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REPRESENTATIONS OF AFFINE HECKE ALGEBRAS
AND BASED RINGS OF AFFINE WEYL GROUPS

NANHUA XI

It is known that an interesting part of the study of the representation theory
of p-adic groups can be reduced to the study of the representation theory of affine
Hecke algebras [B, V]. Let (W, S) be an extended affine Weyl group and Hk,q0

the corresponding Hecke algebra over a field k with a nonzero parameter q0 ∈ k.
When k is the complex numbers field and q0 is not a root of unity, a classification
of simple representations of Hk,q0 was established in [KL2] (Deligne-Langlands-
Lusztig classification). For affine type A, a classification of simple representations
of Hk,q0 was obtained in [AM] for any q0 and arbitrary sufficiently large k. When k is
algebraically closed and has positive characteristic, the representations of Hk,q0 were
studied by Vignéras, as part of her study of modular representations of p-adic groups
[V]. In this paper we shall verify a conjecture of Lusztig [L6, 7(a)] by means of the
based ring of an extended affine Weyl group (Theorem 3.3). The conjecture says
that if the parameter q0 is not a root of the corresponding Poincaré polynomial, then
the classification established in [KL2] remains valid. The restriction is necessary
for the classification; see Remark 3.4 (a).

1. Extended affine Weyl groups and their Hecke algebras

1.1. Let G be a connected reductive group over the field C of complex numbers
with simply connected derived group and T a maximal torus of G. Let NG(T ) be
the normalizer of T in G. Then W0 = NG(T )/T is a Weyl group, which acts on
the character group X = Hom(T,C∗) of T . The semi-direct product W = W0 � X
is called an extended affine Weyl group. We shall denote by S the set of simple
reflections of W .

Denote by Hk,q0 the Hecke algebra of (W, S) over an arbitrary field k with a
nonzero parameter q0 ∈ k. We shall assume that k contains the square roots of q0.
The following result is due to J. Bernstein; see [L1, Theorem 8.1] for a proof.

(a) The center Z of Hk,q0 is a finitely generated k-algebra and Hk,q0 is a finitely
generated Z-module.

The following result was proved in [KL2, Proof of Prop. 5.13] when k is un-
countable, by using an argument of Dixmier.

Proposition 1.2. Any simple Hk,q0-module is finite dimensional.

Proof. Let M be a simple Hk,q0-module and D = EndHk,q0
M . Then D is a division

ring. For z in Z, let fz : M → M, m → zm. Then fz is in D and the map
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f : Z → D, z → fz is a homomorphism of k-algebras. Let Y = f(Z). By section
1.1 (a), Y is a finitely generated k-algebra. We only need to show that each element
in Y is algebraic over k.

Let r be the transcendency degree of Y over k. By the Noether normalization
theorem, there are elements y1, ..., yr in Y such that Y is integral over k[y1, ..., yr].

We need to show that r is zero. Assume that r ≥ 1. Note that y−1
1 is not in Y

since y1, ..., yr are algebraically independent and Y is integral over k[y1, ..., yr]. By
section 1.1 (a), M is a finitely generated Z-module. Let v1, ..., vg be elements in
M which generate M as a Z-module. Choose x in Z such that fx = y1. Since
y1 is invertible in D, we can find ui in M such that vi = xui for all i. Let
ui =

∑
j ξjivj , ξji ∈ Z. Set ηji = xξji if j �= i, and ηii = 1 − xξii. Then

we have det(ηij)vi = 0 for all i. But det(ηij) = 1 − xz for some z in Z. Thus
f1−xz = 1 − fxfz = 1 − y1fz = 0. This implies that y1 is invertible in Y and leads
to a contradiction. Therefore we must have r = 0. The proposition is proved. �

2. a-function and based ring

In this section we will see that the simple Jk-modules and simple Hk,q0-modules
have a nice relationship.

2.1. We refer to [L2, 2.1] and [L3, 2.3] for the definitions of the function a : W → N
and of the based ring J of W respectively. Following [L3] we denote by tw, w ∈ W
the basis elements of J . For each nonnegative integer i we denote by J i the subgroup
of J generated by all tw with a(w) = i. Then J i is a two-sided ideal of J and J is
the direct sum of all J i. Set Jk = J ⊗Z k and J i

k = J i ⊗Z k. Thus J i
k is a direct

summand of Jk and is also a k-algebra. By abusing notation we also write tw for
tw ⊗ 1.

Let Cw, w ∈ W be the Kazhdan-Lusztig basis of Hk,q0 in [KL1, L4] and write
CwCu =

∑
hw,u,vCv, hw,u,v ∈ k. Let D be the set of distinguished involutions of

W . The following properties are due to Lusztig; see [L3, 2.4 (a)] and [L4, Prop.
1.7, Prop. 1.6 (i), (ii)].

(a) There is a well-defined homomorphism ϕ : Hk,q0 → Jk of k-algebras such
that

ϕ(Cw) =
∑
d∈D
u∈W

a(d)=a(u)

hw,d,utu, w ∈ W.

(b) The homomorphism ϕ in (a) is injective. Thus Hk,q0 can be regarded as a
subalgebra of Jk by means of ϕ.

(c) The center Z(Jk) of Jk is a finitely generated k-algebra and Jk is a finitely
generated Z(Jk)-module.

(d) There is a well-defined right Hk,q0-module structure on J i
k such that

twCu =
∑
v∈W

a(v)=a(w)

hw,u,vtv.

In this way, J i
k becomes a Jk-Hk,q0-bimodule. See [L4, 1.4 (b)].

The following result was proved by Lusztig [L4, Prop. 1.6 (iii)] provided that k
is uncountable.

Lemma 2.2. Any simple Jk-module is finite dimensional.
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Proof. A proof is similar to that for Proposition 1.2. �

2.3. Let E be a Jk-module through the homomorphism ϕ, it is endowed with an
Hk,q0-module structure. We denote the Hk,q0-module by Eϕ. Convention: For
any subset N of E and any subset L of Hk,q0 , we often write LN for ϕ(L)N . Thus,
as a set the notation LN is unambiguous, no matter whether N is regarded as a
subset of E or as a subset of Eϕ.

For each simple Jk-module E, there is a unique i such that J i
kE = E. We define

a(E) to be i. For an integer i, we denote by H≥i
k,q0

(resp. H>i
k,q0

) the subspace of
Hk,q0 spanned by all Cw with a(w) ≥ i (resp. a(w) > i). Both H≥i

k,q0
and H>i

k,q0
are

two-sided ideals of Hk,q0 . For each Hk,q0-module M we then define a(M) to be i if
H≥i

k,q0
M �= 0 but H>i

k,q0
M = 0.

Let M be an Hk,q0-module with a(M) = i. We define M̃ to be J i
k ⊗Hk,q0

M ; here
we regard J i

k as a Jk-Hk,q0-bimodule as in section 2.1 (d). Then M̃ is a Jk-module.
There is a natural homomorphism of Hk,q0-modules p : M̃ϕ → M, tw ⊗m → Cwm.
We have ([L4, Proof of Lemma 1.9]).

(a) When M is simple, the map p is surjective and Cwker p = 0 whenever a(w) ≥
a(M).

The following assertion is clear.
(b) Let E be a simple Jk-module. Then H

>a(E)
k,q0

Eϕ = 0. In particular, a(M) ≤
a(E) for any simple constituent M of Eϕ. Also for any subset N of E or Eϕ,
H

≥a(E)
k,q0

N is spanned by all CwN, w ∈ W with a(w) = a(E).

Lemma 2.4. Let E be a simple Jk-module and N a submodule of Eϕ such that
CwN �= 0 for some w ∈ W with a(w) = a(E). Regarding N as a subset of E, then
H

≥a(E)
k,q0

N = E. In particular, N = Eϕ as Hk,q0-modules.

Proof. Using section 2.3 (b) we know a(N) = a(E). Thus Ñ = J
a(E)
k ⊗Hk,q0

N . We
have a well-defined k-linear map

θ : Ñ → E, tw ⊗ v → ϕ(Cw)v.

Using [L3, 2.4 (c)] we see that θ is a homomorphism of Jk-modules. Since E is a
simple Jk-module and θ(Ñ) = H

≥a(E)
k,q0

N �= 0, we must have H
≥a(E)
k,q0

N = E. The
lemma is proved. �

Lemma 2.5. Let E be a simple Jk-module. Then
(a) Eϕ has at most one simple constituent M such that a(M) = a(E).
(b) If Eϕ has a simple constituent M such that a(M) = a(E), then M is a

quotient module of Eϕ.
(c) If Eϕ has a simple constituent M such that a(M) = a(E), then M is the

unique simple quotient module of Eϕ.

Proof. Assume that Eϕ has a simple constituent M such that a(M) = a(E). Let
N2 ⊂ N1 be two submodules of Eϕ such that the quotient module N1/N2 is M .
Then CwN1 �= 0 for some w ∈ W with a(w) = a(E). By Lemma 2.4 we have
N1 = Eϕ. Since H

≥a(E)
k,q0

is a two-sided ideal, using Lemma 2.4 we see that N2 =

{v ∈ Eϕ | H
≥a(E)
k,q0

v = 0}.
(a) and (b) follow.
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Now we argue for (c). Let N be a maximal submodule of Eϕ. Using Lemma 2.4
we see that N is a submodule of N2 = {v ∈ Eϕ | H

≥a(E)
k,q0

v = 0}. By the argument
for (a) and (b), N2 is a maximal submodule of Eϕ. Thus N = N2 and Eϕ/N = M
is the unique simple quotient module of Eϕ.

The lemma is proved. �

Corollary 2.6. Let E be a simple Jk-module. Then Eϕ has a simple constituent
M with a(M) = a(E) if and only if CwEϕ �= 0 for some w with a(w) = a(E). In
this case Eϕ has a unique maximal submodule.

Proof. The “only if” part is obvious. Now we prove the “if” part. Assume that
Eϕ had no simple constituent M with a(M) = a(E). Let N be a maximal sub-
module of Eϕ. Then Eϕ/N is simple. By assumption and section 2.3 (b), we have
H

≥a(E)
k,q0

Eϕ ⊂ N . However, CwEϕ �= 0 for some w with a(w) = a(E). By Lemma

2.4 we have H
≥a(E)
k,q0

Eϕ = Eϕ. This is a contradiction. The corollary is proved. �

Lemma 2.7. Let E and E′ be two simple J i
k-modules. Assume that Eϕ (resp. E′

ϕ)
has a simple quotient M (resp. M ′) such that a(M) = i (resp. a(M ′) = i). Then
M is isomorphic to M ′ if and only if E is isomorphic to E′.

Proof. Let π : Eϕ → M be the natural projection. Since H≥i
k,q0

Eϕ �= 0, by section

2.3 (b) we have Ẽϕ = J i
k ⊗Hk,q0

Eϕ. For simplicity, we shall write Ẽ for Ẽϕ. There
are two well-defined k-linear maps

p′ : Ẽ → M̃, tw ⊗ v → tw ⊗ π(v),

θ : Ẽ → E, tw ⊗ v → ϕ(Cw)v.

Clearly p′ is a homomorphism of Jk-modules. According to the proof of Lemma
2.4, θ is also a homomorphism of Jk-modules. Obviously we have πθ = pp′ (see
section 2.3 for the definition of p : M̃ϕ → M).

Since p′ is a surjection, the homomorphism p′ induces a surjective homomorphism
of Jk-modules, p̄′ : Ẽ/ker θ → M̃/p′(ker θ). As Jk-modules, Ẽ/ker θ is isomorphic
to E, since E is simple and θ(Ẽ) = H≥i

k,q0
E �= 0. Thanks to πθ = pp′, we know that

p′(ker θ) is in the kernel of p. By section 2.3 (a), ker p � M̃ , so p̄′ is an isomorphism
and E is isomorphic to M̃/p′(ker θ).

By section 2.3 (a), H≥i
k,q0

ker p = 0; hence we have H≥i
k,q0

p′(ker θ) = 0. Thus E

can be characterized as the unique simple constituent F of the Jk-module M̃ such
that H≥i

k,q0
Fϕ �= 0.

As a consequence, if M is isomorphic to M ′, then E must be isomorphic to E′.
The lemma is proved. �

Corollary 2.8 ([L4, Corollary 3.6]). Assume that for each simple J i
k-module E,

the Hk,q0-module Eϕ has a simple constituent M with a(M) = i. Then both of the
Jk-modules Ẽ and M̃ are isomorphic to E.

Proof. By Lemma 2.5 (c), M is the unique simple quotient of Eϕ. Note that
Jr

k Ẽ = 0 if r �= i (recall that Ẽ stands for Ẽϕ). Let θ : Ẽ → E be as in the proof of
Lemma 2.7. As in the proof of [L4, Lemma 1.9], one may check that Cwker θ = 0
whenever a(w) ≥ i. If ker θ �= 0, then by assumption, Cwker θ �= 0 for some w with
a(w) = i . This yields a contradiction. Therefore ker θ = 0 and as Jk-modules,
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Ẽ is isomorphic to E. By the proof of Lemma 2.7 we know that Ẽ and M̃ are
isomorphic in this case. The corollary is proved. �

3. Main results

In this section we give our main results.
Denote by W I the subgroup of W generated by a subset I of S and call it a

parabolic subgroup. Let JI
k be the subspace spanned by all tw, w ∈ W I .

Theorem 3.1. Assume that char k = 0. Then as a two-sided ideal, Jk is generated
by all JI

k for all finite parabolic subgroups W I .

Proof. According to [L5, Theorem 4.2] and [L5, Theorem 6.7(a2)], for any simple
JC-module E, we can find a finite parabolic subgroup W I of W such that the action
of JI

C on E is nonzero. This implies that as a two-sided ideal, JC is generated by all
JI
C for all finite parabolic subgroups W I . With respect to the basis {tw|w ∈ W},

the structure constants of Jk are in N if char k = 0. The theorem follows. �

When q0 is not a root of unity, the following result was proved by Lusztig [L4,
Theorem 3.4], except for the uniqueness in (a).

Theorem 3.2. Assume that char k = 0 and
∑

w∈W0
q

l(w)
0 �= 0 (l is the length

function of W ). Then
(a) for each simple Jk-module E, the Hk,q0-module Eϕ has a unique simple con-

stituent M such that a(M) = a(E). For other simple constituents M ′ of Eϕ we have
a(M ′) < a(E). The Hk,q0-module M is the unique simple quotient of Eϕ. (The
uniqueness is part of [L2, 9.10, Conjecture A]. The other part of the conjecture was
proved in [L3].)

(b) Keep the notation in (a). The map E → M defines a bijection between the
isomorphism classes of simple Jk-modules and the isomorphism classes of simple
Hk,q0-modules.

Proof. Let W I be a finite parabolic subgroup of W . Since
∑

w∈W0
q

l(w)
0 �= 0, it is

easy to check that
∑

w∈W I q
l(w)
0 �= 0. Thus the subalgebra HI

k,q0
of Hk,q0 generated

by all Cw (w ∈ W I) is semisimple [G1, Theorem 3.9]. Then the restriction of ϕ to
HI

k,q0
induces an isomorphism ϕI : HI

k,q0
→ JI

k [G2, Lemma 2.1]. The isomorphism
ϕI sends Cw (w ∈ W I) to a linear combination of tu, u ∈ W I with a(u) ≥ a(w).

Now for each simple Jk-module E, we can find a finite parabolic subgroup W I

such that JI
kE �= 0 (Theorem 3.1). Let N1 = JI

kE and N2 = {v ∈ E | JI
kv = 0}.

Then E = N1 ⊕ N2 and JI
kN1 = N1. Moreover, for any v in N1 and h in HI

k,q0
,

we have ϕ(h)v = ϕI(h)v. Let u ∈ W I be such that tuN1 �= 0. Then a(u) = a(E)
and h = ϕ−1

I (tu) is a linear combination of Cw, w ∈ W I with a(w) ≥ a(E). Now
we have hN1 = ϕ(h)N1 = ϕI(h)N1 = tuN1 �= 0. Using section 2.3 (b) we can
find an element w ∈ W I such that a(w) = a(E) and CwN1 �= 0. This implies that
CwEϕ �= 0. By Corollary 2.6 and Lemma 2.5, we see that Eϕ has a unique simple
constituent M such that a(M) = a(E). Moreover, M is the unique simple quotient
of Eϕ.

Using section 2.3 (b), we know that for other simple constituents M ′ of Eϕ we
have a(M ′) < a(E). Part (a) is proved.

Using section 2.3 (a) and Lemma 2.7 we see that (b) is true. �
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Theorem 3.3. Assume that k = C and
∑

w∈W0
q

l(w)
0 �= 0. Then the classification

of simple Hk,q0-modules in [KL2] remains valid.

Proof. The theorem follows from [L5, Theorem 4.2] and Theorem 3.2 (b). �

Remark 3.4. (a) When
∑

w∈W0
q

l(w)
0 = 0, there are simple JC-modules E such

that the Hk,q0-modules Eϕ have no simple constituents M with a(M) = a(E) [X1,
Theorem 7.8].

(b) A weaker result was proved in [X1, Theorem 6.6].
(c) In [Gr], Grojnowski announced a stronger result. The proof seems to not be

available yet. The validity of the result will be commented on in a future work.
(d) For type Ãn, rank 2 cases, the structure of the based ring J is known explicitly

[X1, X2, BO]. In these cases we can get a classification of simple Hk,q0-modules
for any field k containing square roots of q0, by means of Jk. The result suggests
that an analogue of the Deligne-Langlands-Lusztig classification of simple Hk,q0-
modules remains true, provided that k is algebraically closed and the subalgebra
H(W0)k,q0 of Hk,q0 generated by all Cw (w ∈ W0) is semisimple. The details will
appear elsewhere.
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Astérisque 101-102 (1983), pp. 208-227. MR0737932 (85m:17005)

[L2] G. Lusztig, Cells in affine Weyl groups, in “Algebraic groups and related topics”, Advanced
Studies in Pure Math., vol. 6, Kinokunia and North Holland, 1985, pp. 255-287. MR0803338
(87h:20074)

[L3] G. Lusztig, Cells in affine Weyl groups, II, J. Alg. 109 (1987), 536-548. MR0902967
(88m:20103a)

http://www.ams.org/mathscinet-getitem?mr=1750939
http://www.ams.org/mathscinet-getitem?mr=1750939
http://www.ams.org/mathscinet-getitem?mr=2074591
http://www.ams.org/mathscinet-getitem?mr=2074591
http://www.ams.org/mathscinet-getitem?mr=0444849
http://www.ams.org/mathscinet-getitem?mr=0444849
http://www.ams.org/mathscinet-getitem?mr=1270135
http://www.ams.org/mathscinet-getitem?mr=1270135
http://www.ams.org/mathscinet-getitem?mr=1334224
http://www.ams.org/mathscinet-getitem?mr=1334224
http://www.ams.org/mathscinet-getitem?mr=1416051
http://www.ams.org/mathscinet-getitem?mr=1416051
http://www.ams.org/mathscinet-getitem?mr=0560412
http://www.ams.org/mathscinet-getitem?mr=0560412
http://www.ams.org/mathscinet-getitem?mr=0862716
http://www.ams.org/mathscinet-getitem?mr=0862716
http://www.ams.org/mathscinet-getitem?mr=0737932
http://www.ams.org/mathscinet-getitem?mr=0737932
http://www.ams.org/mathscinet-getitem?mr=0803338
http://www.ams.org/mathscinet-getitem?mr=0803338
http://www.ams.org/mathscinet-getitem?mr=0902967
http://www.ams.org/mathscinet-getitem?mr=0902967


REPRESENTATIONS OF AFFINE HECKE ALGEBRAS 217

[L4] G. Lusztig, Cells in affine Weyl groups, III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34
(1987), 223-243. MR0914020 (88m:20103b)

[L5] G. Lusztig, Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36
(1989) No. 2, 297-328. MR1015001 (90k:20068)

[L6] G. Lusztig, Representations of affine Hecke algebras, Astérisque 171-172 (1989), 73-84.
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