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ERRATUM TO “REAL BOUNDS, ERGODICITY
AND NEGATIVE SCHWARZIAN FOR MULTIMODAL MAPS”

SEBASTIAN VAN STRIEN AND EDSON VARGAS

In Part 1 of Theorem C of the paper Real bounds, ergodicity and negative
Schwarzian for multimodal maps, see [1], the assumption that V is nice was, by
mistake, omitted. We would like to thank Weixiao Shen for pointing this out. The
correct version of Theorem C(1) is as follows:

Theorem C(1) (Improved Macroscopic Koebe Principle). Assume that f : M →
M is contained in A1+Zygmund. Then for each ξ > 0, there exists ξ′ > 0 such
that if I is a nice interval, V is nice and ξ-well-inside I and x ∈ I, fk(x) ∈ V
(with k ≥ 1 not necessarily minimal), then the pullback of V along {x, . . . , fk(x)}
is ξ′-well-inside the return domain to I containing x.

Here, as before, we define an open interval K to be nice if no iterate of ∂K enters
K. This implies that if K1 and K2 are pullbacks of K, then they are either disjoint
or nested.

In Lemma 9 (page 762) it was implicitly assumed that V is disjoint from Jn. It
is for this reason that the proof of Theorem C(1) does not work unless we assume
V is nice (or something similar). The proof of Theorem C(1) as stated above is
essentially the same as before, using Lemma 6′ below instead of Lemma 6; then in
Lemma 9 (page 762) we do not need to require that kn+1 is a jump time provided we
assume that V is nice. Making the additional assumption that V is nice, Proposition
1 (and its proof) and the rest of the paper go through unchanged.

Lemma 6′. For each ρ > 0 sufficiently small, there exists δ3 > 0 such that if I is a
ρ-scaled neighbourhood of a nice interval V ⊂ I, then J is a δ3-scaled neighbourhood
of any component A of φ−k

|J (V ) (where k ≥ 1 is arbitrary).

Proof. Let Vi, i = 0, . . . , k be the component of φ
−(k−i)
|J (V ) containing φi(A). Of

course, we may assume that k is large and that V0, . . . , Vk are disjoint.

Claim. There exists α > 0 such that if 0 ≤ j < k and Vj+1 is contained in a
neighbourhood of Vj of size (1 + α)|Vj |, then Vj is α-well-inside I. Similarly, if
0 ≤ j < k − 1 and Vj lies between Vj+1 and Vj+2, then Vj is α-well-inside I.

Proof of Claim. If Vj+1 is contained in a neighbourhood of Vj of size (1 + α)|Vj |
and α is small enough, then φ′ is close to zero on a definite neighbourhood of Vj .
So Vj is contained in the basin of an attracting fixed point with multiplier close to
zero. Since Vk is nice and δ3-well-inside I, we easily get that Vj is δ′3-well-inside
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I, proving the first part of the claim. The second part of the claim follows in the
same way by first applying part 1 to Vj , Vj+1 and then applying it to Vj , Vj+2 while
considering φ2 instead of φ, completing the proof of the claim.

If both sides of J are small, then |φ′| is bounded on J . There are three possibil-
ities.

(a) V1 lies between V2 and V3, in which case, by the second part of the Claim,
V1 is well-inside I.

(b) V2 lies between V1 and V3; in this case since |V1|/|V2| is not small and by the
first part of the Claim, V2 is well-inside I.

(c) V3 lies between V1 and V2; then, because |V1|/|V2| and |V2|/|V3| are not small,
V3 is well-inside I. In all cases, we get that V0 is well-inside J .

So assume one of the sides, say the right side, of J is not small. Let 1 ≤ j ≤ k
be the largest integer so that V1, . . . , Vj are all not α-well-inside I. By taking α > 0
small, we may assume j ≤ k−2. Since Vj+1 is α-well-inside I, we may assume that
j ≥ 1 and that there exists α′ > 0 so that Vj , Vj−1 are α′-well-inside J ⊂ I. By
the claim, for each i = 1, . . . , j, Vi has an α-small and an α-big side, and Vi+1 is
contained in the α-big side. Since the right side of J is not small, V1, . . . , Vj+1 lie
therefore ordered from left to right. If for each i = 1, . . . , j−1, Vi−1 is contained in a
β-scaled neighbourhood of Vi, then V1 is in a (β+β2+· · ·+βj)-scaled neighbourhood
of Vj−1. So taking β ∈ (0, 1) so small that β/(1 − β) < α′/2, then, because Vj−1

is α′-well-inside I, the left component of I \ V1 has at least size α′

2 |Vj−1| > α′

2 |V1|,
i.e., V1 is well-inside I, and V0 is well-inside J . Hence we may assume there exists
i ∈ {1, . . . , j − 1} so that Vi−1 is not contained in a β-scaled neighbourhood of Vi.
This and the first part of the Claim imply that Vi is well-inside the convex hull
Hi := [Vi−1, Vi+1] of Vi−1 and Vi+1. Because the intervals V1, . . . , Vi+2 lie ordered,
it follows that the pullback of Hi along V1, . . . , Vi has intersection multiplicity at
most 4 and therefore that V1 is well-inside I. This again gives that V0 is well-inside
J . (This method of proof can also be used to provide a slightly shorter proof of
Lemma 5.) �
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