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INTERMEDIATE SUBFACTORS
WITH NO EXTRA STRUCTURE

PINHAS GROSSMAN AND VAUGHAN F. R. JONES

1. Introduction

Let N ⊆ M be II1 factors with [M : N ] < ∞. There is a “standard invariant”
for N ⊆ M , which we shall describe using the planar algebra formalism of [19]. The
vector spaces Pk of N −N invariant vectors in the N −N bimodule ⊗kM admit an
action of the operad of planar tangles as in [19] and [21]. In more usual notation
the vector space Pk is the relative commutant N ′ ∩ Mk−1 in the tower Mk of [16].
The conditional expectation EN from M to N is in P2 and generates a planar
subalgebra called the Temperley–Lieb algebra. In [4], Bisch and the second author
studied the planar subalgebra of the Pk generated by the conditional expectation
onto a single intermediate subfactor N ⊆ P ⊆ M . The resulting planar algebra
is called the Fuss–Catalan algebra and was generalised by Bisch and the second
author to a chain of intermediate subfactors; see also [26]. These planar algebras
are universal in that they are always planar subalgebras of the standard invariant
for any subfactor possessing a chain of intermediate subfactors. If Pi ⊆ Pi+1 is the
chain, there are no restrictions on the individual inclusions of Pi in Pi+1. Moreover
the existence of the Fuss–Catalan planar algebra together with a theorem of Popa in
[32] allows one to construct a “free” increasing chain where the individual inclusions
Pi ⊆ Pi+1 have “no extra structure”; i.e., their own standard invariants are just
the Temperley–Lieb algebra. Thus the standard invariants for the Pi ⊆ Pi+1 are
“decoupled” from the algebraic symmetries coming from the existence of a chain of
intermediate subfactors.

In [33], Sano and Watatani considered the angle between two subfactors P ⊆ M
and Q ⊆ M , which we shall here define via the square of its cosine, namely the
spectrum of the positive self-adjoint operator EP EQEP (on L2(M)). In [25], Feng
Xu and the second author proved that finiteness of the angle (as a substet of [0, 1])
is equivalent to finiteness of the index of P ∩ Q in M . If we suppose that P ∩ Q is
an irreducible finite index subfactor of M , then we might expect that the angle is
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“quantized”; i.e., only a certain discrete countable family of numbers occurs (at
least in a range close to 0 and π/2). Determining these allowed angle values is
becoming a significant question in the abstract theory of subfactors. This paper
can be considered a first step in answering that question.

In [36], Watatani considered the lattice of intermediate subfactors for a finite
index inclusion and showed that if the inclusion is irreducible the lattice is finite.
He gave some constructions which allowed him to realise many simple finite lattices,
but even for two lattices with only six elements, the question of their realisation as
intermediate subfactor lattices remains entirely open.

The present paper grew out of an attempt by Dietmar Bisch and the second
author to extend the methods of [4] to attack both the angle quantization and the
intermediate lattice problems. The hope was to construct universal planar algebras
depending only on the lattice of intermediate subfactors, and possibly the angles
between them, and use Popa’s theorem to construct subfactors realising the lattice
and angle values. This project is probably sound, but it is hugely more difficult in
the case where the lattice is not a chain or the angles are not all 0 or π/2. The
reason is very simple: the planar algebra generated by the conditional expectations
can no longer be decoupled from the standard invariants of the elementary subfactor
inclusions in the lattice. This is surprisingly easy to see. The spectral subspaces
of EP EQEP are N − N bimodules contained in P so that as soon as the angle
operator has a significant spectrum the subfactor N ⊆ M must have elements in its
planar algebra that are not in the Temperley–Lieb subalgebra, a situation we shall
refer to as having “extra structure” and which we will quantify using the notion of
supertransitivity introduced in [23]. In particular, if there is no extra structure the
spectrum of EP EQEP can consist of at most one number besides 0 and 1. We will
call the angle whose cosine is the square root of this number “the angle” between
P and Q. Or “dually” if PQP is not equal to all of M , then it is a nontrivial
P − P bimodule between P and M so that the inclusion P ⊆ M must have extra
structure.

Thus we are led to the following question: what are the possible pairs of subfac-
tors P and Q in M with P ∩Q a finite index irreducible subfactor of M , for which
the four elementary subfactors N ⊆ P , N ⊆ Q, P ⊆ M and Q ⊆ M all have no
extra structure? More properly, since we are not trying to control the isomorphism
type of the individual factors, one should ask what are the standard invariants that
arise. One situation is rather easy to take care of: if the subfactors form a commut-
ing cocommuting square in the sense of [33], then there is no obstruction. It was
essentially observed by Sano and Watatani that in this case EP and EQ generate a
tensor product of their individual Temperley–Lieb algebras. To realise any N ⊆ P
and N ⊆ Q just take the tensor product II1 factors. However, if we assume that
the subfactors either do not commute or do not cocommute, then we will show in
this paper the following unexpected result.

Theorem 1.1. Suppose
P ⊂ M
∪ ∪
N ⊂ Q

is a quadrilateral of subfactors with N ′∩M =

C , [M : N ] < ∞ and no extra structure. Then either the quadrilateral commutes
or one of the following two cases occurs.
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a) [M : N ] = 6 and N is the fixed point algebra for an outer action of S3 on M
with P and Q being the fixed point algebras for two transpositions in S3. In this
case the angle between P and Q is π/3 and the full intermediate subfactor lattice is

(Note that the dual of this quadrilateral is a commuting square.)
b) The subfactor N is of depth 3, [M : N ] = (2+

√
2)2 and the planar algebra of

N ⊆ M is the same as that coming from the GHJ subfactor (see [12]) constructed
from the Coxeter graph D5 with the distinguished vertex being the trivalent one.
Each of the intermediate inclusions has index 2 +

√
2 and the angle between P and

Q is θ = cos−1(
√

2 − 1). The principal graph of N ⊆ M is

*

and the full intermediate subfactor lattice is

where the angle between P̃ and Q̃ is also θ but P and Q both commute with P̃
and Q̃. Moreover [M : R] = [S : N ] = 2 and M, N, R and S form a commuting
cocommuting square. The planar algebra of N ⊆ M is isomorphic to its dual—the
planar algebra of M ⊆ M1.

Note that from Ocneanu’s paragroup point of view, N is the fixed point algebra
of an action of the paragroup given by the planar algebra on M . Thus if the ambient
factor M is hyperfinite, then Popa’s theorem in [31] guarantees that the subfactors
are unique up to an automorphism of M . Also note that it is a consequence of the
theorem that any intermediate subfactor lattice with four elements and no extra
structure is a commuting square.

Our methods rely heavily on planar algebras. Of crucial importance is the di-
agram discovered by Landau for the projection onto the product PQ. We give a
proof of Landau’s result and some general consequences. The uniqueness of the
subfactor of index 6+4

√
2 mentioned in the theorem is proved using the “exchange

relation” of [27] (the planar algebras have a very simple skein theory in the sense
of [21]). The no-extra-structure hypothesis necessary for the theorem is in fact
weaker than the one we have stated above. For a precise statement of the required
supertransitivity, see Theorems 4.18 and 5.8.
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After this paper was submitted, we learned from conversations with M. Izumi
that he had found a way to obtain the restrictions on the index in our main theorem,
and the uniqueness of the subfactor, by some bimodule arguments and [14]. Also,
the second author has proved that if M is a II1 factor and P and Q are finite index
subfactors, then the purely algebraic decomposition of M as a P − Q bimodule is
the same as the decomposition of L2(M) as a P − Q correspondence. This would
allow one to avoid some awkward juggling of L2 completions in discussions of the
multiplication map between N − N sub-bimodules of M in this paper.

The authors would like to thank Dietmar Bisch and Zeph Landau for several
fruitful discussions concerning this paper.

2. Background

2.1. Bimodules. We recall some basic facts about bimodules over II1 factors. The
treatment follows [3]. For more on this, look there and in [24].

Definition 2.1. Let M be a II1 factor. A left M -module is a pair (H, π) where H
is a Hilbert space and π is a unital normal homomorphism from M into the algebra
of bounded operators on H. The dimension of H over M , denoted dimM H, is the
extended positive number given by the Murray–von Neumann coupling constant
of π(M). Let MOP be the opposite algebra of M (i.e., the algebra with the same
underlying vector space but with multiplication reversed). Then a right M -module
is defined as a left MOP -module. An M−N bimodule is a triple (H, π, φ), where H
is a Hilbert space and π and φ are normal unital homomorphisms from, respectively,
M and NOP into the algebra of bounded operators on H, such that π(M) and
φ(NOP ) commute. Such a bimodule is denoted by MHN , or sometimes simply
by H, if the action is understood. We write mξn for π(m)φ(n)ξ, where m ∈ M ,
n ∈ N , and ξ ∈ H.

There are obvious notions of submodules and direct sums. An M −N bimodule
is in particular both a left M -module and a left NOP -module.

Definition 2.2. An M−N bimodule is bifinite if dimM H and dimNOP H are both
finite.

All bimodules will be assumed to be bifinite.

Definition 2.3. Let MH1
N and MH2

N be bimodules. The intertwiner space, denoted
HomM−N (H1, H2), is the subspace of bounded operators from H1 to H2 consisting
of those operators that commute with the bimodule action: T ∈ HomM−N (H1, H2)
iff T (mξn) = m(Tξ)n for all m ∈ M , n ∈ N , ξ ∈ H1.

Example 2.4. Let M be a II1 factor. L2(M) is the Hilbert space completion of
M with respect to the inner product induced by the unique normalized trace on
M . Then L2(M) is an M −M bimodule, and the left and right actions are simply
the continuous extensions of ordinary left and right multiplication in M . If P and
Q are subfactors of M , then L2(M) is a P − Q bimodule by restriction, and it is
bifinite iff the indices [M : P ] and [M : Q] are finite.

Definition 2.5. Let MHN be a bimodule. There is a dense subspace H0 of H,
called the space of bounded vectors, defined by the rule that ξ ∈ H0 iff the map
m 	→ mξ extends to a bounded operator from L2(M) to H. To each pair of bounded
vectors (ξ, η) there is associated an element of M , denoted 〈ξ, η〉M , determined by
the relation 〈mξ, η〉 = tr(m〈ξ, η〉M).
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Remark 2.6. It is in fact also true that ξ ∈ H0 iff the map n 	→ nξ extends to a
bounded operator from L2(N) to H.

Remark 2.7. Let M be a II1 factor, and consider L2(M) as a bimodule over a pair
of finite index subfactors as in Example 2.0.5. Then L2(M)0 is simply the image
of M in L2(M).

There is a notion of fusion of bimodules due to Connes:

Definition 2.8. Let MHN and NKP be bimodules. There is an M −P bimodule,
denoted (MHN ) ⊗N (NKP ), called the relative tensor product, or fusion, of MHN

and NKP , which is characterized by the following property: there is a surjective
linear map from the algebraic tensor product H0 
 K0 to ((MHN ) ⊗N (NKP ))0,
ξ ⊗ η 	→ ξ ⊗N η satisfying the following three conditions:

(i) ξn ⊗N η = ξ ⊗N nη,
(ii) m(ξ ⊗N η)p = (mξ) ⊗N (ηp),
(iii) 〈ξ ⊗N η, ξ′ ⊗N η′〉M = 〈ξ〈η, η′〉N , ξ′〉M

(for all m ∈ M , n ∈ N , and p ∈ P ).

Remark 2.9. Among the properties enjoyed by fusion are: it is distributive over
direct sums, it is associative, and it is multiplicative in dimension, i.e.,

dimM (MHN ⊗N NKP ) = (dimM H)(dimN K).

Let N ⊂ M be an inclusion of II1 factors with finite index. L2(N) can be
identified with a subspace of L2(M). Let e1 denote the corresponding projection
on L2(M), and let M1 be the von Neumann algebra generated by M and e1.
Then M1 is a II1 factor and [M1 : M ] = [M : N ]. This procedure is called the
basic construction [16]. Recall that the space of bounded vectors in L2(M) can
be identified with M . e1 leaves this space invariant, inducing a trace-preserving
conditional expectation of M onto N .

Iterating the basic construction we get a sequence of projections e1, e2, ... and a
tower of algebras M−1 ⊂ M0 ⊂ M1 ⊂ M2 ⊂ ..., where M−1 = N , M0 = M , ek is the
projection onto L2(Mk−2) in B(L2(Mk−1)), and Mk is the von Neumann algebra
generated by Mk−1 and ek, for k ≥ 1. Restricting the tower to those elements that
commute with N , we get a tower of finite-dimensional algebras, called the tower of
relative commutants N ′ ∩ Mk.

Each L2(Mk), k ≥ 0 is an N − N bimodule, and

Proposition 2.10. L2(Mk) ∼= L2(M) ⊗N ... ⊗N L2(M) (k + 1 factors) as an
N −N bimodule. Moreover, HomN−NL2(Mk) ∼= N ′∩M2k+1. So an N −N bimod-
ule decomposition of ⊗k+1

N L2(M) corresponds to a decomposition of the identity in
N ′ ∩ M2k+1. Under this correspondence projections in N ′ ∩ M2k+1 correspond to
submodules of ⊗k+1

N L2(M) , minimal projections correspond to irreducible submod-
ules (those that have no proper nonzero closed submodules), and minimal central
projections to equivalence classes of irreducible submodules.

2.2. Planar algebras. In [19] a diagrammatic calculus was introduced as an ax-
iomatisation and calculational tool for the standard invariant of a finite index sub-
factor. We will use it heavily in this paper, so we recall some of the essentials.
The specific uses of the calculus in this paper make possible a couple of simplifying
conventions for the pictures.
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In its most recent formulation in [23] a planar algebra P consists of vector spaces
P±

k indexed by a nonnegative integer n and a sign + or −. For the planar algebra
of a subfactor N ⊆ M , P+

k = N ′ ∩ Mk−1 and P−
k = M ′ ∩ Mk. The vector spaces

P±
k form an algebra over the planar operad which means that there are multilinear

maps between the P±
k indexed by planar tangles. A planar k-tangle T consists of

(i) the unit disc D0 with 2k distinguished boundary points, a finite number of dis-
joint interior discs Dj ⊂ D0 for k ≥ 0, each with an even number of distinguished
boundary points, and smooth disjoint curves called strings, in D0 meeting the Dj

exactly (transversally) in the distinguished boundary points;
(ii) a black and white shading of the regions of T whose boundaries consist of the
strings and the boundaries of the discs between the distinguished points. Regions
of the tangle whose closures intersect are shaded different colours.
(iii) For each disc Dj there is a choice of distinguished boundary interval between
two adjacent distinguished points.

An example of a k-tangle is shown below (where we have used a ∗ near a boundary
interval to indicate the chosen one).

2
D

*

5

D

D

D3
4

1

D6
*

2  *

*

*
*

*

D

The multilinear map associated to the k-tangle T goes from the product of the P±
kj

for each internal disc, where k is half the number of boundary points for Dj , to
P±

k , the signs being chosen + if the distinguished boundary region is shaded and
− if it is unshaded. The axioms of a planar algebra are that the multilinear maps
be independent of isotopies globably fixing the boundary of D0 and be compatible
with the gluing of tangles in a sense made clear in [19]. To indicate the value of
a tangle on its arguments one simply inserts the arguments in the internal discs.
This notation for an element of Pk is called a labelled tangle. For instance for
x ∈ P+

3 , y ∈ P+
2 and a, b, c, d ∈ P−

2 , the labelled tangle below is the element of
P+

4 obtained by applying the multilinear map defined by the tangle above to the
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elements x, y, a, b, c, d according to the discs in which they are placed.

2

*

c

*

*

*

 *

*

x

y

ba

d

*

We refer to [19] for details on the meaning of various tangles and the fact that
the standard invariant of a subfactor is a planar algebra. Recall that closed strings
in a tangle can always be removed, each one counting for a multiplicative factor
of the parameter δ, which is the square root of the index for a subfactor planar
algebra.

To avoid both the shading and the marking of the distinguished boundary inter-
val we will adopt the following convention:

All discs will be replaced by rectangles called “boxes”. The distinguished bound-
ary points will be on a pair of opposite edges of each box, called the top and bottom.
Labels will be well chosen letters which have a top and bottom which will allow
us to say which edge is top and which is bottom. The distinguished interval will
be supposed shaded and will always be between the first and second strings on the
top of a box. This allows us to put elements of P+

k in the boxes. So we further
adopt the convention that if t is in P−

k , then it will be inserted at right angles to
the top-bottom axis of its rectangle, which is to be interpreted as an internal disc
whose distinguished (unshaded) interval is the edge of the rectangle to which the
letter points upwards.

Thus the two diagrams below, with a ∈ P−
2 and b, e ∈ P+

2 represent the same
thing according to our convention.

b

e

a *

*

e
*

b

a

*
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We will also from time to time simplify the diagrams further by suppressing the
outside rectangle. Thus both of the above pictures are the same as the one below:

b
e

a

3. Generalities

3.1. Multiplication. Let N ⊂ M be an irreducible inclusion of II1 factors with
finite index, and suppose that P and Q are intermediate subfactors of this inclusion.

Following Sano and Watatani [33], we say that is a quadrilateral if P∨Q =
M and P ∧ Q = N . (There is no real loss of generality here since in any case we
can restrict our attention to P ∨ Q and P ∧ Q.)

Proposition 3.1. The multiplication map from P ⊗N Q to M extends to a surjec-
tive N − N bimodule intertwiner from L2(P ) ⊗N L2(Q) to L2(PQ).

Proof. The extension is simply (a scalar multiple of) the composition

L2(P ) ⊗N L2(Q) → L2(M) ⊗N L2(M) ∼= L2(M1) → L2(M),

where the first map is the tensor product of the inclusions and the last map is the
conditional expectation eM . �
Corollary 3.2. L2(PQ) is isomorphic as an N − N bimodule to a submodule of
L2(P ) ⊗N L2(Q).

Remark 3.3. In a similar way, for any k, we can define a multiplication map from
⊗k

N (L2(P ) ⊗N L2(Q)) to L2((PQ)k).

3.2. Comultiplication. Let N ⊂ M be an irreducible inclusion of II1 factors with
finite index. (Irreducible here means that N ′ ∩ M ∼= C.) Consider also the dual
inclusion M ⊂ M1.

Proposition 3.4. The first relative commutants N ′ ∩ M1 and M ′ ∩ M2 have
the same vector space dimension, and the map φ : N ′ ∩ M1 → M ′ ∩ M2, a 	→
δ3EM ′(ae2e1), is a linear isomorphism with inverse a 	→ δ3EM1(ae1e2), where
δ = [M : N ]

1
2 and EM ′ , EM1 are the conditional expectations of N ′ ∩ M2 onto

M ′ ∩ M2 and N ′ ∩ M1 respectively.

Remark 3.5. In the planar picture, φ is simply

a 	→ a .
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Pulling back the multiplication in M ′ ∩ M2 via φ gives a second multiplication
on N ′∩M1. Using the inner product given by the trace one may identify the vector
space N ′ ∩ M1 with its dual, and the second multiplication may thus be pulled
back to the dual. If the depth of the subfactor is 2, then this multiplication on
the dual induces a Hopf algebra structure on N ′ ∩M1, but in general this does not
work. We will abuse terminology by calling the second multiplication on N ′ ∩ M1

“comultiplication” and use the symbol ◦ for it.

Definition 3.6. Let a and b be elements of N ′∩M1. Then a◦b = φ−1(φ(b)φ(a)) =
δ9EM1(EM ′(be2e1)EM ′(ae2e1)e1e2). Diagrammatically, a◦b is given by the picture

a b .

Remark 3.7. Dually, there is a comultiplication on M ′ ∩ M2, also denoted by ◦,
defined by pulling back the multipication via φ−1. Consequently, all of the formulas
involving comultiplication have dual versions.

If V is a vector subspace of M which is closed under left and right multiplication
by elements of N , then the closure of the image of V in L2(M) is an N − N sub-
module of L2(M), denoted by L2(V ), and the corresponding projection (necessarily
in N ′ ∩ M1) by eV . Conversely, any projection in N ′ ∩ M1 is of the form eV for a
strongly closed N−N submodule V of M , which is self-adjoint and multiplicatively
closed iff V is an intermediate subfactor. Bisch has shown that if e is an arbitrary
projection in N ′ ∩M1, then e is of the form eP for an intermediate subfactor P iff
e commutes with the modular conjugation on L2(M) and e ◦ e is a scalar multiple
of e [2]. In that case e is called a biprojection.

NOTATION: In the planar algebra pictures, discs will be labelled simply by V
instead of eV .

Note that the set of biprojections inherits a partial order from the intermediate
subfactor lattice. In particualr, e1 = eN = eNeP for any intermediate subfactor P .

If N ⊂ P ⊂ M is an intermediate subfactor with biprojection eP , then P̄ =
〈M, eP 〉 is an intermediate subfactor of the dual inclusion M ⊂ M1 with biprojec-
tion eP̄ ∈ M ′ ∩ M2.

Lemma 3.8. Suppose eP is a biprojection with dual biprojection eP̄ . Then EP̄ (e1)
= δ−2tr(eP )−1eP .

Proof. Let x and y be elements of M . Then

tr(e1xeP y) = tr(e1eP xeP y) = tr(e1EP (x)y) = δ−2tr(EP (x)y)

= δ−2tr(eP )−1tr(eP EP (x)y) = δ−2tr(eP )−1tr(eP xeP y).

�

Lemma 3.9. With notation as above,

φ(eP ) = P = δtr(eP )eP̄ .
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Proof. We have

φ−1(eP̄ ) = δ3EM1(eP̄ e1e2) = δ3EM1(eP̄ e1eP̄ e2) = δ3EM1(EP̄ (e1)e2)

= δ3EP̄ (e1)EM1(e2) = δ−1tr(eP )−1eP .

Applying φ to both sides of the equation gives the result. �

Let P and Q be intermediate subfactors of the inclusion N ⊂ M with correspond-
ing projections eP and eQ. Then P̄ = 〈M, eP 〉 and Q̄ = 〈M, eQ〉 are intermediate
subfactors of the dual inclusion M ⊂ M1, with corresponding projections eP̄ and
eQ̄ in M ′ ∩ M2.

The following result is due to Zeph Landau:

Theorem 3.10. (Landau)

eP ◦ eQ = P Q = δtr(eP eQ)ePQ.

Proof. By Lemma 3.9 we have

eP ◦ eQ = φ−1(φ(eQ)φ(eP )) = δ2tr(eQ)tr(eP )φ−1(eQ̄eP̄ )

= δ5tr(eQ)tr(eP )EM1(eQ̄eP̄ e1e2).

By a small abuse of notation, we shall identify M with its image in L2(M). Let
x ∈ M . For any a ∈ N ′ ∩ M1, we have a(x) = δ2EM (axe1). In particular,

eP ◦ eQ(x) = δ5tr(eP )tr(eQ)EM1(eQ̄eP̄ e1e2)(x)

= δ7tr(eP )tr(eQ)EM (eQ̄eP̄ e1e2xe1).

Let y be another element of M . Then

tr(eQ̄eP̄ e1e2xe1y) = tr(eP̄ e1eP̄ e2xe2eQ̄e1eQ̄y)

= δ−4tr(eP )−1tr(eQ)−1tr(eP e2xeQy) (by 3.8)

= δ−6tr(eP )−1tr(eQ)−1tr(eP xeQy).

Thus EM (eQ̄eP̄ e1e2xe1) = δ−6tr(eP )−1tr(eQ)−1EM (eP xeQ) and eP ◦ eQ(x) =
δEM (eP xeQ).

So if x = pq, with p ∈ P and q ∈ Q, then eP ◦ eQ(x) = δEM (eP xeQ) =
δEM (eP eQ)x = δtr(eP eQ)(x).

To finish the proof, it suffices to show that eP ◦ eQ vanishes on the orthog-
onal complement of L2(PQ), or equivalently, that if tr(xqp) = 0 for all p ∈
P, q ∈ Q, then EM (eP xeQ) = 0. So suppose tr(xqp) = 0 for all p ∈ P, q ∈ Q.
Let {pi},{qj} be Pimsner–Popa bases over N for P and Q, respectively. Then
eP =

∑
pie1p

∗
i and eQ =

∑
qieNq∗i . Suppose y ∈ M . For any i, j, we have

tr(pie1p
∗
i xqje1q

∗
j y) = δ−2tr(p∗i xqiEN (q∗j ypi)) = δ−2tr(xqiEN (q∗j ypi)p∗i ) = 0. This

implies that EM (eP xeQ) = 0. �

Corollary 3.11. ePQ(M) = PQ.

Proof. From the proof we have ePQ(x) = tr(eP eQ)−1EM (eP xeQ). Moreover eP =∑
pie1p

∗
i and eQ =

∑
qieNq∗i with the same notation as in Theorem 3.10. We see

that ePQ(M) ⊂ PQ. �
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Corollary 3.12. PQ is strongly closed in M .

Proof. Since ePQ is strongly continuous and the identity on PQ, ePQ is the identity
on the strong closure of PQ. �

Lemma 3.13. Let a ∈ N ′ ∩ M1. Then

a = a = δtr(a).

Proof. Labelled tangles with two boundary points are elements of N ′ ∩ M , which
by irreducibility must be scalars. So

a = tr( a ) = δ−1tr( a ) = δtr(a).

�

One corollary of Theorem 3.10 is the following multiplication formula:

Proposition 3.14. tr(ePQ)tr(eP eQ) = tr(eP )tr(eQ).

Proof.

δtr(ePQ)tr(eP eQ) = tr( )

= δ−2( P Q ) = δ−2( P )( Q )( )

= δtr(eP )tr(eQ).

�

Corollary 3.15. tr(ePQ) = tr(eQP ).

And another trace formula:

Lemma 3.16. tr(eP eQ) =
1

dimM L2(P̄ Q̄)
.

Proof.
1

dimM L2(P̄ Q̄)
=

1
δ2tr(eP̄ Q̄)

=
tr(eP̄ eQ̄)

δ2tr(eP̄ )tr(eQ̄)
, by Proposition 3.14 . By

Lemma 3.9,

eP̄ =
1

δtr(eP )
φ(eP ),
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so we have
1

dimM L2(P̄ Q̄)
=

1
δ4tr(eP̄ )tr(eQ̄)tr(eP )tr(eQ)

tr(φ(eP )φ(eQ))

= tr(φ(eP )φ(eQ))

= δ−2 P Q .

On the other hand,

P Q = δ3tr(e1(eP ◦ eQ)e1)

= δ4tr(eP eQ)tr(e1) = δ2tr(eP eQ).

Combining these two equations gives the result. �

We mention one more formula which we will need later.

Lemma 3.17. tr(ePQeQP ) = (δtr(ePQ))2tr((eP̄ eQ̄eP̄ )2).

Proof. By Theorem 3.10,

tr(ePQeQP ) =
tr((eP ◦ eQ)(eQ ◦ eP ))

(δtr(eP eQ))(δtr(eQeP ))

=
1

δ4(tr(eP eQ))2
QP

Q P

.

On the other hand, by Lemma 3.9,

tr((eP̄ eQ̄eP̄ )2) = tr(eP̄ eQ̄eP̄ eQ̄)

=
1

δ4tr(eP )2tr(eQ)2
tr( P

P
Q

Q

)=
1

δ6tr(eP )2tr(eQ)2

Q
P

Q
P

.
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By [2] the 2-box for a biprojection is invariant under rotation by π, so the two trace
pictures are the same. Combining these two equations then gives

tr(ePQeQP )= δ2 tr(eP )2tr(eQ)2

tr(eP eQ)2
tr((eP̄ eQ̄eP̄ )2),

which by Proposition 3.14 equals (δtr(ePQ))2tr((eP̄ eQ̄eP̄ )2). �

3.3. Commuting and cocommuting quadrilaterals. Following Sano and
Watatani [33] we consider the condition that a quadrilateral forms a commuting
square, which means that eP eQ = eQeP . A quadrilateral is called a cocommuting
square if the dual quadrilateral is a commuting square.

Lemma 3.18. Let be a quadrilateral of II1 factors, where N ⊂ M is an
irreducible finite-index inclusion. Consider the multiplication map of Proposition
3.1 from L2(P ) ⊗N L2(Q) to L2(PQ). The quadrilateral commutes iff this map is
injective and cocommutes iff the map is surjective.

Proof. The quadrilateral commutes iff eP eQ = eQeP iff eP eQ = eN . By Proposition

3.14 this is equivalent to
1

[M : N ]
= tr(eN ) = tr(eP eQ) =

tr(eP )tr(eQ)
tr(ePQ)

, or

dimN L2(PQ) = [M : N ]tr(ePQ) = [M : N ]2tr(eP )tr(eQ)

= dimN L2(P ) · dimN L2(Q) = dimN L2(P ) ⊗N L2Q.

But by Corollary 3.2, L2(PQ) is isomorphic to a submodule of L2(P ) ⊗N L2(Q),
so the two have the same N -dimension iff they are in fact isomorphic, which is
equivalent to the injectivity of the multiplication map.

The quadrilateral cocommutes iff eP̄ Q̄ = eQ̄P̄ = eM . By Lemma 3.16, this is
equivalent to dimN L2(PQ) = 1

tr(eP̄ Q̄) = 1
tr(eM ) = dimN L2(M), which is equivalent

to L2(PQ) = L2(M). �

Corollary 3.19. The quadrilateral commutes iff

dimN L2(PQ) = dimN (L2(P ) ⊗N L2(Q)) = [P : N ][Q : N ].

Corollary 3.20. The quadrilateral cocommutes iff L2(PQ) = L2(QP ).

Proof. If the quadrilateral cocommutes, then L2(PQ) = L2(M) = L2(QP ). Con-
versely, if L2(PQ) = L2(QP ), then ePQ = eQP . By Theorem 3.10, ePQ is a scalar
multiple of eP ◦ eQ, so ePQ ◦ ePQ is a scalar multiple of (eP ◦ eQ) ◦ (eP ◦ eQ) =
eP ◦ (eQ ◦ eP ) ◦ eQ = eP ◦ (eP ◦ eQ) ◦ eQ = (eP ◦ eP ) ◦ (eQ ◦ eQ), which is a scalar
multiple of eP ◦ eQ. This implies that ePQ is a biprojection. The corresponding
subfactor has to contain both P and Q, so is all of M . So L2(PQ) = L2(M) and
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the quadrilateral cocommutes. �
In fact one doesn’t need the Hilbert space completion for this:

Theorem 3.21. Let be a quadrilateral of II1 factors, where N ⊂ M
is an irreducible finite-index inclusion. Consider the multiplication map from the
(algebraic) bimodule tensor product P ⊗N Q to M . The quadrilateral commutes iff
this map is injective and cocommutes iff the map is surjective.

Proof. (a) Injectivity. If the algebraic map from P⊗N Q to M has a kernel, then it is
obvious that the L2 map does. On the other hand, the kernel K of the L2 map µ is a
closed N−N sub-bimodule of L2(M1) (under the isomorphism of L2(M)⊗N L2(M)
with L2(M1)), and by the form of elements in the first relative commutant the
orthogonal projection onto K sends M1 to itself, so there are elements of M1 in
ker µ. Moreover since M1

∼= M ⊗N M the map EP ⊗ EQ produces an element of
ker µ in PeNQ.

(b) Surjectivity. The algebraic map is surjective iff PQ = M . Clearly PQ =
M implies L2(PQ) = L2(M). Conversely if L2(PQ) = L2(M), then ePQ is the
identity, so M = PQ by Corollary 3.11. �
Remark 3.22. Sano and Watatani have already shown that the quadrilateral is a
cocommuting square iff PQ = M under the additional hypothesis that the quadri-
lateral is a commuting square [33].

4. No extra structure

4.1. Definition. Let N ⊂ M be an inclusion of II1 factors with associated tower
M−1 ⊂ M0 ⊂ M1 ⊂ ..., where M−1 = N , M0 = M , and Mk+1, k ≥ 0 is the
von Neumann algebra on L2(Mk) generated by Mk and ek+1, the projection onto
L2(Mk−1). Each ek commutes with N , so {1, e1, ..., ek} generates a *-subalgebra,
which we will call TLk+1, of the kth relative commutant N ′ ∩ Mk.

To motivate the following definition (which first occurs in [23]) consider the case
where N = RG, M = RH , where G is a finite group of outer automorphisms of
the II1 factor R. It is well known that, as a vector space, N ′ ∩ Mk is the set of
G-invariant functions on Xk+1, where X = G/H. Thus the transivity of the action
of G on X is measured by the dimension of N ′ ∩Mk (an action is (k +1)-transitive
if its dimension is the same as that for the full symmetric group SX). Moreover
any function invariant under SX is necessarily invariant under G, so the relative
commutants for RG ⊆ RH always contain a copy of those coming from SX . The
invariants under SX in this context are sometimes called the partition algebra, so
transitivity (or rather lack of it) is measured by how much bigger N ′ ∩ Mk is than
the partition algebra. Now for a general subfactor N ⊆ M a similar situation
occurs: N ′ ∩ Mk aways contains TLk+1. Since this is, for k > 3, strictly smaller
in dimension than the partition algebra, we see that if we think of subfactors as
“quantum” spaces G/H they might be “more transitive” than finite group actions.

Definition 4.1. Call a finite-index subfactor N ⊆ M k-supertransitive (for k > 1)
if N ′ ∩ Mk−1 = TLk. We will say that N ⊆ M is supertransitive if it is k-
supertransitive for all k.
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Since dimTLk is the same as the partition algebra for k = 1, 2, 3, it is natural
to call a 1, 2 or 3-supertransitive subfactor transitive, 2-transitive or 3-transitive,
respectively.

Remark 4.2. N ⊆ M is transitive iff it is irreducible, i.e. N ′ ∩ M ∼= C, it is
2-transitive iff the N − N bimodule L2(M) has two irreducible components and
3-transitive iff dimN ′ ∩M2 ≤ 5. Supertransitivity of N ⊆ M is the same as saying
its principal graph is An for some n = 2, 3, 4, ...,∞.

Lemma 4.3. Suppose N ⊂ M is supertransitive. If [M : N ] ≥ 4, then there is
a sequence of irreducible N − N bimodules V0, V1, V2, ... such that L2(N) ∼= V0,
L2(M) ∼= V0 ⊕ V1, and Vi ⊗ Vj

∼=
⊕i+j

k=|i−j| Vk. If [M : N ] = 4 cos2(π
n ), then the

sequence terminates at Vl, where l = [n−2
2 ], and the fusion rule is

Vi ⊗ Vj
∼=

( n−2
2 )−|( n−2

2 )−(i+j)|⊕
k=|i−j|

Vk

(see [5]).
In either case, we have

dimN Vk = [M : N ]kT2k+1(
1

[M : N ]
),

where {Tk(x)} is the sequence of polynomials defined recursively by T0(x) = 0,
p1(x) = 1, and Tk+2(x) = Tk+1(x) − xTk(x).

Remark 4.4. dimN V1 = [M : N ] − 1 and dimN V2 = [M : N ]2 − 3[M : N ] + 1.

Remark 4.5. If N ⊂ M is 2k-supertransitive, then there is a sequence of irreducible
bimodules V0, ..., Vk for which the above fusion rules and dimension formula hold
as long as i + j ≤ k.

Now let be a quadrilateral of finite index subfactors. We will call the
four subfactors N ⊆ P , N ⊆ Q, P ⊆ M , and Q ⊆ M the elementary subfactors.

Definition 4.6. A quadrilateral as above will be said to have no extra structure
if all the elementary subfactors are supertransitive.

Note that if a quadrilateral has no extra structure, the dual quadrilateral also
has no extra structure.

Example 4.7. Let G = S3 and let H and K be distinct two-element subgroups of
G. Given an outer action of G on a II1 factor M , let N = MG, and let P = MH

and Q = MK . Then N ⊂ P, Q ⊂ M is a quadrilateral which cocommutes (since
M ′ ∩ M2

∼= l∞(G) is Abelian) but does not commute (since HK �= KH).
This quadrilateral has no extra structure since the permutation actions of S2

and S3 are as transitive as possible.
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4.2. Consequences of supertransitivity. Let be a quadrilateral of II1
factors, where N ⊂ M is an irreducible inclusion with finite index. We also have

the dual quadrilateral . Let N ⊂ P ⊂ P1... be the tower for N ⊂ P , and
similarly for Q.

Lemma 4.8. If N ⊆ P and N ⊆ Q are 2-transitive and the quadrilateral does
not commute, then L2(P ) ∼= L2(Q) as N − N bimodules, and therefore [P : N ] =
[Q : N ].

Proof. By Remark 4.2 write L2(P ) = L2(N)⊕V , where V is an irreducible N −N
bimodule. Similarly L2(Q) = L2(N)⊕W , for some irreducible N −N bimodule W .
Since eP eQ is an N − N intertwiner of L2(M) which fixes L2(N), leaves L2(N)⊥

invariant and whose range is contained in L2(P ), it maps W into V . Since W is
irreducible, ker(eP eQ|W ) must either be zero or all of W . The former is impossible
since that would imply eP eQ = eN , which is contrary to our assumption that the
quadrilateral does not commute. Thus V ∼= W , and dimN V = dimN W . �
Corollary 4.9. L2(P ) ⊗N L2(Q) ∼= L2(P ) ⊗N L2(P ) ∼= L2(P1).

Lemma 4.10. If P ⊆ M is 2-transitive, then L2(PQP ) = L2(M).

Proof. By Remark 4.2 write L2(M) ∼= L2(P ) ⊕ W for some irreducible P − P
bimodule W . Since L2(PQP ) is a P − P submodule of L2(M) which is strictly
larger than L2(P ), it must in fact be equal to L2(M). �
Remark 4.11. Suppose all of the elementary inclusions of the quadrilateral are 2k-
supertransitive for some k ≥ 1. Then the elementary inclusions of the dual quadri-
lateral are also 2k-supertransitive. Putting together Remark 3.3, Lemma 4.10, and
Lemma 4.8, we find that as an N −N bimodule, L2(M), is a quotient of ⊗3

NL2(P ).
If k ≥ 3, then the irreducible submodules of L2(M) belong to {V0, V1, V2, V3}, where
the {Vi} are as in Remark 4.5 for the 6-supertransitive inclusion N ⊂ P . Similarly,
as an M − M bimodule, L2(M1) is a quotient of ⊗3

ML2(P̄ ). We will write U0, U1,
etc., for the irreducible M − M bimodules occurring in the decomposition of the
first k tensor powers of L2(P̄ ).

For convenience we state the following rewording of a lemma in [30], which we
will be using repeatedly:

Lemma 4.12. If the N − N bimodule decomposition of L2(M) contains k copies
of the N − N bimodule R, then k ≤ dimN R. In particular, L2(M) contains only
one copy of L2(N).

Proof. NL2(M)N
∼= (NL2(M)M )⊗M (ML2(M)N ), so if NL2(M)N contains k copies

of R, then by Frobenius reciprocity, R ⊗N (NL2(M)M ) contains k copies of the
N − M bimodule NL2(M)M , which implies that

dimN (R ⊗N NL2(M)M ) = dimN (R)[M : N ] ≥ k · dimN (NL2(M)M ) = k[M : N ].

�
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Lemma 4.13. If N ⊆ P and N ⊆ Q are 4-supertransitive and the quadrilateral
does not commute, then the N − N bimodule L2(PQ) is isomorphic to one of the
following: V0 ⊕ 2V1 ⊕V2, V0 ⊕ 3V1 ⊕V2, or V0 ⊕ 3V1, where the Vi are as in Lemma
4.3 (for the 4-supertransitive inclusion N ⊂ P ).

Proof. By Corollary 3.2, L2(PQ) is isomorphic to a submodule of L2(P1). A de-
composition of L2(P1) into N − N submodules corresponds to a decomposition of
the identity in N ′ ∩ P3.

If dim(N ′∩P3) = 14, then N ′∩P3
∼= M2(C)⊕M3(C)⊕C, where the first summand

corresponds to V0, the second to V1, and the third to V2. So L2(P1) ∼= 2V0⊕3V1⊕V2.
By Lemma 4.12, L2(PQ) contains only one copy of L2(N). Also, by Lemma 4.8,
L2(Q) ∼= L2(P ), but L2(P ) �= L2(Q), so L2(PQ) contains at least two copies
of V1. It is impossible that L2(PQ) ∼= V0 ⊕ 2V1, since that would imply that
L2(PQ) = L2(P + Q) = L2(QP ) = L2(M), which would imply that

[M : P ] =
dimN L2(M)
dimN L2(P )

< 2.

That leaves the three possibilities above. If dim(N ′ ∩ P3) < 14, then the argument
is essentially the same, except there is no V2, so only one possibility remains. �

4.3. Cocommuting quadrilaterals with no extra structure.

Notation. From now on the supertransitivity hypotheses will guarantee that
[M : P ] = [M : Q]. We introduce the following notational conventions:

[M : P ] = β, [P : N ] = α, [M : N ] = γ = 1/τ,

which we will use without further mention.

Lemma 4.14. If N ⊂ P and N ⊂ Q are 2-transitive, then eP eQeP = eN +
λ(eP − eN ), where

λ =
tr(eP̄ Q̄)−1 − 1

[P : N ] − 1
.

Proof. That eP eQeP = eN+λ(eP−eN ) for some λ follows from the fact that eP eQeP

is an N − N intertwiner of L2(P ) ∼= V0 ⊕ V1, which is the identity on L2(N). To

compute λ , note that tr(eP eQeP ) = tr(eN )+λtr(eP − eN ) =
1
γ

+λ
α − 1

γ
. Solving

for λ and using tr(eP eQeP ) =
1

γtr(eP̄ Q̄)
(by Lemma 3.16) completes the proof. �

Corollary 4.15. tr((eP eQeP )2) =
1 + λ2([P : N ] − 1)

[M : N ]
.

Lemma 4.16. If the quadrilateral cocommutes and eP̄ Q̄eQ̄P̄ = eQ̄P̄ eP̄ Q̄, then

dimM L2(P̄ Q̄ + Q̄P̄ )

= [M : P ]2(2 − [M : P ]
[P : N ]

(1 + (
[P : N ] − [M : P ]
[M : N ] − [M : P ]

)2([P : N ] − 1))).

Proof. Since eP̄ Q̄eQ̄P̄ = eQ̄P̄ eP̄ Q̄, dimM L2(P̄ Q̄+Q̄P̄ ) = γ(2tr(eP̄ Q̄)−tr(eP̄ Q̄eQ̄P̄ )).
Since the quadrilateral cocommutes,

tr(eP̄ Q̄) =
dimM L2(P̄ Q̄)

γ
=

dimM L2(P̄ ) dimM L2(Q̄)
γ

=
β2

γ
=

β

α
.
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By (the dual version of) Lemma 3.17, tr(eP̄ Q̄eQ̄P̄ ) = (δtr(eP̄ Q̄))2tr((eP eQeP )2)

= tr(eP̄ Q̄)2(1 + λ2(α − 1)) = (
β

α
)2(1 + λ2(α − 1)). Also, since tr(eP̄ Q̄) =

β

α
, we

have λ =
α − β

γ − β
. Putting all this together gives the result. �

Corollary 4.17. In the special case that [M : P ] = [P : N ] − 1, the formula
becomes dimM L2(P̄ Q̄ + Q̄P̄ ) = [M : P ]2 + [M : P ] − 1.

Theorem 4.18. If the quadrilateral cocommutes but does not commute, and N ⊆ P
and N ⊆ Q are 4-supertransitive, then N is the fixed point algebra of an outer S3

action on M .

Proof. Since the quadrilateral does not commute, L2(P ) ∼= L2(Q) as N − N bi-
modules, by Lemma 4.8 . Since the quadrilateral cocommutes, L2(M) = L2(PQ),
and since N ′ ∩ P3 ≤ 14, by Lemma 4.13 the isomorphism type of L2(M) is one of
V0 ⊕ 2V1 ⊕ V2, V0 ⊕ 3V1 ⊕ V2, or V0 ⊕ 3V1. For each of these cases we can explicitly
compute β as a function of α using the formula β = γ/α = dimN L2(M)/α and the
dimension formulas of Remark 4.4 .

Case 1: L2(M) ∼= V0 ⊕ 3V1 ⊕ V2

In this case,

[P̄ : M ] = β =
dimN L2(M)

α
=

1 + 3(α − 1) + α2 − 3α + 1
α

= α − 1
α

.

Since the quadrilateral cocommutes, by Corollary 3.19 we have

dimM L2(P̄ Q̄) = (α − 1
α

)2.

But then the dimension of its orthogonal complement (in L2(M1)) is

dimM L2(M1) − dimM L2(P̄ Q̄) = α2 − 1 − (α − 1
α

)2 = 1 − 1
α2

< 1,

which is impossible by Lemma 4.12 .
Case 2: L2(M) ∼= V0 ⊕ 3V1

In this case,

β =
1 + 3(α − 1)

α
= 3 − 2

α
,

which necessarily equals 4 cos2 π
5 . (The only other admissible index value less than

three is two, but that would imply that the total index is four and then the quadri-
lateral would commute.) Then we have the identity β2 = 3β−1, and α = 2β. Since
L2(M) ∼= V0 ⊕ 3V1, any intermediate subfactor must have index equal to

1 + 3(α − 1)
1 + k(α − 1)

for k = 1 or k = 2. So to eliminate this case it suffices to find a proper subfactor of
M with an integer-valued index, for which it suffices to find an M −M submodule
of L2(M1) whose dimension over M is 1.

L2(P̄ +Q̄) has M -dimension 2 dimM L2(P̄ )−dimM L2(M) = 2β−1. Its orthogo-
nal complement in L2(P̄ Q̄), which we shall call T , has M -dimension dimM L2(P̄ Q̄)−
dimM L2(P̄ + Q̄) = β2 − (2β − 1) = β. Since β < 3, if T is reducible, one of its
irreducible components must have M -dimension 1, and we are finished. Similarly,
if T ′, the orthogonal complement of L2(P̄ + Q̄) in L2(Q̄P̄ ), is reducible, then we
get a submodule of M -dimension 1.
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If T and T ′ are both irreducible, then L2(P̄ Q̄) ∩ L2(Q̄P̄ ) = L2(P̄ + Q̄). Then if
S is the orthogonal complement of L2(P̄ Q̄ + Q̄P̄ ) in L2(M1), we have

dimM S = dimM L2(M1) − (2 dimM L2(P̄ Q̄) − dimM L2(P̄ + Q̄))

= 2β2 − (2β2 − (2β − 1)) = 2β − 1.

Since dim(M ′ ∩ M2) = dim(N ′ ∩ M1) = 10, S must break into 3 components, one
of which must have M -dimension 1.

Case 3: L2(M) ∼= V0 ⊕ 2V1 ⊕ V2

In this case

β =
1 + 2(α − 1) + α2 − 3α + 1

α
= α − 1.

Note that dim(N ′ ∩ M1) = 6, and therefore also dim(M ′ ∩ M2) = 6. Because
L2(M) ⊂ L2(P̄ ) ⊂ L2(P̄ + Q̄) ⊂ L2(P̄ Q̄) ⊂ L2(M1) is a strictly increasing chain
of M − M bimodules (P̄ Q̄ cannot be all of M1 because the quadrilateral does not
commute), M ′ ∩ M2 must be Abelian. If we let x = β (so that α = x + 1), then
γ = x2 + x, and by Corollary 4.17 we have that dimM L2(P̄ Q̄ + Q̄P̄ ) = x2 + x− 1,
and so the dimension of its orthogonal complement in L2(M1) is 1.

It is then easy to see that the dimensions of the six distinct irreducible submod-
ules of L2(M1) are 1, x − 1, x − 1, x2 − 2x − 1, x2 − 2x − 1, 1. But then summing
we find that 2x2 − 2x − 2 = dimM L2(M1) = x2 + x, which implies that x = 2. So
[P̄ : M ] = [Q̄ : M ] = 2, and [M1 : M ] = 6.

So by Goldman’s theorem [11], M1 is the crossed product of M by S3, or, equiv-
alently, N is the fixed point subalgebra of an outer S3 action on M . �

5. Restrictions on the principal graph

If the quadrilateral has no extra structure, then we obtain severe restrictions on
the principal graph. Specifically, for a noncommuting, noncocommuting quadrilat-
eral with no extra structure the principal graph is completely determined.

5.1. Structural restrictions.

Lemma 5.1. If the quadrilateral neither commutes nor cocommutes, and all the
elementary subfactors are 6-supertransitive, then N ′ ∩ M1 and M ′ ∩ M2 both have
more than two simple summands.

Proof. First suppose that N ′ ∩ M1 and M ′ ∩ M2 both have exactly two simple
summands. Then L2(M) = V0 ⊕ kV1 for some integer k. So we have

β =
γ

α
=

dimN (V0 ⊕ kV1)
α

=
1 + k(α − 1)

α
= k − k − 1

α
< k.

By Lemma 4.12, k ≤ dimN V = α − 1 < α, and so β < α. But we can perform
the same calculation in the dual quadrilateral to find that α < β, which is a
contradiction.

Now suppose that only M ′ ∩ M2 has exactly two simple summands, and write
L2(M1) ∼= U0 ⊕ lU1. Note that because of the 6-supertransitivity hypothesis, the
first few tensor powers of U1 decompose according to the fusion rules of Lemma
4.3. By Lemma 4.13, L2(P̄ Q̄) ∼= U0 ⊕ 3U1, and since the quadrilateral does not
commute, by Corollary 3.20, L2(P̄ Q̄) �= L2(Q̄P̄ ), so l must be at least 4. By Lemma
4.10 and Remark 3.3, L2(M1) is a quotient of L2(P̄ Q̄)⊗M L2(P̄ ) ∼= (U0 ⊕ 3U1)⊗M
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(U0 ⊕ U1) ∼= 4U0 ⊕ 7U1 ⊕ 3U2, where the last isomorphism comes from the fusion
rule U1 ⊗M U1

∼= U0 ⊕ U1 ⊕ U2 (if α < 3, then U2 = 0). So we find that 4 ≤ l ≤ 7.
Similarly, L2(M) is a quotient of L2(PQ)⊗N L2(P ), which in all cases of Lemma

4.13 is a quotient of (V0 ⊕ 3V1 ⊕ V2)⊗N (V0 ⊕ V1) ∼= V0 ⊕ 8V1 ⊕ 5V2 ⊕ V3. Thus we
may write L2(M) ∼= V0 ⊕ aV1 ⊕ bV2 ⊕ cV3, where a, b, and c are integers such that
2 ≤ a ≤ 8, 0 ≤ b ≤ 5, and 0 ≤ c ≤ 1, and b and c are not both 0.

But because we have dim(N ′ ∩ M1) = dim(M ′ ∩ M2), we necessarily have a2 +
b2 + c2 = l2. A quick examination reveals that the only possibility is that l = 5,
c = 0, and {a, b} = {3, 4}. But if l = 5, then

α =
γ

β
=

[M1 : M ]
[P̄ : M ]

= 5 − 4
β

< 5,

which implies that a ≤ dimN V1 < 4 (by Lemma 4.12), so we may assume that
a = 3 and b = 4. Then

β =
dimN V0 ⊕ 3V1 ⊕ 4V2

α
=

1 + 3(α − 1) + 4(α2 − 3α + 1)
α

= 4α2 − 9α + 2,

and since α ≥ 3, we must have β ≥ 4, and then also α = 5−4/β ≥ 4, so the generic
fusion rules of Lemma 4.3 apply.

Then as an N − N bimodule, L2(M1) ∼= L2(M) ⊗N L2(M) ∼= (V0 ⊕ 3V1 ⊕ 4V2)
⊗N (V0 ⊕ 3V1 ⊕ 4V2) ∼= 10V0 ⊕ 39V1 ⊕ 41V2 ⊕ 12V3 ⊕ 16(V2 ⊗N V2), where the last
isomorphism comes from the fusion rules V1 ⊗N V1

∼= V0 ⊕ V1 ⊕ V2 and V1 ⊗N V2
∼=

V1 ⊕V2 ⊕V3. Since the N −N intertwiner space of L2(M1) is N ′ ∩M3, this implies
that dim(N ′ ∩ M3) ≥ 102 + 392 + 412 + 122 = 3446.

On the other hand, as an M − M bimodule, L2(M2) ∼= L2(M1) ⊗M L2(M1)
∼= L2(M)⊕5U1⊗L2(M)⊕5U1

∼= 26U0⊕35U1⊕25U2, so dim(M ′∩M4) = 262+352+
252 = 2526. But this contradicts the fact that dim(N ′ ∩M3) = dim(M ′ ∩M4). �

Lemma 5.2. If the quadrilateral neither commutes nor cocommutes and all the
elementary subfactors are 6-supertransitive, then [N : P ] and [M : P ] are both less
than 4.

Proof. Suppose on the contrary that the hypotheses are satisfied and that α ≥ 4.
(There is no loss of generality here since if only β ≥ 4 we may consider the dual
quadrilateral instead.) Then by Lemma 5.1, N ′ ∩ M1 has at least three simple
summands. Because the quadrilateral is not cocommuting, by Corollary 3.20,
L2(PQ) �= L2(QP ), but they must have the same dimension since by Corollary
3.15, tr(ePQ) = tr(eQP ). We consider three cases, corresponding to the three cases
of Lemma 4.13:

Case 1: L2(PQ) ∼= V0⊕3V1. Then also L2(QP ) ∼= V0⊕3V1. Note that these two
bimodules intersect in L2(P + Q) ∼= V0 ⊕ 2V1, so L2(PQ + QP ) ∼= V0 ⊕ 4V1. Since
N ′ ∩M1 has a third summand, L2(M) must also contain an irreducible submodule
whose dimension is at least as great as that of V2, by Lemma 4.3, so we find that
γ = dimN L2(M) ≥ dimN V0⊕4V1⊕V2 ≥ 1+4(α−1)+(α2−3α+1) = α2 +α−2,
and so β = γ/α = α + 1 − 2/α > α.

Case 2: L2(PQ) ∼= V0 ⊕ 2V1 ⊕ V2. Then L2(PQ + QP ) ∼= V0 ⊕ 2V1 ⊕ 2V2. So
γ ≥ dimN V0⊕2V1⊕2V2 = 2α2−4α+1, and again we find that β = 2α−4+1/α > α
(because α ≥ 4).

Case 3: L2(PQ) ∼= V0 ⊕ 3V1 ⊕ V2. Then L2(PQ + QP ) contains either at least
four copies of V1 or at least two copies of V2 and again we find that β > α.
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But since β > α ≥ 4, we can perform these same calculations in the dual
quadrilateral to deduce that α > β, which is absurd. �
Lemma 5.3. If the quadrilateral neither commutes nor cocommutes and all the
elementary subfactors are 6-supertransitive, then [P : N ] = [M : P ].

Proof. By the previous lemma we may assume that α and β are both less than
four. Because α < 4, dimN V1 < 3, so by Lemma 4.12, L2(M) contains at most, and
therefore exactly, two copies of V1, and so L2(PQ) ∼= V0⊕2V1⊕V2. Now L2(M) is a
quotient of L2(PQ)⊗N L2(P ) ∼= (V0⊕2V1⊕V2)⊗N (V0⊕V1) ∼= 3V0⊕6V1⊕4V2⊕V3,
so it contains at most four copies of V2 and at most one copy of V3 (and nothing
higher). Also, since L2(QP ) is isomorphic, but not equal, to L2(PQ), L2(M)
contains at least two copies of V2.

So we may write L2(M) ∼= V0 ⊕ 2V1 ⊕ bV2 ⊕ cV3, with 2 ≤ b ≤ 4 and 0 ≤ c ≤ 1.
Similarly, we may write L2(M1) ∼= U0 ⊕ 2U1 ⊕ b′U2 ⊕ c′U3, with 2 ≤ b′ ≤ 4 and
0 ≤ c′ ≤ 1. Since 12+22+b2+c2 = dim(N ′∩M1) = dim(M ′∩M2) = 12+22+b′2+c′2

and c and c′ are each either 0 or 1, we must have b = b′ and c = c′.
Define the function

fb,c(x) = [1 + 2(x − 1) + b(x2 − 3x + 1) + c(x3 − 5x2 + 6x − 1)]/x

= cx2 + (b − 5c)x + (2 − 3b + 6c) +
(b − c − 1)

x
.

Then fb,c(α) = β and fb,c(β) = α. Define gb,c(x) = fb,c(x) − x. Then g′b,c(x) is
either b− 1− (b− 1)/x2, or 2x + b− 6− (b− 2)/x2, depending upon whether c is 0
or 1. In either case, g′(x) is positive when x ≥ 2 and so g(x) is then an increasing
function.

Now if α > β, then gb,c(β) = fb,c(β)−β = α−β > 0, and since α > β and gb,c(x)
is increasing, gb,c(α) > 0 as well, so we also have β > α, which is a contradiction.
Similarly we find that β > α is impossible. Therefore we must have β = α. �
5.2. The principal graph.

Lemma 5.4. There does not exist a noncommuting quadrilateral of subfactors with
L2(M) ∼= V0 ⊕ 2V1 ⊕ 2V2 and with the principal graph of the elementary subfactors
equal to A11.

Proof. Suppose such a quadrilateral exists. Then L2(M1) ∼= L2(M) ⊗N L2(M) ∼=
9V0⊕20V1 ⊕20V2⊕12V3⊕4V4, and L2(M2) ∼= L2(M1)⊗N L2(M1) ∼= 89V0⊕222V1

⊕ 254V2 ⊕ 196V3 ⊕ 108V4 ⊕ 32V5, by the A11 fusion rules. (Lemma 4.3 with n = 12
gives Vi ⊗N Vj =

⊕5−|5−(i+j)|
|i−j| Vk.)

Recalling the principle that each level of the Bratteli diagram for the tower of
relative commutants is obtained by reflecting the previous level and adding some
“new stuff”, with the rule that the “new stuff” connects only to the “old new stuff”
(see [12]), it is easy to deduce that the Bratteli diagram must include the graph in
Figure 5.5.

Let m and n be the number of bonds which connect the two “2”s in the fourth
row with “12” in the fifth row, respectively. Then we must have 2m + 2n = 12,
or m + n = 6. By the reflection principle, there must also be m and n bonds
connecting “12” with “x” and “y” respectively, as well as “x” and “y” with “196”.
This implies that x ≥ 20+12m, y ≥ 20+12n, and 196 ≥ m(20+12m)+n(20+12n) =
20(m + n) + 12(m2 + n2), which is absurd since m + n = 6. �



240 PINHAS GROSSMAN AND VAUGHAN F. R. JONES

1

1

9

89

2 2

20 20 12 4

222 254 196 108 32

1

9 2 2

89 x y

Figure 5.5.

Lemma 5.6. If the quadrilateral neither commutes nor cocommutes, and the el-
ementary inclusions are 6-supertransitive, then [P : N ] = [M : P ] = 2 +

√
2 and

L2(M) ∼= V0 ⊕ 2V1 ⊕ 2V2 ⊕ V3.

Proof. As in the proof of Lemma 5.3, there are six possible isomorphism types for
L2(M) ∼= V0 ⊕ 2V1 ⊕ bV2 ⊕ cV3, corresponding to b = 2, 3, 4 and c = 0, 1. We will
eliminate them all except b = 2, c = 1.

Let x = α. From the proof, and the conclusion, of Lemma 5.3 we have

cx3 + (b − 5c − 1)x2 + (2 − 3b + 6c)x + (b − c − 1) = 0.

Let us consider the cases one at a time:
c = 0, b = 2
Then x = 2 +

√
3 and the only principal graphs possible for N ⊆ P are A11 and

E6. But E6 is not 4-supertansitive and A11 was eliminated in Lemma 5.4.
c = 0, b = 3
Then 2x2 − 7x + 2 = 0, neither root of which is an allowed index value.



INTERMEDIATE SUBFACTORS WITH NO EXTRA STRUCTURE 241

c = 0, b = 4
Then 3x2−10x+3 = 0, so α = 3, which implies dimN (V2) = 1, which is impossible
by Lemma 4.12.
c = 1, b = 3
Then x3 − 3x− x + 1 = 0 or x(x2 − 3x + 1) = 2x− 1, which implies dimN (V2) < 2.
Again by Lemma 4.12 this is impossible.
c = 1, b = 4
Then x3 − 2x2 − 4x + 2 = 0. The largest root of this equation is between 3 and
4 cos2 π/7, so it is not a possible index value.

Finally, in the case c = 1, b = 2, x(x2 − 4x + 2) = 0, so α = 2 +
√

2 (which is
4 cos2 π/8)). �

Corollary 5.7. With the hypotheses of the previous lemma, tr(ePQ) = 1√
2
,tr(eP eQ)

= 1
4+3

√
2

and the angle between P and Q is cos−1(
√

2 − 1).

Proof. By 2-transitivity we know that eP eQeP = eN + t(eP − eN ) for some number
t which is the square of the cosine of the angle. Moreover, by Lemma 4.13 we know
that dimN (L2(PQ)) = 1+3(1+

√
2). Taking the trace, using Proposition 3.14 and

solving for t we are done. �

Theorem 5.8. Let be a noncommuting noncocommuting quadrilateral
with all elementary inclusions 6-supertransitive. Then [M : P ] = [M : Q] = [P :
N ] = [Q : N ] = 2 +

√
2 and the principal and dual principal graphs for N ⊂ M are

both

* .

Proof. Reduction to this one case is a consequence of the previous results. We need
only compute the principal graph. Since there is no subfactor with principal graph
D5, all the elementary subfactors must have principal graph A7. Thus there are
only the 4 possible isomorphism types V0, V1, V2 and V3 for the N −N bimodules in
L2(M), L2(M1), ... ; i.e., the Bratteli diagram for the tower of relative commutants
N ′ ∩ MK has at most 4 simple summands for k odd. Since there are 4 simple
summands in N ′ ∩ M1 = EndN−NL2(M), the subfactor N ⊂ M is of depth 3.
Moreover if we let Va = V0 ⊕V3 and Vb = V1 ⊕V2, then L2(M) ∼= Va ⊕ 2Vb, and the
fusion rules are very simple: Va⊗Va = 2Va, Va⊗Vb = 2Vb, and Vb⊗Vb = 2VA⊕4Vb.
So L2(M1) ∼= L2(M) ⊗ L2(M) ∼= 10Va ⊕ 24Vb

∼= 10V0 ⊕ 24V1 ⊕ 24V2 ⊕ 10V3, and
there is only one way to fill in the N ′ ∩ M2 level of the Bratteli diagram for the
tower of relative commutants, which will thus begin as in Figure 5.9.
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Figure 5.9.

By depth 3 we are done.
The dual principal graph has to be the same as the principal graph since M ⊂ M1

satisfies the same hypotheses as N ⊂ M . �

6. The 6 + 4
√

2 example

6.1. Material from “Coxeter graphs and towers of algebras”. We give a
general construction for pairs of intermediate subfactors which seems to be of some
interest. Recall two constructions of subfactors from [12]:

Let Γ be a Coxeter–Dynkin diagram of type A, D or E with Coxeter number
k, with Γ = Γ0 � Γ1 a particular bipartite structure. Construct a pair A0 ⊂ A1

of finite-dimensional C∗-algebras the underlying graph of whose Bratteli diagram
is Γ. Thus the minimal central projections in Ai are indexed by Γi for i = 0, 1.
Using the Markov trace tr on A1, iterate the basic construction to obtain the tower
Ai+1 = 〈Ai, ei〉, ei being the orthogonal projection onto Ai−1. There is a unitary
braid group representation inside the tower obtained by sending the usual genera-
tors σi of the braid group (see [17]) to the elements gi = (t+1)ei−1 with t = e2πi/k.

First construction: commuting squares.

If we attempt to obtain a commuting square from the tower by conjugating A1

inside A2 by a linear combination of e1 and 1, we find that there are precisely two
choices up to scalars: g1 and g−1

1 . Then the following is a commuting square:

B1 = g1A1g
∗
1 ⊂ A2

∪ ∪
B0 = A0 ⊂ A1

We may then define Bi to be the C∗-algebra generated by Bi−1 and ei to obtain
II1 factors B∞ ⊆ A∞ with index 4 cos2 π/k. This construction is known to give all
subfactors of index less than 4 of the hyperfinite II1 factor. The Dynkin diagram
Γ is the principal graph of the subfactor in the cases An, D2n, E6 and E8 but not
otherwise. For D2n+1 the principal graph is A4n−1. See [10].

Second construction: GHJ subfactors.
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The ei’s in the II1 factor A∞ above generate a II1 factor TL and by a lemma
of Skau (see [12]) TL′ ∩ A∞ = A0. Thus one may obtain irreducible subfactors
N ⊆ M by choosing a minimal projection p in A0, i.e. a vertex of Γ in Γ0, and
setting N = pTL and M = pA∞p. These subfactors are known as “GHJ” subfactors
as they first appeared in [12]. We will call the subfactor TL ⊆ A∞ the “full GHJ
subfactor”. The indices of the GHJ subfactors are all finite and were calculated in
[12] (but note the error there: for Dn using the two univalent vertices connected to
the trivalent one, it should be divided by 2).

Remark 6.1. The cut-down Temperley–Lieb projections pe1, pe2, ... satisfy the same
relations in the cut-down algebra pA∞p that the projections e1, e2, ... do in A∞.
Therefore when discussing pA∞p we will denote the cut-down Temperley–Lieb pro-
jections simply by ei.

Using Skau’s lemma, Okamoto in [29] calculated the principal graphs for the
GHJ subfactors as follows: if TLn is the C∗-algebra generated by e1, e2, ..., en−1,
then the inclusions:

pTLn+1 ⊂ pAn+1p
∪ ∪

pTLn ⊂ pAnp

are commuting squares for which the Bratteli diagram of the unital inclusion
pTLn ⊆ pAnp may be calculated explicitly inductively using one simple rule which
follows from the basic construction.

Rule: If q is a minimal projection in pTLn and r is a minimal projection in pAnp,
then en+1q and en+1r are minimal projections in pTLn+2 and pAn+2p respectively,
and the number of edges connecting q to r is equal to the number connecting en+1q
to en+1r.

Thus one obtains two Bratteli diagrams depending on the parity of n. For suf-
ficiently large n the inclusion matrices for these Bratteli diagrams do not change
and the principal graph for the GHJ subfactor is the underlying bipartite graph
of the stable Bratteli diagram for the inclusion pTLn ⊆ pAnp, with distinguished
vertex ∗ being the ∗ vertex in the Temperley–Lieb type A graph. This specifies the
parity of n that is needed. Note that the dual principal graph is not in general the
inclusion graph with the other parity!

Example 6.2. We take Γ to be the Coxeter graph D5 with the minimal projection
p being that corresponding to the trivalent vertex. The two vertical Bratteli dia-
grams are those for pA∞p and pTL, and the inclusions pTLn ⊂ pAnp are given by
approximately horizontal heavy lines; the one which is the GHJ subfactor principal
graph is made up of the heavy lines at the top of the figure. We have suppressed the
heavy lines for pTL5 ⊂ pA5p to avoid confusion and because this inclusion graph
is not the principal graph. The figure has been constructed from the bottom up
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using the basic construction and the above rule.
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Making the principal graph more visible we obtain:

*
6.2. GHJ Subfactor pairs. Looking again at the commuting square construction
from the original Coxeter–Dynkin diagram we see that we may in fact construct
two subfactors of A∞ by conjugating initially by g and g−1! This construction
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works in great generality and gives a pair of subfactors whenever a subfactor is
constructed using the endomorphism method of [12], [22]. In fact there is a way to
obtain the quadrilateral with no extra structure by a simpler method, with simpler
angle calculation and using only the real numbers. It seems to be a bit less general
than the method using the braid group, so we present it second.

Definition 6.3. The full GHJ subfactor pair is the pair P and Q of subfactors of
the (hyperfinite) II1 factor A∞ defined as the von Neumann algebras generated by
the Pn and Qn in the following towers:

∪ ∪ ∪
Pn+1 ⊂ An+1 ⊃ Qn+1

∪ ∪ ∪
Pn ⊂ An ⊃ Qn

∪ ∪ ∪

Figure 6.4.

where An is as above, P1 = Q1 = A0, P2 = g1A1g
∗
1 , Q2 = g∗1A1g1 and Pn+1 =

{Pn, en}′′, Qn+1 = {Qn, en}′′.

Note that in Figure 6.4, all squares involving just A’s and P ’s or just A’s and
Q’s are commuting but squares involving P ’s and Q’s may not be.

Definition 6.5. Let TL2 be the subfactor of A∞ generated by all the ei with i ≥ 2.

Proposition 6.6. [A∞ : P ∩ Q] < ∞.

Proof. By construction ei ∈ P∩Q for all i ≥ 2. Moreover TL2 is of index 4 cos2 π/k
in the full GHJ subfactor TL which is in turn of finite index in A by [12]. �

Note that A0 is in TL′
2 ∩ A∞ and A0 ⊆ P ∩ Q. We suspect that P ∩ Q is the

von Neumann algebra TL2 ⊗ A0 generated by TL2 and A0. We hope to answer
this question in a future systematic study of the GHJ subfactor pairs.

Our interest in this paper has been in pairs of subfactors P, Q ⊆ M
with (P ∩ Q)′ ∩ M = Cid.

Definition 6.7. Let p be a projection in A0 that is minimal in A1. Then the
GHJ subfactor pair corresponding to p is the pair of subfactors

P = pPp, Q = pQp ⊆ M = pA∞p.

Proposition 6.8. If P, Q ⊆ M is a GHJ subfactor pair, then (P ∩Q)′∩M = Cid.

Proof. By Skau’s lemma we know that the commutant of TL2 in M is A1. �
A projection in A0 that is minimal in A1 is the same thing as a univalent vertex in

Γ0. Note that the subfactor TL2 ⊆ A∞ is then the full GHJ subfactor for the other
bipartite structure on Γ, and the subfactor pTL2 ⊆ pA∞p is the GHJ subfactor
obtained by choosing the unique neighbour of the original univalent vertex. (This is
because the inclusion A1 ⊆ A2 can be used as the initial inclusion to construct the
full GHJ subfactor for the other bipartite structure and p is a minimal projection
in A1 since we started with a univalent vertex.)
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There are not too many choices for the univalent vertex, especially up to symme-
try. We enumerate them below, the chosen univalent vertex being indicated with a
* :

*         . . . .  

*        . . . . 

An

Dn,1

E6,1

E7,1

E6,2

E7,2 E7,3

E8,1 E8,2 E8,3

Dn,2        . . . .        

*

*
*

* o

*
*

*
*

*

Proposition 6.9. The subfactor pTL2 ⊆ M in the case D5,2 has index (2 +
√

2)2

and principal graph

*

.

Proof. This is just the calculation done in Example 6.2. �

At this stage it looks very likely that the D5,2 pair realises the case in Theorem
5.8 of a no-extra-structure quadrilateral. In order to be sure of this we need to
know that P and Q in this case do not commute. To do this we shall compute the
angle between them. At this stage we do not even know if P and Q are distinct.

6.3. Angle computation. Our strategy for calculating the angle between P and
Q will work whenever the subfactors TL2 ⊆ P and TL2 ⊆ Q are 2-transitive. So
in this subsection we only assume that of the Coxeter graph with chosen univalent
vertex.

Definition 6.10. Let Γ be a pointed Coxeter graph of type Dn for n > 4 or E
on the list above. Then d = d(Γ) will denote the distance from * to the trivalent
vertex.

Thus d(E6,1) = 2 and d(D5,2) = 1.

Theorem 6.11. Suppose Γ to be a pointed Coxeter graph of type Dn for n > 4 or
E, with Coxeter number 
, and that the GHJ subfactor with the starred vertex is
2-transitive. Then the angle between the two intermediate subfactors is

{0, π/2, cos−1(|cos (2d + 3)π/


cos π/

|)}.
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Proof. The idea is as follows: by 2-transitivity, EP EQEP is a multiple of the identity
on the orthogonal complement of TL2 in P , so it suffices to find an element x of
this orthogonal complement and calculate ||EQ(x)||2. We will find our element x
in pPd+2p, which is the smallest pPkp that is strictly larger than pTL2k. It will be
convenient to pull back the calculations to pAnp. So in the next lemma we give the
unitaries which conjugate An to Pn+1 and Qn+1. These unitaries may be deduced
from [12] but we give a proof here for the convenience of the reader.

Lemma 6.12. Let vn = g1g2...gn and w = g−1
1 g−1

2 ...g−1
n . Then

(a) Pn+1 = vnAnv∗n and Qn+1 = wnAnw∗
n;

(b) TL2n = vnTLnv∗n = wnTLnw∗
n.

Proof. Braid group relations give vngiv
∗
n = gi+1 and wng−1

i w∗
n = g−1

i+1; hence
vneiv

∗
n = ei+1 and wneiw

∗
n = ei+1 for 1 ≤ i ≤ n − 1. This proves the asser-

tion (b) about the Temperley–Lieb algebras. Since [ei, A1] = 0 for i ≥ 2 we get
vnA1v

∗
n = g1A1g

∗
1 = P1 and wnA1w

∗
n = Q1. By the definition of Pn and Qn we are

done. �

As in Example 6.2 the Bratteli diagram for pA∞p is given by taking the full
Bratteli diagram for A∞ and considering only edges emanating from the starred
vertex. Thus by the definition of d(Γ) there is an element y of pAd+1p which is
orthogonal to TLd and is unique up to a scalar multiple. We may assume ||y||2 = 1
and y = y∗. Define x ∈ Pd+2 by x = vd+1yv∗d+1. By Lemma 6.12 we know that x is
orthogonal to e2, e3, ..., ed+1. Moreover since tr(x) = 0 (since x ⊥ 1), EPd+1(x) = 0
so ed+2xed+2 = 0 and taking the trace, x ⊥ ed+2. By the usual properties of the
Markov trace in a tower, x ⊥ en for n > d + 2. Thus x ⊥ TL2.

Since the inclusions of pQnp in pAnp are commuting squares we may calculate
EQ(x) by EpQd+2p(x) (inside pAd+2p). But this element of pQd+2p is orthogonal
to TL2, so is a multiple of wd+1yw∗

d+1. So the cosine of the angle between P and
Q is the absolute value of the inner product

tr(xwd+1yw∗
d+1) = tr(vd+1yv∗d+1wd+1yw∗

d+1).

The algebras pAnp are all included in the planar algebra for the bipartite graph
Γ as defined in [20], so we may use the diagrams therefrom. In particular the inner
product we need to calculate is given by the partition function in Figure 6.13 (up
to a power of δ = 2 cos π/
).

The crossings in Figure 6.13 are the braid elements gi with some convention
as to which is positive and which is negative, read from bottom to top. We have
illustrated with d = 2 for concreteness. They may be evaluated using the Kauffman
picture:

= s −

where s = eπi/�.
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y

y

Figure 6.13.

The orthogonality of y to TL is equivalent to the fact that, if any tangle contains
a y box with two neighbouring boundary points connected by a planar curve (in
which case we say the box is “capped off”), the answer is zero. Thus one may
evaluate Figure 6.13 as follows.

Using the Kauffman relation in Figure 6.13 inside the dotted circle one obtains
Figure 6.14

Consider the first diagram on the right-hand side of the equation in Figure 6.14.
Following the curve in the direction indicated by the arrow, observe that one choice
of the two possibilities in applying the Kauffman relation at each crossing always
results in one of the y boxes being capped off. The first d such crossings thus

contribute a factor of s each. Then one meets the situation which is easily seen

to be the same as s2 times One then meets d more crossings, each of which
contributes s. After this (the crossings below the bottom y box in Figure 6.13) the
only contributing terms in the Kauffman relation just give the sign −1. Since there
are an even number of them we deduce that the diagram of the first term on the
right-hand side of Figure 6.14 is s2d+2 times a tangle which is tr(y2) up to a power
of δ. A similar analysis of the diagram of the second term gives −s−(2d+3) times
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y

y

y= s −

y

y

y

Figure 6.14.

tr(y2). A little thought concerning the powers of δ gives the final result that

tr(vd+1yv∗d+1wd+1yw∗
d+1) =

s2d+3 + s−2d−3

s + s−1
.

This ends the proof of Theorem 6.11. �

Corollary 6.15. For the GHJ subfactor pair given by D5,2, there is no extra struc-
ture, and the angle between P and Q is cos−1(

√
2 − 1), and P ∩ Q = TL2.

Proof. We have [M : P ] = 4 cos2 π/8 from the D5 commuting square. Also pTL2 ⊆
P has the same index from a GHJ calculation, or from the one already done for
D5. So there cannot be subfactors between pTL2 and P or Q, and pTL2 ⊆ P
is 2-transitive. So we can apply the previous theorem to get the angle. The only
possible principal graph with index 4 cos2 π/8 is A7, so there is no extra structure.

�

6.4. A simpler quadrilateral with no extra structure. Note that the defini-
tion of the GHJ pair will require the use of certain roots of unity. But at least in
the Dn,2 case it is possible to find another pair P̃ and Q̃ between pTL2 and M ,
which is defined over R! We will see that both P̃ and Q̃ form commuting cocom-
muting squares with both P and Q. One of these two intermediate subfactors is
quite canonical and exists whenever P ∩ Q = TL2.

Definition 6.16. Let Γ etc. be as above. Let P̃ be the GHJ subfactor for p, i.e.
the subfactor generated by pTL2 and pe1.
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Proposition 6.17. The quadrilaterals N ⊂ P̃ , P ⊂ M and N ⊂ P̃ , Q ⊂ M are
commuting squares.

Proof. Reducing by p is irrelevant, so we can do the computation in the full GHJ
factor. As in the proof of Theorem 6.11 it suffices to find a nonzero element of
P̃ orthogonal to TL2 and show that its projection onto P is zero. Let x = e1 −
τid, where τ = (4 cos2 π/
)−1. Then since the Pn’s form commuting squares with
the An’s and e1 ∈ A2 we need only project onto P2 = Adg1(A1). But EP2 =
Adg1EA1Adg−1

1 and Adg1(x) = x. But EA1(x) = 0 is just the Markov property for
the trace on A2. The same argument applies to Q̃. �

Lemma 6.18. Let Γ be Dn,2 for n ≥ 5. Then there is a projection f in pA2 with
the following properties:

(a) tr(f) = τ ;
(b) fpe1 = 0;
(c) pe2fpe2 = τe2 and fpe2f = τf .

Proof. From the Bratteli diagram for pA2, it has three minimal projections, which
are central. One is clearly pe1 and one of the other two has the same trace by
symmetry. Let f be that other one. Then (a) and (b) are obvious. The first part of
(c) follows from dim(pA1) = 1 and the second part follows since, from the Bratteli
diagram, f is a minimal projection in pA3. �

Definition 6.19. Let Γ be Dn,2 for n ≥ 5. Let Q̃ be the von Neumann algebra
generated by pTL2 and the f of Lemma 6.18.

Theorem 6.20. Let Γ be Dn,2 for n ≥ 5. Then Q̃ is a II1 factor with [Q̃ : pTL2] =
4 cos2 π/
, and the angle between P̃ and Q̃ is cos−1(

τ

1 − τ
).

Proof. Lemma 6.18 and the properties of the basic construction show that f has
exactly the same commutation relations and trace properties with pei for i ≥ 2
as does pe1. Thus by [16] Q̃ is a II1 factor with the given index. Moreover the
subfactor pTL2 ⊂ Q̃ is 2-transitive, so we can speak of the angle between P̃ and Q̃.

The angle calculation is not hard. As in Theorem 6.11 it suffices to compute
the length of the projection onto P̃1 of a unit vector in Q̃ orthogonal to pTL2. By
Lemma 6.18, the element x = f − τid is orthogonal to the two-dimensional algebra
pTL2 and tr(x∗x) = τ (1 − τ ). Since the pTLn form commuting squares with the
pAn, EP̃ (x) is just the projection E(x) of x onto pTL2. By the bimodule property
of E, E(x)pe1 = −τpe1, so E(x) = τpe1 + λ(p − pe1). Using tr(x) = 0 we find
λ = −τ2/(1 − τ ). So

||E(x)||2 = τ3 + (
τ2

1 − τ
)2(1 − τ ) =

τ3

1 − τ
,

and finally,

||E(x)||2
||x||22

=
τ2

(1 − τ )2
. �
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Observe that for τ−1 = 4 cos2 π/
, τ/(1 − τ ) =
√

2 − 1, so the angle between P̃

and Q̃ is indeed the same as that between P and Q, and the quadrilateral formed by
P̃ and Q̃ has no extra structure for the same reasons as the one formed by P and Q.
As a last detail observe that the quadrilaterals N ⊂ Q̃, P ⊂ M and N ⊂ Q̃, Q ⊂ M
are commuting squares. We leave the argument to the reader.

7. Uniqueness

Outer actions of finite groups are extremely well understood, so we need say
nothing more in the case [M : N ] = 6. Uniqueness up to conjugacy in the hyperfi-
nite case follows from [15].

So from now on we assume that [M : N ] = 6 + 4
√

2 and that there are two
intermediate subfactors P and Q which neither commute nor cocommute. We
will eventually show that all the constants in a planar algebra presentation of the
standard invariant of N ⊆ M are determined by this data.

From the structure of the principal graph we see that there is exactly one pro-
jection in N ′ ∩ M1 different from e1 but with the same trace as e1. By [30] this
means that there is a self-adjoint unitary in the normaliser of M in M1 (and in
the normaliser of M1 in M2). We record some useful diagrammatic facts about
normalisers below. It is convenient to work with the normaliser of M1 in M2, but
any subfactor is dual, so the result can be modified for the normaliser of M .

7.1. Diagrammatic relations for the normaliser. If N ⊆ M is an irreducible
finite index subfactor, then we will consider an element u in the normaliser of M1

inside M ′ ∩ M2, that is to say, a unitary in M ′ ∩ M2 with uM1u
∗ = M1. First

observe that such a unitary defines an automorphism α of M1 by α(x) = uxu∗.

Proposition 7.1. α(x) = x for all x ∈ M .

Proof. This follows immediately from u ∈ M ′.
�

The automorphism α in turn defines a unitary on L2(M1) which is in M ′ ∩ M2

and by irreducibility differs from u by a scalar. Thus we may alter u so that u = α
as maps on L2(M1). The element u is in N ′ ∩M2, so in the planar algebra picture
it may be represented by a diagram:

u

and the relation uxu∗ = α(x) for x ∈ N ′ ∩ M1 is the equality in Figure 7.2.
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x
u*

u

= α(x)

Figure 7.2.

We will make considerable use of the following result:

Lemma 7.3. If u = u∗ is in the normaliser as above, then

u

u

u= .

Proof. We first establish the result for any u in the normaliser with u = α as above,
and x ∈ N ′ ∩ M1 (see Figure 7.4).

α(x) = x u

Figure 7.4.
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For this observe that if a = xe2y for x, y ∈ M1 and b ∈ M1 ⊆ L2(M1),
EM1(abe2) = δ−2xEM (yb) = a(b). Since linear combinations of elements of the
form xe2y span M2 we have

EM1(abe2) = δ−2a(b)

for all a ∈ M2 and b ∈ M1. Drawing this relation diagramatically for a = u and
b = x in N ′ ∩ M1 we obtain the diagram for α(x). Finally apply Figure 7.2 with
x = e1 and the above diagram to obtain the lemma. �
Corollary 7.5. With notation as above, u is a coprojection.

Proof. Use the property that α is a ∗-automorphism in the previous lemma. �
7.2. The structure of N ′ ∩ M1. We need to adopt some conventions for the
position of certain operators in N ′∩M1. Since the angle between P and Q consists
of one value (different from 0, π/2), we know that eP and eQ generate a 2×2 matrix
algebra modulo eN . We also know from the dual principal graph that there is an
intermediate subfactor S with [S : N ] = 2. If eS is the projection onto S, then the
trace of eS is 2

6+4
√

2
and it is eN plus a minimal projection in N ′∩M1. This means

that eS must be orthogonal to both of the 2 × 2 matrix algebras in N ′ ∩ M1 since
the traces of minimal projections therein do not match.

Definition 7.6. We write N ′ ∩M1 = eNC⊕A⊕B ⊕ (eS − eN )C, where A and B
are 2 × 2 matrix algebras with eP A �= 0.

This definition specifies A uniquely since tr(eP ) = (2 +
√

2)−1, tr(EN) =
(2 +

√
2)−2 and the trace of a minimal projection in A is 1+

√
2

(2+
√

2)2
. Thus eP B = 0.

7.3. Relations between elements in N ′∩M1. From Theorem 5.8 we know that
the principal and dual principal graphs are the same and that there is a single
projection of trace equal to that of eN in all the (second) relative commutants.
This means by [30] that for each inclusion Mi ⊂ Mi+1 there is an intermediate
inclusion Ri with [Ri : Mi] = 2. By duality there are thus Si with Mi ⊂ Si ⊂ Mi+1

so that Si ⊂ Mi+1 ⊂ Ri+1 is a fixed point/crossed product pair for an outer action
of Z/2Z. In particular there are unitaries ui satisfying the conditions of the previous
section at every step in the tower. So let α be the period two automorphism of M
(which is the identity on N) defining an element u of N ′ ∩ M1. Then u+1

2 is the
projection onto an intermediate subfactor of index 2 for N ⊂ M which we shall call
R. Thus

[M : R] = 2 or tr(eR) =
1
2
, and u = 2eR − 1.

Lemma 7.7. The subfactors P and R cocommute but do not commute, eP eReP =
eN + (1 − 1√

2
)(eP − eN ) and eRB �= 0.

Proof. Since L2(M1) ∼= U0 ⊕ 2U1 ⊕ 2U2 ⊕U3 as M −M bimodules, where L2(P̄ ) ∼=
U0 ⊕ U1 and L2(R̄) ∼= U0 ⊕ U3, the dual subfactors P̄ and R̄ commute. However,
[P̄ : M ][R̄ : M ] < [M1 : M ], so by Lemma 3.18, P̄ and R̄ do not cocommute.
Thus P and R cocommute but do not commute. Then L2(R) must be of the form
V0 ⊕ V1 ⊕ V2, so eRB �= 0. Since N ⊂ P is 2-supertransitive, by Lemma 4.14 we
have

eP eReP = eN +
tr(eP̄ R̄)−1 − 1

[P : N ] − 1
(eP − eN ).
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Since the dual quadrilateral commutes, by Corollary 3.19 we have

tr(eP̄ R̄) =
[P̄ : M ][R̄ : M ]

[M : N ]
=

2
2 +

√
2
.

Combining these equations gives the result. �

We want to investigate the algebraic and diagrammatic relations between eP , eQ

and u. First we give a simple but crucial computation:

Lemma 7.8. tr(ueP ) = tr(ueq) = 0.

Proof. Since P and R cocommute, by Proposition 3.14, tr(eP eR) = tr(eP )tr(eR) =
1/2tr(eP ), and u = 2eR − 1. �

We will use on several occasions the following result, which is no doubt extremely
well known. We include a proof for the convenience of the reader.

Lemma 7.9. Let P, Q, R, S be distinct projections onto four one-dimensional sub-
spaces of C2 all making the same angle with respect to one another. Then that angle
is cos−1 1√

3
.

Proof. If we choose a basis so that

P =
(

1 0
0 0

)
,

then any other projection at cos−1(
√

a) to P is of the form

P =
(

a ω
√

a(1 − a)
ω−1

√
a(1 − a) 1 − a

)
,

where |ω| = 1. Equating a to the traces of QR, RS and QS we see that ω must be
a proper cube root of unity and that 3a2 − 4a + 1 = 0. �

Corollary 7.10. ueP u = eQ and uePQu = eQP .

Proof. These are equivalent to α(P ) = Q. By Lemma 7.7, ueP u �= P . If α(P ) were
not equal to Q, then P, Q, α(P ) and α(Q) are four distinct intermediate subfactors.
But ueP u = eα(P ) and ueQu = eα(Q), so the N −N bimodules defined by these four
intermediate subfactors are all isomorphic to L2(P ) and none of them commutes
with any other. By Lemma 7.7, which guarantees that α(P ) and P do not commute,
the angles between all four subfactors are the same and, by Corollary 5.7, equal to
cos−1(

√
2 − 1). By Lemma 7.9, this is impossible. �

Corollary 7.11. ueP = eN + 1
1−

√
2
(eQeP − eN ); ueQ = eN + 1

1−
√

2
(eP eQ − eN ).

Proof. u(eP − eN ) and eQ(eP − eN ) are in A, and both are multiples of a partial
isometry with intial domain eP − eN and final domain eQ − eN . They are thus
proportional. Taking the trace we get the result using Lemma 7.8 and Corollary
5.7. �

This yields a different derivation of the angle between P and Q. We see that
modulo the ideal, CeN , we have ueP = 1

1−
√

2
eQeP so that mod this ideal eP =

eP uueP = ( 1
1−

√
2
)2eP eQeP , which determines the constant in the angle formula

eP eQeP − eN = constant(eQ − eN ).
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Corollary 7.12. The identity 1A of the 2 × 2 matrix algebra A ⊆ N ′ ∩ M1 is√
2+1
2 (eP + eQ) + 1/2(ueP + ueQ) − (2 +

√
2)eN .

Proof. From Corollary 5.7,

(eP − eN )(eQ − eN )(eP − eN ) = (
√

2 − 1)2(eP − eN ).

So 1A =
√

2+1
2 (eP − eQ)2. Corollary 7.11 gives eP eQ =

√
2eN +(1−

√
2)ueQ, hence

the result. �
Lemma 7.13. tr(uePQ) = 0.

Proof. Since u = 2eR − 1, tr(uePQ) = 2tr(eRePQ) − 1/
√

2 by Corollary 5.7. But

tr(eRePQ) is given by
1

δ3tr(eP eQ)
times the following diagram:

P Q

R

.

This is essentially the cotrace of eR ◦ eP ◦ eQ, and we know that eR ◦ eP is (2 +√
2)tr(eR)tr(eP )id by Theorem 3.10 since P and R cocommute. Using this in the

figure we obtain

tr(eRePQ) =
1

δ3tr(eP eQ)
(2 +

√
2)tr(eR)tr(eP )δ2tr(eQ) =

1
2
√

2
.

�
Lemma 7.14. tr(ePQeQP ) = 5

√
2−6
2 .

Proof. As in Lemma 3.17 we recognise tr(ePQeQP ) as being 1
2[M :N ] times the cotrace

of eP ◦ eQ ◦ eP ◦ eQ. But since [M : P ] = [P : N ], eP and eQ are coprojections and
the angles between them as coprojections are the same as the angles between them
as projections. So tr(ePQeQP ) = 1

2 tr((eP eQeP )2). However from Corollary 5.7,
eP eQeP = eN +

√
2−1√
2+1

(eP − eN ). Squaring and taking the trace gives the answer.
�

Corollary 7.15. uePQ = eN + u1A − (
√

2 + 1)(eQP ePQ − (eN + 1A)).

Proof. As in Corollary 7.11, u(ePQ − eN − 1A) and eQP ePQ − eN − 1A are both
in B (certainly ePQ > eQ and the trace of ePQ is the trace of eN plus 3 times
the trace of a minimal projection in A so that ePQeS = 0) and are multiples of
the same partial isometry. Taking the trace using the last two lemmas we get
u(ePQ − eN − 1A) = 3+2

√
2√

2−1
(eQP ePQ − eN − 1A) and the result follows.

�
Corollary 7.16. ePQeQP ePQ − 1A − eN = (

√
2 − 1)2(ePQ − 1A − eN ).
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Proof. Modulo the ideal spanned by eN and A, uePQ = −(
√

2 + 1)eQP ePQ. So
mod this ideal, ePQuuePQ = (

√
2 + 1)2ePQeQP ePQ. The left-hand and right-hand

sides are proportional, and this determines the constant. �
Taking the trace of this equality provides a useful check on our calculations. It

is curious that ePQ and eQP make the same angles as eP and eQ.

7.4. A basis and its structure constants.

Definition 7.17. Let C = {eN , 1} ∪ A ∪ B where A = {eP , eQ, ueP , ueQ} and
B = {ePQ, eQP , uePQ, ueQP }.
Theorem 7.18. C is a basis for N ′∩M1, and all multiplication and comultiplication
structure constants for this basis are determined.

Proof. That C is a basis follows easily from the previous results: {eN}∪A is a basis
for CeN ⊕A by Corollary 7.11 and (2×2)-matrix calculations. Similarly B forms a
basis for B modulo CeN ⊕A by Corollary 7.16. The identity spans N ′∩M1 modulo
CcP ⊕ A ⊕ B.

With the results so far, it is easy to see that all the structure constants for
multiplication are determined: multiplication of any basis element by eN produces
eN ; multiplication within A is determined by Corollaries 7.11 and 5.7. Similarly
multiplication within B is determined by Corollaries 7.15, 7.16 and the explicit
form of 1A in Corollary 7.12. This leaves only multiplication between A and B.
But ePQeP = eP (and other versions with P and Q interchanged) takes care of
this. Note also that C = C∗ so that the ∗-algebra structure of N ′ ∩ M is explicitly
determined on the basis C.

We now turn to comultiplication. The ∗ structure for comultiplication is rotation
by π and insertion of ∗’s of elements. Inspection shows that the basis C is stable
under this operation since u = u∗ is a projection for comultiplication by Corollary
7.5. The subsets A and B no longer correspond to the algebraic structure, but it
will be convenient to organise the calculation according to them. Determination of
all the structure constants will just be a long sequence of cases, the most difficult
of which will be diagrammatic and make frequent use of Lemma 7.3. Note that
the shading of the picture will be the opposite of that in Lemma 7.3 since u is
in M1 and not in M2. Occasionally the diagrammatic reductions will produce the
element u itself. It is easy to express u as a linear combination of basis elements
since u(1 − eN − 1A − 1B) = 1 − eN − 1A − 1B and u times any element of A ∪ B

is another element of A ∪ B.
We will also use the exchange relation for biprojections from [2]:

P

P

=

P

P
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We have no need for the exact values of the structure constants; we only need
to know that they could be calculated explicitly. Thus we introduce the notation
x ≈ y to mean that the elements x and y of N ′ ∩M1 are equal up to multiplication
by a constant that could be calculated explicitly.

Thus for instance eN ≈ 1̃ when 1̃ is the identity for comultiplication. So all
structure constants for comultiplication by eN are determined. Comultiplication
by 1 is easy by the formula x ◦ 1 ≈ tr(x)1 for x ∈ N ′ ∩M1, and the only trace that
requires any work at all is that of uePQ, which is determined from Corollaries 7.15
and 7.16.

Case 1. Comultiplication within A. We may replace ueP by eQeP which is ≈
the projection onto L2(PQ) for comultiplication. It is thus greater than eP and
eQ, so eP ◦ (eP eQ) ≈ eP . The first case where any work is required is (ueP ) ◦ (ueQ)
and up to simple modifications of the argument this handles all comultiplications
within A. The labelled tangle defining (ueP ) ◦ (ueQ) is:

u u

P Q
.

Applying Lemma 7.3 to the region inside the dotted rectangle we obtain:

.

But this is ≈ ePQu, which is a basis element.
Case 2. Comultiplication within B. Comultiplying ePQ with itself or with eQP

is easy since under comultiplication eP and eQ generate a 2×2 matrix algebra mod
1 and eP ◦ eQ ≈ ePQ. Comultiplying ePQ or eQP with uePQ or uePQ can, after
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applying Corollary 7.10 if necessary, yield a labelled tangle like:

.

The point of using Corollary 7.10 is to ensure that in the dotted rectangle we see
either two P ’s or two Q’s. The u may thus end up below the P ’s and Q’s but that
does not affect the rest of the argument. In the dotted rectangle we may thus apply
the exchange relation for Q to obtain, after a little isotopy:

.

Notice that inside the dotted rectangle we see the comultiplication of eQ and u.
Replacing u by 2eR−1 gives 2 tangles, the one with the identity being ≈ eP ◦eQ◦eP .
The tangle with eR can be handled easily since eQ ◦ eR = 1, which also yields
eP ◦ eQ ◦ eP .

Finally, we need to be able to comultiply uePQ with itself and ueQP . This is
done very much like comultiplying ueP and ueQ except that after applying Lemma
7.3 we find a coproduct of more than two terms on eP and eQ. These words may
be reduced to eP , eQ, ePQ or eQP modulo eN . The term with eN will produce
a u by itself, but as observed above we know how to write u as an explicit linear
combination of basis elements.

Case 3. Comultiplication between A and B. Terms without u like eP ◦ ePQ are
simple. The most difficult case is of the form eP ◦ ueQP , but as above we may
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rearrange it so that there are two like terms in the dashed rectangle below:

.

Applying the exchange relation as before we obtain:

P Q

P u

.

Note the comultiplication of u and eP which can be reduced to an explicit linear
combination of basis elements using u = 2eR − 1 and eR ◦ eP ≈ 1.

The coproduct of ueP with ePQ works similarly except that applying the ex-
change relation immediately produces an explicit multiple of a basis element. Fi-
nally, terms like ueP ◦uePQ can be reduced to explicit linear combinations of basis
elements using Lemma 7.3 and comulitplication of words on eP and eQ. Once again
u terms may be produced. �

Lemma 7.19. Let v ∈ M ′∩M2 be the self-adjoint unitary in the normaliser of M1

guaranteed by the form of the dual principal graph in Theorem 5.8. Then vAv = B.
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Proof. By Figure 7.4 we have

veP v = P v .

So

eP veP v =

P

P

v

.

Applying the exchange relation to this we obtain

.

Inside the dashed circle we recognise a multiple of the trace in M2 of the product
in M ′ ∩ M2 of the projection eP defined by eP and v. But v bears the same
relation to this coprojection as u does to eP , so by Lemma 7.8 we obtain zero.
Thus eP V eP V = 0. We may apply Corollary 7.10 to eP and v to deduce in the
same way that eQV eP V = 0. This is enough to conclude that vAv = B from the
structure of N ′ ∩ M1 which is normalised by v. �

Corollary 7.20. If eM is the projection onto L2(M) in the basic construction of
M2 from M1, then D = CeMC ∪ A ∪ vA ∪ B ∪ vB is a basis for N ′ ∩ M2.

Proof. From the principal graph, N ′∩M2 is the direct sum of the ideal I generated
by eM , which is isomorphic to a basic construction coming from the pair N ′ ∩
M ⊆ N ′ ∩ M1, and a 4 × 4 matrix algebra. Since N ⊆ M is irreducible the map
x ⊗ y 	→ xeMy is a vector space isomorphism from N ′ ∩ M1 ⊗ N ′ ∩ M1 to I. Thus
CeMC is a basis for I.

Since v is in the normaliser of M1, it is orthogonal to M1 by irreducibility and N ′∩
M2 contains a copy of the crossed product of N ′∩M1 by the period 2 automorphism
given by Ad v. By the previous lemma the algebra generated by A, B, and v is a
4×4 matrix algebra—call it E. It is spanned modulo I by A∪vA∪B∪vB since A
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and B are spanned modulo eN by A and B respectively (see the proof of Theorem
7.18). Since a matrix algebra is simple, to check that E spans N ′ ∩ M2 mod I we
need only show that it is not contained in I. But from the principal graph we see
that A itself is nonzero mod I.

�

7.5. The uniqueness proof and some corollaries. We can now give the main
argument for the uniqueness of a subfactor of index (2 +

√
2)2 with noncommuting

intermediate subfactors. It relies on the “exchange relation” developed by Landau
in [27]. We begin with a planar algebra result from which our uniqueness will follow.

NOTE: We will assume that all planar algebras P satisfy dimP1 = 1.

Definition 7.21. Let P = Pn be a planar algebra and R a self-adjoint subset of
P2. Let Y be the set of planar 3-tangles labelled with elements of R, with at most
one internal disc. We say that R satisfies an exchange relation if there are constants
bQ,R,Y , cQ,R,S,T and dQ,R,S,T such that

=
∑

S,T∈R

cQ,R,S,T

+
∑

S,T∈R
dQ,R,S,T

+
∑
Y ∈Y

bQ,R,Y Y.

The constants will be called the exchange constants for R.

Theorem 7.22 (Landau,[27]). A subfactor planar algebra P generated by R =
R∗ ⊆ P2 is determined up to isomorphism by the exchange constants for R and the
traces and cotraces of elements in R.

The idea of the proof is that one may calculate the partition function of any
labelled tangle in P0 by applying the exchange relation. The strategy is to take any
face and reduce it to a bigon, which is either a multiplication or comultiplication of
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elements in R. But multiplication and comultiplication are also determined by the
exchange relation by suitably capping off the pictures in the above definition. As
soon as the planar algebras in question are nondegenerate in the sense that they are
determined by the partition functions of labelled planar tangles in P0, the theorem
will hold. The isomorphism between two planar algebras with the same subset R

is defined by extending the identity map from R to itself to all labelled tangles on
R. Then any relation for one planar algebra is necessarily a relation for the other
by the nondegenerate property of the partition function as a bilinear/sesquilinear
form on the Pn. This strategy for proving uniqueness was already used for a proof
of the uniqueness of the E6 and E8 subfactors in [21].

Lemma 7.23. Let P be a subfactor planar algebra with R a self-adjoint subset of
P2 which satisfies an exchange relation. Then the exchange constants for R are
determined by the traces and cotraces of elements of R together with the structure
constants for multiplication and comultiplication of elements of R.

Proof. Using positive definiteness of the inner product given by the trace on P3, it
suffices to prove that the partition function of any planar diagram with at most 4
internal discs, all labelled with elements of R, is determined by the given structure
constants.

For this, we may suppose that the labelled diagrams are connected and by our
hypothesis on dim P1, we may suppose that no 2-box is connected to itself. If
there are 4 internal discs, one must be connected to another with a multiplication
or a comultiplication. This reduces us to the case of 3 internal boxes where it is
even clearer. To see these assertions it is helpful to view the labelled tangles as
the generic planar projections of links in R3 which are obtained by shrinking the
internal 2-boxes to points. �

Putting the previous results together we have:

Theorem 7.24. Let N1 ⊆ M1 and N2 ⊆ M2 be two irreducible II1 subfactors
of index (2 +

√
2)2 with pairs P1, Q1 and P2, Q2 of noncommuting intermediate

subfactors of index 2 +
√

2. Then there is a unique isomorphism from the planar
algebra for N1 ⊆ M1 to the planar algebra of N2 ⊆ M2 which extends the map
sending eP1 and eQ1 to eP2 and eQ2 respectively.

Proof. The only allowed principal graph for the elementary subfactors is A7. So
there is no extra structure, and we know the principal graph and dual principal
graph. The normalising unitaries ui, i = 1, 2 can be written as an explicit linear
combination of eN , 1 and products and coproducts of ePi

and eQi
. Then form the

sets Ai and Bi, i = 1, 2 in the obvious way. The planar algebra for Ni ⊆ Mi is
generated by Ai and Bi by Corollary 7.20. By Theorem 7.18 and Lemma 7.23 we
may apply Theorem 7.22 to the sets Ri = Ai∪Bi to deduce the result. (The traces
and cotraces of the basis elements of C were determined in the course of proving
Theorem 7.18.) �

Corollary 7.25. Given a quadrilateral N ⊂ P, Q ⊂ M with [M : N ] = 6 + 4
√

2
and such that P and Q do not commute, there are further subfactors P̃ and Q̃ with
[M : P̃ ] and [M : Q̃] equal to 2 +

√
2, which commute with both P and Q and are

at an angle cos−1(
√

2 − 1) to each other.

Proof. This is the case for the example, so by uniqueness it is always true. �
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It is obvious that the projections onto P̃ and Q̃ are in B mod eN .

Corollary 7.26. The only subfactors between N and M are P, Q, P̃ , Q̃, R and S,
so the intermediate subfactor lattice is

.

Proof. Let T be a seventh intermediate subfactor. From the principal graph and
obvious index restrictions the possible values of (6+4

√
2)tr(eT ) are 2+

√
2, 3+2

√
2

and 2. The cases 3 + 2
√

2 and 2 correspond to index 2 subfactors and would show
up as extra vertices on either the dual or dual principal graphs, so we must have
tr(eT ) = 1/(2 +

√
2). This forces eT − eN to be a minimal projection in either

A or B, so by the previous corollary and the observation after it we may suppose
wolog that eT − eN ∈ A. If eP eT = eN , then by a 2 × 2 matrix calculation, T
makes a forbidden angle with Q. So the angle between all three of P , Q and T is
cos−1(

√
2 − 1). But by Lemma 7.7 applied to T , T and R do not commute. So

there must be a fourth subfactor α(T ) which makes the same angle with all of P, Q,
and T . By Lemma 7.9 this is not allowed. This contradicts the existence of T . �
Corollary 7.27. If M is hyperfinite, then there is an automorphism of M sending
P to P̃ and Q to Q̃.

Proof. This follows from Theorem 7.24 and Popa’s classification theorem [31], which
states that in finite depth one may construct the subfactor directly as the completion
of the inductive limit of the tower of relative commutants. �

It is not obvious what the automorphism of the previous corollary looks like in
the GHJ realisation of section 6. It will certainly require the complex numbers to
write it down as guaranteed by the next result. Observe first that the D5-based
GHJ example of Figure 6.4 is defined over the real numbers, so the intermediate
subfactors exist in the setting of real II1 factors. That the GHJ pair for D5,2 needs
the complex numbers is the next result.

Corollary 7.28. If N ⊂ P, Q ⊂ M is a noncommuting quadrilateral of real II1
factors with [M : N ] = 6+4

√
2, then P and Q are the only intermediate subfactors

of index 2 +
√

2.

Proof. Let N ⊂ M be the subfactor for the D5,2 Coxeter graph. Since this subfactor
may be defined over the reals (as the GHJ subfactor for the trivalent vertex),
complex conjugation defines a conjugate linear *-automorphism σ of N ⊂ M with
σ(P̃ ) = P̃ and σ(Q̃) = Q̃ but with σ(gi) = g∗i , so σ(P ) = Q. Thus σ will act on the
planar algebra of N ⊂ M exchanging eP and eQ. However, the fixed points for σ
acting on the planar algebra form again a planar algebra. So there is a real subfactor
NR ⊂ MR with [MR : NR] = 6 + 4

√
2 having a pair (P̃ σ and Q̃σ) of noncommuting

intermediate subfactors of index 2+
√

2 and no other intermediate subfactors of the
same index since σ(eP ) = eQ �= eP . Our uniqueness result never used the complex
numbers (all the structure constants were real) so that no other such real subfactor
can have more than two intermediate subfactors of index 2 +

√
2. �
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