) imply the inviscid ones. To recover the inviscid
from viscous bounds would require the additional step of tracking viscous shock
location (see [GMWZ2]).

8.1. Mixed norm estimate. Note that (8.13) implies both

|U |22 ≤ C

ρ2
|F |22 and

γ|U |22 ≤ C|F |22.
(8.16)

Let us work with the first now. Recall |U |2 is the L2(x) norm, and define V and
H by U = V̂ (x, τ, γ, η), F = Ĥ, γ > 0. Suppose now that d ≥ 3 and that U and F
are supported in ρ < δ.

(8.16) gives

|U |22 ≤ C

|τ, η|2 |F |22.(8.17)

Integrate (8.17) dτdη (dimension of (τ, η) space is ≥ 3) to get

|e−γtV |2L2(x,t,y) ≤
∫

C

|τ, η|2 |Ĥ(x, τ, γ, η)|2L2(x)dτdη.(8.18)

But

|Ĥ(x, τ, γ, η)| ≤ C|H(x, t, y)|L1(t,y),(8.19)

so

|Ĥ(x, τ, γ, η)|2L2(x) ≤ C

∫
|H(x, t, y)|2L1(t,y)dx

≡ |H |2L2(x,L1(t,y)).

(8.20)

Plug this into (8.18) to get

|e−γtV |2L2(x,t,y) ≤
∫
|τ,η|<δ

C

|τ, η|2 |H |2L2(x,L1(t,y))dτdη ≤ C|H |2L2(x,L1(t,y)).(8.21)

Let γ → 0 to get

|V |2L2(x,t,y) ≤ C|H |2L2(x,L1(t,y)).(8.22)
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8.2. Summary. Tracing back U (8.1)→ U (2.19)→
(

û
v̂

)
(2.18), we have proved

the following estimates for L2 solutions û(x, λ, η) of

ûxx − (A(x)û)x − s(x, λ, η)û = ρf̂(x, λ, η).(8.23)

Proposition 8.1. Let δ > 0 and M >> δ.
(a) For û as in (8.23) and δ > 0 sufficiently small, we have

|û|22 + |ûx|22 ≤ C
|f̂ |22

(γ + ρ2)
for ρ = |λ, η| ≤ δ.(8.24)

(b) For δ ≤ ρ ≤ M

|û|22 + |ûx|22 ≤ C|f̂ |22.(8.25)

Observe that since ρ is bounded in Proposition 8.1, we are free to multiply the
left sides of the inequalities (8.24) and (8.25) by ρK for any K ≥ 0. Thus, estimate
(8.22) and Proposition 8.1 imply the following proposition.

Let χS(τ, γ, η), χM , and χL be smooth cutoffs supported respectively in ρ ≤ δ,
δ/2 ≤ ρ ≤ M , and M − 1 ≤ ρ, such that

χS + χM + χL = 1.(8.26)

When we write χ(D)u, we mean the function whose Fourier-Laplace transform is

χ(τ, γ, η)û(x, τ, γ, η).(8.27)

Here û is the Fourier transform of e−γtũ, where ũ is the extension of u by 0 into
t < 0.

Proposition 8.2. (a) Suppose d ≥ 3. For u(x, t, y) as in (8.23) we have

|χS(D)(u, uy)|L2(x,t,y) + |χS(D)ux|L2(x,t,y) ≤ C|f |L2(x,L1(t,y)).(8.28)

(b) For d ≥ 1

|χM (D)(u, uy)|L2(x,t,y) + |χM (D)ux|L2(x,t,y) ≤ C|f |L2(x,t,y).(8.29)

9. Large frequency estimate

In the large frequency region, ρF forcing gives a worse estimate than F forcing,
and just plugging ρF into (6.50) is not helpful here (nor do the constants C in the
estimate remain uniformly bounded). Instead, one must take advantage of the fact
that behavior for ρ large is dominated by parabolic effects to obtain estimates by
a different technique.

In [MZ1], this was carried out by a rescaling argument combined with appropriate
symmetrizers, to which we could appeal here as well. Instead, we give an alternative
argument similar to one in [KKP], based on direct integration by parts against
the second order equation, which recovers the same results. We do not use a
symmetrizer (more correctly, we take S = I); just pair with û(x, λ, η) and integrate
by parts in the second order eigenvalue equation

ûxx − (A(x)û)x − s(x, λ, η)û = F̂x + iηĜ.(9.1)
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(Of course, the function F in (9.1) is different from that in the previous section.)
Here λ = iτ + γ and

s(x, λ, η) =
d∑

j=2

Aj(x)iηj + λI + |η|2I.

Dropping hats, in the usual way one gets

(λ + |η|2)|u|22 + |ux|22 = H(u, ux, F, G)(9.2)

where

|H | ≤ C|u|2|ux|2 + |F |2|ux|2 + |G|2|η||u|2 + C|η||u|22.(9.3)

Take the modulus of each side of (9.2) (note γ > 0), and absorb |ux|22 and |η|2|u|22
from the right to give, for some new constant,

(|τ | + γ + |η|2)|u|22 + |ux|22 ≤ C(|u|22 + |F |22 + |G|22).(9.4)

By taking ρ big and absorbing C|u|22, we obtain

(|τ | + γ + |η|2)|u|22 + |ux|22 ≤ C|F, G|22, for γ > 0.(9.5)

Putting hats back and summarizing, we have shown that

(|τ | + γ + |η|2)|û|22 + |ûx|22 ≤ C|F̂ , Ĝ|22, for γ > 0(9.6)

when û is supported in ρ ≥ M for M sufficiently large. Thus, letting γ → 0 and
applying Parseval’s formula, we get an estimate with no exponential weights

|u, uy, ut|L2(x,t,y) + |ux|L2(x,t,y) ≤ C|F, G|L2(x,t,y).(9.7)

Since cutoffs χL commute right through the eigenvalue equation (9.1), we have
proved the following proposition.

Proposition 9.1. Suppose u satisfies

(a) ut + (A(x)u)x +
d∑

j=2

Aj(x)∂ju −�u = Fx + divyG,

(b) u|t=0 = 0.

(9.8)

If M is sufficiently large, then for χL supported in ρ ≥ M ,

|χL(D)(u, uy, ut)|L2(x,t,y) + |χL(D)ux|L2(x,t,y) ≤ C|F, G|L2(x,t,y).(9.9)

Here u, F , and G in (9.8)(a) have been extended by zero into t < 0 and, because
of the initial condition u|t=0 = 0, the extensions satisfy (9.8)(a) for all t.

10. Linear and nonlinear stability

Proof of Theorem 4.1. The proof of this theorem will extend over the next few
subsections.
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10.1. Strategy. Our first goal in this section is to prove the following estimate for
solutions u to (9.8) in space dimensions d ≥ 3:

|u, ut, uy|L2(x,t,y) + |ux|L2(x,t,y) ≤ C(|F, G|L2(x,L1(t,y)) + |F, G|L2(x,t,y)).(10.1)

Clearly, it remains to treat only χS(D)u and χM (D)u. Accordingly, for the rest
of this discussion, we restrict attention to |(τ, γ, η)| uniformly bounded.

As in [KK] let û = ŵ + û1, where ŵ(x, λ, η) satisfies

ŵxx − (A(x)ŵ)x = F̂x, |ŵ|2 < ∞.(10.2)

This piece integrates to

ŵx − A(x)w = F̂ (x, λ, η).(10.3)

This is the auxiliary problem for which we obtain a solution satisfying the fol-
lowing L2:

|ŵ|L2(x) ≤ C|F̂ |L2(x).(10.4)

Next, û1 = û − ŵ satisfies

û1xx − (A(x)û1)x − s(x, λ, η)û1 = sŵ + iη · Ĝ, |û1|2 < ∞.(10.5)

The right side of (10.5) qualifies as “ρF” forcing, so we may apply Proposition
8.1 and the estimate (10.4) to establish

|û|L2(x) ≤ C(|û1|L2(x) + |ŵ|L2(x)) ≤
C(|F̂ |L2(x) + |Ĝ|L2(x))

(γ + ρ2)
.(10.6)

By the calculation (8.21)–(8.22), this yields

Proposition 10.1. (a) Suppose d ≥ 3. For u1(x, t, y) as in (10.5) we have

|χS(D)(u1, u1y)|L2(x,t,y) + |χS(D)u1x|L2(x,t,y) ≤ C|F, G|L2(x,L1(t,y)).(10.7)

(b) For d ≥ 1

|χM (D)(u1, u1y)|L2(x,t,y) + |χM (D)u1x|L2(x,t,y) ≤ C|F, G|L2(x,t,y).(10.8)

To complete the proof of (10.1), we just need to show (10.4).

10.2. Auxiliary problem. In the problem (10.3) the matrix A(x) is independent
of frequency. To prove the L2 estimate (10.4), we consider the n × n system on R

wx − A(x)w = f(x),(10.9)

and we show that there is a solution satisfying

|w|L2(x) ≤ C|f |L2(x).(10.10)

This implies there is a solution to (10.3) satisfying

|ŵ(x, λ, η)|L2(x) ≤ C|F̂ (x, λ, η)|L2(x),(10.11)

with C independent of frequency, which will give (10.4).
Consider the doubled 2n × 2n boundary problem on x ≥ 0 equivalent to (10.9)

(a) Wx −A(x)W = F(x),

(b) BW = 0 on x = 0,
(10.12)
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where
W (x) = (w+(x), w−(x)),

A(x) =
(

A+(x) 0
0 −A−(x)

)
,

F(x) = (f+(x),−f−(x)), and
BW = w+ − w−.

(10.13)

Let E−(0) be the space of boundary values of decaying solutions of (10.12)(a)
when F = 0. Hypothesis (H3) together with classical ODE results ([Co]) implies

dim E−(0) = (n − k) + (n − l) = n + 1.(10.14)

On the other hand kerB has dimension n. A basis for it is

{E1, . . . , En}, where Ej = (ej , ej),(10.15)

and the ej are the standard basis vectors of Cn.
Hypothesis (H4) implies kerB and E−(0) have a one-dimensional intersection

spanned by

P = (φ(0), φ(0)).(10.16)

We now define an augmented boundary condition B̃ with the property that

C
2n = ker B̃ ⊕ E−(0).(10.17)

Some component of φ(0), say the first, is not zero. Let W1 denote the first compo-
nent of W . Then we may simply set

B̃W = (W1, w+ − w−) ∈ C
n+1,(10.18)

so that (10.17) holds.
Now we can estimate solutions to

Wx −A(x)W = F(x),

B̃W = 0 on x = 0,
(10.19)

using an idea of [MZ1]. Note that any solution of (10.19) is also a solution of
(10.12).

Construct as in [MZ1] a conjugator C(x) on x ≥ 0 satisfying

C−1 is uniformly bounded,

C(x) = Id + O(e−βx) for some β > 0,

Cx(x) = A(x)C(x) − C(x)A(∞).

(10.20)

Setting W = CV transforms (10.19) into

Vx −A(∞)V = H,

B̃V = 0 on x = 0,
(10.21)

where H = C−1F and B̃ = B̃C. The properties of C imply immediately that an
estimate for (10.21) gives an estimate for (10.19).

Since C preserves the decomposition (10.17), it is now an easy matter to construct
a symmetrizer for (10.21) and to obtain

|V |L2(x) ≤ C|H|L2(x).(10.22)
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Thus, W = CV satisfies

|W |L2(x) ≤ C|F|L2(x)(10.23)

and estimate (10.10) follows.

Remark 10.1. The improved bounds available for divergence forcing are connected
with the fact [Z1] that the only quantities conserved by the linearized equations
are those afforded by conservation of mass, a property which holds also for over-
compressive but not for undercompressive shocks. Recall, in the notation of (2.2),
with k + � = n + r, r ≥ 2 corresponds to the overcompressive case, r = 1 to the
Lax case, and r ≤ 0 to the undercompressive case. Likewise, it is readily seen that
the auxiliary equation construction of [KK] goes through essentially unchanged for
the overcompressive case, where the augmented boundary condition B̃ again has r
extra constraints (now > 1), to yield the same bounds as in the Lax case. Thus, we
may obtain as in [Z1] the same nonlinear stability results in the overcompressive
case as in the Lax case. The auxiliary equation construction fails in the undercom-
pressive case, however; indeed, this case is essentially different, as discussed further
in [Z1], [Z2].

10.3. Linear stability.

Notation 10.1. (1) |v(t, y)|L2
T (t,y) is the L2 norm on [0, T ]× Rn−1

y .
(2) |u|22;p =

∑
|α|≤p |∂α

(x,y)u(x, t, y)|2L2(x,t,y).
(3) |u|2(2,1);p =

∑
|α|≤p |∂α

(x,y)u(x, t, y)|2L2(x,L1(t,y)).
(4) |u|22;p,T =

∑
|α|≤p |∂α

(x,y)u(x, t, y)|2
L2(x,L2

T (t,y))
.

(5) |u|2(2,1);p,T =
∑

|α|≤p |∂α
(x,y)u(x, t, y)|2

L2(x,L1
T (t,y))

.
(6) |u|(∞,2);p,T =

∑
|α|≤p |∂α

(x,y)u(x, t, y)|L∞(x,L2
T (t,y)).

The proof of nonlinear stability depends on the following estimates for solutions
of

(a) ut + (A(x)u)x +
d∑

j=2

Aj(x)∂ju −�u = Fx + divyG,

(b) u|t=0 = 0.

(10.24)

Proposition 10.2 (Main linear estimate).
(a) |u|2;1 + |ut|2;0 ≤ C(|F, G|(2,1);0 + |F, G|2;0).
(b) |u|2;p+1 + |ut|2;p ≤ Cp(|F, G|(2,1);0 + |F, G|2;p).
(c) |u|2;p+1,T + |ut|2;p,T ≤ Cp(|F, G|(2,1);0,T + |F, G|2;p,T ).

(10.25)

A key point is that C is independent of T and there are no exponential weights
in the norms.

Proof. Estimate (a) is (10.1), whose proof has just been completed.
(c) follows from (b) and the fact that the future does not affect the past.
Care is needed in the proof of (b) because our basic estimate is asymmetric; there

is a mixed norm on the right but not the left (the argument of [KK] is incomplete
here but can be fixed by an argument like the following one). Note that if one
just differentiates (10.24) with respect to x and applies (10.25)(a), there is no way
to absorb the mixed norm of terms like (A′(x)u)x that get thrown on the right as
forcing.
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Recall that u, F , and G in (10.24)(a) have been extended by zero into t < 0 and,
because of the initial condition u|t=0 = 0, the extensions satisfy (10.24)(a) for all t.

1. Let χ(τ, η) be a smooth cutoff function supported in |τ, η| ≤ C for C to be
chosen sufficiently large. Since χ has bounded support in the frequency variables,

|χ(D)∂k
t ∂α

y (u, ux)|2;0 ≤ C|u, ux|2;0,(10.26)

so we immediately obtain from (10.25)(a)

|χ(D)∂k
t ∂α

y (u, ux)|2;0 ≤ C(|F, G|(2,1);0 + |F, G|2;0).(10.27)

2. Note that χ(D) commutes right through (10.24)(a) and that

|χ(D)f(x, t, y)|(2,1);0 ≤ C|f |(2,1);0, since

|χ(D)g(t, y)|L1(t,y) ≤ C|g(t, y)|L1(t,y).
(10.28)

The latter inequality is easily seen by writing χ(D)g as a convolution.
Thus, after solving for χ(D)uxx using the equation (10.24)(a), we can use the

estimates (10.27) and (10.28) to get

|χ(D)∂α
y uxx|2;0 ≤ C(|F, G|(2,1);0 + |F, G|2;1).(10.29)

3. Differentiating the equation (10.24)(a) with respect to x and using the esti-
mates (10.27) and (10.29) give for |α| + l ≤ p + 1

|χ(D)∂α
y ∂l

xu|2;0 ≤ C(|F, G|(2,1);0 + |F, G|2;p).(10.30)

Here one estimates terms involving x derivatives of order k by using the equation
to express them as sums of terms involving x derivatives of order ≤ k − 1 which
have already been estimated.

As before we can insert ∂k
t in the left sides of (10.29) and (10.30).

4. Next consider the region where |τ, η| is big. Here we need a different argu-
ment. In this region we have the pure L2 estimates (9.6) and (9.7) with no mixed
norms. We can differentiate (10.24)(a) with respect to x or y and apply Proposi-
tion 9.1 to the differentiated problem, after observing that conservative forcing is
maintained. For example, differentiate (10.24)(a) once with respect to x to get

(ux)t + (A(x)ux)x +
d∑

j=2

Aj(x)∂jux −�ux

= Fxx + divyGx −

(A′(x)u)x +
d∑

j=2

(A′
j(x)u)yj

 .

(10.31)

Apply Proposition 9.1 to obtain

|(1 − χ(D))uxx|2;0 ≤ C|F, G|2;1.(10.32)

Continuing in this way, we obtain for |α| + l ≤ p + 1

|(1 − χ(D))∂α
y ∂l

xu|2;0 ≤ C|F, G|2;p.(10.33)

5. In the same way we obtain for |α| + l ≤ p

|(1 − χ(D))∂α
y ∂l

xut|2;0 ≤ C|F, G|2;p.(10.34)

6. Use (10.30), (10.33), and (10.34) to get for |α| + l ≤ p + 1

|∂α
y ∂l

xu|2;0 ≤ C(|F, G|(2,1);0 + |F, G|2;p),(10.35)
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and for |α| + l ≤ p

|∂α
y ∂l

xut|2;0 ≤ C(|F, G|(2,1);0 + |F, G|2;p).(10.36)

This gives (b). �

10.4. Nonlinear long time stability. First, let us rewrite the error equation
(2.14) in the (x, t, y) notation as

ut + (A(x)u)x +
d∑

j=2

Aj(x)∂yj u + εdiv(B(x, t, y)u) + εdiv(h(x, t, y, u))

= �u + div((F, G)(x, t, y)),

u|t=0 = 0.

(10.37)

In order to complete the proof of Theorem 4.1 we need to show that for ε small
enough, the solution to (10.37) exists for all time and satisfies

|u(x, t, y)|L∞(x,y) → 0 as t → ∞.(10.38)

Local existence in time is well known. We use an argument similar to the one in
[KK], except that we have the mixed norm in place of their L1 norm.

For p > d
2 (d is the number of space dimensions) set

Ep = Cp(|F, G|(2,1);0 + |F, G|2;p).(10.39)

Assumption (H5)I on v0 implies Ep < ∞.
For Tε sufficiently small the solution of (10.37) satisfies

|u|2;p+1,Tε + |ut|2;p,Tε ≤ Ep + 1.(10.40)

In fact, let us suppose now that Tε in (10.40) is the maximal Tε for which (10.40)
holds. We will show that for ε small enough

Tε = ∞.(10.41)

In turn this implies (10.38).
We now consider εdiv(B(x, t, y)u) + εdiv(h(x, t, y, u)) as part of the forcing, and

apply the main linear estimate to obtain

|u|2;p+1,Tε + |ut|2;p,Tε

≤ Cp(|(F, G) + εBu + εh|(2,1);0,Tε
+ |(F, G) + εBu + εh|2;p,Tε)

≤ Ep + Cε(|Bu|(2,1);0,Tε
+ |Bu|2;p,Tε + |h|(2,1);0,Tε

+ |h|2;p,Tε).
(10.42)

Since we have local existence, all we need to do is show that each of the four
terms

|Bu|(2,1);0,Tε
, |Bu|2;p,Tε , |h|(2,1);0,Tε

, |h|2;p,Tε(10.43)

is bounded by some function f(Ep).

Notation 10.2. (a) For k ∈ {1, 2, 3, . . .} let ∂k denote the collection of operators
∂α
(x,y) with |α| = k (α is a multi-index). Sometimes ∂k is used to denote a particular

member of this collection. Set ∂0φ = φ.
(b) For k ∈ {1, 2, 3, . . .} denote by ∂〈k〉φ the set of products of the form

(∂α1φi1 ) · · · (∂αrφir ) where 1 ≤ r ≤ k, α1 + · · · + αr = k, αi ≥ 1. Set ∂〈0〉φ = 1.
(c) Set |v|∞,T = |v|L∞([0,T ]×Rd), |v|∞ = |v|L∞([0,∞]×Rd).
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(d) Φ = Φ(x, t, y, u) will always denote a smooth function of its arguments with
the property that |Φ| ≤ CM when |u| ≤ M . It may change from line to line.

Lemma 10.1 (Moser inequality). For p ∈ {0, 1, 2, 3, . . .} let α1+ · · ·+αr ≤ p, αi ∈
{0, 1, 2, 3, . . .}. Suppose |vi|2;p,T + |vi|∞,T < ∞. Then there exists C independent
of T such that

|(∂α1v1) · · · (∂αrvr)|2;0,T ≤ C

r∑
i=1

|vi|2;p,T (
∏
j 	=i

|vi|∞,T ).

Lemma 10.2.

|uv|2(2,1);0,T ≤ |u|2(∞,2);0,T |v|22;0,T .(10.44)

Proof. Write down the definition of the left side, apply Cauchy-Schwartz in (t, y),
and pull out |u|2(∞,2);0,T from the dx integral. �

As a final preliminary step, note that assumption (H5) implies

|e−tv0(x, y)|2;p < ∞,(10.45)

so by (10.40), (10.45), and Sobolev inequalities we have

(a) |u|L∞([0,Tε]×Rd) ≤ f(Ep),

(b) |u|(∞,2);p,Tε
≤ f(Ep),

(c) |e−tv0|∞ < ∞.

(10.46)

First we show

|h|2;p,Tε ≤ f(Ep).(10.47)

Let k ≤ p. Recall using (2.10) that h(x, t, y, u) = H(ψ, e−tv0, u)u2 (obvious nota-
tion), so |∂kh|2;0,Tε is a sum of terms of the form

|Φ∂〈j〉(e−tv0)∂〈l〉u∂mu∂nu|2;0,Tε ,(10.48)

where l + m + n ≤ k. Use the Moser inequality (with (10.40), (10.45), (10.46)) to
see that (10.48)≤ f(Ep).

This gives (10.47). The treatment of |Bu|2;p,Tε is similar.
Next we show

|h|(2,1);0,Tε
≤ f(Ep).(10.49)

Using the same expression for h as before and applying Lemma 10.2, we have

|h|(2,1);0,Tε
= |Hu2|(2,1);0,Tε

≤ |u|(∞,2);0,Tε
|Hu|2;0,Tε ≤ f(Ep),(10.50)

where the last inequality follows from (10.40) and (10.46). This proves (10.49).
The term |Bu|(2,1);0,Tε

is, again, similar, so this completes the proof that for ε
small enough, Tε = ∞. Thus, the proof of Theorem 4.1 is finished. �

Proof of Theorem 4.2. Consider again the linear problem (9.8) with divergence
form forcing.

1. Linear estimates. In Section 12 (see Corollary 12.1 below) we prove by a
different argument that uses (H6) the following estimate for solutions u to (9.8) for
all dimensions d ≥ 1:

|u, uy, ut|2;0 + |ux|2;0 ≤ C(|F, G|1;0 + |F, G|2;0).(10.51)
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As before, repetition of the proof of Proposition 10.2 gives

|u|2;p+1,T + |ut|2;p,T ≤ Cp(|F, G|1;0,T + |F, G|2;p,T ).(10.52)

2. Nonlinear estimates. For p > d
2 and F, G as in (10.37) set

Ep = Cp(|F, G|1;0 + |F, G|2;p)(10.53)

and observe that assumption (H5)IV on v0 implies Ep < ∞.
For Tε sufficiently small the solution of (10.37) satisfies

|u|2;p+1,Tε + |ut|2;p,Tε ≤ Ep + 1.(10.54)

Now we have
|u|2;p+1,Tε + |ut|2;p,Tε

≤ Ep + Cε(|Bu|1;0,Tε + |Bu|2;p,Tε + |h|1;0,Tε + |h|2;p,Tε).
(10.55)

Consider |h|1;0,Tε for h = Hu2 (earlier notation). We have by Cauchy-Schwartz

|Hu2|1;0,Tε ≤ |H |∞,Tε |u|22;0,Tε
≤ f(Ep).(10.56)

|Bu|1;0,Tε is similar and the remaining terms are just as in the proof of Theorem
4.1, so the proof of Theorem 4.2 is finished. �

Part 4. Nonzero mass perturbations

11. Nonlinear stability

In this section we prove Theorem 4.3 using the linear estimates from earlier
sections. We also prove Theorem 4.4 assuming the L1 −L2 estimates proved in the
next section. The passage from linear to nonlinear stability in both cases is very
similar to the argument in Section 9.

Proof of Theorem 4.3.
1. Error equation. We no longer have a perturbation in conservative form, so

we must work with the error problem

ut + (A(x)u)x +
d∑

j=2

Aj(x)∂ju + εdiv(B(x, t, y)u) + εdiv(h(x, t, y, u))

= �u + f,

u|t=0 = 0,

(11.1)

(this is (2.12) in (x, t, y) notation) instead of (2.14). Here f is the particular function
appearing in (2.12). Consider also the corresponding linear problem

ut + (A(x)u)x +
d∑

j=2

Aj(x)∂yj u −�u = f,

u|t=0 = 0

(11.2)

for any f ∈ L2([0,∞) × Rd). As usual, u and f are extended by zero in t < 0.
2. Linear estimates. Recall the small frequency estimate (8.12) for general

forcing

|U |22 ≤ C
|F |22

ρ2(γ + ρ2)
≤ C

|F |22
ρ4

,(11.3)
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where U(x, λ, η), F (x, λ, η) are related to u(x, t, y), f(x, t, y) just as they were in
the doubled boundary problem (8.1). (Recall that in Section 7 the assumption of
“ρF” forcing is not invoked until (8.13).) Since d ≥ 5 now, the argument used to
obtain the earlier mixed norm estimate gives

|V |L2(x,t,y) ≤ C|H |L2(x,L1(t,y)),(11.4)

where U = V̂ (x, λ, η), F = Ĥ . There is no need to consider an auxiliary problem.
For u as in (11.2) this gives

|χS(D)(u, uy)|L2(x,t,y) + |χS(D)ux|L2(x,t,y) ≤ C|f |L2(x,L1(t,y)),

|χM (D)(u, uy)|L2(x,t,y) + |χM (D)ux|L2(x,t,y) ≤ C|f |L2(x,t,y),
(11.5)

where the medium frequency estimate is proved just as before.
For the large frequency estimate take the L2(x) pairing of û(x, λ, η) with the

eigenvalue equation

ûxx − (A(x)û)x − s(x, λ, η)û = f̂(x, λ, η)(11.6)

and argue as in Section 9 to obtain

|χL(D)(u, uy, ut)|L2(x,t,y) + |χL(D)ux|L2(x,t,y) ≤ C|f |L2(x,t,y).(11.7)

Adding up, for solutions of (11.2) we have

|u, uy, ut|2;0 + |ux|2;0 ≤ C(|f |(2,1);0 + |f |2;0).(11.8)

Line by line repetition of the proof of Proposition 10.2 gives the higher derivative
estimates:

|u|2;p+1,T + |ut|2;p,T ≤ Cp(|f |(2,1);0,T + |f |2;p,T ).(11.9)

Note that there is a gain of one derivative in this estimate, while in the estimate
of Proposition 10.2 there is a gain of two derivatives since the forcing there is
div(F, G).

3. Nonlinear estimates. We will refer to the corresponding arguments in
Section 9, just indicating the needed changes.

For p > d
2 and f as in (11.1) set

Ep = Cp(|f |(2,1);0 + |f |2;p).(11.10)

Assumption (H5)II on v0 implies Ep < ∞.
For Tε sufficiently small the solution of (11.1) satisfies

|u|2;p+1,Tε + |ut|2;p,Tε ≤ Ep + 1.(11.11)

In place of (10.42) for solutions to (11.1) we now have

|u|2;p+1,Tε + |ut|2;p,Tε

≤ Cp(|f + εdiv(Bu) + εdiv(h)|(2,1);0,Tε
+ |f + εdiv(Bu) + εdiv(h)|2;p,Tε)

≤ Ep + Cε(|Bu|(2,1);1,Tε
+ |Bu|2;p+1,Tε + |h|(2,1);1,Tε

+ |h|2;p+1,Tε).

(11.12)

Just as before, the Moser inequalities imply

|Bu|2;p+1,Tε + |h|2;p+1,Tε ≤ f(Ep).(11.13)

Also, |h|(2,1);1,Tε
is a sum of terms of the form

|Φ∂〈j〉(e−tv0)∂〈l〉u∂mu∂nu|(2,1);0,Tε
,(11.14)
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where j + l + m + n ≤ 1. By Lemma 10.2, (11.14)≤

C|∂mu|(∞,2);0,Tε
|∂〈j〉(e−tv0)∂〈l〉u∂nu|2;0,Tε ,(11.15)

and the second and third factors are ≤ f(Ep) by (10.45) and the Moser inequality,
respectively.

The term |Bu|(2,1);1,Tε
is treated similarly, so this concludes the proof of Theorem

4.3. �

Notation 11.1. (1) |u|1;p =
∑

|α|≤p |∂α
(x,y)u(x, t, y)|L1(x,t,y).

(2) |u|1;p,T =
∑

|α|≤p |∂α
(x,y)u(x, t, y)|L1(x,L1

T (t,y)).

Proof of Theorem 4.4. Again, consider the error equation (11.1) and the corre-
sponding linear problem (11.2).

1. Linear estimates. In the next section (see Corollary 12.1 below) we prove
the following estimate for solutions u to (11.2):

|u, uy, ut|2;0 + |ux|2;0 ≤ C(|f |1;0 + |f |2;0).(11.16)

As before, repetition of the proof of Proposition 10.2 gives

|u|2;p+1,T + |ut|2;p,T ≤ Cp(|f |1;0,T + |f |2;p,T ).(11.17)

2. Nonlinear estimates. For p > d
2 and f as in (11.1) set

Ep = Cp(|f |1;0 + |f |2;p)(11.18)

and observe that assumption (H5)III on v0 implies Ep < ∞.
For Tε sufficiently small the solution of (11.1) satisfies

|u|2;p+1,Tε + |ut|2;p,Tε ≤ Ep + 1.(11.19)

Now we have
|u|2;p+1,Tε + |ut|2;p,Tε

≤ Ep + Cε(|Bu|1;1,Tε + |Bu|2;p+1,Tε + |h|1;1,Tε + |h|2;p+1,Tε).
(11.20)

Consider |h|1;1,Tε . In place of (11.14) we have

|Φ∂〈j〉(e−tv0)∂〈l〉u∂mu∂nu|1;0,Tε .(11.21)

Instead of Lemma 10.2 just use Cauchy-Schwartz to obtain (11.21) ≤

C|∂mu|2;0,Tε |∂〈j〉(e−tv0)∂〈l〉u∂nu|2;0,Tε ≤ f(Ep).(11.22)

|Bu|1;1,Tε is similar and (11.13) holds, so the proof of Theorem 4.4 is finished. �

12. L1 − Lp
estimates, p ≥ 2

Henceforth we revert to the notation (t, x1, x
′) in place of (t, x, y) and (τ, ξ1, ξ

′)
in place of (τ, ξ, η).

We next establish L1−Lp bounds for the conjugated doubled eigenvalue equation,
p ≥ 2. From here on, we assume the auxiliary structural hypothesis (H6); that is, we
assume that branch singularities of characteristic roots ξ1 (considered as functions
of (τ, ξ′)) are confined to a finite union of smooth surfaces τ = τj(ξ′) on which
the singularity has constant order equal to sj , the multiplicity of the corresponding
root ξ1.
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We work in polar coordinates (λ̂, ξ̂′, ρ) with γ̂ := �λ̂, τ̂ := �λ̂. Departing
somewhat from an earlier assumption, we now relax our standard requirement γ̂ ≥ 0
to the more general

γ̂ ≥ −θρ(|τ̂ |2 + |ξ̂′|2)(12.1)

for small frequencies and

γ̂ ≥ −θ(|τ̂ | + ρ|ξ̂′|2),(12.2)

for mid- and high-frequencies, θ > 0 sufficiently small. Then the main result, to be
established in the remainder of this section, is the following, where L1, L2 refer to
L1(x1), L2(x1) norms.

Proposition 12.1. Assume (H1), (H2), (H3), (H4), (H6), and (12.1). Then, for
F ∈ L1 and ρ > 0 sufficiently small, the solution of the conjugated doubled boundary
problem (6.34) satisfies

|U |2L2 ≤ Cβ2|F |2L1

ρ2
(12.3)

for some C > 0 uniformly near the basepoint X0, where

β := max
j≥0

βj ,(12.4)

with β0 := 1 and

βj := (|τ̂ − τj(ξ̂′)| + ρ + γ̂)1/sj−1.(12.5)

(Note that β = 1 if the glancing set G is empty, in particular for d = 1.)

From (12.3), we obtain readily the linear estimate (11.16) cited in the previous
section.

Corollary 12.1. Assume (H1), (H2), (H3), (H4), and (H6). Then, for d ≥ 3, the
solution of the linear problem (11.2) (nonzero mass) satisfies

|u, uy, ut|2;0 + |ux|2;0 ≤ C(|f |1;0 + |f |2;0),(12.6)

while, for d ≥ 1, the solution of (9.8) (zero mass) satisfies the same bound with
(F, G) in place of f .

Proof. Nonzero mass. We want to use the L1 → L2 bound (12.3) in exactly the
same manner that the first inequality of (8.16) was used to establish the mixed
norm estimate of Proposition 8.2. The key to doing so is the observation, which
can be checked directly using the explicit form of βj given above, that for δ > 0∫

|τ,ξ′|<δ

β2

ρ2
dτdξ′ < ∞(12.7)

for dimension d ≥ 3. (Some care is needed since β is singular.)
Substituting (12.3) line by line for the first inequality of (8.16) in the proof of

Proposition 8.2, we thus obtain (8.28) with pure L1 norm |f |L1(x,t,y) substituted for
the mixed norm |f |L2(x,L1(t,y)) on the right-hand side. This concludes the treatment
of the key small-frequency regime.

The treatment of the mid-frequency range goes exactly as before: since ρ is
bounded above and below, there is no difference between general forcing and ρ-
forcing. The treatment of high frequencies, as noted in Section 8.1, is in fact
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somewhat simpler for general forcing. Combining these observations, we obtain the
result.

Note that (12.7) fails for d = 1 and 2. For this reason different arguments are
needed to handle nonzero mass perturbations in these dimensions. The case d = 2
is treated in Theorem 4.5. For d = 1 see [ZH], [Z2].

Zero mass. For “ρF”-forcing, we obtain in place of (12.3) the estimate

|U |2L2 ≤ Cβ2|F |2L1 ,(12.8)

and β2 is integrable near the origin for all d ≥ 1. As in the proof of Theorem 4.1
one needs to consider an auxiliary problem to treat the Fx1 part of the forcing.
The small frequency estimate then follows almost exactly as for Theorem 4.1, with
the L1(t, x1, x

′) norm now playing the role of the mixed norm; see Lemma 12.6 of
Section 12.6 below.

The treatment of mid- and high frequencies goes as before. �

In what follows we will occasionally interpolate between L2 and L∞ using the
following elementary inequalities:

|u|Lp ≤ |u|1−
2
p

L∞ |u|
2
p

L2 ≤ |u|L∞ + |u|L2.(12.9)

From (12.3) we obtain immediately the following L1 → Lp bounds, to be used
in the next section.

Corollary 12.2. Assume (H1), (H2), (H3), (H4), (H6), and (12.1). Then, for
F ∈ L1 and ρ > 0 sufficiently small, the solution of the conjugated doubled boundary
problem (6.34) satisfies

|u|Lp ≤ Cβ|F |L1

ρ
(12.10)

for all 2 ≤ p ≤ ∞, for some C > 0 uniformly near the basepoint X0, where β is
defined as in Proposition 12.1.

Proof. Recall that |U | bounds both |u| and |ux1 |. Thus, the result for p = ∞ follows
from the standard one-dimensional Sobolev inequality

|f |∞ ≤ |f |1/2
2 |fx1 |

1/2
2(12.11)

and the general result 2 ≤ p ≤ ∞ by interpolation between L2 and L∞ norms. �

Our basic strategy in proving Proposition 12.1 will be to establish an L2 → L∞

bound for the adjoint problem and then to appeal to duality. In deriving adjoint
L2 → L∞ bounds, we use duality in a second way, to first conclude adjoint L2 → L2

bounds from the L2 → L2 bounds of the forward equation (slightly refined). From
L2 bounds on source and solution, L∞ bounds are then readily obtained by a
standard energy estimate/integration by parts.

Remark 12.1. It is worth noting that we do not in this argument apply degenerate
symmetrizers to the adjoint equation. Indeed, because of an asymmetry between
forward vs. dual equations, our standard degenerate symmetrizer estimate would
not recover the sharp bound available by duality. (Specifically, the degeneracy in
the boundary condition for the dual equation occurs in hyperbolic modes, though
we shall not show it here.)
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12.1. The dual problem. Consider a general boundary problem

LU := Ux1 − G(x1, λ, ξ′)U = F,

ΓU = 0 on x1 = 0.
(12.12)

The dual problem is then defined via the L2 inner product on R+ as

L∗V := −Vx1 − G∗(x1, λ, ξ′)U = G,

Γ∗V = 0 on x1 = 0,
(12.13)

where the kernel of Γ∗ is the orthogonal complement of the kernel of Γ, i.e., by the
property that

〈LU, V 〉 = 〈U, L∗V 〉(12.14)

for ΓU(0) = Γ∗V (0) = 0.
A formality is to first establish well-posedness of both problems.

Proposition 12.2. For ρ > 0, both forward and dual problems have a unique H1

solution for any data in L2.

Proof. It is sufficient to prove uniqueness, which follows in both cases from the
standard (nondegenerate) symmetrizer construction carried out for fixed ρ 
= 0. The
interior estimates thereby obtained feature constants that may blow up arbitrarily
fast in ρ as ρ → 0; however, this is of no consequence for the present purpose. �

Corollary 12.3. The bound of Proposition 12.1 is equivalent to the dual bound

|V |2L∞ ≤ Cβ2

ρ2
|G|22(12.15)

for solutions of the dual conjugated boundary problem, for G ∈ L2.

Proof. We have

|U |L2 = sup
|G|L2=1

〈U, G〉 = 〈U, L∗V 〉 = 〈LU, V 〉 = 〈F, V 〉 ≤ |F |L1 |V |L∞ ,(12.16)

from which we obtain the forward direction

|U |L2/|F |L1 ≤ |V |L∞/|G|L2 .(12.17)

A reverse calculation yields the backward direction. �

12.2. Decomposition of UH±. To establish (12.15), we will need to sharpen the
basic L2 → L2 estimate for the forward equation. To do this, we shall need to
decompose the hyperbolic modes UH in decomposition (6.16) as the sum UH =
UH+ + UH− , where

UH± = UHh± + UHe± + UHg± .(12.18)

Each vector appearing in (12.18) has 4n components, and the decomposition de-
pends on (λ, ξ′, ρ). While UH here is the same as the vector UH appearing in (6.16),
to avoid confusion it is important to note that the definitions of UH± are different
now as we explain below.

We shall write
UHh

= UHh+ + UHh−

and do similarly for e and g. The hyperbolic mode UHh± has nonvanishing compo-
nents corresponding (only) to the blocks Qk in (6.10) which are 1×1 with real part
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vanishing at the basepoint, but with real part > 0 (resp. < 0) when ρ > 0. The el-
liptic mode UHe± has nonvanishing components corresponding to blocks with �Qk

positive or negative definite at the basepoint. Finally, the glancing mode UHg has
nonvanishing components corresponding to blocks of size larger than 1 × 1 which
are purely imaginary at the basepoint (glancing blocks).

Furthermore, we shall diagonalize the glancing blocks by a 4n × 4n matrix
THg(λ, ξ′, ρ):

U ′
Hg

:= T−1
Hg

UHg ,(12.19)

where UHg := UHg+ + UHg− . Here UHg± are defined as the projections of UHg onto
the growing (resp. decaying) eigenspaces of ĤB in (6.10) corresponding to glancing
blocks. Call these subspaces Hg±. Clearly, THg also has a block structure and we
may construct it so that in any given block corresponding to a glancing block Qj,
the first columns are eigenvectors of Qj associated (for ρ > 0) to eigenvalues with
�µ < 0. The remaining blocks of THg are identity matrices.

We denote by

U ′ := T−1
Hg

U(12.20)

the full variable with UHg diagonalized and all other components unchanged. By
calculations similar to those in [Z1], we obtain the following estimates.

Lemma 12.1. The diagonalizing transformation THg may be chosen so that

|THg | ≤ C,(12.21)

|T−1
Hg

| ≤ Cβ,(12.22)

and

|T−1
Hg |Hg−

| ≤ Cα,(12.23)

where β := maxj βj, α := maxj αj, with

βj := θ
1−sj

j , αj := θ
1−[(sj+1)/2]
j ,(12.24)

θj := (|τ̂ − τj(ξ̂′)| + γ̂ + ρ)1/sj ,(12.25)

and T−1
Hg |Hg−

denotes the restriction of T−1
Hg

to subspace Hg−. In particular,

βα−2 ≥ 1.(12.26)

Remark 12.2. The quantities β and α, and their sharp estimation, we regard as a
key to the analysis of long-time stability in multidimensions.

Proof. Clearly, it is sufficient to establish for a single block Qj of size sj that there
exist diagonalizing matrices whose inverses are bounded by βj , αj , respectively. Let
µ denote the multiple pure imaginary eigenvalue appearing in Qj evaluated at the
basepoint (τ̂ , ξ̂′). From here on, we drop the j subscript.

Set σ = (|τ̂ − τ(ξ̂′)|+ γ̂ + ρ) so θ = (σ + ρ)1/s. By a classic matrix perturbation
argument (e.g., [Z1], Lemma 4.8) the eigenvalue µ splits for σ + ρ > 0 small into s
eigenvalues.

µk = µ + πk + o(|σ, ρ|1/s), k = 1, . . . , s.(12.27)
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Here
πk = εki(pσ − iqρ)1/s with

ε = 11/s,

p(ξ̂′) and q(ξ̂′) are real and ∼ 1, and sgn p = sgn q.

(12.28)

Moreover, corresponding eigenvectors are given in appropriate coordinates by

(1, πk, π2
k, . . . , πs−1

k ) + o(|σ, ρ|1/s).(12.29)

Thus, there exists a matrix THg of eigenvectors of the s × s block Q that is
approximately given by a Vandermonde matrix with generators distance at least θ
apart related by s roots of unity. (Note: In [Z1], γ was constrained as a function
of τ , ρ; however, an examination of the argument shows that the analysis remains
valid in the more general case (12.1).)

By Kramer’s rule, we may therefore estimate β as the quotient of two Vander-
monde determinants, the numerator of size s − 1 and the denominator of size s,
taken from the same set of equally spaced generators. The standard formula for
Vandermonde determinants then gives

β ∼ θ

s − 1
2

−

s
2


= θ1−s(12.30)

as claimed.
Denoting by (

t1
t2

)
(12.31)

the matrix consisting of the k ≤ [(s + 1)/2] stable eigenvectors of Q, i.e., the first k
columns of THg , and noting that t1 as a Vandermonde matrix is invertible, we find
that Hg− consists of vectors of form(

w
t2t

−1
1 w

)
=

(
t1
t2

)
t−1
1 w,(12.32)

where w ∈ Ck is arbitrary.
From |(w, t2t

−1
1 w)| ≥ |w| and the computation∣∣∣T−1

Hg

(
w

t2t
−1
1 w

) ∣∣∣ =
∣∣∣ (

t1 ∗
t2 ∗

)−1 (
t1
t2

)
t−1
1 w

∣∣∣
=

∣∣∣ (
Ik

0

)
t−1
1 w

∣∣∣
= |t−1

1 w|

(12.33)

we thus obtain that |T−1
Hg |Hg−

| ≤ |t−1
1 |.

Observing that t1 is a k×k Vandermonde matrix with generators taken from the
same equally spaced set and applying Kramer’s rule similarly as before, we obtain

|t−1
1 | ≤ Cθ1−[(s+1)/2],(12.34)

and thus α = θ1−[(s+1)/2] as claimed. �

We define similar decompositions on the dual variable V and also the forcing
terms F and G.
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12.3. Interior estimates. We begin by carrying out a basic degenerate sym-
metrizer estimate for the diagonalized forward problem. Note that the treatment
of glancing modes is considerably simpler in diagonalized coordinates and indeed
has nothing to do with that of the original Kreiss construction.

Lemma 12.2. For the forward diagonalized problem, we have the interior bound

|U ′|2L2 ≤ C
|F ′|2L2

ρ2(γ + ρ2)
.(12.35)

Proof. In diagonalized coordinates, we must deal with a new degeneracy of order
α−1 in the glancing modes of the diagonalized boundary condition Γ′ := ΓTHg for
the forward problem, as may be seen by the calculation

|Γ′U ′
Hg− | = |ΓUHg− | ≥ C−1|UHg− | ≥

C−1|U ′
Hg−

|
|T−1

Hg |Hg−
|
.(12.36)

On the other hand, there are no coalescing modes, and so we may dispense with the
usual Kreiss construction, treating glancing modes in the same way as hyperbolic
and elliptic modes. Precisely, in all except glancing modes, we make the same choice
of degenerate symmetrizer followed in previous sections, while in the glancing modes
we choose

SHg = diag(SHg+ , SHg−) := diag(C, α−2).(12.37)

Evidently, it holds that

|Γ′U ′
−| ≥ C(δ|U ′

Hh− | + δ|U ′
He− | + α−1|U ′

Hg− | + ρ|U ′
P−|),(12.38)

analogous to Lemma 7.1, and therefore we again obtain good trace terms in the
resulting symmetrizer estimate.

It remains to check that we retain good interior (L2) bounds. Let µk± denote
the eigenvalue associated with the kth mode of U ′

Hg
. Taking the Taylor expansion

of the expression (12.28) for πk about ρ/σ = 0 yields

|�µk±| ≥ C−1ρ2β,(12.39)

whence we obtain from the fact that βα−2 ≥ 1 the lower bound

α−2|�µk±| ≥ C−1ρ2,(12.40)

and thereby the key interior estimate

(Re SG′
B(∞)U ′

Hg
, U ′

Hg
) ≥ α2ρ2|U ′

Hg+
|22 + ρ2|U ′

Hg− |
2
2.(12.41)

That is, we still find that �SG′
B(∞) ≥ ρ2 as before, and therefore the rest of the

calculation of Section 8 goes through as before to give the claimed estimate. �

Remark 12.3. Since THg diagonalizes the forward problem, T−1∗
Hg

diagonalizes the
dual problem.

By duality, this yields

Corollary 12.4. For the dual diagonalized problem, we have the interior bound

|V ′|2L2 ≤ C|G′|2L2

(γ + ρ2)ρ2
.(12.42)
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In fact, the above estimates can be somewhat refined. Let U ′
Hg±,j

denotes the
jth growing/decaying glancing mode and µj± the associated growth/decay rate
(eigenvalue of GB).

Lemma 12.3. For the forward diagonalized problem, we have the refined interior
bounds

|U ′|22 ≤ C
|FP |22 + (γ + ρ2)−1|FHh

|22 + ρ−1|FHe |22 +
∑

j,± |�µj±|−1|FHg±,j |22
ρ2

.

(12.43)

Proof. Parabolic modes have growth/decay rates with real part bounded in abso-
lute value above and below by order one; elliptic modes have growth/decay rates
bounded above and below by order ρ; hyperbolic modes have growth/decay rates
bounded above and below by order (γ + ρ2). Glancing modes are treated individ-
ually in the diagonalized coordinates and have growth/decay rates with absolute
value of real part |�µj±|. Using this sharp information in the degenerate sym-
metrizer estimate described just above, specifically in the application of Young’s
inequality in step (8.10) of Section 8, we obtain the claimed bound. Note that the
worst-case version of (12.43) is (12.2), corresponding to component FHh

. �

Corollary 12.5. For the dual diagonalized problem, we have the interior bounds

|V ′
P |2L2 + (γ + ρ2)|V ′

Hh
|2L2 + ρ|V ′

He
|2L2 +

∑
j±

|�νj±||V ′
Hg±,j

|2L2 ≤ C|G′|2L2

ρ2
,(12.44)

where νj± = −µ∗
j∓ denote growth/decay rates for the dual problem (eigenvalues of

−G∗
B).

Proof. Perform integration by parts, exactly as in the proof of Corollary 12.3, but
mode by mode. For example, to obtain the bound

ρ|V ′
He

|2L2 ≤ C|G′|2L2

ρ2
,(12.45)

we begin with bound

ρ|U ′|2L2 ≤ Cρ−2|F ′
He

|2L2(12.46)

for the forward problem L′U ′ = F ′
He

, and we calculate

|V ′
He

|L2 = sup
|F ′

He
|=1

〈V ′
He

, F ′
He

〉 = sup〈V ′, L′U ′〉 = sup〈L′∗V ′, U ′〉(12.47)

= sup |G′|L2 |U ′|L2 ≤ |G′|L2Cρ−3/2|F ′
He

|L2(12.48)

= Cρ−3/2|G′|L2 .(12.49)

�

12.4. L∞ estimates. With these preparations, L∞ estimates are now easily ob-
tained.

Lemma 12.4. For the dual problem, we have the bounds

|V ′|2∞ ≤ C|G′|2L2

ρ2
, |V |2∞ ≤ Cβ2|G|2L2

ρ2
.(12.50)
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Proof. Working in diagonalized coordinates, we may take the real part of the L2

inner product of V ′ with equation (L′)∗V ′ = G′ from x0 ≥ 0 to plus infinity to
obtain after integration by parts the estimate

|V ′(x0)|2 ≤ C(|V ′
P |22 + (γ + ρ2)|V ′

Hh
|22 + ρ|V ′

He
|22 +

∑
j±

|�νj ||V ′
Hg±,j

|22)

+ C|V ′|2|G′|2.
(12.51)

Bounding the first term on the right-hand side using Corollary 12.5 and the second
term using Corollary 12.4, we obtain the first asserted bound. The second asserted
bound then follows by change of coordinates and the Jacobian bounds of Lemma
12.1. �

This completes the proof of Proposition 12.1.

Remark 12.4. (1) Note that no symmetrizer construction was carried out for the
dual problem, to obtain neither interior nor trace estimates; indeed, our degenerate
symmetrizer construction applied to the dual problem does not seem to yield the
sharp L2 bounds we obtain by reference to the forward problem. A review of the
argument structure shows that the approach is completely general, in the sense
that it will always yield some L2 estimate for the dual diagonalized equations and
an L∞ bound improving on that bound by a factor equal to the minimum growth
rate among all modes.

(2) The resolvent bound derived here agrees with that obtained by integration
of the pointwise bounds stated in Proposition 4.5 of [Z1]; however, as noted in [Z1],
slightly better bounds were in fact established, and these yield (on integration) the
improved bound |U |22 ≤ Cβ|F |21

ρ ; see Remark 4.35 of [Z1]. As pointed out in the
same remark, this improved bound is sharp for square root singularities, s = 2, but
likely not for higher order branch singularities.

(3) It would be very interesting to determine analogous bounds in the situation
that (H6) does not hold. Let us denote the resulting factor of singularity as β̃(d, s),
depending on dimension d and maximum order of singularity s. Simple examples
show that β̃(d, s) >> β(s); however, we conjecture that β̃(d, s)2 nonetheless remains
integrable in Rd, for all fixed d and s, as needed for our arguments.

12.5. Mid- and high-frequency estimates. In the next section, we shall need
also the following straightforward bounds.

Lemma 12.5. Assume (H1), (H2), (H3), and (H4). Then, for F ∈ L2 and ρ
bounded uniformly above and below, and under assumption (12.2), the solution of
the conjugated doubled boundary problem (6.34) satisfies

|u|22 + |ux1 |22 + |ux1x1 |22 ≤ C|F |22(12.52)

for some C > 0. For ρ sufficiently large, and under assumption (12.2), the solution
satisfies (in polar coordinates, suppressing hats)

(ρ|τ | + ργ + ρ2|ξ′|2)2|u|22 + (ρ|τ | + ργ + ρ2|ξ′|2)|ux1 |22 + |ux1x1 |22 ≤ C|F |22.(12.53)

Proof. The |u|2 and |ux1 |2 bounds follow by essentially the same calculation as in
the proof of Proposition 9.1, but substituting general forcing F in place of diver-
gence forcing Fx1 + iηG. The |ux1x1 |2 bounds can then be obtained directly from
the equation (9.1). �
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Corollary 12.6. Assume (H1), (H2), (H3), and (H4). Then, for F ∈ L1, ρ
bounded uniformly above and below and under assumption (12.2), the solution of
the conjugated doubled boundary problem (6.34) satisfies

|u|2 + |ux1|2 ≤ C|F |1(12.54)

for some C > 0. For ρ sufficiently large, and under assumption (12.2), the solution
satisfies (in polar coordinates, suppressing hats)

(ρ|τ | + ργ + ρ2|ξ′|2)3/4|u|2 + (ρ|τ | + ργ + ρ2|ξ′|2)1/4|ux1 |2 ≤ C|F |1.(12.55)

Proof. By duality, the bounds (12.52) and (12.53) hold also for the adjoint equation.
Applying the one-dimensional Sobolev inequality |f |∞ ≤ |f |1/2

2 |fx1 |
1/2
2 , we thus

obtain the adjoint L2 → L∞ bounds

|v|∞ + |vx1 |∞ + |vx1x1 |∞ ≤ C|G|2(12.56)

for ρ bounded above and below, and

(ρ|τ | + ργ + ρ2|ξ′|2)3/4|v|∞ + (ρ|τ | + ργ + ρ2|ξ′|2)1/4|vx1 |∞ ≤ C|G|2(12.57)

for ρ sufficiently large, from which the claimed bounds follow by duality. �

Corollary 12.7. Assume (H1), (H2), (H3), and (H4). Then, for F ∈ L1, ρ
bounded uniformly above and below, and under assumption (12.2), the solution of
the conjugated doubled boundary problem (6.34) satisfies

|u|p ≤ C|F |1(12.58)

for all 2 ≤ p ≤ ∞, for some C > 0. For ρ sufficiently large, and under assumption
(12.2), the solution satisfies (in polar coordinates, suppressing hats)

(ρ|τ | + ργ + ρ2|ξ′|2)1/2+1/2p|u|p ≤ C|F |1.(12.59)

Proof. As in the proof of Corollary 12.2, this follows immediately by one-dimen-
sional Sobolev inequality and interpolation. �

Remark 12.5. Comparison with the explicit resolvent bounds of [Z1] shows that the
above estimates are sharp.

12.6. The auxiliary problem. Finally, we point out the following straightforward
estimates for auxiliary problem (10.3).

Lemma 12.6. Assuming (H2)–(H3), there exists a solution ŵ of auxiliary problem
(10.3) satisfying

|ŵ|Lp(x1) ≤ C|F̂ |L1(x1)(12.60)

for all 1 ≤ p ≤ ∞, with C > 0 independent of p.

Proof. As before, we begin by conjugating to a constant coefficient doubled bound-
ary value problem and imposing the augmented boundary condition B̃. Since the
eigenvalues of A are nonzero, real, and distinct, we can further conjugate by a
constant matrix to the case that A(∞) is diagonal, and w may be decomposed
entirely into scalar components wj . Integrating the vector (sgn wj) against S times
the diagonalized equation, where S is the usual symmetrizer, we thus obtain the
estimate

C−1|ŵ+(0)| − |B̃ŵ−(0)| + |ŵ|L1(x1) ≤ |F̂ |L1(x1),(12.61)
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yielding the desired estimate for p = 1. Next, taking the inner product of ŵ against
the original equation (10.3) and integrating from x0 to infinity, we obtain

|ŵ(x0)|2 ≤ C(|ŵ|2L2(x1)
+ 〈ŵ, F̂ 〉),(12.62)

and therefore, by Hölder’s inequality,

|ŵ|2L∞(x1)
≤ C(|ŵ|L1(x1)|ŵ|L∞(x1) + |ŵ|L∞(x1)|F̂ |L1(x1)).(12.63)

Dividing both sides by |ŵ|L∞(x1) and applying bound (12.61), we obtain the result
for p = ∞. The remaining bounds then follow by interpolation between p = 1 and
p = ∞. �

13. Nonlinear stability for d = 2

The nonlinear iteration scheme of Section 11 fails for nonzero mass perturbations
in dimension d = 2. On the one hand the proof fails, since β2/ρ2 is not integrable
then. But this reflects the underlying fact that the linearized response to nonzero
mass L1 initial data in general decays in Lp, p ≥ 2, no faster than a d-dimensional
heat kernel. Though not explicitly stated in [Z1], this is a consequence of the bounds
therein, which show that far field behavior is dominated by the outgoing portion
of a “multidimensional diffusion wave,” in the sense of [HoZ1]; examination of the
(upper and lower) bounds of [HoZ1] in the specific case of compressible Navier-
Stokes equations then yields the result. Likewise, review of the nonlinear iteration
scheme of [Z1] shows that this linear response is the dominant part of the solution,
and therefore similar bounds hold for the full, nonlinear solution U . In particular,
|U |2(t) ∼ (1 + t)−d/4, and thus

|U |2L2(x,t) =
∫ ∞

0

|U |22(t)dt ∼
∫ ∞

0

(1 + t)−d/2dt(13.1)

converges if and only if d ≥ 3. Since convergence of the iteration scheme implies
|U |L2(x,t) < +∞, we find that the scheme cannot work for d ≤ 2, except for zero
mass initial data, where it works for L1 ∩ Hs initial data for all d ≥ 1, Theorem
4.2.

In this section, we show that the resolvent bounds we have derived are nonethe-
less sufficient to yield a nonzero mass stability result for d ≥ 2, by following a
different approach introduced in [Z1]. This argument has the advantage of yielding
at the same time rates of decay, thus improving the previous results also for d ≥ 3;
recall, the [KK]-type scheme yields decay with no rate. These rates, however, are
not expected to be sharp in the uniformly stable case considered here; see discussion
below Proposition 8.1 in [ZS] or in Section 3.3. of [Z1].

13.1. Linear estimates. Define by Φ(t) the solution operator for the linearized
Cauchy problem

(a) ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju −�u = 0,

(b) u|t=0 = f.

(13.2)

The main step is then to establish the following bounds (Proposition 4.45 of [Z1]).
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Proposition 13.1. Assume (H1), (H2), (H3), (H4), and (H6). Then the bounds

|Φ(t)f |p ≤ C(1 + t)−
d−1
2 (1− 1

p )(‖f‖1 + ‖f‖p),(13.3)

|Φ(t)Dxj f |p ≤ Ct−
1
2 (1 + t)−

d−1
2 (1− 1

p )(‖f‖1 + ‖f‖p)(13.4)

hold for all 2 ≤ p ≤ ∞. (Note: Here, all norms are with respect to spatial variables
only.)

Proof. Standard short-time theory yields, for t ≤ 1, the bounds

|Φ(t)f |2 ≤ C‖f‖2,(13.5)

|Φ(t)Dxj f |2 ≤ Ct−
1
2 ‖f‖2.(13.6)

Thus, it is sufficient to establish, for t ≥ 1, the bounds

|Φ(t)f |p ≤ Ct−
d−1
2 (1− 1

p )‖f‖1,(13.7)

|Φ(t)Dxj f |2 ≤ t−
1
2 t−

d−1
2 (1− 1

p )‖f‖1.(13.8)

To this end, define contours Γ(ξ′) by

�λ = −θ1|�λ|2 − θ1|ξ′|2

for |�λ| ≤ R and
�λ = −θ1R|�λ| − θ1|ξ′|2

for |�λ| ≥ R, with θ1 sufficiently small. Then, standard semigroup theory together
with the resolvent bounds previously obtained gives the representation

u(x, t; y) =
1

(2πi)d

∫
ξ′∈Rd−1

∮
λ∈Γ̃(ξ′)

eiξ′·x′
eλtû(x1, ξ

′, λ)dλdξ′(13.9)

for the solution u of the linearized Cauchy problem, where û denotes the solu-
tion of the generalized resolvent equation obtained formally by the Laplace-Fourier
transform; see the related Lemma 4.39 of [Z1].

This formal equation is just (using Duhamel’s principle to replace Cauchy initial
data by homogeneous initial data with forcing f(x)δ(t), δ(·) denoting the Dirac
delta-function)

ûx1x1 − (A1(x1)û)x1 − s(x1, λ, ξ′)û = f̃(x1, ξ
′),(13.10)

where f̃ denotes the Fourier transform of f , (τ, ξ′) is dual to (t, x′), λ = iτ +γ with
(12.1), (12.2) and as usual

s(x1, λ, ξ′) =
d∑

j=2

Aj(x1)iξj + λI + |ξ′|2I.

Bounding

|f̃ |L∞(ξ′,L1(x1)) ≤ |f |L1(x1,x′) = |f |1(13.11)

using Hausdorff-Young’s inequality and appealing to the L1 → Lp resolvent esti-
mates of the previous section, we may thus bound

|û(x1, ξ
′, λ)|Lp(x1) ≤ |f |1b(ξ′, λ),(13.12)

where, for ρ := |ξ′| + |λ|, and R > 0 sufficiently large, b := Cβρ−1 for ρ ≤ 1/R,
b := C for 1/R ≤ ρ ≤ R, and b := C(|λ| + |ξ′|2)−1/2−1/2p for ρ > R.
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L2 bounds. Using in turn Parseval’s identity, Fubini’s Theorem, the triangle
inequality, and our L1 → L2 resolvent bounds, we may estimate

|u|L2(x1,x′)(t) =
( ∫

x1

∫
ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

eλtû(x1, ξ
′, λ)dλ

∣∣∣2dξ′ dx1

)1/2

=
( ∫

ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

eλtû(x1, ξ
′, λ)dλ

∣∣∣2
L2(x1)

dξ′
)1/2

≤
( ∫

ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

|eλt||û(x1, ξ
′, λ)|L2(x1)dλ

∣∣∣2dξ′
)1/2

≤|f |1
(∫

ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

e�λtb(ξ′, λ)dλ
∣∣∣2dξ′

)1/2

,

(13.13)

from which we readily obtain the claimed bound on |Φ(t)f |2 using the bounds on
b on each of the small-, mid-, and high-frequency regions. For example, on the
critical small-frequency region, parametrizing Γ(ξ′) by

λ(ξ′, k) = ik − θ1(k2 + |ξ′|2), k ∈ R,

and observing that in nonpolar coordinates

ρ−1β ≤
[
(|k| + |ξ′|)−1

(
1 +

∑
j≥1

( |k − τj(ξ′)|
ρ

) 1
sj

−1)]
≤

[
(|k| + |ξ′|)−1

(
1 +

∑
j≥1

( |k − τj(ξ′)|
ρ

)ε−1)]
,

(13.14)

where ε := 1
maxj sj

(0 < ε < 1 chosen arbitrarily if there are no singularities), we
obtain a contribution bounded by

C|f |1
(∫

ξ′∈Rd−1

∣∣∣ ∫ +∞

−∞
e−θ(k2+|ξ′|2)t(ρ)−1βdk

∣∣∣2dξ′
)1/2

≤ C|f |1
∫

ξ′∈Rd−1

(
e−2θ|ξ′|2t|ξ′|−2ε

∣∣∣ ∫ +∞

−∞
e−θ|k|2t|k|ε−1dk

∣∣∣2dξ′
)1/2

+C
∑
j≥1

|f |1
∫

ξ′∈Rd−1

(
e−2θ|ξ′|2t|ξ′|−2ε

∣∣∣ ∫ +∞

−∞
e−θ|k|2t|k − τj(ξ′)|ε−1dk

∣∣∣2dξ′
)1/2

≤ C|f |1
∫

ξ′∈Rd−1

(
e−2θ|ξ′|2t|ξ′|−2ε

∣∣∣ ∫ +∞

−∞
e−θ|k|2t|k|ε−1dk

∣∣∣2dξ′
)1/2

≤ C|f |1t−(d−1)/4

(13.15)

as claimed.
To obtain the claimed bounds on |Φ(t)Dxf |2, we may use again the auxiliary

problem (10.3) and the bounds of Lemma 12.6 to obtain for bounded frequencies
the improved L1 → L2 bounds available for ρ-forcing, and thereby an additional
factor of ρ on the critical small-frequency region, which yields an additional factor of
t−1/2 in the estimate just above. On high-frequency regions, the estimate degrades
by an algebraic factor in ξ′, λ, but this is harmless for t ≥ 1.
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L∞ bounds. Similarly, using Hausdorff-Young’s inequality, we may estimate

|u|L∞(x1,x′)(t) ≤ sup
x1

∫
ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

eλtû(x1, ξ
′, λ)dλ

∣∣∣dξ′

≤
∫

ξ′∈Rd−1

∮
λ∈Γ̃(ξ′)

|eλt||û(x1ξ
′, λ)|L∞(x1)dλdξ′

≤|f |1
∫

ξ′∈Rd−1

∮
λ∈Γ̃(ξ′)

e�λtb(ξ′, λ)dλdξ′

(13.16)

to obtain the claimed bound on |Φ(t)f |∞. For example, on the critical small-
frequency region, parametrizing Γ(ξ′) again by

λ(ξ′, k) = ik − θ1(k2 + |ξ′|2), k ∈ R,

we obtain a contribution bounded by

C|f |1
∫

ξ′∈Rd−1

∫ +∞

−∞
e−θ(k2+|ξ′|2)tρ−1βdkdξ′

≤ C|f |1
∫

ξ′∈Rd−1
e−θ|ξ′|2t|ξ′|−ε

∫ +∞

−∞
e−θ|k|2t|k|ε−1dkdξ′

≤ C|f |1t−(d−1)/2

(13.17)

as claimed. The improved bound on |Φ(t)Dxf |∞ follows as before upon substitution
of the improved L1 → L∞ bounds available for ρ-forcing, exactly as in the case
p = 2.

General 2 ≤ p ≤ ∞. Finally, the general case follows by interpolation between
L2 and L∞ norms. �

13.2. Nonlinear stability. Nonlinear stability now follows by the argument of
Proposition 4.46 of [Z1], for completeness reproduced here.

Proof of Theorem 4.5. Defining

v := u − ψ,(13.18)

and taking the Taylor expansion as usual, we obtain the nonlinear perturbation
equation

vt − Lv =
∑

j

Qj(v, v)xj ,(13.19)

where

Qj(v, v) = O(|v|2)(13.20)

so long as |v| remains bounded by some fixed constant. Applying Duhamel’s prin-
ciple and integrating by parts, we can thus express (supressing x-dependence)

v(t) = Φ(t)v(0) +
∫ t

0

Φ(t − s)Dxj Q
j(s)ds.(13.21)

Define now

ζ(t) := sup
0≤s≤t,2≤p≤∞

‖v(·, s)‖Lp(1 + s)
d−1
4 .(13.22)
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We shall establish
Claim.

ζ(t) ≤ C2(ζ0 + ζ(t)2).(13.23)

From this result, it follows by continuous induction that ζ(t) ≤ 2C2ζ0 for t ≥ 0,

provided ζ0 < 1/4C2. But definition (13.22) then yields

‖v(·, t)‖L2 ≤ 2C2ζ(1 + t)−( d−1
4 )(13.24)

as claimed. Thus, it remains, first, to establish the claim above, and, second, to
extend to 2 < p ≤ ∞.

Proof of Claim. Recalling (13.20) and (13.22), we can bound

|Qj(v, v)(·, t)|Lp ≤ |v|L∞ |v|Lp

≤ Cζ(t)2(1 + t)−
d−1
2

for p ≥ 2 and
|Qj(v, v)(·, t)|L1 ≤ |v|2L2

≤ Cζ(t)2(1 + t)−
d−1
2 ,

so that

|Qj(v, v)(·, t)|Lp + |Qj(v, v)(·, t)|L1 ≤ Cζ(t)2(1 + t)−
d−1
2 .(13.25)

The requisite L∞ bounds hold for a short time provided they hold initially, by local
existence/regularity theory, and at later times provided that the L∞ bounds of the
iteration scheme remain valid. Thus, we can establish the global validity of bounds
(13.25) at the same time that we establish the global bound (13.24) on our iteration
scheme, using the standard strategy of continuation.

Substituting into (13.21) and using bounds (13.3) and (13.4), we obtain

|v(t)|Lp ≤ Cζ0t
− d−1

2 (1− 1
p )

+ Cζ(t)2
∫ t

0

(1 + t − s)−
d−1
2 (1− 1

p )(t − s)−
1
2 (1 + s)−

d−1
2 ds

≤ C(p)(ζ0 + ζ(t)2)(1 + t)−
d−1
2 (1− 1

p ),

(13.26)

for all 2 ≤ p ≤ ∞, where C(p) is strictly monotone increasing in p, with C(∞)
bounded for d ≥ 3 and C(∞) = +∞ for d = 2. (This final inequality follows by a
direct calculation; see, e.g., Appendix A5 in [Z1].)

Of course, the integral in the second to last line is monotone decreasing in p,
and so we may always substitute the less precise bound

|v(t)|Lp ≤ C(2)(ζ0 + ζ(t)2)(1 + t)−
d−1
4 .

Thus, ζ(t) ≤ C(ζ0 + ζ(t)2), establishing the claim and the result for p = 2. Once ζ
is bounded, (13.26) then yields the result for 2 < p ≤ ∞ as well. �
Remark 13.1. Alternatively, we could have performed higher derivative estimates
as in the proof of Proposition 10.2 and carried them along in the analysis to obtain
a self-contained argument involving only Sobolev estimates, for initial data in the
smaller space L1 ∩ Hd. This would require the same regularity f ∈ C[ d

2 ]+5 as the
[KK]-type argument used in previous sections; by contrast, the present argument
requires only f ∈ C2.
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13.3. Relation between [KK] and [Z1] analyses. We conclude by a brief further
discussion of the relation between [KK] and [Z1] approaches, in light of the above
calculations. Clearly, the pointwise resolvent kernel bounds of [Z1] were not the
essential point (we have not used them here), but rather the consequent L1 → Lp

resolvent bounds and the improved bounds for ρ-forcing. These bounds are shared,
central features of both the [Z1] and [KK] analyses. (However, note: The [KK]
resolvent analysis is purely one-dimensional, so it does not address the important
technical issue of glancing modes; indeed, it is not immediately clear that their
method of obtaining resolvent bounds can be generalized to higher dimensions.)

The main difference, then, is in the endgame by which the resolvent bounds
are converted to nonlinear estimates. The [KK] approach could be described as
“hyperbolic,” since it uses an iteration scheme very similar to that of the inviscid
case. In particular, the integration of λ along the imaginary axis does not reveal
the effects of diffusion. As we have demonstrated here, this scheme is applicable
for general (nonzero mass) initial data only for dimensions greater than or equal to
three. The endgame of [Z1] could be described rather as “parabolic”: integration
on the parabolic contour Γ(ξ′) reveals an additional temporal decay due to diffusion
that is essential to the proof of nonlinear stability in dimensions less than or equal
to two. (Note: In dimension one, somewhat further care is needed; specifically,
translation of the shock must be projected out [Z2, MaZ1, MaZ2, MaZ3, MaZ4,
MaZ5, Z3, HZ, Ra].)

With regard to the small viscosity limit, we point out that both choices of contour
are consistent with the standard hyperbolic analysis, since the curvature of the
parabolic contour is taken proportional to viscosity. A very interesting direction in
the small viscosity theory would be to investigate whether there is any advantage
to working on such parabolic contours to take into account the beneficial effects
of diffusion. It is not clear, however, how to incorporate this into the argument
structure of, e.g., [MZ1, GMWZ1].
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(2002m:35148)

[MZ1] Métivier, G. and Zumbrun, K., Large viscous boundary layers for noncharacteristic
nonlinear hyperbolic problems, to appear in Memoirs of the Amer. Math. Soc., available
at http://www.maths.univ-rennes1.fr/ metivier/preprints.html

[MZ2] Métivier, G. and Zumbrun, K., Hyperbolic boundary value problems for symmetric
systems with variable multiplicities, to appear in J. Diff. Eq.; Preprint 2003.

[PZ] Plaza, R. and Zumbrun, K., An Evans function approach to spectral stability of small-
amplitude shock profiles, J. Discrete and Continuous Dynamical Systems 10, 2004, no.
4, 885–924. MR2073940

[Ra] Raoofi, M., L1-asymptotic behavior of perturbed viscous shock profiles, Thesis, Indiana
University, 2004.

[R] Rousset, F., Viscous approximation of strong shocks of systems of conservation laws.
SIAM J. Math. Anal. 35, 2003, no. 2, 492–519. MR2001110 (2004i:35218)

[SX] Szepessy, A. and Xin, Z., Nonlinear stability of viscous shock waves, Arch. Rat. Mech.
Analysis, 122, 1993, 53-103. MR1207241 (93m:35125)

[Z1] Zumbrun, K., Multidimensional stability of planar viscous shock waves, Advances in
the theory of shock waves, 304-516. Progress in Nonlinear PDE, 47, Birkhäuser, Boston,
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