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UNIVERSAL CHARACTERISTIC FACTORS
AND FURSTENBERG AVERAGES

TAMAR ZIEGLER

1. Introduction

Averages of the form

(1)
1
N

N∑
n=1

k∏
j=1

f(T jnx)

were first introduced by Furstenberg [Fu77] in his ergodic-theoretic proof of Sze-
merédi’s theorem on arithmetic progressions in sets of positive density in Z. Fursten-
berg proved the following theorem:

1.1. Theorem (Furstenberg). Let X = (X0,B, µ, T ) be a measure-preserving sys-
tem (m.p.s.). Let A be a set of positive measure, and f = 1A. Then

lim inf
N→∞

1
N

N∑
n=1

∫ k∏
j=0

f(T jnx)dµ > 0.

The theorem above ensures that there exists an integer n, so that for a set of
points x of positive measure the points x, Tnx, . . . , T knx are in A, and corresponds
to the existence of an arithmetic progression of length k + 1 in sets of positive
density in Z.

The L2 limiting behavior of the averages in (1) is governed by a natural series
of “factors” of the measure-preserving system X. The factor corresponding to
arithmetic progression of length 3 (the case where k is 2), the Kronecker factor,
was described in [Fu77]. The factor corresponding to arithmetic progressions of
length 4, an inverse limit of 2-step nilflows, was studied by Conze–Lesigne [CL84],
[CL87], [CL88], Furstenberg–Weiss [FuW96], and Host–Kra [HK01], [HK02], and
hinted to the nature of the complete series. The complete series of factors was
described by Host–Kra [HK05], and independently, though somewhat later, by the
author. We give an equivalent characterization of the series of factors described
in [HK05], and provide a different construction for these factors. Although there
are some similarities between the constructions (for example, both start out with
the Furstenberg structure theorem [Fu77]), the definition of the factors and the
bulk of the construction are significantly different. In particular, we do not use the
Gowers uniformity norms [G01], which are fundamental in the approach of Host
and Kra to this problem (and in the works of Gowers [G01], and Green–Tao [GT04]
on problems of a similar nature). The averages studied in the paper are of a special
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kind, but the techniques developed can be used in analyzing other multiple averages
(e.g. averages along a polynomial sequence, or cubic averages).

Let X = (X0,BX , µX , TX) be a probability measure-preserving system; i.e.,
(X0,BX , µX) is a measure space, and TX is a measure-preserving transformation.
When there is no confusion we will omit the subscript X. For a measurable function
f we write Tf for the function Tf(x) = f(Tx). By ergodic decomposition it will
suffice to study the limit of (1) with the additional hypothesis of ergodicity. The
nature of the limit will depend on mixing properties of the system. The maximal
degree of mixing relevant is weak mixing; indeed in this case Furstenberg has shown
in [Fu77]:

1.2. Theorem (Furstenberg). If X is weak mixing, then

1
N

N∑
n=1

k∏
j=1

fj(T jnx)
L2(X)−→

k∏
j=1

∫
fj(x)dµ.

For a general ergodic system X the averages in equation (1) need not converge
to a constant function. Indeed, if the system X is not weakly mixing, there exists
a nontrivial eigenfunction ψ. If Tψ(x) = λψ(x), then

Tnψ2(x)T 2nψ−1(x) = ψ(x)

for all n; thus

1
N

N∑
n=1

Tnψ2(x)T 2nψ−1(x) = ψ(x).

By the above equation, the set of limiting functions contains the algebra spanned
by eigenfunctions —the Kronecker algebra. The Kronecker algebra determines the
“Kronecker factor” Z where Z0 is a compact Abelian group, BZ the (completed)
Borel algebra, µZ the Haar measure, and the action of TZ is given by translation
by an element α ∈ Z0, i.e. TZz = z + α. Let π : X → Z be the factor map. It
is not surprising that an Abelian group factor should come up when studying the
relations between x, Tnx, T 2nx, as the projections of these points on the Abelian
group factor π(x), π(x) + nα, π(x) + 2nα form an arithmetic progression: π(x) =
2(π(x) + nα) − (π(x) + 2nα). It turns out that this “constraint” imposed by the
Kronecker factor is the only “constraint” on the triple x, Tnx, T 2nx, so that in a
manner to be made precise, the Kronecker factor is “characteristic” for the limit of
the averages 1

N

∑N
n=1 f(Tnx)g(T 2nx).

Let X be a measure-preserving system (m.p.s.). Let Y be a homomorphic image;
i.e., we have a map π : X0 → Y 0 with π−1BY ⊂ BX , πµX = µY and TY π = πTX .
Then Y is a factor of X, X is an extension of Y , and abusing the notation we write
π : X → Y for the factor map. A factor of X is determined by a TX -invariant
subalgebra of L∞(X). The map π induces two natural maps π∗ : L2(Y ) → L2(X)
given by π∗f = f ◦ π, and π∗ : L2(X) → L2(Y ) given by π∗f = E(f |BY ) (the
orthogonal projection of f on π∗L2(Y )). The notion of “characteristic factors” was
first introduced in a paper by Furstenberg and Weiss [FuW96]. We fix an ergodic
invertible m.p.s. X.

1.3. Definition. Let Y be a factor of X. Let k be a natural number, (a1, . . . , ak)
be distinct nonzero integers. The system Y is characteristic for (a1, . . . , ak) if for
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any f1, . . . , fk ∈ L∞(X),

1
N

N∑
n=1

k∏
j=1

T
ajn
X fj − π∗ 1

N

N∑
n=1

k∏
j=1

T
ajn
Y π∗fj

L2(µX)−→ 0.

The system Y is a k-characteristic factor of X if it is characteristic for any k-tuple
of distinct nonzero integers.

It is in this sense that the Kronecker factor is characteristic for calculating the
limit of the averages 1

N

∑N
n=1 f(Tnx)g(T 2nx). We now define a universal charac-

teristic factor:

1.4. Definition. Let Y be a factor of X. The system Y is a k-universal character-
istic factor (u.c.f.) of X if it is a k-characteristic factor of X , and a factor of any
other k-characteristic factor of X.

For the averages 1
N

∑N
n=1 f1(Tnx)f2(T 2nx)f3(T 3nx), the Kronecker factor does

not suffice. Let ϕ be a second-order eigenfunction, i.e., Tϕ = ψϕ, where ψ is an
ordinary eigenfunction, that is, Tψ = λψ. Then one can check that

Tnϕ3(x)T 2nϕ−3(x)T 3nϕ(x) = ϕ(x)

for all n; thus

(2)
1
N

N∑
n=1

Tnϕ3(x)T 2nϕ−3(x)T 3nϕ = ϕ(x).

Let Y be a factor of X that is characteristic for (1, 2, 3). Equation (2) implies that
the algebra generated by all second-order eigenfunctions is a subset of L∞(Y ). It
is natural to conjecture that the algebra generated by the second-order eigenfunc-
tions determines a factor that is characteristic for (1, 2, 3). Furstenberg and Weiss
presented the following counterexample. Let

X =
(

1 R R

1 R

1

)/(
1 Z Z

1 Z

1

)
= N/Γ.

Consider the system X where X0 = N/Γ, BX the (completed) Borel algebra, µX

the unique measure invariant under translations by any element of the group N , and
TX is given by TXgΓ = agΓ for some a ∈ N acting ergodically. This system has no
second-order eigenfunctions, but there are relations between gΓ, angΓ, a2ngΓ, a3ngΓ
not coming from the Kronecker factor: in N/Γ, gΓ is determined by angΓ, a2ngΓ,
a3ngΓ. This system can be viewed as a circle extension of the Kronecker fac-
tor which is a 2-dimensional torus, and the action of TX on T2 × S1 is given by
TX(z, ζ) = (z + α, σ(z)ζ) (the function σ(z) is called the extension cocycle). The
projection of the points gΓ, angΓ, a2ngΓ, a3ngΓ on the Kronecker factor will form
an arithmetic progression, but as gΓ is a function of angΓ, a2ngΓ, a3ngΓ the points
gΓ, angΓ, a2ngΓ, a3ngΓ will not be independent on the fibers over the Kronecker
factor. This fact translates to a restriction on the extension cocycle σ(z) known as
the Conze–Lesigne equation. (This equation is analyzed in [CL84], [CL87], [CL88],
[Le84], [Le87], [Le93], [FuW96], [HK01], [HK02], [Me90], [R93].) In particular any
factor that is characteristic for (1, 2, 3) will contain functions other than first-order
and second-order eigenfunctions.

In general, if N is a k-step nilpotent group (Nk+1 = 1), Γ < N , then x ∈ N/Γ
is determined by anx, a2nx, . . . , a(k+1)nx. It is natural to ask whether these are
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the only constraints; i.e., do all the constraints on the points x, Tnx, . . . , T (k+1)nx
come from a k-step nilpotent factor?

1.5. Definition. A nilsystem consists of a space X on which a nilpotent group N
acts transitively preserving a measure µX , and a transformation TX which acts by
translation by a group element a: TXx = ax. A special case is when N is a k-step
nilpotent Lie group, Γ a cocompact lattice, X = N/Γ (a nilmanifold), and µX the
unique measure invariant under translation by elements of N . We call this a k-step
nilflow. A k-step pro-nilflow is an inverse limit of k-step nilflows.

We prove the following theorems:

1.6. Theorem. Let X be an ergodic measure-preserving system. Then there exists
a unique k-universal characteristic factor of X. If π : X → Y is a factor map,
and W (X), W (Y ) are k-universal characteristic factors of X, Y , respectively, then
π induces a map between W (X) and W (Y ).

If we denote by Yk(X) the k-u.c.f. of X, then one obtains an inverse series of
factors . . . → Yk(X) → Yk−1(X) → . . . → Y1(X).

1.7. Theorem. Let X be an ergodic measure-preserving system, and let Yk(X)
be the k-universal characteristic factor of X. Then Yk(X) has the structure of a
(k − 1)-step nilsystem, more specifically a (k − 1)-step pro-nilflow.

1.8. Theorem. Let X be an ergodic (k − 1)-step pro-nilflow. Then Yk(X) = X.

The proof of Theorem 1.7 is by induction: assuming that the k-u.c.f. is a (k−1)-
step nilsystem, one reduces the problem of determining the (k+1)-u.c.f. to the case
where the system X is a circle extension of a (k − 1)-step nilsystem. If the points
x, Tnx, . . . T (k+1)nx are independent on the fibers over the k-step nilsystem, then
the k-step nilsystem would suffice, i.e., would be k-characteristic. Otherwise one
would get a restriction on the extension cocycle. The main difficulty is using this
restriction to construct a nilpotent group acting transitively on X.

As a corollary we get the ergodic theorem recently proved by Host and Kra
[HK05].

1.9. Corollary. Let X be an m.p.s. Let k be a natural number, a1, . . . , ak ∈ Z, and
f1, . . . , fk ∈ L∞(µX). Then the averages

(3)
1
N

N∑
n=1

k∏
j=1

fj(T ajnx)

converge in L2(µX).

By Theorem 1.7, in order to have L2(µX) convergence of the averages in (3), it
is enough to prove an L2(µX) convergence theorem for k-step pro-nilflows. Con-
vergence in L2 for pro-nilflows follows from convergence for nilflows. For nilflows
one has a.e. convergence ([P69], [Sh96], [L05]). An explicit description of the limit
is given in [Le89] for the case k = 3, and in general in [Z05].

2. Universal characteristic factors

We start by proving the existence of universal characteristic factors (Definitions
1.3 and 1.4).
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2.1. Lemma. Let X be an ergodic m.p.s. Let Y1, Y2 be k-characteristic factors of
X. Then there exists a k-characteristic factor of X, which is a factor of both Y1, Y2.

Proof. Let P, Q denote the orthogonal projections onto L2(µY1), L
2(µY2) (seen as

subspaces of L2(µX)) respectively, and let πi : X0 → Y 0
i for i = 1, 2 denote the

factor maps. Then P 2 = P ∗ = P (same for Q). We show that (PQP )n converges
strongly to a selfadjoint projection operator W : P is a projection; thus P ≤ I and〈

(PQP )2x, x
〉

= 〈PQPx, QPx〉 ≤ 〈QPx, QPx〉 = 〈PQPx, x〉 .

Inductively, the sequence (PQP )n is a decreasing sequence of operators; thus
〈(PQP )nx, x〉 converges for all x. The sequence (PQP )nx is a Cauchy sequence as

‖(PQP )nx − (PQP )mx‖2 =
〈
(PQP )2nx, x

〉
+

〈
(PQP )2mx, x

〉
− 2

〈
(PQP )(n+m)x, x

〉
→ 0.

Let W = limn→∞(PQP )n. Then W 2 = W = W ∗. If Wx = x, then Px = PWx =
Wx = x, and

PQx = PQPx = PQPWx = Wx = x ⇒ ‖Qx‖ = ‖x‖ ⇒ Qx = x.

It follows that W (L2(X0,BX , µX)) = L2(X0,D, µX) for D = π−1
1 (BY1)∩π−1

2 (BY2).
We show that W (L2(µX)) is a k-characteristic factor of X. For all m:

lim
N→∞

1
N

N∑
n=1

T a1nf1 . . . T aknfk

= lim
N→∞

1
N

N∑
n=1

T a1n((PQP )mf1) . . . T akn((PQP )mfk),

and the desired conclusion follows by letting m → ∞. �

2.2. Corollary. Let X be an m.p.s. There exists a unique k-universal characteristic
factor of X.

Proof. This follows by Zorn’s lemma. �

The advantage of looking at all k-tuples (rather than focusing on a specific one) is
that k-u.c.f.s are functorial; any morphism of measure-preserving systems induces
a morphism between their k-universal characteristic factors, as will be shown in
Corollary 2.4. (This may also be true for characteristic factors of a specific scheme.)

2.3. Lemma. Let V be the algebra generated by partial limits of the sequences
{ 1

N

∑N
n=1 T a1nf1 . . . T aknfk}, where fi ∈ L∞(µX), and a0, . . . , ak ∈ Z are distinct

nonzero integers. Then V determines the k-universal characteristic factor of X.

Proof. Let W (X) be the k-u.c.f. Obviously V ⊂ L∞(µW (X)). We show that the
factor determined by V is a k-characteristic factor of X. Let f1 ⊥ V . Then for any
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g ∈ L∞(µX),〈
g,

1
N

N∑
n=1

T a1nf1 . . . T aknfk

〉
=

1
N

N∑
n=1

∫
gT a1nf1T

a2nf2 . . . T aknfkdµ

=
1
N

N∑
n=1

∫
f1T

−a1ng . . . T (ak−a1)nfkdµ

N→∞−→ 0.

�

2.4. Corollary. If π : X → Y is a factor map, and W (X), W (Y ) are k-u.c.f. for
X, Y , respectively, then π induces a map between W (X) and W (Y ).

2.5. Universal characteristic factors for k = 1, 2. Let X be an ergodic m.p.s. If
the system is totally ergodic, i.e., if every nonzero power of TX is ergodic, then the
ergodic theorem applies to the average in question, and the limit is a constant, so
that the characteristic factor can be taken as a trivial system. Otherwise one needs
to take into account the algebra generated by functions that are invariant under
Tm

X for some m. The existence of such functions corresponds to having as a factor
the cyclic group Z/mZ with the action x → x + 1 (mod m). All such factors can
be taken into account by a “pro-cyclic” group factor, the group being the inverse
limit of finite cyclic groups. This group with the transformation x → x + 1 will
then represent the 1-u.c.f. of X. The 2-u.c.f. of X coincides with the first block
in Furstenberg’s structure theorem (see [Fu77]) and is referred to as the Kronecker
factor. The system Z is a Kronecker system (or an almost periodic system) if Z0

is a compact abelian group (a 1-step nilpotent group), BZ is the (completed) Borel
algebra, µZ is the Haar measure, and the action of TZ is given by TZz = z + α
for some α ∈ Z0. The Kronecker factor is the maximal almost periodic factor.
Equivalently, Z is the Kronecker factor of X if the eigenfunctions of TX span
L2(µZ) (thought of as a subspace of L2(µX)).

2.6. Remark. If the system X is weak mixing, i.e. has no nontrivial eigenfunctions,
then the Kronecker factor is trivial (and Yk(X) is trivial for all k).

2.7. Isometric extensions The notion of characteristic factors was motivated by
Furstenberg’s structure theorem [Fu77]. Furstenberg’s idea was to relativize the
notion of weak mixing to a weak mixing extension and to define the complementary
notion of a compact extension (or isometric extension). Let X be an ergodic m.p.s.,
and let Y be a factor. Consider the ring L∞(µY ) as a subring of functions on
X. A subspace V ⊂ L2(µX) is a finite rank module over L∞(µY ) if there exist
finitely many functions ϕ1, . . . , ϕk, such that any function f ∈ V can be expressed
as f =

∑k
i=1 ai(y)ϕi(x). We say that X is an isometric extension of Y if L2(µX)

is spanned by finite rank TX invariant modules over L∞(µY ). It can be shown
that in this case X is isomorphic to a skew product X ′ where X ′0 = Y 0 × M ,
where M = G/H is a homogeneous compact metric space, µX′ = µY × mM ,
where mM is the unique probability measure invariant under the transitive group
of isometries G, and the action of TX′ is given by TX′(y, m) = (TY y, ρ(y)m), where
ρ : Y 0 → G. We denote TX′ by TY,ρ, or if there is no confusion, just Tρ. For
example, a Kronecker system is an isometric extension of a point. Define the nth
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iteration of ρ, ρ(n) : Y 0 → G by Tn
ρ (y, m) = (Tny, ρ(n)(y)m); then ρ(n) satisfies a

1-cocycle equation for the action of Z on functions from Y to G:

ρ(n+m)(y) = ρ(n)(Tmy)ρ(m)(y).

Since ρ(n)(y) is determined by ρ(1)(y) we shall focus on ρ(y) = ρ(1)(y) and refer to
it as the extension cocycle (or just cocycle). Abusing the notation we denote the
system X ′ by Y ×ρ G/H. For more details see [Fu77] or [Zi76].

2.8. Let X1, X2 be m.p.s. and let Y be a common factor with πi : X0
i → Y 0 for

i = 1, 2 the factor maps. Let µXi,y represent the disintegration of µXi
with respect

to Y . Let µX1 ×Y µX2 denote the measure defined by

µX1 ×Y µX2(A) =
∫

µX1,y ×Y µX2,y(A)dµY

for A ∈ BX1 × BX2 . The system

(X0
1 × X0

2 ,BX1 × BX2 , µX1 ×Y µX2 , TX1 × TX2)

is called the relative product of X1 and X2 with respect to Y and is denoted
X1 ×Y X2.

2.9. Let X be an ergodic m.p.s., Y a factor and π : X → Y the factor map.
Consider the subspace of L2(µX) spanned by all finite rank TX -invariant modules
over π∗L∞(µY ). This subspace will be defined by some factor Ŷ between X and
Y . The system Ŷ is called the maximal isometric extension of Y in X. For some
l ∈ N, let X ′ = (X0,BX , µX , T l

X), and let Y ′ = (Y 0,BY , µY , T l
Y ). Then the

maximal isometric extension of Y ′ in X ′ is Ŷ ′ = (Ŷ 0,BŶ , µŶ , T l
Ŷ

).

2.10. Let Xi, i = 1, . . . , k, be measure-preserving systems, and let Yi be corre-
sponding factors, and πi : X0

i → Y 0
i the factor maps. A measure ν on ΠY 0

i defines
a joining of the measures on Yi if it is invariant under TY1 × . . . × TYK

and maps
onto νYi

under the natural map ΠYi → Yj . Let ν be a joining of the measures on
Yi, and let µXi,yi

represent the disintegration of µXi
with respect to Yi.

Let µ be a measure on ΠX0
i defined by

µ =
∫

µX1,y1 × . . . × µXk,yk
dν(y1, . . . , yk).

Then µ is called the conditional product measure with respect to ν.
The following is shown in [Fu77, Theorem 9.5]:

2.11. Theorem (Furstenberg). Let Xi, Yi, ν, µ be as in 2.10. Assume each Xi

has finitely many ergodic components. Let Ŷi be the maximal isometric extension
of Yi in Xi, π̂i : Xi → Ŷi the projection. Then if F ∈ L2(µ) is invariant under
TX1 × . . . × TXk

, then there exists a function Φ ∈ L2(ΠŶi, Πν̂i), so that

F (x1, . . . , xk) = Φ(π̂1(x1), . . . , π̂k(xk)).

2.12. Group extensions. A special case of an isometric extension X → Y is when
the homogeneous space M from 2.7 is equal to G, i.e. X = Y ×ρ G, where G is a
compact group. In this case we say that X is a group extension of Y .

2.13. Lemma. Suppose X is an ergodic isometric extension of Y so that we can
express X = Y ×ρ G/H. Using the function ρ, we can define a group extension
Y ×ρ G. Then G and H can be chosen so that the extension Y ×ρ G is an ergodic
group extension.
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Proof. [FuW96, Lemma 7.2]. �

2.14. Lemma. Let X = Y ×ρ G be an ergodic group extension of Y , and let W be
an intermediate factor between X and Y . Then X is a group extension of W .

Proof. [FuW96, Lemma 7.3]. �

2.15. Let Y be an ergodic m.p.s., G a compact metrizable group. Let Y ×ρ G be
a group extension. We can parameterize Y 0 × G, replacing (y, g) with F (y, g) =
(y, f(y)g) for some measurable function f : Y 0 → G. Let ρ′(y) := f(Ty)ρ(y)f(y)−1.
Then the systems Y ×ρ G, Y ×ρ′ G are isomorphic, and ρ, ρ′ are called equivalent
cocycles or cohomologous cocycles. If ρ is equivalent to the identity cocycle, then ρ
is a Y -coboundary (or just coboundary when there is no confusion). If ρ is equivalent
to a constant cocycle, then ρ is a Y -quasi-coboundary (or quasi-coboundary).

2.16. If ρ takes values in a closed subgroup H of G, the extension Y ×ρ G will not
be ergodic (any function on H\G will be invariant). By the foregoing discussion if ρ
is equivalent to a cocycle taking values in a closed subgroup H, then the extension
Y ×ρ G will not be ergodic.

2.17. Theorem (Mackey). Let ρ : Y 0 → G be a measurable cocycle. There exists
a closed subgroup M < G, unique up to conjugacy, so that:

(1) ρ is equivalent to a cocycle ρ′ taking values in M , i.e.,
ρ′(y) = f(Ty)ρ(y)f(y)−1 ∈ M .

(2) Any ergodic Tρ′-invariant measure on Y 0 ×G, extending µY , has the form
µY × mMγ for some coset Mγ, and the ergodic Tρ-invariant measures are
obtained by applying F−1 (defined in 2.15) to the ergodic Tρ′-invariant mea-
sures. The group M is called the Mackey group of the extension Y ×ρ G.

2.18. Lemma. For i = 1, 2, let Yi be an ergodic m.p.s., let Xi = Yi ×ρi
G be group

extensions, and let Mi be the associated Mackey groups. Let πi be the projection
πi : Xi → Yi. Let S : X1 → X2 be an isomorphism inducing an isomorphism of Y1

to Y2, and suppose Sπ1 = π2S. Then M1 and M2 are conjugate.

Proof. The transformation S maps the ergodic components of the group extension
Y1 ×ρ1 G onto those of Y2 ×ρ2 G. Each ergodic component is determined by a
right coset Miγi for γi ∈ G; thus S induces a map from ϕ : M1\G → M2\G that
commutes with the action of G from the right. Thus ϕ is a G-isomorphism, and
therefore M1 and M2 are conjugate. �

3. Abelian extensions

3.1. Notation. We use additive notation for abelian groups with the exception of
the group S1 = {ζ ∈ C : |ζ| = 1}, which will play a special role in the future. In
particular, if ρ, ρ′ are equivalent cocycles (defined in the foregoing section) taking
values in an abelian group G, then there exists a function f : Y 0 → G such that

ρ(y) = f(Ty) + ρ′(y) − f(y).

3.2. Let G be a compact abelian group. Then Y ×ρ G is an abelian extension. In
this case the Mackey group defined in the foregoing section M is unique. Let

M⊥ = {χ ∈ Ĝ : χ(g) = 1 for all g ∈ M}
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be the annihilator of M . If ρ is equivalent to a cocycle taking values in M , then
χ ◦ ρ is a coboundary for all χ ∈ M̂ and

M⊥ = {χ ∈ Ĝ : χ ◦ ρ is a coboundary}.

3.3. Proposition. Let Y ×ρ G be an abelian extension, and let M be the Mackey
group of this extension. Let f ∈ L2(µY × mG) be s.t. for all χ ∈ M⊥,∫

f(y, g)χ(g)dmG(g) = 0

for a.e. y ∈ Y . Then f is orthogonal to the space of Tρ-invariant functions.

Proof. [FuW96, Lemma 9.2]. �

3.4. Notation. Denote Ud = d-dimensional unitary matrices, C(Ud) the center of
Ud (scalar matrices), and P : Ud → PUd = Ud/C(Ud) the natural projection. For
U, V ∈ Ud denote by [U, V ] the commutator of U, V ; i.e., [U, V ] = UV U−1V −1.

We need the following lemma:

3.5. Lemma. Let H be a compact abelian connected group, and A : H → Ud a
measurable function. If P ◦ A is a homomorphism, then A(H) is a commuting set
of matrices.

Proof. Let g, h ∈ H. Suppose [A(h), A(g)] = δI. If v is an eigenvector of A(h) with
eigenvalue γ, then

A(h)A(g)v = δA(g)A(h)v = γδA(g)v;

thus A(g)v is an eigenvector of A(h) with eigenvalue γδ. This implies that A(g)kv
is an eigenvector of A(h) with eigenvalue γδk; thus δ is a root of unity of order ≤ d.
Denote by Cd! the group of order d! roots of unity. Then the commutator set

{[A(h), A(g)]}h,g∈H ⊂ Cd!I.

Fix g. The function h → [A(h), A(g)] is a measurable homomorphism to Cd!I,

[A(h1 + h2), A(g)] = [cA(h1)A(h2), A(g)] = [A(h1), A(g)][A(h2), A(g)],

therefore continuous, and as H is connected, it is trivial. �

3.6. Theorem. Let Y be an ergodic m.p.s., and let W = Y ×ρ H be an ergodic
extension by a connected abelian group. Let F : Y 0 ×H ×H → S1 be a measurable
function. Let σ1(y, h1),σ2(y, h2) : Y 0 × H → S1 be measurable functions. Suppose

σ1(y, h1)σ2(y, h2) =
F (Ty, h1 + ρ(y), h2 + ρ(y))

F (y, h1, h2)
.

Then for i = 1, 2 there exist measurable functions gi, Gi : Y 0 → S1 such that

σi(y, h) = gi(y)
Gi(TW (y, h))

Gi(y, h)
.

Proof. We construct the following systems: for i = 1, 2, let Xi = W ×σi
S1 and

X = X1 ×Y X2. Let µX be defined as the conditional product measure relative to
the diagonal measure on Y 0 × Y 0. The function

(4) F̃ (y, h1, h2, ζ1, ζ2) = F (y, h1, h2)ζ−1
1 ζ−1

2
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is invariant under TX , and therefore by Theorem 2.11 it is measurable with respect
to Ŷ1 × Ŷ2 , where Ŷi is the maximal isometric extension of Y in Xi for i = 1, 2.
Isometric extensions are spanned by finite rank modules (see 2.7). Thus

F̃ (y, h1, h2, ζ1, ζ2) =
∑〈 →

ψ1
j (y, h1, ζ1),

→
ψ2

j (y, h2, ζ2)
〉

,

where

TX1

→
ψ1

j (y, h1, ζ1) = U1
j (y)

→
ψ1

j (y, h1, ζ1),

TX2

→
ψ2

j (y, h2, ζi) = U2
j (y)

→
ψ2

j (y, h2, ζ2),

and U1
j (y), U2

j (y) are dj ×dj unitary matrices. Substituting the Fourier expansions:
→
ψ1

j (y, h1, ζ1) =
∑ →

ψ1
j,k (y, h1)ζk

1 ,

→
ψ2

j (y, h2, ζ2) =
∑ →

ψ2
j,k (y, h2)ζk

2

in equation (4) we get that for k = −1 there exists j such that
→

ψ1
j,−1 
= 0. Apply

TX1 to get

σ−1
1 (y, h1)

→
ψ1

j,−1 (TW (y, h1)) = U1
j (y)

→
ψ1

j,−1 (y, h1).
For simplicity we drop the indices:

(5) σ−1(y, h)
→
ψ (TW (y, h)) = U(y)

→
ψ (y, h).

For each y consider the distribution of
→
ψ (y, h) in the fiber over y, and look at

the vector space spanned by the support of this distribution. Call this Vy, so that
Vy ⊂ C

d, and VTy = U(y)Vy. Since U(y) is unitary, dimVTy = dim Vy; thus by
ergodicity, dimVy = d̂ for a.s. y. For each y choose a basis for Cd s.t. Vy is spanned
by the first d̂ elements. As the transformation matrix is a function of y, we may
assume d = d̂.

Denote by
→̃
ψ the projection of

→
ψ on PV , and by Ũ the projection of U on PUd.

Thus:
→̃
ψ(TW (y, h)) = Ũ(y)

→̃
ψ(y, h).

Consider the group extension W ×Ũ PUd. Then
→̃
ψ(Tn

W (y, h)) = Ũ (n)(y)
→̃
ψ(y, h).

For fixed y, {
→̃
ψ(y, h)}h∈H spans the space, so whenever Tn

W (y, h) = (Tny, h +
ρ(n)(y)) is close to (y, h) (by ergodicity this happens for a generic y, and is inde-
pendent of h), Ũ (n)(y) is close to the identity. This implies that the foregoing group
extension is not ergodic, and furthermore, the Mackey group is trivial. Thus for
some projective unitary matrix function M̃ :

(6) M̃(TW (y, h)) = Ũ(y)M̃(y, h).

Also for any h′,
M̃(TW (y, h + h′)) = Ũ(y)M̃(y, h + h′).

Thus
M̃−1(TW (y, h + h′))M̃(TW (y, h)) = M̃−1(y, h + h′)M̃(y, h).
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By ergodicity

M̃−1(y, h + h′)M̃(y, h) = Ã(h′),

for all h′, a.e. (y, h). By Fubini’s theorem there exists h0 such that

(7) M̃(y, h) = M̃(y, h0)Ã−1(h − h0),

for a.e. (y, h). The function Ã(h′) is a homomorphism of H:

Ã(h′ + h′′) = M̃−1(y, h + h′ + h′′)M̃(y, h)

= M̃−1(y, h + h′ + h′′)M̃(y, h + h′)M̃−1(y, h + h′)M̃(y, h)

= Ã(h′′)Ã(h′).

Recall P : Ud → PUd is the natural projection. We can find a measurable function
A : H → Ud so that P ◦ A = Ã and

A(H) ⊂ P−1Ã(H).

Then by Lemma 3.5, A(H) is a commuting set. Substituting equation (7) in equa-
tion (6) we get

M̃(Ty, h0)Ã−1(h + ρ(y) − h0) = M̃(Ty, h + ρ(y))

= Ũ(y)M̃(y, h)

= Ũ(y)M̃(y, h0)Ã−1(h − h0).

Thus

Ũ(y) = M̃(Ty, h0)Ã−1(ρ(y))M̃−1(y, h0)

or

(8) U(y) = M(Ty, h0)A(−ρ(y))M−1(y, h0)d(y),

where d(y) is a scalar matrix. As A(H) is a commuting set, it is simultaneously
diagonalizable:

(9) A(h) = N−1D(h)N.

Therefore
U(y) = M(Ty, h0)N−1D(−ρ(y))NM−1(y, h0)d(y).

Denote M ′(y) = M(y, h0). Substitute U(y) in equation (5):

σ−1(y, h)NM ′−1(Ty)
→
ψ (Ty, h + ρ(y)) = D(−ρ(y))d(y)NM ′−1(y)

→
ψ (y, h).

Now each coordinate gives us the desired result. �

3.7. Remark. If H in Theorem 3.6 is not necessarily connected, but the cocycle ρ

is cohomologous to a constant: ρ(y) = c f(Ty)
f(y) , then we do not need to use Lemma

3.5, and the result holds as for some scalar matrix d(y) : Y 0 → S1,

A(ρ(y)) = A(cf(Ty)f−1(y)) = A(f(Ty))A(c)A−1(f(y))d(y).

Now diagonalize A(c) : A(c) = UDU−1 and substitute in equation (8).
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3.8. Theorem. Let Y = (Y 0,BY , µY , TY ) be an ergodic m.p.s. For i = 1, . . . , k
let Yi = (Y 0,BY , µY , T i

Y ). Let W = Y ×ρ H be an ergodic group extension, where
H is a connected abelian group, and let Wi = Yi ×ρ(i) H (notice that TWi

= T i
W ).

Let ν be a joining of the measures on Yi, and let µ be a measure on ΠW 0
i that

is the conditional product measure with respect to ν. Let F : ΠW 0
i → S1 be a µ

measurable function. For i = 1, . . . , k, let σi : W 0 → S1 be measurable functions,
and denote by π : W 0 → Y 0 the projection. Suppose µ a.e.

k∏
i=1

σ
(i)
i (wi) =

F (TW1w1, . . . , TWk
wk)

F (w1, . . . , wk)
.

Then there exist measurable functions gi, Gi : Y 0 → S1 such that

(10) σ
(i)
i (w) = gi(π(w))

Gi(TWi
(w))

Gi(w)
.

Proof. The proof is similar to the proof of Theorem 3.6. For i = 1, . . . , k let
Xi = Wi ×σi

S1. Let X be the system with X0 =
∏

X0
i , µX the conditional

product measure with respect to ν, and TX = TX1 × . . . × TXk
. The function

(11) F̃ (w1, ζ1, . . . , wk, ζk) = F (w1, . . . , wk)ζ−1
1 . . . ζ−1

k

is invariant under TX . Proceeding as in Theorem 3.6 we find that equation (10)
holds on the ergodic components of T i

W . As TW is ergodic, T i
W has finitely many

ergodic components. Let Yl be an ergodic component of T i
Y . The ergodic compo-

nents of T i
W which project onto Yl are determined by the Mackey group Ml which

is a closed subgroup of H. As T i
W has finitely many ergodic components, Ml is of

finite index in H, but H is connected, therefore has no closed subgroups of finite
index. Therefore the ergodic components of T i

W are of the form Yl × H. �

3.9. Corollary. Let Y be an ergodic m.p.s., X = Y ×ρ H an ergodic abelian ex-
tension where either H is connected or the cocycle ρ is cohomologous to a con-
stant. Suppose there exists a measurable family of measurable functions {fu}u∈H ,
fu : Y 0 × H → S1 such that

σ(y, h + u)
σ(y, h)

=
fu(TX(y, h))

fu(y, h)
.

Then there exist measurable functions g : Y 0 → S1 and F : Y 0 ×H → S1 such that

σ(y, h) = g(y)
G(TX(y, h))

G(y, h)
.

Proof. Make the coordinate change: h1 = h + u; h2 = h. Then

fu(y, h) = f(y, u, h) = f ′(y, h + u, h) = f ′(y, h1, h2)

and
fu(Ty, h + ρ(y)) = f ′(Ty, h1 + ρ(y), h2 + ρ(y)).

Now apply Theorem 3.6. �

3.10. Lemma. Let Y = Z ×ρ H be an ergodic abelian extension of Z, and F :
Z0 × H → S1, g : Z0 → S1 measurable functions such that

g(z) =
TY F (z, h)
F (z, h)

.
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Then there exists χ ∈ Ĥ, and k : Z0 → S1 such that

F (z, h) = k(z)χ(h).

Proof. Take the Fourier expansion of F :

F (z, h) =
∑

ki(z)χi(h).

Then for all i,
ki(TZz)χi(h)χi(ρ(z)) = g(z)ki(z)χi(h).

Ergodicity of TZ implies that |ki(z)| is constant a.e. The fact that |F | = 1 implies
that there exist an i for which |ki(z)| 
= 0. If there are two such indices i, j, then

χi

χj
(ρ(z))

is a coboundary. As TY is ergodic, χi/χj = 1 (otherwise the Mackey group of the
extension Z ×ρ H is not H). �

3.11. Notation. Let (X0
1 ,B1), (X0

2 ,B2) be measure spaces. Denote

B(X0
1 , X0

2 ) = {f : X0
1 → X0

2 , f measurable}.

3.12. Lemma. Let Y = Z ×ρ H be an ergodic abelian extension of Z, (X, µ)
a measure space, and let x → fx(y) be a Borel measurable function from X to
B(Y 0, S1). Suppose for all x ∈ X there are functions gx(z), Fx(y) ∈ B(Y 0, S1)
such that

(12) fx(y) = gx(z)
TY Fx(y)
Fx(y)

.

Then there is a µ measurable choice of gx(z), Fx(y).

Proof. Endowed with the L2 topology, B(Y 0, S1) is a Polish group. Let B(Z0, S1)
be the closed subgroup of B(Y 0, S1) of functions that depend only on the z coordi-
nate, and let f → f̄ be the natural projection onto B̄ = B(Y 0, S1)/B(Z0, S1), with
the induced topology. By a theorem of Dixmier ([BK96], Theorem 1.2.4) there is a
measurable section s : B̄ → B. Equation (12) implies that

f̄x(y) =
TY F̄x(y)
F̄x(y)

.

Define ϕ : B̄ → B̄ by ϕ(f̄) = TY f̄/f̄ . If ϕ(f̄) = ϕ(ḡ), then for some function h(z),

TY
f
g (y)

f
g (y)

= h(z).

By 3.10 this implies that up to multiplication by a function of z, f
g belongs to a

countable set; thus ϕ is countable to one. By Lusin [Lu30] ϕ(B̄) is a measurable
set and there is a measurable function ψ : ϕ(B̄) → B̄ s.t.

ϕ ◦ ψ = Id|ϕ(B̄).

Now if
ψ(f̄x) = F̄x,

then

f̄x = ϕ ◦ ψ(f̄x) =
TY F̄x

F̄x
.
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The composition
x → fx → f̄x → F̄x → Fx

gives a measurable choice of Fx, and gx is measurable as a quotient of measurable
functions. �

3.13. Remark. If gx(z) ∈ B(Y 0, ∗) (gx is constant), then the same proof works to
give a measurable choice of gx, Fx.

3.14. Notation. We write f ∼ g if f/g = const.

3.15. Lemma. Let X = Y ×ρ H be an ergodic abelian extension of Y . Let σ :
Y 0 × H → S1 be such that for all u ∈ H there exists a measurable function fu :
Y 0 × H → S1 and a constant λu such that

(13)
σ(y, h + u)

σ(y, h)
= λu

fu(TX(y, h))
fu(y, h)

.

Then there exists a measurable family of measurable functions {fu}u∈H , a measur-
able family of constants {λu}u∈H satisfying the above equation, and a neighborhood
U of zero in H such that

fu1+u2(y, h) ∼ fu2(y, h + u1)fu1(y, h),
λu1+u2 = λu1λu2

whenever u1, u2, u1 + u2 ∈ U .

Proof. By Remark 3.13 we may assume that the families {fu}u∈H , and {λu}u∈H

depend measurably on u. Using equation (13) we get

σ(y, h + u1 + u2)
σ(y, h)

= λu1+u2

TXfu1+u2(y, h)
fu1+u2(y, h)

= λu1λu2

TXfu1(y, h + u2)
fu1(y, h + u2)

TXfu2(y, h)
fu2(y, h)

.

This implies that
fu1+u2(y, h)

fu1(y, h + u2)fu2(y, h)
is an eigenfunction of TX and that

λu1λu2

λu1+u2

is an eigenvalue. Let Z be the Kronecker factor of X, π : X0 → Z0 the projection
map, let N parametrize Ẑ, and let ψN(u1,u2)(z) be a character of Z s.t.:

(14)
fu1+u2(y, h)

fu2(y, h + u1)fu1(y, h)
∼ ψN(u1,u2) ◦ π(y, h)

and

(15)
λu1λu2

λu1+u2

= ψN(u1,u2)(α).

Any two characters taking the same value on α are the same. Therefore ψN(u1,u2)

is symmetric, i.e.,
ψN(u1,u2) = ψN(u2,u1).
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We now show that ψN(u1,u2) satisfies a 2-cocycle equation:

ψN(u1+u2,u3) ◦ π(y, h) ∼ fu1+u2+u3(y, h)
fu3(y, h + u1 + u2)fu1+u2(y, h)

,

ψN(u1,u2+u3) ◦ π(y, h) ∼ fu1+u2+u3(y, h)
fu2+u3(y, h + u1)fu1(y, h)

.

Thus
(ψN(u1+u2,u3) ◦ π(y, h))fu3(y, h + u1 + u2)fu1+u2(y, h)

∼ (ψN(u1,u2+u3) ◦ π(y, h))fu2+u3(y, h + u1)fu1(y, h).

Dividing both sides by

fu1(y, h)fu3(y, h + u1 + u2)fu2(y, h + u1)

we get

(ψN(u1+u2,u3) ◦ π(y, h))
fu1+u2(y, h)

fu1(y, h)fu2(y, h + u1)

∼ (ψN(u1,u2+u3) ◦ π(y, h))
fu2+u3(y, h + u1)

fu2(y, h + u1)fu3(y, h + u1 + u2)
.

Combining the above equation with equation (14),

(16) ψN(u1+u2,u3)ψN(u1,u2) = ψN(u1,u2+u3)ψN(u2,u3).

As u → fu is a measurable function, fu2(y), fu2+u1(y) are close in measure for
small u1, most u2, and the same goes for fu2(y, h), fu2(y, h + u1). Therefore the
expression in equation (14) is close (in measure) to ¯fu1(y, h). But N1 
= N2 implies
that

‖ψN1 − ψN2‖2 =
√

2;
thus by equation (14), ψN(u1,u2) = ψÑ(u1)

for u1 ∈ U ′ a neighborhood of zero in H,
u2 ∈ A a set of positive measure. The set A − A contains a neighborhood of zero
U ′′. Let U = U ′ ∩ U ′′. Take any u1, u2, u1 + u2 ∈ U , and find an element u3 ∈ A
such that u3 + u2 ∈ A. Then by (16)

ψN(u1,u2) = ψÑ(u1)
ψ−1

Ñ(u1+u2)
ψÑ(u2)

.

For u ∈ U , denote
f̃u(y, h) = (ψÑ(u) ◦ π(y, h))fu(y, h),

and
λ̃u = λuψ−1

Ñ(u)
(α).

By equations (14), if u1, u2, u1 + u2 ∈ U , then

(17) f̃u1+u2(y, h) ∼ f̃u2(y, h + u1)f̃u1(y, h).

By equation (15), if u1, u2, u1 + u2 ∈ U , then

�(18) λ̃u1+u2 = λ̃u1 λ̃u2 .

3.16. Lemma. Let H be a torus (possibly infinite dimensional) and let X = Y ×ρH
be an ergodic abelian extension of Y . Let σ : Y 0 × H → S1 be such that for all
u ∈ H there exists a measurable function fu : Y 0×H → S1 and a constant λu such
that

(19)
σ(y, h + u)

σ(y, h)
= λu

fu(TX(y, h))
fu(y, h)

,
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and λu and fu depend measurably on u. Then there is a closed subgroup J < H
such that H/J = Tn and such that if π : H → H/J is the natural projection, then
there exists a function σ̃ : Y 0 × (H/J) → S1 such that

σ(y, h) = σ̃(y, π(h))
F (TX(y, h))

F (y, h)
.

Proof. By Lemma 3.15 the functions fu can be chosen such that λu is multiplicative
in a zero neighborhood U in H. The neighborhood U contains J1, a closed connected
subgroup of H, such that H/J1 = T

l. Restricted to J1, λu is a character. Thinking
of H (measurably) as H/J1×J1 with coordinates (h0, j) the above equation becomes

(20)
σ(y, h0, j + u)

σ(y, h)
= λu

fu(Ty, h + ρ(y))
fu(y, h)

,

where u ∈ J1. This is the same as

(21)
λ−1

j+uσ(y, h0, j + u)

λ−1
j σ(y, h)

=
fu(Ty, h + ρ(y))

fu(y, h)
.

Applying Corollary 3.9 and replacing Y with (Y × H/J1) and H with J1 we get

λ−1
j σ(y, h0, j) = σ̃(y, h0)

TρF (y, h)
F (y, h)

or

σ(y, h0, j) = λj σ̃(y, h0)
TρF (y, h)
F (y, h)

.

Now for j in the kernel of λ we have λj = 1. The image of λ is S1; thus if ker λ is
J , then H/J = T

l+1. �

3.17. Remark. The group H is a compact connected abelian (metrizable) group
and therefore has countably many closed subgroups J such that H/J is a finite-
dimensional torus.

3.18. Remark. If H is any connected compact abelian group (not necessarily a
torus), then J1 in the foregoing proof is not necessarily connected. By the same
proof we will get that σ is cohomologous to a cocycle lifted from a product of a
finite torus and a totally disconnected compact abelian group.

3.19. Lemma. Let X = Y ×ρ H be an abelian extension of Y with ρ(y) cohomolo-
gous to a constant function (now H is any compact abelian group, not necessarily
connected). Let σ be as in Lemma 3.16. Then there is a subgroup J < H, and a
finite group Ck, such that H/J = Tn × Ck and letting π : H → H/J denote the
natural projection, then there exists a function σ̃ : Y 0 × H/J → S1 such that

σ(y, h) = σ̃(y, π(h))
TXF (y, h)
F (y, h)

.

Proof. By Lemma 3.15 the functions fu can be chosen such that λu is multiplicative
in a zero neighborhood U in H. The neighborhood U contains J1, a closed subgroup
of H, such that H/J1 = Tl × Cj , where Cj is a finite group; thus λu is a character
of J1. Now proceed as in Lemma 3.16 (the image of λ is either S1 or a finite
group). �
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4. Lie groups and nilsystems

4.1. Let N be a k-step, simply connected nilpotent Lie group, Γ a discrete subgroup
s.t. N/Γ is compact. Let B be the (completed) Borel algebra, m the Haar measure
on N/Γ, and let a ∈ N . The system X = (N/Γ,B, m, T ) where TgΓ = agΓ is
called a nilflow. We will sometimes denote this system (N/Γ, a). We will assume
that the system X is ergodic. Let N1 = N , and for i > 1: Ni = [Ni−1, N ] (N is a
k-step nilpotent group if Nk+1 = {1}), and for i ≥ 1 let Γi = Γ ∩ Ni. The groups
Nj for j > 1 are connected (see [L05]). The group Nk is abelian and connected
and therefore isomorphic to Rm for some positive integer m. Then Γi is a discrete
subgroup of Ni, and Ni/Γi is compact. Let mi be the Haar measure on Ni/Γi, and
let l be a positive integer. Let

M = {(y1, y
2
1y2, . . . ,

l∏
j=1

y
(l

j)
j ) : y1 ∈ N1, y2 ∈ N2, . . . , yl ∈ Nl} ⊂ N l,

where
k∏

j=1

y
(l

j)
j = yl

1y
(l
2)

2 . . . y
( l

k)
k

(Nj = {1} for j > k). The elements of M are called Hall–Petresco (HP) sequences
and form a group (see [La54], [L98]). The first k + 1 elements in the sequence
determine the rest. Computation shows that if n ∈ N and (n1, . . . , nl) ∈ M , then
([n, n1], . . . , [n, nl]) ∈ M . Let Λ = M ∩Γl. The nilmanifold Y = M/Λ is embedded
in (N/Γ)l, and let ν be the Haar measure on Y . Let f1, . . . , fl be bounded functions.
Then for almost all g ∈ N for all (n1, . . . , nl) ∈ M ,

(22) lim
N→∞

1
N

N∑
n=1

l∏
j=1

fj(ajnnjgΓ) =
∫

Y

l∏
j=1

fj(gzj)dν(z1, . . . , zl).

For more details, see [Z05]. A similar result holds for the action of (ar1 , . . . , arl) for
any distinct ri ∈ Z.

4.2. Remark. If N/Γ is connected, then ak is ergodic for any k 
= 0. Therefore
equation (22) remains the same if we replace a by ak.

4.3. Let (N/Γ, a) be a k-step nilflow. Define

τl(a) := a × . . . × al, �l(a) := a × . . . × a.

Let �l(m) be the diagonal measure on (N/Γ)l.
Define a measure on (N/Γ)l by

(23) �̄l(m) := lim
N→∞

1
N

N∑
n=1

τl(a)n�l(m).

By the above discussion the ergodic components of �̄l(m) are parametrized by N/Γ
and are (a.e. g) of the form M(gΓ, . . . , gΓ).

4.4. The system (N/Γ, a) may be represented as an Abelian extension of a (k− 1)-
step nilflow (N/Γ, a) = (N/NkΓ ×ρ Nk/Γk). Inductively (N/Γ, a) may be rep-
resented as a tower of Abelian extensions, starting out with a point. (The first
block in the tower would be the Kronecker factor N/N2Γ.) Consider the system
Y = ((N/NkΓ)l, τl(a), �̄l). Then (Y ×(ρ(1),...,ρ(l)) (Nk/Γk)l, τl(a)) is an abelian
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group extension of Y . The Mackey group, associated with the ergodic components
of the group extension that are mapped onto the ergodic components of �̄l, is

Mk,l = {(g1, g
2
1g2, . . . ,

k∏
j=1

g
(l

j)
j ) : g1, . . . , gk ∈ Nk}

/
Γl

k .

In additive notation, denote H = Nk/Γk. Then

Mk,l = {(h1, 2h1 + h2, . . . ,

k∑
j=1

(
l

j

)
hj) : h1, . . . , hk ∈ H}.

4.5. Lemma. Let X = (N/Γ, a) be an ergodic k-step nilflow. Then for r ≥ 2,
Yr(X) = (N/NrΓ, a).

Proof. We prove this by induction on the nilpotency level of N . Let N be a 1-step
nilpotent group (thus (N/Γ, a) is a Kronecker system). Let ψ be an eigenfunction
of (N/Γ, a). Then

1
N

N∑
n=1

Tn(ψ)2T 2n(ψ)−1 = ψ.

Therefore

L2(Y1) = span{eigenfunctions} = L2(N/Γ).

Now assume the statement for (k − 1)-step nilflows. Let X = (N/Γ, a) be a k-step
nilflow. By Corollary 2.4, Yr(N/NrΓ, a) is a factor of Yr(X). By the induction
hypothesis Yr(N/NrΓ, a) = (N/NrΓ, a). But the integral in equation (22) for l = r
is a function on N/Γ that is invariant under translation by elements of Nr. By
Lemma 2.3, L2(Yr(X)) is spanned by these integrals. Let r = k + 1, and let
f(gΓ) ∈ L∞(N/Γ). We want to show that the function f is in the span of the
integrals one obtains in (22) when nj = 1 for j = 1, . . . , k + 1. As the value of
the limit in (22) is the same for any choice of (n1, . . . , nk+1) ∈ M we may consider
the averages in (22) as averages over functions f1 ⊗ . . . ⊗ fk+1 ∈ L∞(�̄k+1(m)).
The element gΓ is determined by the first k + 1 elements m1gΓ, . . . , mk+1gΓ of
an HP geometric progression (see [L98]). Therefore there exists a function F ∈
L∞(�̄k+1(m)) such that

F (m1gΓ, . . . , mk+1gΓ) = f(gΓ).

Now as

F (m1gΓ, . . . , mk+1gΓ) = F (am1gΓ, . . . , ak+1mk+1gΓ)

we get

lim
N→∞

1
N

N∑
n=1

τk+1(a)nF (m1gΓ, . . . , mk+1gΓ) = f(gΓ).

Now approximate F (in L2(�̄k+1(m))) by sums of functions of the type f1 ⊗ . . .⊗
fk+1. �

4.6. Corollary (Theorem 1.8). If X is an ergodic k-step pro-nilflow, then Yk+1(X)
= X.
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4.7. Lemma. Let (N/Γ, a) be a k-step nilflow. Let f ∈ B(N/Γ, S1). Let {λc} be a
family of constants, {fc}c∈Nk

be a family of functions in B(N/Γ → S1) such that

(24)
f(cy)
f(y)

= λc
fc(ay)
fc(y)

for all c ∈ Nk. Then we can choose fc, λc such that

fc1(c2y)fc2(y) ∼ fc1c2(y).

Proof. By Lemma 3.15 this holds in a neighborhood of zero U ⊂ Nk. Notice that
multiplying fc by a constant does not affect equation (24). If c ∈ Nk, c = c1 . . . cs,
and c1, . . . , cs ∈ U , define

fc(y) = fc1(y)fc2(c1y) . . . fcs
(c1 . . . cs−1y).

We claim this is well defined (up to a constant multiple) on Nk: given two sequences
c1, . . . cs and c′1, . . . c

′
t with equal product, we can break up the “steps” cr into an

equal number of small steps and we can interpolate a sequence of such paths where
two consecutive paths differ only within a small cube which can be translated to
be inside U . Since the resulting λ’s and f ’s will be the same for consecutive paths,
they will be the same for the initial and the final ones. �

4.8. Lemma. Assume N/Γ has no nontrivial finite factors. The group N/N2
∼= Rn

or N/N2
∼= Z × R

n for some integer n. The action of a on it is given by rotation
by some element α or (1, α) respectively. Under the conditions of Lemma 4.7 we
can choose fc, λc so that

f(cy)
f(y)

= e2πi〈Lα,c〉 fc(ay)
fc(y)

,

for an n × m integer matrix L.

Proof. We first treat the case where N/N2
∼= Z × Rn. Now λc is a continuous

multiplicative function on Nk = Rm. We now use additive notation for Nk. In this
notation λc is of the form e2πi〈r,c〉. Let ei denote the standard basis for Rm. Each
fei

is an eigenfunction (as the left side of equation (24) is 1). Thus there exists
�ni ∈ Zn such that

fei
(y) = Ce2πi〈�ni,ȳ〉,

where ȳ ∈ N/N2, with eigenvalue e2πi〈�ni,α〉. Finally for each i there is ki ∈ Z such
that

〈r, ei〉 = 〈�ni, α〉 + ki.

Now take L to be the matrix with the ith row being (ki, �ni) (the action of a on
Z × Rn given by (1, α)). For the case N/N2

∼= Rn we get 〈r, ei〉 = 〈�ni, α〉 and take
L to be the matrix with the ith row being (�ni). �

4.9. Lemma. For any c1, c2 ∈ Nk, fc1 and fc2 satisfying equation (24) we have

fc1(c2y)
fc1(y)

=
fc2(c1y)
fc2(y)

.

Proof. The function
fc1(c2y)
fc1(y)

/
fc2(c1y)
fc2(y)
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is invariant under rotation by a. Therefore

fc1(c2y)
fc1(y)

= C(c1, c2)
fc2(c1y)
fc2(y)

.

Using Lemma 4.7,

C(c1, c2c)
fc2(c1cy)fc(c1y)

fc2(cy)fc(y)
= C(c1, c2c)

fc2c(c1y)
fc2c(y)

=
fc1(c2cy)
fc1(y)

=
fc1(c2cy)
fc1(cy)

fc1(cy)
fc1(y)

= C(c1, c2)C(c1, c)
fc2(c1cy)
fc2(y)

fc(c1y)
fc(y)

.

Therefore C(c1, c2) is multiplicative in c1, c2. If c ∈ Nk ∩ Γ, then fc is an eigen-
function. Thus for c ∈ Nk ∩ Γ, C(c1, c) = C(c, c2) = 1. This implies that for any
c1 ∈ Nk, C(c1, ∗) is a character of Nk/(Nk ∩ Γ), which is a compact connected
abelian group. As there are countably many of those, C(c1, c2) ≡ 1. �

4.10. Definition. Let X = (X0,B, µ, T ) be an m.p.s. Let A ⊂ B be a T -invariant
sub-σ-algebra. If

F = {f : f measurable, |f | = 1, T f/f is A measurable},

then we define D(A) as the smallest σ-algebra with respect to which the functions
of F are measurable, and define Dn(A) = D(Dn−1(A)), where D0(A) = D(A).
T is said to have generalized discrete spectrum [mod A] of finite type if for some
n ∈ N, Dn(N ) [Dn(A)] is B, where N is the trivial σ-algebra of null sets and
their complements. Since Dn(N ) ⊂ Dn(A), generalized discrete spectrum of finite
type implies generalized discrete spectrum mod A of finite type. The qualification
“generalized” is dropped when n = 1.

4.11. Example. If (Z × H, Tρ) is an Abelian extension of the Kronecker system
(Z, T ), then Tρ has discrete spectrum of finite type mod the Kronecker algebra,
and generalized discrete spectrum of finite type (mod the trivial algebra). Another
example: if (N/Γ, T ) is a nilflow, then T has generalized discrete spectrum of finite
type.

4.12. Proposition (Parry [P73]). If T is ergodic with discrete spectrum mod A,
then there exists a compact Abelian group G of measure-preserving transformations
such that T (gx) = gTx for g ∈ G and A = {B ∈ B : gB = B ∀g ∈ G}.

5. The van der Corput lemma

One of the main tools in studying characteristic factors is the van der Corput
lemma. The formulation below is due to Bergelson [Be87]:

5.1. Lemma (van der Corput). Let {un} be a bounded sequence of vectors in a
Hilbert space H. Assume that for each m the limit

γm := lim
N→∞

1
N

N∑
n=1

〈un, un+m〉
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exists, and

(25) lim
M→∞

1
M

M∑
m=1

γm = 0.

Then

1
N

N∑
n=1

un
H−→ 0.

Proof. Let M be large enough so that the expression in (25) is small. Let N be
large enough with respect to M so that the two expressions

1
NM

N∑
n=1

M∑
m=1

un+m,
1
N

N∑
n=1

un

are close. We have:

‖ 1
NM

N∑
n=1

M∑
m=1

un+m‖2 ≤ 1
N

N∑
n=1

‖ 1
M

M∑
m=1

un+m‖2

=
1

NM2

N∑
n=1

M∑
m1,m2=1

〈un+m1 , un+m2〉
N→∞−→ 1

M2

M∑
m1,m2=1

γm2−m1 ,

which is small. �

6. Proof of Theorem 1.7

Let X be an ergodic m.p.s., and let Yj(X) be the j-u.c.f. of X, and let πj : X →
Yj(X) be the factor map. When the context is clear we will write T for TX , and
Yj for Yj(X). Let �a = (a1, . . . , al) ∈ Zl. We will always assume that the ai are
distinct. Denote

τ�a(T ) := T a1 × . . . × T al ,

�l(T ) := T × . . . × T.

When the context is clear we will use τ�a for τ�a(T ), and T or Tl for �l(T ). Let
�l(µX) be the diagonal measure on (X0)l. We will prove Theorem 1.7 inductively,
along with a sequence of statements (Theorem 1.7 is item (7)).

6.1. Theorem. (1) Let �a = (a1, . . . , aj+1) ∈ Zj+1. The limit

�̄�a(µX) := lim
N→∞

1
N

N∑
n=1

τn
�a �j+1(µX)

exists. (The convergence here is weak convergence relative to the algebra of
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functions on the product space spanned by products of bounded measurable
functions.) Furthermore �̄�a(µX) is the conditional product measure relative
to �̄�a(µYj

).
(2) Yj+1(X) is an isometric extension of Yj(X).
(3) Let X be an ergodic m.p.s. Let l ∈ N. Let µ be a measure on (X0)l, let

�a = (a1, . . . , al) ∈ Zl, and for i = 1, . . . , l, let fi ∈ B(X0, S1). Recall that
f (m)(x) = f(Tm−1x) . . . f(Tx)f(x). We say that (f1, f2, . . . , fl) is of type
�a w.r.t. µ if there exists a µ-measurable function F taking values in S1,
such that µ almost everywhere

l∏
i=1

f
(ai)
i (xi) =

τ�aF (x1, . . . , xl)
F (x1, . . . , xl)

.

Let H be a compact abelian group, Y a (j − 1)-step pro-nilflow. We say
that ρ : Y → H is of type j if for any character χ ∈ Ĥ, there exists an
integer l, a character χ̃ = (χ1, . . . , χl) ∈ Ĥ l, and �a ∈ Z

l, such that χ = χk

for some l ≥ k ≥ 1 and (χ1 ◦ ρ, . . . , χl ◦ ρ) is of type �a w.r.t. �̄�a(µY ). Let
Y be a (j − 1)-step pro-nilflow, and let (f1, f2, . . . , fl) be of type �a w.r.t.
�̄�a(µY ). Then
(a) fk is cohomologous to a function lifted from a (j − 1)-step nilflow.
(b) For k = 1, . . . , l, fk belongs to a countable set modulo coboundaries.
(c) For k = 1, . . . , l, fk : Y → S1 is of type j.
(d) If ρ : Y → H is of type j, then for any character χ of H, χ ◦ ρ is of

type j.
(e) If f, g : Y → S1 are of type j, then fg is of type j.

(4) If X = Yj(X) ×σ H is an abelian extension by a cocycle of type j, then X
can be given the structure of a j-step pro-nilflow. If Yj(X) is a nilflow and
H is a finite-dimensional torus, then X is a nilflow.

(5) A factor of a j-step pro-nilflow is a j-step pro-nilflow.
(6) If X is a j-step pro-nilflow, then X = Yj(X)×σ H is an abelian extension

of Yj(X) by a cocycle of type j. If j ≥ 1, then H is connected.
(7) Yj+1(X) can be given the structure of a j-step pro-nilflow.
(8) Let a1, . . . , aj+1 ∈ Z, and f1, . . . , fj+1 ∈ L∞(µX). Then the averages

1
N

N∑
n=1

j+1∏
k=1

fk(T aknx)

converge in L2(µX).

Proof. For j = 0, Yj+1(X) is the pro-cyclic factor. For j = 1, Yj+1(X) is the
Kronecker factor which is an abelian extension (by a connected group) of the pro-
cyclic factor by a constant cocycle, and all statements are easily verified. Assume
all statements hold when replacing j with j − 1.
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6.2. Proof of Theorem 6.1(1):

lim
N→∞

1
N

N∑
n=1

∫
τn
�a f1 ⊗ . . . ⊗ fj+1d�j+1(µX)

= lim
N→∞

1
N

N∑
n=1

∫
f1(Tna1x)f2(Tna2x) . . . fj+1(Tnaj+1x)dµX

= lim
N→∞

1
N

N∑
n=1

∫
f1(x)f2(Tn(a2−a1)x) . . . fj+1(Tn(aj+1−a1)x)dµX

= lim
N→∞

1
N

N∑
n=1

∫
E(f1|Yj)(πjx)

j∏
i=1

(Tn(ai+1−a1)E(fi+1|Yj)(πjx))dµYj

=
∫

E(f1|Yj) ⊗ . . . ⊗ E(fj+1|Yj)d�̄�a(µYj
).

By the above calculation,

(26)
∫

f1 ⊗ . . . ⊗ fj+1d�̄�a(µX) =
∫

E(f1|Yj) ⊗ . . . ⊗ E(fj+1|Yj)d�̄�a(µYj
);

thus �̄�a(µX) is the conditional product measure relative to �̄�a(µYj
).

6.3. Proof of Theorem 6.1(2). We must show that if E(fk|BŶj(X)) = 0 for some k,

then the averages 1
N

∑N
n=1

∏j+1
k=1 fk(T aknx) converge to zero in L2(µX). We apply

the van der Corput Lemma 5.1 with

un =
j+1∏
k=1

Tnakfk(x).

We calculate γm:

γm = lim
1
N

N∑
n=1

〈un, un+m〉

= lim
1
N

N∑
n=1

∫ j+1∏
k=1

Tnakfk(x)Tnak+makfk(x)dµX

= lim
1
N

N∑
n=1

∫ j+1∏
k=1

Tnak(fkTmakfk(x))dµX

=
∫

(f1 ⊗ . . . ⊗ fj+1) τm
�a (f1 ⊗ . . . ⊗ fj+1) d�̄�a(µX).

By the ergodic theorem, there exists a τ�a-invariant function D�a ∈ L2(�̄�a(µX)) such
that

(27) lim
1
M

M∑
m=1

γm =
∫

f1 ⊗ . . . ⊗ fj+1D�a(x1, . . . , xj+1)d�̄�a(µX).

By 6.2, �̄�a(µX) is the conditional product measure relative to �̄�a(µYj
). By Theo-

rem 2.11, D�a is measurable w.r.t. (Ŷj(X))j+1. If E(fk|BŶj(X)) = 0, then the average
(27) is zero, and by the van der Corput Lemma 5.1, so is the original average.



76 TAMAR ZIEGLER

6.4. Proof of Theorem 6.1(3). This part is the bulk of the theorem, and the proof of
its items will be intertwined with the proof of the rest of the items in Theorem 6.1.
Let Y be a (j − 1)-step pro-nilflow, with j ≥ 2. By Corollary 4.6, Y = Yj(Y ). By
the induction hypothesis in Theorem 6.1(6), we can identify Y with a presentation
as a tower of abelian extensions Y = H1 ×σ1 H2 × . . .×σj−1 Hj where σi is of type
i, Hi is connected for i > 1, and Yi(Y ) = H1 ×σ1 H2 × . . . ×σi−1 Hi. Specifically
Y = Yj−1(Y )×σj−1 Hj , where Hj is a connected compact abelian group, and σj−1 is
of type j − 1. Denote Yj−1 = Yj−1(Y ). Let πj−1 : Y → Yj−1 be the projection. We
identify y ∈ Y with (πj−1y, h) ∈ πj−1Y ×Hj . Let l be a positive integer. To simplify
the notation we now restrict ourselves to the special case where �a = (1, 2, . . . , l).
The analysis is similar for any �a ⊂ Z

l.
We write �̄l(µY ) for the measure �̄(1,...,l)(µY ), and we say that (f1, . . . , fl) is

of type l w.r.t. �̄l(µY ) if (f1, . . . , fl) is of type (1, . . . , l) w.r.t. �̄l(µY ). In this case
there exists a function F ∈ L∞(�̄l(µY )) such that

(28)
l∏

k=1

f
(k)
k (yk) =

τF (y1, . . . , yl)
F (y1, . . . , yl)

.

6.5. Remark. As Y is a (j − 1)-step pro-nilflow, on the support of �̄l(µY ), the
coordinates yj+1, . . . , yl are determined by the first j coordinates y1, . . . , yj , and
this correspondence is invariant under τ (if j = 2, then Y is an abelian group,
and y1, y2, y3 form an arithmetic sequence; in general see the discussion in 4.1).
Therefore the function F (y1, . . . , yl) can be replaced by a function of j coordinates,
and equation (28) can be written in the form

(29)
l∏

k=1

f
(k)
k (yk) =

τF (y1, . . . , yj)
F (y1, . . . , yj)

.

We will repeatedly refer to this equation.

6.6. Remark. The measure �̄j(µY ) = �̄j(µYj−1)× (mH:j)j (replace X by Y and j
by j − 1 in equation (26)).

6.7. Lemma. Let (f1, . . . , fj+1) be of type j + 1 w.r.t. �̄j+1(µY ). Then for each
k = 1, . . . , j +1 there exists a family of functions {gk,u}u∈Hj

⊂ B(πj−1Y
0, S1), and

a family of functions {fk,u}u∈Hj
⊂ B(Y 0, S1) such that

(30)
fk(πj−1y, h + u)

fk(πj−1y, h)
= gk,u(πj−1y)

Tfk,u(y)
fk,u(y)

.

Proof. We use the fact that �̄j+1(Y ) is invariant under translations by elements of
the Mackey group Mj−1,j+1, and by elements of �j+1(Hj) = {(h, . . . , h)}h∈Hj

⊂
Hj+1

j . This group is described in 4.4. Let

Mj−1,j+1(0) = (Mj−1,j+1 + �j+1(Hj)) ∩ (Hj
j × {0}).

The projection of Mj−1,j+1(0) on any j coordinates is full (i.e., Hj
j ). Let �u =

(u1, . . . , uj+1) ∈ Mj−1,j+1(0) (uj+1 = 0). Then

(31)
j+1∏
k=1

f
(k)
k (πj−1yk, hk + uk) =

τF (πj−1y1, h1 + u1, . . . , πj−1yj , hj + uj)
F (πj−1y1, h1 + u1, . . . , πj−1yj , hj + uj)

.
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Dividing equation (31) by equation (29) we get

(32)
j∏

k=1

f
(k)
k (πj−1yk, hk + uk)

f
(k)
k (πj−1yk, hk)

=
τF�u(y1, . . . , yj)
F�u(y1, . . . , yj)

,

where

F�u(y1, . . . , yj) =
F (πj−1y1, h1 + u1, . . . , πj−1yj , hj + uj)

F (y1, . . . , yj+1)
.

Using Remark 6.6 we can apply Theorem 3.8 to �̄j(µY ). For any 1 ≤ k ≤ j and
any uk ∈ Hj there exist functions gk,uk

∈ B(Y 0, S1) and fk,uk
∈ B(Y 0, S1) such

that

(33)
f

(k)
k (πj−1y, h + uk)

f
(k)
k (πj−1y, h)

= gk,uk
(πj−1y)

T kfk,uk
(y)

fk,uk
(y)

.

We still need to show that the same holds for fk (rather than f
(k)
k ): we use the fact

that Tfk
(see 2.7) and T k

f
(k)
k

= (Tfk
)k commute; therefore

(34) f
(k)
k (Ty)fk(y) = fk(T ky)f (k)

k (y).

Using equations (33), (34), and a calculation we find that the function

fk(πj−1y, h + u + v)/fk(πj−1y, h + u)
fk(πj−1y, h + v)/fk(πj−1y, h)

/
T (fk,v(πj−1y, h + u)/fk,v(πj−1y, h))

fk,v(πj−1y, h + u)/fk,v(πj−1y, h)

is T k-invariant and therefore constant on the (finitely many) ergodic components
of T k. Denote this constant by δk,u,v(π1y) (the ergodic components of T k are
determined by Y1(X)). By Lemma 3.15, δk,u,v(π1y) is multiplicative in u (also in
v) in a neighborhood of zero in Hj . By equation (33) (after iteration), (δk,u,v)k(π1y)
is an eigenvalue. Therefore δk,u,v(π1y) = 1 for u in a neighborhood of zero in Hj .
Iterating we find this is true for all u ∈ Hj (Hj is connected). By Corollary 3.9
there exist functions g̃k,v, f̃k,v such that

fk(πj−1y, h + v)
fk(πj−1y, h)

= g̃k,v(πj−1y)
T f̃k,v(πj−1y, h)
f̃k,v(πj−1y, h)

. �

6.8. Lemma. If (g1 ◦ πj−1, . . . , gl ◦ πj−1) is of type l w.r.t. �̄l(µY ), then gk :
πj−1Y → S1 is of type j − 1, for k = 1, . . . , l.

Proof. By definition there exists a �̄l(µY ) measurable function L such that
l∏

k=1

(gk)(k)(πj−1yk) =
τL(y1, . . . , yl)
L(y1, . . . , yl)

.

Taking the Fourier expansion of L with respect to the abelian group H l
j ,

L(y1, . . . , yl) =
∑

χ∈Ĥj
j

Gχ(πj−1y1, . . . , πj−1yl)χ1(h1) . . . χj(hl).

We find that for any χ ∈ Ĥ l
j ,

Gχ(y1, . . . , yl)
l∏

k=1

g
(k)
k (πj−1yk)χ̄k(σ(k)

j−1(πj−1yk)) = τGχ(πj−1y1, . . . , πj−1yl).
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The function |Gχ| is invariant under τ and therefore constant on the ergodic com-
ponents of �̄l(µYj−1). As Ĥ l

j is countable, there is a character χ ∈ Ĥ l
j , and a set

of �̄l(µYj−1) positive measure A, that is τ -invariant, and for which

(35)
l∏

k=1

g
(k)
k (πj−1yk)χ̄kσ

(k)
j−1(πj−1yk) =

τGχ(πj−1y1, . . . , πj−1yl)
Gχ(πj−1y1, . . . , πj−1yl)

.

Denote by W the system (Y l
j−1, �̄l(µYj−1), τ ). Let ρk = gkχ̄k(σj−1) : Yj−1 → S1,

and let ρ̃ = (ρ1, ρ
(2)
2 , . . . , ρ

(l)
l ). Denote ȳ := πj−1y. Consider the group extension

W ×ρ̃ (S1)l. Let Wȳ be an ergodic component of W (the ergodic components of
W are parametrized by ȳ ∈ Yj−1), and let Pȳ ⊂ (S1)l be the Mackey group asso-
ciated with the ergodic components of the group extension Wȳ ×ρ̃ (S1)l. As the
transformations

Tρ1 × (Tρ2)
2 × . . . × (Tρl

)l, Tρ1 × Tρ2 × . . . × Tρl

commute, PT ȳ = Pȳ (see Lemma 2.18), and by ergodicity, Pȳ = P is constant a.e.
as a function of ȳ. As equation (35) holds on a τ -invariant set of �̄l(µYj−1) positive
measure, we get

(ϕ, . . . , ϕ) ∈ P⊥,

where ϕ(ζ) = ζ. Therefore for a.e. ȳ, there exists a function Gȳ, so that equation
(35) holds on Wȳ when replacing Gχ with Gȳ. Notice that Gȳ is determined
up to a constant multiple on Wȳ and can therefore be chosen so that it depends
measurably on ȳ (see 3.13). Thus there exists a measurable function G such that
equation (35) holds �̄l(µYj−1) a.e. when replacing Gχ by G. This implies that
(g1 · χ̄1(σj−1), . . . , gl · χ̄l(σj−1)) is of type l w.r.t. �̄l(µYj−1). By the induction
hypothesis in 6.1(3c), (3d) the functions gkχ̄k(σj−1), χk(σj−1) are of type j − 1.
By the induction hypothesis in 6.1(3e), gk is of type j − 1. �

6.9. Corollary. Let (f1, . . . , fj+1) be of type j + 1 w.r.t. �̄j+1(µY ). Let �u ∈
Mj−1,j+1(0), and let gk,uk

satisfy equation (30). Then for k = 1, . . . , j +1, gk,uk
is

of type j − 1.

Proof. Substitute equation (33) in equation (32) and use Lemma 6.8. �

6.10. Corollary. If (f1, . . . , fj+1) is of type j + 1 w.r.t. �̄j+1(µY ), then for k =
1, . . . , j+1 there exists a family of constants {λk,u}u∈Hj

, and a family of measurable
functions {fk,u}u∈Hj

such that

(36)
fk(πj−1y, h + u)

fk(πj−1y, h)
= λk,u

Tfk,u(y)
fk,u(y)

.

Proof. By theorem 6.1(3b), using the induction hypothesis, there are countably
many gk,u up to πj−1Y -quasi-coboundaries. There exists a set U of positive measure
in Hj such that

u, v ∈ U ⇒ gk,u

gk,v
is a quasi-coboundary.

If u, u + v ∈ U and if fk,u,v = fk,u+v/fk,u, then

fk(πj−1y, h + u + v)
fk(πj−1y, h + u)

=
fk(πj−1y, h + u + v)/fk(πj−1y, h)

fk(πj−1y, h + u)/fk(πj−1y, h)
= Cu,v,k

Tfk,u,v(y)
fk,u,v(y)

.
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Thus the claim is true for v in a neighborhood of zero in Hj (as the map sending
(πj−1y, h) to (πj−1y, h + u) is onto and commutes with the T action). As Hj is
connected, equation (36) holds for all v ∈ Hj . �

6.11. Lemma. The families in the previous lemma can be chosen so that the func-
tion λk,u : Hj → S1 is multiplicative in a neighborhood of zero in Hj.

Proof. By Lemma 3.15. �

6.12. Corollary. The functions fk,u from Corollary 6.10 can be chosen so that
for some neighborhood of zero U ⊂ H, for any �u = (u1, . . . , uj+1) ∈ Mj−1,j+1 +
�j+1(Hj) ∩ U j+1,

j+1∏
k=1

λk
k,uk

= 1.

Proof. Choose the families {fk,u}, {λk,u} so that λk,u is multiplicative in a a neigh-
borhood of zero in Hj . Substituting equation (36) in equation (32), we find that∏j+1

k=1 λk
k,uk

is an eigenvalue of τ . �

6.13. Lemma. Let (f1, . . . , fj+1) be of type j + 1 w.r.t. �̄j+1(µY ). Then there
exists an integer n, and a factor Ỹ = Yj−1 × T

n of Y , such that if p : Y → Ỹ is
the factor map, then for k = 1, . . . , j + 1, fk is cohomologous to a cocycle f̃k ◦ p.
Furthermore, there exist functions g1, . . . , gj+1, where gk : Y 0

j−1 → S1 is of type
j − 1, such that

(f̃1g1 ◦ πj−1, . . . , f̃j+1gj+1 ◦ πj−1)
is of type j +1 w.r.t. �̄j+1(µỸ ), and therefore Corollary 6.10 holds when replacing
fk by f̃k and Y by Ỹ (πj−1 is the projection Ỹ → Yj−1).

Proof. By Lemma 3.16 and Remark 3.18 we can find J so that Hj/J = T
n × H̃ ,

where H̃ is a compact totally disconnected abelian group (Lemma 3.16 can be car-
ried out simultaneously for (f1, . . . , fj+1)). Consider the system W = Yj−1 ×σj−1

(Tn×H̃) (abusing the notation). This system is a factor of Yj . Therefore Yj−1(W ) =
Yj−1, W is a (j − 1)-step pro-nilflow, and Yj(W ) = W (this follows from the in-
duction hypothesis in Theorem 6.1(5), and from Corollary 4.6). If H̃ is not trivial
we get a contradiction to Yj(W ) being an extension of Yj−1(W ) by a connected
abelian group for j > 1 (this follows from the induction hypothesis in 6.1(6)). Now
Y can be presented as a skew product Y = Ỹ ×σ̃j−1 J where

σ̃j−1(ỹ) = r̄(ỹ)σj−1(πj−1(ỹ))r(T ỹ),

where r(ỹ) takes values in Hj . As in the proof of Lemma 6.8, there exists a character
(χ1, . . . , χj+1) ∈ Ĵj+1 such that

(f̃1 · χ1(σ̃j−1), . . . , f̃j+1 · χj+1(σ̃j−1))

is of type j + 1 w.r.t. �̄j+1(µỸ ). Let χ̃k be the lift of χk to a character of Hj .
Then

χ̃k(σ̃j−1(ỹ)) = χ̃k(r̄(ỹ))χ̃k(σj−1(πj−1(ỹ)))χ̃k(r(T ỹ).
Therefore

(f̃1 · χ̃1(σj−1(πj−1)), . . . , f̃j+1 · χ̃j+1(σj−1(πj−1)))
is of type j + 1 w.r.t. �̄j+1(µỸ ). �
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6.14. Notation. If U is an abelian group we denote rotation by an element of U
by Ru.

6.15. Lemma. Let (f1, . . . , fj+1) be of type j+1 w.r.t. �̄j+1(µY ). Then there exists
a factor of Y which is a (j − 1)-step nilflow Ỹ = (N/Γ, a), such that if p : Y → Ỹ
is the factor map, then

(1) there exists a function f̃k : N/Γ → S1 such that fk is cohomologous to
f̃k ◦ p;

(2) there exist functions g1, . . . , gj+1, where gk : πj−1N/Γ → S1 is of type j−1,
such that (f̃1g1 ◦πj−1, . . . , f̃j+1gj+1 ◦πj−1) is of type j +1 w.r.t. �̄j+1(µỸ )
(πj−1 is the projection Ỹ → πj−1(Ỹ ));

(3) Corollary 6.10 holds when replacing fk by f̃k and Y by Ỹ .

Proof. Recall the identification of Y as a tower of abelian extensions Y = H1 ×σ1

H2×. . .×σj−1Hj , where Yi(Y ) = Yi−1(Y )×σi−1Hi, the group Hi is an abelian group
which is connected for i > 1, and σi is of type i . We would like to “replace” Hi for
i ≥ 2 with a finite-dimensional torus T

ni (and replace H1 by a cyclic group) and
get a system C×σ′

1
Tn2 ×σ′

2
. . .×σ′

j−1
Tnj that is a factor of Y and therefore a nilflow

(a pro-nilflow by the induction hypothesis in Theorem 6.1(5), and a nilflow by the
induction hypothesis in 6.1(4)), and if p is the factor map, then fk is cohomologous
to f̃k ◦ p.

We do this by decreasing induction on the index i. The case i = j was proved
in Lemma 6.13. Assume we have constructed a system Ỹ = H1 ×σ1 . . . × Hi ×σ′

i

Tni+1 × . . . ×σ′
j−1

Tnj that is a factor of Y and satisfies (1)–(3). We may now
forget the original system Y . By abuse of notation we replace Ỹ by Y , and f̃k

by fk. The cocycles σ′
i, . . . , σ

′
j−1, g1, . . . , gj+1 are of type < j and take values in

finite-dimensional tori. Therefore there exists a finite-dimensional torus Tni with
σ′

l for l = i, . . . , j − 1, cohomologous to functions σ̃l, lifted from Y ′
l := H1 × . . . ×

Hi−1×σ′
i−1

Tni × . . .×σ′
l−1

Tnl , and gk, for k = 1, . . . , j+1 cohomologous to g̃k lifted
from Y ′ := Y ′

j+1. After reparametrization we may assume σ′
l, for l = i, . . . , j − 1,

is lifted from Y ′
l . Condition (2) remains valid if we can replace gk by g̃k. Write

Hi = Tni × U (measurewise), where U is a compact abelian group. The action of
TY commutes with rotation by an element in U , i.e., with

Ru′ : (h1, . . . , hi−1, ti, u, ti+1, . . . , tj) → (h1, . . . , hi−1, ti, u + u′, ti+1, . . . , tj).

Indeed, σ′
i, . . . , σ

′
j−1 are not affected by translation in elements of U . Both Ru, TY

commute with rotation by an element t ∈ Tnj . Therefore

fk(Ru(πj−1y, tj + t))
fk(Ru(πj−1y, h))

/
fk(πj−1y, tj + t)

fk(πj−1y, tj)
=

fk,v(RuTy)
fk,t(Ty)

/
fk,t(Ruy)
fk,t(y)

.

By Theorem 3.6,
fk(Ruy)/fk(y)

is cohomologous to a cocycle lifted from πj−1Y . By the same argument as in Lemma
6.10 it is cohomologous to a constant for u in a neighborhood of zero in Ui. Now
proceed as in Lemma 6.13 to obtain Ỹ (which will be a factor between Y ′ and Y ).
Applying the same procedure for i = 1 gives the cyclic part. �
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6.16. Remark. Let f1, . . . , fj+1 be as in Lemma 6.15. By Remark 3.17 there are
countably many possibilities for the groups Ui and therefore countably many pos-
sibilities for the nilflow N/Γ (up to isomorphism).

6.17. Let (N/Γ, a) be the (j−1)-step nilflow from Lemma 6.15, and let p : Y → N/Γ
be the projection. Let N1 = N , and Nl+1 = [N, Nl] (Nj = {1}). We will show that
if the system (N/Γ, a) has no finite nontrivial factors, then N/Γ×f̃k

S1 can be given
the structure of a j-step nilflow. If the nilflow (N/Γ, a) has a finite factor Ci, then
Ci is an abelian group of order i for some integer i. The nilflow (N/Γ, ai) has finitely
many ergodic components, and rotation by a induces an isomorphism between them.
Each ergodic component X (with the action of ai) is a (j − 1)-step nilflow with
no nontrivial finite factors. We will show that the system X ×f̃k

S1 is isomorphic
to a j-step nilflow (M/Λ, b). The system N/Γ ×f̃k

S1 will then be isomorphic to a
union of i isomorphic j-step nilflows Ci × M/Λ, with the action of T given by: for
i − 1 > k ≥ 0 : (k, mΛ) → (k + 1, mΛ) and for k = i − 1 : (i − 1, mλ) → (0, bmΛ).
The group generated by {(0, m), T}m∈M is j-step nilpotent, and acts transitively
on Ci × M/Λ.

Assume (N/Γ, a) has no finite nontrivial factors. The r-u.c.f. of N/Γ is Yr(N/Γ)
= N/NrΓ (this follows from Lemma 4.5). The system (N/Γ, a) can be presented as
an abelian extension of a (j−2)-step nilflow, i.e. N/Nj−1Γ×Nj−1/(Nj−1∩Γ), and
we may assume that N is simply connected. The group Nj−1 is abelian, connected
and simply connected ([L05]), therefore isomorphic to Rm for some m. Let the
action of T on N/N2

∼= Z × Rn (or Rn) be given by translation by α. Then
equation (36) becomes: for any c ∈ Nj−1, k = 1, . . . , j + 1, y ∈ N/Γ,

(37)
f̃k(cy)
f̃k(y)

= λk,c
Tfk,c(y)
fk,c(y)

.

6.18. Lemma. Let (N/Γ, a) be the (j − 1)-step nilflow from 6.17. Let f1, . . . , fk

be functions in B(N/Γ, S1). Let {λk,c} be a family of constants, {fk,c}c∈Nj−1 be a
family of functions in B(N/Γ, S1) such that

(38)
fk(cy)
fk(y)

= λk,c
fk,c(ay)
fk,c(y)

for all c ∈ Nj−1. Then we can choose fk,c, λk,c in equation (38) such that

fk,c1(k, c2y)fk,c2(y) ∼ fk,c1c2(y).

Proof. It follows from Lemma 4.7. �

6.19. Lemma. Let fk, fk,c, λk,c be from Lemma 6.18. Then for each k = 1, . . . j +1
there exists an integer matrix Lk, a neighborhood of zero U ⊂ Nj−1, and a family
of functions {fk,c}c∈U , such that for all c ∈ U ,

fk(cy)
fk(y)

= e2πi〈Lkα,c〉 fk,c(ay)
fk,c(y)

.

Proof. It follows from Lemma 4.8. �

6.20. Corollary. Let Y be a (j − 1)-step pro-nilflow, (f1, . . . , fj+1) of type j + 1
w.r.t. �̄j+1(µY ). Then modulo quasi-coboundaries, fk belongs to a countable set.
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Proof. By Lemma 6.15, fk is cohomologous to a function f̃k lifted from a nilflow,
and by Remark 6.16 there are countably many possibilities for this nilflow. Fix
the nilflow. If (f̃1, . . . , f̃j+1), (f̃ ′

1, . . . , f̃
′
j+1) share the integer matrices L1, . . . , Lj+1

from Lemma 6.19, then by Corollary 3.9, f̃k/f̃ ′
k is cohomologous to a function on

πj−1(N/Γ). By Lemma 6.8, as a function on πj−1Y , f̃k/f̃ ′
k is of type j − 1. By the

induction hypothesis in Theorem 6.1(3b), f̃k/f̃ ′
k belongs to a countable set modulo

πj−1Y quasi-coboundaries. (If we use condition (2) in Lemma 6.15, then we can get
that f̃k/f̃ ′

k belongs to a countable set modulo πj−1(N/Γ) quasi-coboundaries.) �

6.21. Lemma. Let Y be a (j − 1)-step pro-nilflow, and let (f1, . . . , fl) be of type
l w.r.t. �̄l(µY ). Then for each k = 1, . . . , l there exists a family of constants
{λk,u}u∈Hj

, and a family of functions {fk,u}u∈Hj
⊂ B(Y 0, S1) such that

(39)
fk(πj−1y, h + u)

fk(πj−1y, h)
= λk,u

Tfk,u(y)
fk,u(y)

.

Proof. We use induction on l. The proof for l ≤ j + 1 is given in Corollary 6.10.
Assume the statement holds for l; we show it for l +1. Let (f1, . . . , fl+1) be of type
l + 1 w.r.t. �̄l+1(µY ), and let Mj−1,l+1(0) = (Mj−1,l+1 + �l+1(Hj)) ∩ H l

j × {0}.
Let �u = (u1, . . . , ul+1) ∈ Mj−1,l+1(0) (ul+1 = 0). Then(

f1(πj−1y, h + u1)
f1(πj−1y, h)

, . . . ,
fl(πj−1y, h + ul)

fl(πj−1y, h)

)

is of type l with respect to �̄l(µY ), and by the induction hypothesis,

fk(πj−1y, h + uk + u)/fk(πj−1y, h + u)
fk(πj−1y, h + uk)/fk(πj−1y, h)

= λk,u,uk

Tfk,u,uk
(y)

fk,u,uk
(y)

.

The projection of Mj−1,l+1(0) on any coordinate k ≤ l is full. By Lemma 6.11, fixing
u, λk,u,uk

is multiplicative in uk in a neighborhood of zero in Hj . By Lemma 6.19,
λk,u,uk

is determined by an integer matrix. The same holds when interchanging
the roles of u and uk. Therefore λk,u,uk

≡ 1 in a neighborhood of zero in Hj . By
Lemma 3.9,

fk(πj−1y, h + u)
fk(πj−1y, h)

= gk,u(πj−1y)
Tfk,u(y)
fk,u(y)

.

As in Lemma 6.8 and Corollary 6.10, the functions gk,u(πj−1y), fk,u(y) can be
chosen so that gk,u(πj−1y) is a constant function on Yj−1. �

6.22. Corollary. We may replace the index j + 1 in Lemmas/Corollaries 6.7–6.20
by the index l for any l ≥ j + 1.

As a corollary we get

6.23. Proof of Theorem 6.1(3a): It follows from Lemma 6.15 and Corollary 6.22.

6.24. Proof of Theorem 6.1(3b): It follows from Corollaries 6.20 and 6.22.

6.25. We now fix N/Γ, a (j −1)-step nilflow as in 6.17. Let (f1, . . . , fl) be of type l
w.r.t. �̄l(µN/Γ). We will show that the system N/Γ×fk

S1 is isomorphic to a j-step
nilflow. We have constructed families of functions {fk,c}c∈Nj−1 satisfying equation
(38).
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6.26. Lemma. For any c1, c2 ∈ Nj−1, fk,c1 and fk,c2 satisfying equation (38) we
have

fk,c1(c2y)
fk,c1(y)

=
fk,c2(c1y)
fk,c2(y)

.

Proof. It follows from Lemma 4.9. �

6.27. Consider the group

G = {(n, f) : n ∈ N, f ∈ B(N/Γ, S1)},
with multiplication

(n, f)(m, g) = (nm, fmg), (fmg)(y) = f(my)g(y).

The elements of the form (1, C) where C is a constant are in Z(G), the center of G.
For c ∈ Nj−1, we can interpret equation (38) as

[(a, f), (c, fc)] = (1, λc) ∈ Z(G).

We want to think of fc as elements of the (j − 1)th subgroup in the upper central
series of G, which will be a j-step nilpotent group. We now follow the derived series
upward to construct for each element in N a function fk,n that will satisfy good
commuting relations with (a, fk).

6.28. Notation. For n ∈ Ni\Ni+1, |n| = i, and fn(y) = f(ny). We write (n, f) ∼
(n, g) if f ∼ g.

6.29. Proposition. Let Y = (N/Γ, a) be a (j − 1)-step nilflow. Let (f1, . . . , fl)
be of type j w.r.t. �̄l(µY ). For k = 1, . . . , l there exists a family of functions
Fk = {fk,n}n∈N , where fk,n : N/Γ → S1 are measurable functions satisfying the
following conditions:

(1) There exists a constant δ(k, a, n) such that

fk(ny)
fk(y)

= δ(k, a, n)fk,[a,n](nay)
fk,n(ay)
fk,n(y)

.

(2) For any c ∈ Nj−1, |n| > 1,

fn
k,cfk,n = fc

k,nfk,c.

(3) There exists a constant δ(k, n1, n2) such that

fk,n1(n2y)
fk,n1(y)

= δ(k, n1, n2)fk,[n1,n2](n2n1y)
fk,n2(n1y)
fk,n2(y)

.

(4) fk,n1n2(y) ∼ fk,n1(n2y)fk,n2(y).
(5) If (n1, . . . , nl) ⊂ N l preserves the ergodic components of τl(Y ), then

F (n1y1, . . . , nlyl)
F (y1, . . . , yl)

l∏
k=1

f̄k,nk
(yk)

is constant �̄l(µY ) a.e.

Proof. The proof requires a series of Lemmas and their Corollaries and will be
completed in 6.37. We prove this inductively, proceeding upward in the derived
series of N . By Lemmas 6.19, 6.18, 6.26 and Corollary 6.12, conditions (1)–(4) hold
for all n ∈ Nj−1. Condition (5) follows from the fact that Nj−1 ⊂ Z(N). Invariance
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under τl follows from equation (28) and Corollary 6.12. Invariance under Tl follows
from the fact that the function

g(y1, . . . , yl) =
F (ay1, . . . , ayl)
F (y1, . . . , yl)

l∏
k=1

f̄k(yk)

is invariant under τl and therefore also under translation by (n1, . . . , nl). Thus

1 =
g(n1y1, . . . , nlyl)

g(y1, . . . , yl)
=

F (an1y1, . . . , anlyl)
F (n1y1, . . . , nlyl)

/
F (ay1, . . . , ayl)
F (y1, . . . , yl)

l∏
k=1

f̄k(nkyk)
f̄k(yk)

=
F (n1ay1, . . . , nlayl)

F (ay1, . . . , ayl)

/
F (n1y1, . . . , nlyl)

F (y1, . . . , yl)

l∏
k=1

f̄k,nk
(ayk)

f̄k,nk
(yk)

.

Suppose we constructed {fn} for n in Ni+1 (i + 1 > 1) satisfying conditions
(1)–(5). Let n ∈ Ni. Using conditions (1), (2), for c ∈ Nj−1 we have:

fk(ncy)
fk(cy)

f̄k,[a,n](nacy)
/

fk(ny)
fk(y)

f̄k,[a,n](nay) =
fk,c(nay)
fk,c(ay)

/
fk,c(ny)
fk,c(y)

.

By Corollary 3.9 there exist functions fk,n : N/Γ → S1, and gk,n : N/(Nj−1Γ)
→ S1 such that

(40)
fk(ny)
fk(y)

f̄k,[a,n](nay) = gk,n(πj−1y)
fk,n(ay)
fk,n(y)

.

We will show, in several steps, that one can choose gk,n, fk,n so that gk,n(πj−1y)
is a constant function of y. Equation (40) would then mean that fk, fk,n commute
“nicely”, i.e.,

[(a, fk), (n, fk,n)] ∼ ([a, n], fk,[a,n]).

6.30. Lemma. Let c ∈ Nj−1. There exists a constant δ(k, n, c) ∈ S1, which is
multiplicative in c, so that

fk,n(cy)fk,c(y) = δ(k, n, c)fk,c(ny)fk,n(y).

Proof. By the induction hypothesis, f
[a,n]
k,c fk,[a,n] = fc

k,[a,n]fk,c. Therefore

fk,c(ny)fk,n(y)
fk,c(y)fk,n(cy)

is a T -invariant function and therefore constant. Multiplicity in c follows from
Lemma 6.18. �

6.31. Lemma. There exists a constant C such that the l-tuple (Cg1,n, . . . , gl,n) is
of type l w.r.t. �̄l(µY ).

Proof. Iterating equation (40) (using condition (4)) we get in a neighborhood of
zero in Ni,

f
(k)
k (ny)

f
(k)
k (y)

f̄k,[ak,n](naky) = g
(k)
k,n(πj−1y)

fk,n(aky)
fk,n(y)

.
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Substituting in the functional equation (51) we get

l∏
k=1

(
(g(k)

k,n(πj−1yk)fk,[ak,n](nakyk)
fk,n(akyk)
fk,n(yk)

)

=
F (any1, . . . , a

lnyl) /F (ny1, . . . , nyl)
F (ay1, . . . , alyl) /F (y1, . . . , yl)

=
F ([a, n]nay1, . . . , [al, n]nalyl)

F (nay1, . . . , nalyl)
Gn(ay1, . . . , a

lyl)
Gn(y1, . . . , yl)

,

where
Gn(y1, . . . , yl) = F (ny1, . . . , nyl)/F (y1, . . . , yl).

By induction using condition (5),

F ([a, n]nay1, . . . , [al, n]nalyl)
F (nay1, . . . , nalyl)

l∏
k=1

(
f̄k,[ak,n](nakyk)

)

is constant �̄l(µY ) a.e. �

6.32. Corollary. For k = 1, . . . , l, gk,n is of type j−1. Therefore the set {gk,n}n∈Ni

modulo πj−1Y -quasi-coboundaries is countable.

Proof. This follows from Lemma 6.8. �

6.33. Corollary. Suppose for some 1 ≤ r ≤ j − 1, gk,n(y) = g̃k,n(πry) for k =
1, . . . , l. Then g̃k,n(πry) is of type r, and therefore the set {g̃k,n(πry)}n∈Ni

modulo
πrY -quasi-coboundaries is countable.

6.34. Example. Before proceeding with the general proof we describe the proof for
the case where Y is a homogeneous space of a 3-step nilpotent group (i.e., N4 = 1,
j − 1 = 3), fk : Y → S1. Let n, m ∈ N2. We use the facts that [a, m] ∈ N3,
therefore

fn
k,[a,m]fk,n ∼ f

[a,m]
k,n fk,[a,m],

and that for m1, m2 ∈ N3,

fk,m1m2 ∼ fm2
k,m1

fk,m2 .

Recall that by Corollary 6.32 there are countably many gk,n up to π3Y -quasi-
coboundaries. Therefore there exists a neighborhood U of zero in N2 such that for
any n ∈ U there exists m ∈ N2 so that (gk,nm/gk,m)(π3y) is a quasi-coboundary:

(gk,nm/gk,m)(π3y) ∼ Lk,n,m(aπ3y)/Lk,n,m(π3y).

Fix n and replace fk,m(y) with fk,m(y)Lk,n,m(π3y) (this does not affect the com-
mutation relations with (c, fk,c) for c ∈ N3). Then

fk(nmy)
fk(my)

=
fk(nmy)/fk(y)
fk(my)/fk(y)

∼
fk,[a,nm](nmay)
fk,[a,m](may)

fk,nm(am−1my)/fk,nm(m−1my)
fk,m(am−1my)/fk,m(m−1my)

∼ fk,[n,a](namy)
f̃k,n(amy)
f̃k,n(my)

,



86 TAMAR ZIEGLER

where f̃k,n(y) = fk,nm(m−1y)/fk,m(m−1y). Therefore gk,n may be chosen to be
constant (with a proper choice of fk,n). Iterating, this holds for all n ∈ N2. Observe
that for n, m ∈ N2,

(41) 1 =
fk(nmy)

fk(y)

/
fk(nmy)
fk(my)

fk(my)
fk(y)

∼ fk,nm(ay) /fk,n(may)fk,m(ay)
fk,nm(y) /fk,n(my)fk,m(y)

.

Now proceed as in Lemma 3.15 to modify fk,n so that δ(k, n, m) is multiplicative
in m, n ∈ N2, and fk,nm ∼ fm

k,nfk,n. As a corollary we get that for c ∈ N3, n ∈ N2

we have fc
k,nfk,c = fn

k,cfk,n (same proof as Lemma 6.26).
Now let n ∈ N1 = N . We construct fk,n, gk,n as in equation (40), and as in

Corollary 6.32, gk,n is of type 3. Therefore there exist constants {c(k, n, m)}m∈N2

and functions hk,n,m : π3N/Γ → S1 such that

gk,n(π3my)
gk,n(π3y)

= c(k, n, m)
hk,n,m(π3ay)
hk,n,m(π3y)

,

where c(k, n, m) is multiplicative in m, and there are countably many gk,n up to
π3Y -quasi-coboundaries. By Lemma 6.30 for m ∈ N3:

fk,n(my)fk,m(y) = δ(k, n, m)fk,m(ny)fk,n(y),

and δ(k, n, m) is multiplicative in m. We use this to establish commutation relations
between (n, fk,n) and (m, fk,m) for m ∈ N2:

T ( fk,n(my)
fk,n(y) /

fk,m(ny)
fk,m(y) fk,[n,m](mny))

( fk,n(my)
fk,n(y) /

fk,m(ny)
fk,m(y) fk,[n,m](mny))

= δ(k, n, [a, m])δ(k, a, [m, n])δ(k, m, [n, a])
gk,n(π3my)
gk,n(π3y)

= δ(k, n, [a, m])δ(k, a, [m, n])δ(k, m, [n, a])c(k, n, m)
hk,n,m(π3ay)
hk,n,m(π3y)

.

Thus for some eigenfunction ψk,n,m(π2y),

(42)
fk,n(my)
fk,n(y)

f̄k,[n,m](nmy) = ψk,n,m(π2y)hk,n,m(π3y)
fk,m(ny)
fk,m(y)

.

Let m, n ∈ N . Using the above equation we get

gk,nm(π3y)
gk,n(π3my)gn(π3y)

hk,n,[m,a](π3amy) ∼ T (fk,nm(y)/fk,n(my)fk,m(y))
fk,nm(y)/fk,n(my)fk,m(y)

.

Similarly to Lemma 3.15 one shows, using Lemma 3.10, that fk,n, fk,m can be
modified so that for m, n in a neighborhood of zero in N , there exists a function
Kn,m(π3y) such that

fk,nm(y)
fk,n(my)fk,m(y)

= Kn,m(π3y).

This implies that for c ∈ N3, δ(k, n, c) is multiplicative for n ∈ N : on the one hand,

fk,n1n2(cy)
fk,n1n2(y)

= δ(k, n1n2, c)
fk,c(n1n2y)

fk,c(y)
,

while on the other hand,

fk,n1n2(cy)
fk,n1n2(y)

=
fk,n1(n2cy)fk,n2(cy)
fk,n1(n2y)fk,n2(y)

= δ(k, n1, c)δ(k, n2, c)
fk,c(n1n2y)

fk,c(y)
.
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Therefore for m ∈ N2, n ∈ N the constant δ(k, n, [a, m])δ(k, a, [m, n])δ(k, m, [n, a])
is multiplicative in m, n. On the other hand, the constant

δ(k, n, [a, m])δ(k, a, [m, n])δ(k, m, [n, a])c(k, n, m)

is an eigenvalue of T , which is multiplicative in m in a neighborhood of zero in N2

and must therefore ≡ 1. This implies that c(k, n, m) is multiplicative in n and is
therefore ≡ 1 (as a function of n, c(k, n, m) is determined by an integer matrix).
Thus gk,n is cohomologous to a function on N/N2Γ, and we can choose fk,n so
that gk,n is lifted from a function g̃k,n on π2Y . Then (n, fk,n) (m, fk,m) commute
nicely for m ∈ N2; namely [(n, fk,n), (m, fk,m)] ∼ ([n, m], f[n,m]). Let n, m ∈ N be
such that (g̃k,nm/g̃k,m)(π2y) ∼ Lk,n,m(aπ2y)/Lk,n,m(π2y) (by Corollary 6.33 there
are countably many g̃k,n up to π2Y -quasi-coboundaries). Replace fk,m(y) with
fk,m(y)Lk,n,m(π2y) (this does not affect the commutation relations with (l, fk,l)
for l ∈ N2). Now gk,nm/gk,m is a constant. Computation (using the fact that
(n, fk,n), (nm, fk,nm) and ([a, n−1], fk,[a,n−1]) commute nicely) shows (as before):

fk(nmy)
fk(my)

=
fk(nmy)/fk(y)
fk(my)fk(y)

∼ fk,[n,a](namy)
f̃k,n(amy)
f̃k,n(my)

.

Continue as in Lemma 3.15 to find that fk,nm ∼ fm
k,nfk,m.

We now proceed with the induction in Proposition 6.29. Basically we follow the
same procedure.

6.35. Lemma. Let n ∈ Ni. The functions gk,n and fk,n from equation (40) can be
chosen so that gk,n is a constant function on Y .

Proof. We already know that for c ∈ Nj−1 we have fc
k,nfk,c/fn

k,cfk,n is a constant
denoted δ(k, n, c). We use induction on i+1 ≤ r ≤ j to acquire “good” commuting
relations between (n, fk,n), (m, fk,m) for m ∈ Nr, and to reduce the “level” of gk,n.
Assume that

(1) gk,n is lifted from N/Nr+1Γ and is of type r + 1.
(2) For m ∈ Nr+1, there exists a constant δ(k, n, m) such that

fm
k,nfk,m = δ(k, n, m)fmn

k,[m,n]f
n
k,mfk,n.

(3) For m ∈ Nr+1, n1, n2 ∈ Ni.

δ(k, n1n2, m)fk,[m,n1n2] = δ(k, n1, [n2, m])δ(k, n1, m)δ(k, n2, m)

× f
[n1,m][n2,m]
k,[[m,n1],n2]

f
[n1,m]
k,[m,n2]

fk,[m,n1],

and similarly for δ(k, n, m1m2) for n ∈ Ni, m1, m2 ∈ Nr+1 (also for
δ(k, a, m1m2), but this follows from the fact that r > i and the induction
hypothesis (1) in Proposition 6.29).

(4) fk,n1n2(y) = fn2
k,n1

fk,n2(y)Kk,n1,n2(πr+1(y)).

Two equivalent forms of equation (40) are

(a, fk)(n, fk,n)(1, ḡk,n) = ([a, n], fk,[a,n])(n, fk,n)(a, fk),

(n, fk,n)−1(a, fk)

= ([a, n], fk,[a,n])([[n, a], n−1], fk,[[n,a],n−1])(a, fk)(1, gk,n)(n, fk,n)−1.

(43)
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Using the above equations, and the fact that for any m ∈ Nr,

(44) [(a, fk), (m, fk,m)] = ([a, m], δ(k, a, m)fk,[a,m]),

for m ∈ Nr+1 (condition (2)),

(45) [(n, fk,n), (m, fk,m)] = ([n, m], δ(k, n, m)fk,[n,m]),

and for any m ∈ N ,

(m, fk,m)(1, gk,n) = (1, gm−1

k,n )(m, fk,m),

we get for m ∈ Nr,

(a, fk)−1(n, fk,n)−1(m, fk,m)−1([m, n], fk,[m,n])(n, fk,n)(m, fk,m)(a, fk)

= (n, fk,n)−1(m, fk,m)−1([m, n], fk,[m,n])(n, fk,n)(m, fk,m)(1, Λ(k, n, m)gm
k,nḡk,n)

(46)

for some constant Λ(k, n, m) ∈ S1. We explain this equality: we use the fact that
we know how (a, fk) commutes with (m, fk,m), (n, fk,n) for m ∈ Nr, n ∈ Ni, respec-
tively. Λ(k, n, m) is a product of functions of the type δ(k, [m−1, [n, a]])fk,[m−1,[n,a]],
δ(k, [n, [m, a]])fk,[n,[m,a]], δ(k, [[m, n], a])fk,[[m,n],a] and more complicated commu-
tators of involving a, n, m and their inverses; Λ(k, n, m) = Πδ(k, α, β)fk,[α,β](y),
where Π[α, β] = 1 since in N we have n−1m−1[m, n]nm = 1, therefore obvi-
ously a−1n−1m−1[m, n]nma = n−1m−1[m, n]nm. But as [α, β] ∈ Ni+1 and for
v, w ∈ Ni+1 we have fvw ∼ fw

v fw, Λ(k, n, m) is a constant.
The induction hypothesis (3) applies for the commutators involved in the calcu-

lation of Λ(k, n, m). Therefore for the purpose of calculating Λ(k, n1n2, m) we can
replace (n1n2, fn1n2) with (n1n2, f

n2
n1

fn2). Note that the function gk,n doesn’t play
a role in the calculation of Λ(k, n, m), and therefore in calculating Λ(k, n1n2, m),
Λ(k, n1, m), Λ(k, n2, m) we can replace the functions gk,n1n2 , gk,n1 , gk,n2 with the
constant function 1 in equation (46). Now using the induction hypothesis (3) we
find that Λ(k, n, m) is multiplicative in n ∈ Ni and similarly in m ∈ Nr.

From equation (46) we get

T ( fk,n(my)
fk,n(y) /

fk,m(ny)
fk,m(y) fk,[n,m](mny))

( fk,n(my)
fk,n(y) /

fk,m(ny)
fk,m(y) fk,[n,m](mny))

= Λ(k, n, m)
gk,n(my)
gk,n(y)

.(47)

As gk,n = g̃k,n ◦πr+1 for some function g̃k,n : πr+1Y → S1 of type r+1, for m ∈ Nr

there exist a constant c(k, n, m) and a measurable function hk,n,m : πr+1Y → S1

such that
g̃k,n(πr+1my)
g̃k,n(πr+1y)

= c(k, n, m)
hk,n,m(πr+1ay)
hk,n,m(πr+1y)

and c(k, n, m) is multiplicative in m. Combining this with equation (47) we get
that

fk,n(my)
fk,n(y)

/
fk,m(ny)
fk,m(y)

fk,[n,m](mny)h̄k,n,m(πr+1y)

is an eigenfunction of T . The corresponding eigenvalue Λ(k, n, m)c(k, n, m) is a
homomorphism from Nr to a discrete set and is therefore constant and ≡ 1 (sub-
stitute m = 1). This implies that c(k, n, m) is a multiplicative function of n.
As g̃k,n is countably determined up to quasi-coboundaries c(k, n, m) ≡ 1 (recall
that as a function of m, c(k, n, m) is determined by an integer matrix). There-
fore g̃k,n(mπr+1y)/g̃k,n(πr+1y) is a πr+1Y -coboundary for any m ∈ Nr; hence
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g̃k,n(πr+1y) is πr+1Y -cohomologous to a function on πrY . Therefore we can choose
gk,n, fk,n such that gk,n is lifted from a function on πrY , and

(48) fm
k,nfk,m = δ(k, n, m)fmn

k,[m,n]f
n
k,mfk,n.

We show by decreasing induction that for m ∈ Ns for s > i,

Ek,n,m = fn
k,mfk,n/fmn

k,[m,n]f
m
k,nfk,m

is lifted from a function on πrY . For m ∈ Nr this is clear by equation (48).
Assuming it holds for m ∈ Ns+1, we show it holds for m ∈ Ns. By condition (4) it
is clearly lifted from a function Ẽk,n,m on πr+1Y . A similar calculation to the one
in equations (46), (47), using the induction hypothesis for [a, m] ∈ Ns+1, gives for
m ∈ Ns that

T (fn
k,mfk,n/fmn

k,[m,n]f
m
k,nfk,m)/(fn

k,mfk,n/fmn
k,[m,n]f

m
k,nfk,m)

is lifted from a function on πrY . As πr+1Y is an abelian extension of πrY by some
compact abelian group Q, by Lemma 3.10 there is a function dk,n,m : πrY → S1 and
a character χk,n,m ∈ Q̂ such that Ẽk,n,m(πr+1y) = dk,n,m(πry)χk,n,m(πr+1y). As
s > i, for m1, m2 ∈ Ns, we have fm1m2 ∼ fm2

m1
fm2 . Therefore comparing Ẽk,n,m1m2

with Ẽm2
k,n,m1

Ẽk,n,m2 (the action of any element of N on πr+1Y = πrY × Q is a
skew action and therefore Ẽm2

k,n,m = d̃k,n,mχk,n,m) for some d̃k,n,m : πrY → S1, we
get that

χk,n,m1m2(πr+1y)/χk,n,m1(πr+1y)χk,n,m2(πr+1y)

is a function on πrY , and therefore ≡ 1. As Q̂ is countable, χk,n,m ≡ 1.
We now use this to show that for n1, n2 ∈ Ni,

T (fk,n1n2/fn2
k,n1

fn2)/(fk,n1n2/fn2
k,n1

fn2)

is lifted from πrY . Using Lemma 3.10 and a similar argument to the one in Lemma
3.15 we find that the functions fk,n can be chosen so that for n1, n2 ∈ Ni there
exists a function Kk,n1,n2(πry) so that

fk,n1n2(y) = fn2
k,n1

fk,n2(y)Kk,n1,n2(πry).

To get the condition on δ(k, n, m) for m ∈ Nr: on the one hand,

fk,n1n2(my)
fk,n1n2(y)

= δ(k, n1n2, m)fk,[n1n2,m](mn1n2y)
fk,m(n1n2y)

fk,m(y)
,

while on the other hand, as Kk,n1,n2 is invariant under translation by m ∈ Nr,

fk,n1n2(my)
fk,n1n2(y)

=
fk,n1(n2my)fk,n2(my)

fk,n1(n2y)fk,n2(y)
= δ(k, n1, m)δ(k, n2, m)δ(k, n1, [n2, m])fk,[n1,m](mn1n2y)

× fk,[n2,m](n1mn2y)fk,[n1,[n2,m]]([n2, m]n1mn2y)
fk,m(n1n2y)

fk,m(y)
.

Finally, having good commutation relations between (n, fk,n), (m, fk,m) for n ∈
Ni, m ∈ Ni+1 (i.e., [(n, fk,n), (m, fk,m)] = ([n, m], δ(k, n, m)fk,[n,m])), we show
that for n ∈ Ni, the functions fk,n, gk,n can be chosen so that gk,n is constant.
We already know it is lifted from a function g̃k,n on πi+1Y of type i + 1, and
there are only countably many of those up to πi+1Y -quasi-coboundaries. For n
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in a neighborhood of zero in Ni, let m ∈ Ni be such that g̃k,nm/g̃k,m is a quasi-
coboundary:

(g̃k,nm/g̃k,m)(πi+1y) ∼ Lk,n,m(aπi+1y)/Lk,n,m(πi+1y).

Replace fk,m(y) with fk,m(y)Lk,n,m(πi+1y) (this does not affect the commutation
relations with fk,p for p ∈ Ni+1). Computation shows:

fk(nmy)
fk(my)

=
fk(nmy)/fk(y)
fk(my)/fk(y)

∼ fk,[n,a](namy)
f̃k,n(amy)
f̃k,n(my)

,

where
f̃k,n(y) = fk,nm(m−1y)/fk,m(m−1y).

We now use the fact that fk,[n,a][m,a] ∼ f
[m,a]
k,[n,a]fk,[m,a] to show that fk,nm/fm

k,nfk,m

is an eigenfunction of T , and proceed as in Lemma 3.15 to find that fk,nm ∼
fm

k,nfk,m. �

6.36. Corollary. If i > 1, then for any c ∈ Nj−1, n ∈ Ni,

fk,n(cy)fk,c(y) = fk,c(ny)fk,n(y)

(i.e., [(n, fk,n), (c, fk,c)] = (1, 1)).

Proof. The quotient
fk,n(cy)fk,c(y)/fk,c(ny)fk,n(y)

is invariant under translation by a and is therefore a constant δ(k, n, c) which is
multiplicative in both coordinates. For γ ∈ Nj−1, fγ is an eigenfunction and
therefore invariant under the action of Ni for i > 1. This implies that δ(k, n, cγ) =
δ(k, n, c). Proceed as in Lemma 6.26. �

6.37. Corollary. If (n1, . . . , nl) ⊂ N l
i preserve the ergodic components of τl(Y ),

then

(49)
F (n1y1, . . . , nlyl)

F (y1, . . . , yl)

l∏
k=1

f̄k,nk
(yk)

is constant �̄l(µY ) a.e.

Proof. Both ([a, n1], . . . , [a, nl]), and ([a, n1], . . . , [al, nl]) preserve the ergodic com-
ponents of τl (see 4.1), and as gk,n is constant for n ∈ Ni the function in the
left-hand side of equation (49) is invariant under τl, Tl (this is a calculation, using
condition (1)). �

The proof of Proposition 6.29 is now complete. �

6.38. Proposition. Let Y = N/Γ be a (j − 1)-step nilflow, and let (f1, . . . , fl) be
of type l w.r.t. �̄l(µY ). Then for any k = 1, . . . , l the system Y ×fk

S1 can be given
the structure of a j-step nilflow.

Proof. Denote

Gk = {(n, ψfk,n) : n ∈ N, ψ an eigenfunction, fk,n ∈ Fk},
where Fk is defined in Proposition 6.29. Gk is a group under the multiplication

(n, f)(m, g) = (nm, fmg), (fmg)(y) = f(my)g(y).
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By Proposition 6.29(3), Gk is a j-step nilpotent group, and (a, fk) ∈ Gk. Endow Gk

with the topology:

(ni, gi) → (n, g) ⇐⇒ ni → n, gi
L2(N/Γ)−→ g.

Gk acts transitively and effectively on X = N/Γ × S1 by

(n, f)(y, ζ) = (ny, f(y)ζ).

By a theorem of Montgomery and Zippin (see [GOV97], page 88, Theorem 4.3) it
possesses a Lie group structure. (This type of construction is carried out in [Me90]
for the case j = 2.) �

6.39. Remark. It may also be possible to construct the nilflow by using the constants
δ(k, n, m) as was done in [R93], [Le93] for 2-step nilpotent groups, and in [Z02] for
3-step nilpotent groups.

6.40. Lemma. Let Y = N/Γ be a (j − 1)-step nilflow, and let f : Y → S1 be of
type j. Then the system Y ×f S1 can be given the structure of a j-step nilflow.

Proof. By definition, there exists an integer l and integers m1, . . . , ml, with mk = 1
for some 1 ≤ k ≤ l, such that (fm1 , . . . , fml) is of type l w.r.t. �̄l(µY ). Now use
Proposition 6.38. �

A similar proof gives:

6.41. Lemma. Let Y = N/Γ be a (j − 1)-step nilflow, and let f, g : Y → S1 be of
type j. Then the system Y ×fg S1 can be given the structure of a j-step nilflow.

6.42. Corollary. Let Y be a (j − 1)-step pro-nilflow, and let (f1, . . . , fl) be of type
l w.r.t. �̄l(µY ). Then for any k = 1, . . . , l the system Y ×fk

S1 can be given the
structure of a j-step pro-nilflow.

Proof. By Lemma 6.15 and Corollary 6.22, fk is cohomologous to a cocycle f̃k lifted
from a (j − 1)-step nilflow (N/Γ, a). Furthermore, there exist (g1, . . . , gl) with gk

of type j−1, such that (f̃1g1, . . . , f̃lgl) is of type l w.r.t. �̄l(µN/Γ). By Proposition
6.38, N/Γ×f̃kgk

S1 can be given the structure of a j-step nilflow. By Lemma 6.40,
N/Γ×g−1

k
S1 can be given the structure of a j-step nilflow. By the construction in

Proposition 6.38, N/Γ×f̃kgkg−1
k

S1 can be given the structure of a j-step nilflow. �

6.43. Proof of 6.1 (4) Let X = Yj(X)×σ H, where H is a compact abelian group,
and for any χ ∈ Ĥ, there exists (χ1, . . . , χl) ∈ Ĥ l, with χ = χk for some k,
and (χ1 ◦ σ, . . . , χl ◦ σ) of type �a w.r.t. �̄�a(Yj(X)). By Corollary 6.42 the system
X = Yj(X) ×χ◦σ S1 is isomorphic to a j-step pro-nilflow. By Pontryagin duality,
H ↪→ (S1)Ĥ . The system Y ×σ H is therefore a “join” of factors of the form
Y ×χ◦σ S1 where χ ranges over Ĥ . �

6.44. Lemma. Let Y be a (j − 1)-step pro-nilflow, and let (f1, . . . , fl) be of type
l w.r.t. �̄l(µY ). If for some k, λk,u ≡ 1 (see Lemma 6.21) in a neighborhood of
zero in Hj, then the system Y ×fk

S1 can be given the structure of a (j − 1)-step
pro-nilflow.
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Proof. By the induction hypothesis 6.1(6), Hj is connected (j ≥ 1). Therefore we
may choose λk,u ≡ 1 on Hj . By Corollary 3.9, fk is cohomologous to a cocycle f̃k

lifted from Y 0
j−1. By Lemma 6.8, f̃k is of type j − 1. By the induction hypothesis

6.1(4), Yj−1 ×f̃k
S1 can be given the structure of a (j − 1)-step pro-nilflow. �

6.45. Lemma. Let X = Yj(X) ×ρ H, where H is a compact abelian group, and ρ
is of type j. Then H is connected.

Proof. We show that Ĥ has no elements of finite order. Suppose for some χ ∈ Ĥ ,
and some l > 0, χl = 1. χ ◦ ρ satisfies equation (36). By Lemma 6.11 the function
λk,u is multiplicative in a neighborhood of zero in Hj . λl

k,u is an eigenvalue, and as
Hj is connected, λk,u ≡ 1 in a neighborhood of zero. By Lemma 6.44 the system
Y ′

j = Yj(X)×χ◦ρS1, which is a factor of X = Yj(X)×ρH, can be given the structure
of a (j − 1)-step pro-nilflow. By Corollary 4.6, Yj(Y ′

j ) = Y ′
j , in contradiction to

Yj(X) being the j-u.c.f. of X. �

6.46. Lemma. Let X be a group extension of Yj(X); i.e., X = Yj(X)×σ G. Then
Yj+1(X) is an abelian extension of Yj(X) by a cocycle of is type j and therefore
can be given the structure of a j-step pro-nilflow.

Proof. The proof is a straightforward generalization of Lemmas 9.1, 9.2 in [FuW96]
(this is done for the case j = 3 in [Z02]). We outline the steps. Any ergodic
component of �̄�a(µX) projects onto an ergodic component of �̄�a(µYj(X)). The
fact that τ�a(T ) and Tj+1(T ) commute implies that the Mackey groups associated
with different ergodic components of �̄�a(µYj(X)) are conjugate for a.e. ergodic
components (Lemma 2.18). Denote by [M�a] the conjugacy class, where the group
M�a ⊂ Gj+1. One then uses the fact that the projection of M�a on any j coordinates
is full (i.e. Gj) to show that [G, G]j+1 ⊂ M�a. More specifically one shows that
there exists an abelian group K�a and homomorphisms ψ�a,i : G → K�a so that

M�a = {(g1, . . . , gj+1|ψ�a,i(g1) . . . ψ�a,i(gj+1) = 1}.
We return to the average in (27). By Proposition 3.3 we can replace

f1 ⊗ . . . ⊗ fj+1(y1, g1, . . . , yj+1gj+1)

by ∫
f1 ⊗ . . . ⊗ fj+1(y1, g1m1, . . . , yj+1, gj+1mj+1)dmM�a

(m1, . . . , mj+1),

where dmM�a
is the Haar measure on the Mackey group M�a. As [G, G]j+1 ⊂ M�a

we can replace fk, for k = 1, . . . , j + 1, by
∫

f1(y, gg′)dm[G,G](g′). Thus Yj(X) ×ρ

G/[G, G] is characteristic for the scheme �a, for any �a.
Let K0 =

⋂
k,�a kerψ�a,k. Let G̃ = G/K0, and let H = G̃/[G̃, G̃]. Then similarly

Yj(X)×ρ H is characteristic for the scheme �a, for any �a. We will show that ρ is of
type j. Then by 6.43 it can be given the structure of a j-step pro-nilflow, and by
Corollary 4.6 it is the j + 1 universal characteristic factor.

Denote Y = Yj(X). Then by equation (26),

�̄�a(µX) = �̄�a(µY ) × mj+1
H .

For each ergodic component of �̄�a(µY ) the ergodic components of �̄�a(µX) are
given by the Mackey group M�a ⊂ Hj+1. For a.e. ergodic component W�a,y (by the
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discussion in 4.1 the ergodic components of �̄�a(µY ) are parametrized by Y ) we
have an Hj+1- extension by the cocycle

ρ̃�a = (ρ(a1)(y1), ρ(a2)(y2), . . . , ρ(aj+1)(yj+1)) : W�a,y → Hj+1.

By Theorem 2.17 there exists a function ϕ : W�a,y → Hj+1 such that

ϕ�a(τ�a(y1, . . . , yj+1))ρ̃�a(y1, . . . , yj+1)ϕ−1
�a (y1, . . . , yj+1) ∈ M�a.

Applying the foregoing characterization of M�a, there exists an abelian group K�a

and homomorphisms ψ�a,i : H → K�a such that

(50)
j+1∏
k=1

ψ�a,k ◦ ρ(ak)(yk) = F�a(τ�a(y1, . . . , yj+1))F−1
�a (y1, . . . , yj+1),

where

F�a(y1, . . . , yj+1) =
j+1∏
k=1

ψ�a,i ◦ ϕ�a,i(y1, . . . , yj+1) ∈ K�a.

Let χ ∈ K̂�a. Applying χ to equation (50) we get

(51)
j+1∏
k=1

χ ◦ ψ�a,k ◦ (ρ)(ak)(yk) =
τ�aF�a,y,χ(y1, . . . , yj+1)
F�a,y,χ(y1, . . . , yj+1)

,

where F�a,y,χ : W�a,y → S1. By ergodicity of τ�a on W�a,y, F�a,y,χ is unique up to
a constant multiple. By Proposition 3.13 there is a measurable choice of F�a,y,χ,
so that equation (51) holds �̄�a(µY ) a.e. Finally, as

⋂j+1
k=1 ker ψ�a,k = {1}, the

characters χ ◦ ψ�a,k where k = 1, . . . , j + 1, �a ∈ Zj+1, and χ ∈ K̂�a span Ĥ . �

6.47. Proof of Theorem 6.1(6). If X is a j-step pro-nilflow, then X is an abelian
extension of Yj(X). By Corollary 4.6, X = Yj+1(X). By Lemma 6.46 it is an
extension of Yj(X) by a cocycle of type j.

6.48. Corollary. Any j-step pro-nilflow Y can be presented as a tower of abelian
extensions H1×σ1 H2× . . .×σj

Hj+1 where σk for k = 1, . . . , j is of type k. If in this
presentation H1 is a cyclic group, and for each k > 1, Hk is a finite-dimensional
torus, then Y is a nilflow.

Proof. The first part is clear. The second part follows from the construction in
Proposition 6.38. �

6.49. Proof of 6.1(5). Let

X = (N/Γ, T ) = (lim
←

Ni/Γi, ai)

be a j-step pro-nilflow, and let W be a factor. Let Yj = lim← Mi/Λi be the j-u.c.f.
of X. Then X = Yj ×σj

H where H is a compact abelian group, and σj is of type
j. Let K be a compact abelian group of m.p.t.s acting on X0 and commuting with
the action of T . We show that K commutes with the action of N . By Corollary
2.4, any s ∈ K induces a map from Yj to itself, also denoted s by abuse of notation.
The action of K is given by s(y, h) = (sy, ρs(y, h)). We first show that s preserves
the skew product structure. As s, T commute:

ρs(T (y, h)) = ρs(y, h) + σj(sy).
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Denote

Fs(y, h) = ρs(y, h) − h.

Then

TFs(y, h) − Fs(y, h) = σj(sy) − σj(y).

Let χ be a character of H. Then

χ ◦ σj(sy)
χ ◦ σj(y)

=
Tχ ◦ Fs(y, h)
χ ◦ Fs(y, h)

.

As σj is of type j, χ◦σj is lifted from Mr/Λr for some fixed i. Let p : Yj → Mr/Λr

be the projection. Then χ ◦ σj = σ̃j ◦ p. By the induction hypothesis s acts
as a translation by a group element on Mr/Λr (we will denote this element s
by abuse of notation), commutes with the action of M = lim← Mi and therefore
commutes with the action on Mr on Mr/Λr. This implies that for any m ∈ Mr,
[s, m] ∈ Z(Mr)∩Λr. As σ̃j is of type j, by Proposition 6.29 there exist measurable
functions fχ,s : Mr/Λr → S1, and such that

χ ◦ σj(sy)
χ ◦ σj(y)

=
σ̃j(spy)
σ̃j(py)

= fχ,[s,a](py)
Tfχ,s(py)
fχ,s(py)

.

But as [s, a] ∈ Z(Mr) ∩ Λr, fχ,[s,a] is an eigenfunction. Therefore

f̄χ,s(Tpy)χ ◦ Fs(T (y, h))
f̄χ,s(py)χ ◦ Fs(y, h)

= fχ,[s,a](py).

Therefore fχ,s(py)χ ◦ Fs(y, h) is a second-order eigenfunction ψ(π3y) (it is defined
on π3Y , a 2-step nilflow). If j ≥ 3, Fs(y, h) depends only on y. Therefore

χ ◦ ρs(y, h) = χ(h)ψ(π3y)fχ,s(py).

This implies that the action of k induces an action on Ni/Γi for all i that commutes
with the action of T , and by [P73, Theorem 4.3] it commutes with the action of
Ni (the proof in [P73] is for (N/Γ, a), where N is connected, but the same proof
holds in the case where N is generated by a and the connected component of the
identity). We obtain the result inductively, using Proposition 4.12 and the fact
that X has generalized discrete spectrum mod D of finite type (see 4.10) and is
therefore obtained from W by a finite series of abelian extensions. If j = 2, then
Mr is abelian, fχ,[s,a](py) is a constant function of y,

f̄χ,s(Tpy)χ ◦ Fs(T (y, h))
f̄χ,s(py)χ ◦ Fs(y, h)

is an eigenfunction (defined on π2Y , the Kronecker factor) and we proceed similarly.

6.50. Proof of Theorem 6.1(7). By 6.3, Yj+1(X) is an isometric extension of the
factor Yj(X). By the discussion in 2.7, Yj+1(X) is of the form Yj(X) ×σ G/L,
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where G/L is a homogeneous space of a compact metric group G. By Lemma 2.13
we may assume that the extension X ′ = Yj(X)×σ G is an ergodic group extension.
As Yj(X) is a factor of Yj(X ′), by Lemma 2.14, X ′ is group extension of Yj(X ′);
i.e., X ′ = Yj(X ′) ×σ′ G′. By Corollary 2.4, the factor map X ′ → Yj+1(X) induces
a map between their (j + 1)-u.c.f.s. By 6.49, it is enough to show that Yj+1(X ′)
has the structure of a j-step pro-nilflow. By Lemma 6.46 we are done.

6.51. Proof of Theorem 6.1(3c). By 6.42, X = Y ×fk
S1 can be given the structure

of a j-step pro-nilflow; thus Yj+1(X) = X. If Yj(X) = Y , then by 6.47, fk is
of type j. Otherwise, Y is a proper factor of Yj(X) and therefore Yj+1(X) is an
extension of Yj(X) by a proper closed subgroup G of S1. By 6.47 and 6.45, G
must be trivial; thus Yj+1(X) = Yj(X), which is a (j − 1)-step pro-nilflow. This
implies that we can choose fu,k, λu,k in equation (36), with λu,k ≡ 1 (otherwise by
Proposition 6.29 and the construction in Proposition 6.38, we increase the level of
nilpotency). By Corollary 3.9, fk is cohomologous to a function f ′

k on Yj−1(Y ).
The system Yj−1 ×f ′

k
S1 is a factor of X and therefore a (j − 1)-step pro-nilflow.

By the induction hypothesis 1.7(3c), f ′
k is of type j − 1; therefore fk is of type j.

6.52. Proof of Theorem 6.1(3d). If f : Y → H is of type j, then for any χ ∈ Ĥ

there exists (χ1, . . . , χl) ∈ Ĥ l with χ = χk for some k, and (χ1 ◦ f, . . . , χl ◦ f) is of
type �a w.r.t. �̄�a(Y ). By 6.51, χl ◦ f is of type j.

6.53. Proof of Theorem 6.1(3e). By Lemma 6.41, Y ×fg S1 can be given the
structure of a pro-nilflow (it is clear from the proof of Lemma 6.15 that we can
have the functions f, g lifted from the same (j − 1)-step nilflow). As in 6.51, fg is
of type j.

6.54. Proof of Theorem 6.1(8). This follows from 6.50 and 4.1.

�

Acknowledgment

Most of the ideas in this work appear in the author’s Ph.D. thesis. I would
like to thank my adviser Prof. Hillel Furstenberg for introducing me to ergodic
theory, specifically to questions involving nonconventional ergodic averages, and for
many fruitful discussions. I would also like to thank Benji Weiss, Shahar Mozes,
Vitaly Bergelson and Emmanuel Lesigne for enlightening conversations and valuable
remarks. I owe special thanks to Sasha Leibman for pointing out many inaccuracies
in the early version of this paper.

References

[Be87] Bergelson, V. Weakly mixing PET. Ergodic Theory Dynam. Systems 7 (1987), no. 3,
337-349. MR0912373 (89g:28022)

[BK96] Becker, H.; Kechris, S. The Descriptive Set Theory of Polish Group Actions. London
Mathematical Society Lecture Note Series, 232. Cambridge University Press, Cambridge,
1996. MR1425877 (98d:54068)

[Bo89] Bourgain, J. Pointwise ergodic theorems for arithmetic sets. Inst. Hautes Études Sci.
Publ. Math. No. 69 (1989), 5-45. MR1019960 (90k:28030)
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