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BOUNDARY BEHAVIOR OF SLE

NAM-GYU KANG

1. Introduction and results

Introduction. Several lattice models from statistical physics such as random walks
(RWs), loop-erased random walks (LERWs), self-avoiding random walks (SAWs),
and critical FK (Fortuin and Kasteleyn) percolations have been shown or are conjec-
tured to be invariant under conformal mappings. The stochastic Loewner evolution
(SLE) was first introduced by O. Schramm as a possible scaling limit for the pla-
nar LERW [33]. As a one-parameter family of random growth processes, the SLE
curves are the only random non-self-crossing curves with a certain Markovian type
property and conformal invariance.

Loewner chains are widely applied in complex analysis. For instance, de Branges
used Loewner evolutions to prove the Bieberbach conjecture, which states that the
nth coefficient in the power series of a univalent function in the class S should be
no greater than n [6]. In fact, Loewner introduced this concept in the 1920’s in
order to calculate an estimate on the third coefficient.

G. F. Lawler, O. Schramm, and W. Werner used SLE6 to determine the two-sided
disconnection exponent for Brownian motion. It led to the proof of Mandelbrot’s
conjecture that the Hausdorff dimension of the planar Brownian frontier is 4/3. See
[21], [22], [23], [24], and [25]. The planar Brownian frontier is defined as the bound-
ary of the unbounded component of the complement of the planar Brownian path.
In [19], G. F. Lawler expressed the Hausdorff dimension of the planar Brownian
frontier in terms of the two-sided disconnection exponent.

Numerous discrete models have been proven or are expected to correspond to
SLEκ for some κ. Using Cardy’s formula in Carleson’s form, Smirnov proved that
the critical site percolation on the triangular grid has a conformal invariant scaling
limit. He also showed that the scaling limit is described by SLE6 [35]. G. F. Lawler,
O. Schramm, and W. Werner proved that the scaling limits of LERW and the
uniform spanning tree (UST) Peano curve with appropriate boundary conditions
are, respectively, SLE2 and SLE8 [26]. G. F. Lawler, O. Schramm, and W. Werner
also showed that if the scaling limit of planar SAWs exists and is conformally
invariant, then it is SLE8/3 [27]. R. Kenyon conjectured that the scaling limit of
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Figure 1. Planar Brownian motion and its frontier.

the double domino paths is SLE4. On the other hand, O. Schramm and S. Sheffield
recently proved that the harmonic explorer converges to SLE4 [34].

From the dimension estimate for the trace and outer boundary of the hull, B. Du-
plantier conjectured that SLEκ′ (κ′ = 16/κ) should describe the boundary of the
hull of SLEκ when κ > 4 (see [7]). In particular, the central charge c (see [8] for
the definition) of SLE is invariant under the map κ �→ 16/κ :

c = 1 − 6
(√

κ

4
−

√
4
κ

)2

.

Duplantier duality has been shown to hold for κ = 8 and κ = 6. In the case
κ = 8, the frontier of the UST Peano curve consists of two LERWs, one in the
tree and the other in the dual tree. When κ = 6, the restriction property makes it
possible to describe the outer boundary of conditioned SLE6 in terms of SLE8/3.
Using arguments of conformal field theory, B. Duplantier and I. Binder derived the
mixed multifractal spectrum fmixed(α, λ) for the scaling and winding (with respect
to harmonic measure) in terms of the central charge:

(1.1) fmixed(α, λ) = α + b − bα2

2α − 1 − λ2
,

where b = (25− c)/12. See [2] for definitions and [9] for more details of the results.

Definitions. For each κ ≥ 0 and each z ∈ H, let gt(z) be the solution of the
chordal Loewner equation

(1.2) ∂tgt(z) =
2

gt(z) −
√

κBt
, g0(z) = z,

where Bt is a one-dimensional standard Brownian motion on the real line, starting
from 0. The solution exists whenever gt(z) −

√
κBt is bounded away from zero.

This implies gt(z) is well-defined up to the first time τ (z) such that limt↑τ(z) gt(z)−√
κBt = 0. For each t > 0, the map gt is a conformal mapping from the domain

Ht := {z ∈ H : τ (z) > t} onto H. The process t �→ gt is called chordal stochastic
Loewner evolution in H with parameter κ, or SLEκ. The sets Kt := {z ∈ H :
τ (z) ≤ t} are called the hulls of the SLE. Chordal SLEκ is scale invariant in the
following sense. For c > 0, the process t �→ c−1/2Kct has the same law as t �→ Kt.
The process (t, z) �→ c−1/2gct(

√
cz) has the same law as the process (t, z) �→ gt(z).
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Figure 2. The boundary of the hull of SLE6 describes SLE8/3.

There is (almost surely) a uniquely defined continuous path γ : [0,∞) → H such
that Ht is the unbounded component of H \ γ[0, t] for all t ≥ 0. This path is called
the SLEκ trace from 0 to ∞ in H and is given by

γ(t) = lim
z→0

g−1
t (z +

√
κBt).

Define the backward flow ft = g−t of gt for nonnegative t. Then ft is a conformal
map from H into a subset of H satisfying

(1.3) ∂tft(z) =
−2

ft(z) +
√

κBt
, f0(z) = z.

For each fixed t ∈ R, the map ft(z) has the same distribution as the map z �→
g−1

t (z +
√

κBt) −
√

κBt. This follows from the Markov property and translation
invariance of Brownian motion. Note that ft(z) is well-defined on H for all t ≥ 0.

Basic properties. In [31], S. Rohde and O. Schramm showed that the SLEκ trace
is almost surely a continuous path for κ �= 8. In the special case κ = 8, this was
shown as a consequence of the theorem that the scaling limit of UST Peano curve
is chordal SLE8 [26]. They estimated the derivative expectations for the backward
flow to show that g−1

t is almost surely Hölder continuous unless κ = 4 (when it is
not Hölder continuous).

V. Beffara established that the Hausdorff dimension of the SLEκ trace is almost
surely min(1 + κ/8, 2) [1]. S. Rohde and O. Schramm estimated the convergence
exponent for the Whitney decomposition of H1 to obtain an upper bound for the
box-counting dimension of the boundary of the SLEκ hull. They proved that the
Hausdorff dimension of ∂K1 is almost surely at most 1 + 2/κ for κ > 4. On the
other hand, R. Kenyon conjectured that the Hausdorff dimension of ∂K1 is almost
surely 1+2/κ for κ ≥ 4. (As remarked earlier, this is known for κ = 6, 8.) For more
basic properties of SLE, see [31], [20], and [37].

(Pre-)Schwarzian derivatives. The logarithmic derivative or pre-Schwarzian de-
rivative Lf of a locally univalent function f is defined by

Lf(z) =
f ′′(z)
f ′(z)

.
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The Schwarzian derivative Sf of a locally univalent function f is defined by

Sf(z) =
(f ′′(z)

f ′(z)

)′
− 1

2

(f ′′(z)
f ′(z)

)2

.

The logarithmic derivative and the Schwarzian derivative satisfy the composition
law

L(f ◦ g)(z) = Lg(z) + Lf(g(z)) · g′(z),(1.4)

S(f ◦ g)(z) = Sg(z) + Sf(g(z)) · g′(z)2.

Thus, the Schwarzian derivative is Möbius-invariant; that is, S(T ◦ f) = Sf for
any Möbius transformation T. Also, note that ST = 0 if and only if T is a Möbius
transformation. Suppose f maps D conformally into C. Then, by the distortion
theorem,

(1.5) |(1 − |z|2)Lf(z) − 2z| ≤ 4 and (1 − |z|2)2|Sf(z)| ≤ 6,

for z ∈ D. See p. 9 and p. 13 in [29] for the first estimate and the second estimate,
respectively. On H, the second estimate in (1.5) becomes

y2|Sf(z)| ≤ 3
2
,

where y = Im z.
Some analytic criteria for univalence have limited applications because they are

far from necessary. The following general criteria involving the (pre-)Schwarzian
derivative are useful sufficient conditions and almost necessary in a certain sense.
See [29] for more references.

Theorem (Becker univalence criterion). Suppose f is analytic and locally univalent
in D. If

(1.6) (1 − |z|2)|zLf(z)| ≤ 1

for z ∈ D, then f is univalent in D. The bound 1 is sharp.

Theorem (Nehari univalence criterion). Suppose f is analytic and locally univalent
in D. If

(1.7) (1 − |z|2)2|Sf(z)| ≤ 2

for z ∈ D, then f is univalent in D. The bound 2 is sharp.

These univalence criteria have the following geometric application: If either es-
timate (1.6) or (1.7) is uniformly bounded away from the sharp constant, then f
maps D conformally onto a quasi-disk. A Jordan curve J is called a quasi-circle if

diamJ(a, b) ≤ C|a − b| for a, b ∈ J,

where J(a, b) is the smallest arc (in the sense of diameter) of J between a and b.
The inner domain of a quasi-circle is called a quasi-disk. The asymptotic behavior
of the (pre-)Schwarzian derivative measures the degree of non-conformality of the
boundary [29].
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Beta numbers. In order to study the subsets of rectifiable curves, given a set E
in the complex plane and a square Q, P. W. Jones introduced an L∞ version of the
beta number

β(Q) = βE(Q) :=
1

�(Q)
inf
L∈L

sup
z∈E∩3Q

dist(z, L),

where L is the set of all lines L intersecting Q and an L∞ Jones content

J∞(E) =
∑
Q∈D

β2
∞(Q)�(Q),

where the summation extends over all dyadic squares.

Theorem A (Jones [17]). Suppose E is a subset of R2. Then E is contained in
a rectifiable curve if and only if diam(E) and the L∞ Jones content J∞(E) are
finite.

A connected set E is called uniformly wiggly with constant β0 if βE(Q) > β0 for
every Q such that 3−1Q intersects E and �(Q) ≤ diam(E).

Theorem B (Bishop, Jones [4]). Suppose E ⊂ R
2 is a closed, connected, uniformly

wiggly set with constant β0. Then dim(E) ≥ 1 + Cβ2
0 , where C is an absolute

constant.

C. J. Bishop, P. W. Jones, R. Pemantle, and Y. Peres used a stochastic version
of this theorem to prove that the dimension of the Brownian frontier is greater than
1 [5]. Also, C. J. Bishop and P. W. Jones showed that large Schwarzian implies
large beta numbers. For the precise statement, see [3] or [13]. Here, we state
the quasiconformal version. Using this, J. Graczyk and P. W. Jones proved that
every subarc of the boundary of the Siegel disk (for rotation numbers of “constant
type”) has the Hausdorff dimension strictly larger than 1 [15]. A Jordan curve Γ
is K-quasiconformal (or a K-quasicircle) if it is the image of the unit circle by a
K-quasiconformal homeomorphism h : C → C.

Theorem C (Graczyk, Jones [15]). Suppose that Γ is a K-quasicircle. Assume
also that there exist ∆ > 0 and ε > 0 so that for every z0 ∈ D,

sup
ρ(z,z0)≤∆

∣∣S(h)
∣∣∣∣1 − |z|

∣∣2 ≥ ε.

Then there exists ε0 > 0 which depends solely on K, ∆, and ε so that

βΓ > ε0.

Itô’s formula. If X is a continuous local martingale and f has two continuous
derivatives, then almost surely

(1.8) f(Xt) − f(X0) =
∫ t

0

f ′(Xs)dXs +
1
2

∫ t

0

f ′′(Xs) d〈X〉s,

where 〈X〉t is the quadratic variation or the variance process of Xt, which is defined
to be the unique continuous process such that X2

t −〈X〉t is a local martingale. See
[10] or [18]. If X and Y are continuous local martingales, then almost surely

(1.9) XtYt − X0Y0 =
∫ t

0

Ys dXs +
∫ t

0

Xs dYs + 〈X, Y 〉t,
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where 〈X, Y 〉t is the covariance process of X and Y , defined by

〈X, Y 〉t =
1
4

(
〈X + Y 〉t − 〈X − Y 〉t

)
.

Goluzin’s identities. We will use a chordal version of Goluzin’s identities to com-
pute the second moment of the (pre-)Schwarzian. Goluzin used a radial version of
the identities to obtain the sharpened forms of certain inequalities which constitute
the distortion theorems for the class Σ, consisting of all univalent functions

g(ζ) = ζ + b0 + b1ζ
−1 + · · · (|ζ| > 1),

in Ĉ \ D. Suppose ft is a radial Loewner chain:

(1.10)
dft

dt
(z) = −ft(z)

1 + k(t)ft(z)
1 − k(t)ft(z)

,

where k(t) is a driving function (|k(t)| = 1). Goluzin’s identities state

(1.11)
d

dt
log

[ e−t

ft(z)ft(w)
ft(z) − ft(w)

z − w

]
= −2

k(t)ft(z)
1 − k(t)ft(z)

k(t)ft(w)
1 − k(t)ft(w)

and

(1.12)
d

dt
log(1 − ft(z)ft(w)) = 2

k(t)ft(z)
1 − k(t)ft(z)

( k(t)ft(w)
1 − k(t)ft(w)

)
.

See p. 118 in [14]. We will state and prove a chordal version of Goluzin’s identities
in the proof of Lemma 2.1. For the reader’s convenience, we give a proof of (1.11)
and (1.12).

Proof of Goluzin’s identities. It follows from (1.10) that

d

dt
log

[ e−t

ft(z)ft(w)
ft(z) − ft(w)

z − w

]
= −1 +

d

dt
log

( 1
ft(w)

− 1
ft(z)

)

= −1 +

1
ft(w)

1 + k(t)ft(w)
1 − k(t)ft(w)

− 1
ft(z)

1 + k(t)ft(z)
1 − k(t)ft(z)

1
ft(w)

− 1
ft(z)

=

1
ft(w)

(
− 1 +

1 + k(t)ft(w)
1 − k(t)ft(w)

)
− 1

ft(z)

(
− 1 +

1 + k(t)ft(z)
1 − k(t)ft(z)

)
1

ft(w)
− 1

ft(z)

=
( 1

ft(w)
− 1

ft(z)

)−1( 2k(t)
1 − k(t)ft(w)

− 2k(t)
1 − k(t)ft(z)

)
=

ft(z)ft(w)
ft(z) − ft(w)

−2k(t)2
(
ft(z) − ft(w)

)(
1 − k(t)ft(z)

)(
1 − k(t)ft(w)

)
=

−2k(t)2ft(z)ft(w)(
1 − k(t)ft(z)

)(
1 − k(t)ft(w)

) .
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In a similar way, we obtain

d

dt
log(1 − ft(z)ft(w)) =

−1
1 − ft(z)ft(w)

(dft

dt
(z)ft(w) +

dft

dt
(w)ft(z)

)
=

ft(z)ft(w)
1 − ft(z)ft(w)

(1 + k(t)ft(z)
1 − k(t)ft(z)

+
1 + k(t)ft(w)
1 − k(t)ft(w)

)
=

2ft(z)ft(w)
1 − ft(z)ft(w)

1 − |k(t)|2ft(z)ft(w)(
1 − k(t)ft(z)

)(
1 − k(t)ft(w)

)
=

2ft(z)ft(w)(
1 − k(t)ft(z)

)(
1 − k(t)ft(w)

) ,

which completes the proof. �
Definition of BMO and the John-Nirenberg inequality. Just as the Hardy
space H1 is an appropriate substitute for L1 in many results concerning singular
integrals, the BMO space, or the space of functions of bounded mean oscillation,
is a natural substitute for L∞. The BMO space on Rn is the set of equivalence
classes of locally integrable functions f (modulo additive constants) for which the
inequality

(1.13)
1
|Q|

∫
Q

|f(x) − fQ| dx ≤ C

holds for all cubes Q. Here, fQ denotes the mean value of f over the cube Q. The
smallest such C is taken to be BMO norm and is denoted by ‖f‖BMO (see [36]).

Theorem (John and Nirenberg [16]). There exist positive constants c and C such
that for each cube Q, each f ∈ BMO, and each λ,

|{x ∈ Q : |f(x) − fQ| > λ}| ≤ C|Q| exp(−cλ/‖f‖BMO).

This notion can be modified in the setting of continuous martingales. A contin-
uous martingale M belongs to the space BMO of martingales of bounded mean
oscillation if there exists C such that for all stopping times τ

E
(
|M∞ − Mτ |2

∣∣Fτ

)
≤ C2, almost surely.

The smallest such C is defined as the BMO norm of M and is denoted by ‖M‖BMO.
Let M∗ = supt |Mt|. For the following results, see pp. 208–211 in [10].

Theorem (Probabilistic analogue of John and Nirenberg inequality). There exists
a positive constant C such that for each M ∈ BMO,

P[M∗ > λ‖M‖BMO] ≤ Ce−λ/e.

Main results. For the SLE related maps, it is well known that Im ft(z) is mono-
tone increasing in t for every z ∈ H. For z ∈ H and u ∈ R, set a stopping time

(1.14) Tu = Tu(z) := inf{t ∈ R : Im(ft(z)) ≥ eu}.
It is also well known that for all z ∈ H, almost surely Tu �= ∞. See [31].

Theorem 1. For any u ∈ R and x �= 0, the normalized pre-Schwarzian yLft(x+iy)
at t = Tu has the asymptotic second moment

(1.15) lim
y→0

E
[
|yLfTu

(x + iy)|2
]

=
1

2(
√

κ/4 +
√

4/κ)2
.



192 NAM-GYU KANG

Furthermore, for fixed z = x + iy(x �= 0) ∈ H,

(1.16) lim
t→∞

E
[
|yLft(z)|2

]
=

1
2(

√
κ/4 +

√
4/κ)2

.

The normalized pre-Schwarzian yLft(z), after we subtract a negligible term, is
a complex martingale of BMO. To see this, define a random conformal map Ft

from H into a subset of C \ R+ by Ft(z) = (ft(z) +
√

κBt)2 and set

Lt = Lt(z) :=
κ

4 + κ
yLft(z) +

4
4 + κ

(
yLFt(z) − yLF0(z)

)
(1.17)

= yLft(z) +
4

4 + κ

( yf ′
t(z)

ft(z) +
√

κBt
− y

z

)
=

−2√
κ/4 +

√
4/κ

∫ t

0

yf ′
s(z)

(fs(z) +
√

κBs)2
dBs.

Theorem 2. The process L is a BMO martingale in t and

‖L‖2
BMO =

1
2(

√
κ/4 +

√
4/κ)2

.

Theorem 3. For any u ∈ R and x �= 0, the normalized Schwarzian y2Sft(x + iy)
at t = Tu has the asymptotic second moment

(1.18) lim
y→0

E
[
|y2SfTu

(x + iy)|2
]

=
9κ

(κ + 6)(3κ + 8)
.

Furthermore, for x �= 0, we have

(1.19) lim
y→0

(
lim

t→∞
E

[
|y2Sft(x + iy)|2

])
=

9κ

(κ + 6)(3κ + 8)
.

The normalized Schwarzian y2Sft(z), after we subtract a negligible term, is a
complex martingale of BMO. To see this, set

St = St(z) :=
3κ

3κ + 8
y2Sft(z) +

8
3κ + 8

(
y2SFt(z) − y2SF0(z)

)
(1.20)

= y2Sft(z) +
12

3κ + 8
(y2

z2
− y2f ′

t(z)2

(ft(z) +
√

κBt)2
)

=
24
√

κ

3κ + 8

∫ t

0

y2f ′
s(z)2

(fs(z) +
√

κBs)3
dBs.

Theorem 4. The process S is a BMO martingale in t. Furthermore, for x �= 0,

lim
y→0

‖S(x + iy)‖2
BMO =

9κ

(3κ + 8)(κ + 6)
.

Recall the definition of the hyperbolic distance or Poincaré metric dH:

(1.21) cosh dH(z1, z2) = 1 +
|z1 − z2|2

2y1y2
= −1 +

|z1 − z2|2
2y1y2

,

where yj = Im zj (j = 1, 2). See p. 136 in [30]. The normalized (pre-)Schwarzian has
correlations that decay exponentially in the hyperbolic distance from z1 = x1 + iy1

to z2 = x2 + iy2. Thus, the normalized (pre-)Schwarzian derivatives are nearly
independent if z1 and z2 are far away from each other. For z1, z2 ∈ H and u ∈ R,
set a stopping time T ∗

u = T ∗
u (z1, z2) := max

(
Tu(z1), Tu(z2)

)
.
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Theorem 5. The BMO martingale Lt at t = ∞ has exponential decay of correla-
tions:

(1.22)
∣∣EL∞(z1)L∞(z2)

∣∣ =
1

2(
√

κ/4 +
√

4/κ)2
cosh−2 dH(z1, z2)

2
.

Furthermore, given u ∈ R and a compact subset K of the real line, Lt at T ∗
u has

exponential decay of correlations:

(1.23) lim sup
y1,y2→0

y1y2

∣∣ELT∗
u
(z1)LT∗

u
(z2)

∣∣ ≤ 1
2(

√
κ/4 +

√
4/κ)2

cosh−2 ρ

2
,

where the limsup is taken over all (z1, z2) ∈
(
K × (0, 1)

)2 such that dH(z1, z2) ≥ ρ.

Theorem 6. The BMO martingale St at t = ∞ has exponential decay of correla-
tions: ∣∣ES∞(z1)S∞(z2)

∣∣ ≤ 9κ

(κ + 6)(3κ + 8)
cosh−4 dH(z1, z2)

2
(1.24)

+ C2(κ)
y1y2

|z1z2|
cosh−2 dH(z1, z2)

2
.

Furthermore, given u ∈ R and a compact subset K (0 /∈ K) of the real line, St at
T ∗

u has exponential decay of correlations:

(1.25) lim sup
y1,y2→0

∣∣EST∗
u
(z1)ST∗

u
(z2)

∣∣ ≤ 9κ

(κ + 6)(3κ + 8)
cosh−4 ρ

2
,

where the limsup is taken over all (z1, z2) ∈
(
K × (0, 1)

)2 such that dH(z1, z2) ≥ ρ.

It is likely that this result leads to an estimate on the lower bound for the
Hausdorff dimension of the SLE boundary. This should be true because Theorems
A, B, C mean that “most often” the boundary is wiggly near ft(z). Furthermore, the
decay of correlations from Theorem 6 means that a statistical version of Theorem
C should hold, as it does in [5]. The estimate for the upper bound on the Hausdorff
dimension is already established by S. Rohde and O. Schramm [31]. While the
Hausdorff dimension of the SLEκ trace was proved by V. Beffara [1], it remains an
open conjecture for the boundary of the hull in case κ > 4.

Computing the derivative expectation or moment generating function for |g′t(z)|
for an arbitrary complex number z, S. Rohde and O. Schramm proved that g−1

t is
almost surely Hölder continuous when κ �= 4 in [31]. We reexamine their derivative
expectation to derive the conjectured sharp estimate for the Hölder exponent. After
oral communication with us, I. Binder and B. Duplantier derived the same formula
from the multifractal spectrum of SLEκ independently.

Theorem 7. Suppose κ �= 4, a sufficiently small c > 0, and a bounded set D ⊂ H

are given. Then almost surely f1 is h-Hölder continuous in D on the event that
Im f1(z) ≥ c in D, provided

h < h(κ) := 1 − 1
µ
−

√
1
µ2

+
2
µ

,

where µ = κ/4 + 2 + 4/κ.
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2. (Pre-)Schwarzian derivatives

Suppose ft is a general Loewner chain with a driving function Ut. By direct
calculation, we observe

(2.1) ∂tLft(z) =
−4f ′

t(z)
(ft(z) + Ut)3

, ∂tSft(z) =
12f ′

t(z)2

(ft(z) + Ut)4
.

Consider a Loewner evolution Ft := (ft +Ut)2 in the slit domain C\R+. Suppose a
sufficiently small c > 0 and a bounded set D ⊂ H are given. Here, by bounded set
we mean bounded in the sense of the Euclidean metric on R2 (not the hyperbolic
metric on H). Due to the composition law for the (pre-)Schwarzian derivatives,
the normalized (pre-)Schwarzian derivatives of Ft and ft have the same asymptotic
behavior in D, as long as infz∈D Im ft(z) ≥ c. By (1.4), observe

(2.2) LFt(z) = Lft(z) +
f ′

t(z)
ft(z) + Ut

and

(2.3) SFt(z) = Sft(z) − 3
2

( f ′
t(z)

ft(z) + Ut

)2

.

For instance, if infz∈D Im ft(z) ≥ c, then, by the Koebe distortion theorem, we
have

(2.4) |yLFt(z) − yLft(z)| ≤ |yf ′
t(z)|

|ft(z) + Ut|
≤ |yf ′

t(z)|
c

≤ C dist(ft(z), ∂ft(H)).

Now, consider the SLE backward flow ft. Use the Itô formula to obtain

d
f ′

t(z)
ft(z) +

√
κBt

= (κ + 4)
f ′

t(z)
(ft(z) +

√
κBt)3

dt(2.5)

−
√

κ
f ′

t(z)
(ft(z) +

√
κBt)2

dBt

and

d
( f ′

t(z)
ft(z) +

√
κBt

)2

= (3κ + 8)
f ′

t(z)2

(ft(z) +
√

κBt)4
dt(2.6)

− 2
√

κ
f ′

t(z)2

(ft(z) +
√

κBt)3
dBt.

To show (2.5), let Zt = f ′
t(z) and Wt = 1/(ft(z)+

√
κBt). By the Itô formula, dZt =

2ZtW
2
t dt and dWt = (κ+2)W 3

t dt−
√

κW 2
t dBt. On the other hand, d〈Z, W 〉t = 0.

It follows from (1.9) that

d(ZtWt) = (κ + 4)ZtW
3
t dt −

√
κZtW

2
t dBt.

For (2.6), the Itô formula and (2.5) imply that

d(ZtWt)2 = 2ZtWtd(ZtWt) + d〈ZW 〉t = (3κ + 8)Z2
t W 4

t dt − 2
√

κZ2
t W 3

t dBt.

Combining (2.1), (2.2), (2.3), (2.5), and (2.6), one can easily check the identities in
(1.17) and (1.20).
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Pre-Schwarzian expectation.

Lemma 2.1. Suppose ft is a general Loewner chain with a driving function Ut.
Then the total variation of the modified Schwarzian derivative of ft is

(2.7) y2

∫ t

0

|∂sSfs(z)| ds =
3
2
(1 − |yf ′

t(z)|2
(Im ft(z))2

).

Proof. Based on a radial version, it is not hard to formulate and prove Goluzin’s
identities in H:

(2.8)
d

dt

f ′
t(z)f ′

t(w)
(ft(z) − ft(w))2

=
2f ′

t(z)f ′
t(w)

(ft(z) + Ut)2(ft(w) + Ut)2

and

(2.9)
d

dt

f ′
t(z)f ′

t(w)
(ft(z) − ft(w))2

=
2f ′

t(z)f ′
t(w)

(ft(z) + Ut)2(ft(w) + Ut)2
.

To verify (2.8), we first note that

d

dt

∂

∂z

∂

∂w
log

ft(z) − ft(w)
z − w

=
d

dt

f ′
t(z)f ′

t(w)
(ft(z) − ft(w))2

.

On the other hand,

d

dt

∂

∂z

∂

∂w
log

ft(z) − ft(w)
z − w

=
∂

∂z

∂

∂w

2
(ft(z) + Ut)(ft(w) + Ut)

=
2f ′

t(z)f ′
t(w)

(ft(z) + Ut)2(ft(w) + Ut)2
,

which shows (2.8). In particular, by letting w → z in the above identity,

d

dt

Sft(z)
6

=
2f ′

t(z)2

(ft(z) + Ut)4
,

which shows the second part of (2.1). For (2.9), one can use a method similar to
that above. Alternately, we compute directly:

(ft(z) − ft(w))2

2f ′
t(z)f ′

t(w)
d

dt

f ′
t(z)f ′

t(w)
(ft(z) − ft(w))2

=
1

(ft(z) + Ut)2
+

1
(ft(w) + Ut)2

− 1
ft(z) − ft(w)

( −2
ft(z) + Ut

− −2
ft(w) + Ut

)
=

(ft(w) + Ut)2 + (ft(z) + Ut)2 − 2(ft(z) − ft(w))
(ft(z) + Ut)2(ft(w) + Ut)2

=
(ft(z) − ft(w))2

(ft(z) + Ut)2(ft(w) + Ut)2
.
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It follows from (2.1) and (2.9) that

y2

∫ t

0

| d

ds
Sfs(z)| ds = y2

∫ t

0

d

ds

6|f ′
s(z)|2

(fs(z) − fs(z))2
ds

= y2

∫ t

0

d

ds

6|f ′
s(z)|2

−4(Im fs(z))2
ds

=
3
2
(1 − |yf ′

t(z)|2
(Im ft(z))2

),

which completes the proof. �

Proof of Theorem 1. By (2.1), (1.17), and the optional stopping theorem, we get

lim
y→0

E

∣∣∣yLfTu
(z) +

4
4 + κ

( yf ′
Tu

(z)
fTu

(z) +
√

κBTu

− y

z

)∣∣∣2
=

1
3(

√
κ/4 +

√
4/κ)2

lim
y→0

E

∫ Tu

0

y2|∂sSfs(z)| ds

=
1

2(
√

κ/4 +
√

4/κ)2

(
1 − lim

y→0
E
|yf ′

Tu
(z)|2

e2u

)
.

The last equality above comes from Lemma 2.1 and the definition of Tu (1.14). We
need to prove that limy→0 E|yf ′

Tu
(z)|2 = 0. By scale invariance, we may assume

u = 0. For κ �= 4, it follows from the derivative expectation or Theorem 3.2 in [31]
that

lim
y→0

E|yf ′
T0

(z)|2 ≤ C lim
y→0

y2(2− 1−
√

1−4/µ

2/µ ) = 0,

where µ = κ/4 + 2 + 4/κ. (This estimate can be found in (4.4) of this paper.)
For κ = 4, the Schwarz lemma implies that |yf ′

T0
(z)| ≤ Im fT0(z) = 1, and hence

E|yf ′
T0

(z)|2 ≤ E|yf ′
T0

(z)|3/2 ≤ Cy. On the other hand,

(2.10) lim
y→0

E

∣∣∣ yf ′
Tu

(z)
fTu

(z) +
√

κBTu

∣∣∣2 ≤ lim
y→0

E

∣∣∣ yf ′
Tu

(z)
Im fTu

(z)

∣∣∣2 = 0,

which completes the proof of (1.15).
The second part, the equality (1.16) can be easily proved since |yf ′

t(z)|/ Im ft(z)
tends to 0 as t → ∞. Indeed, Im ft(z) is increasing in t and it tends to ∞ as t → ∞.
On the other hand, it follows from the Koebe distortion theorem that |yf ′

t(z)| is
comparable to the distance from ft(z) to the boundary ∂ft(H).

In the subsection “BMO norm and ODE” below, we will also prove this second
part using a different method. �

Pre-Schwarzian and BMO. In a proper setup, the pre-Schwarzian derivatives of
SLEκ maps are BMO martingales. (Recall (1.17).) As a consequence, they satisfy
the John-Nirenberg inequality.

Proof of Theorem 2. Suppose a stopping time τ is given. By the strong Markov
property, we have

(2.11) y2

∫ ∞

τ

E
[
|∂sSfs(z)|

∣∣Fτ

]
ds = y2|f ′

τ (z)|2
∫ ∞

0

E |∂sSfs(fτ (z) +
√

κBτ )| ds.
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The Schwarz lemma implies y|f ′
τ (z)| ≤ Im(fτ (z) +

√
κBτ ). Therefore, it suffices to

show that

y2
E

∫ ∞

0

|∂sSfs(z)| ds

is uniformly bounded above by a universal constant C. (This is just a version of
Goluzin’s theorem.) Since |yf ′

t(z)|/ Im ft(z) → 0 as t → ∞, it follows from (2.7)
that the above integral has the constant value 3/2. �

BMO norm and ODE. The method presented in this subsection turns out to be
useful to formulate the Schwarzian expectation. However, the reader may skip this
subsection. We will use a different method to prove the second part of Theorem 1,

y2
E

∫ ∞

0

|∂tSft(z)| dt =
3
2
.

Claim 1. Define a function w by

(2.12) w(x) =
1
6
(x2 + 1)E

∫ ∞

0

|∂tSft(x + i)| dt.

Then

(2.13) y2
E

∫ ∞

0

|∂tSft(z)| dt = 6
w(x/y)

1 + (x/y)2
.

Claim 2. The function w satisfies the inhomogeneous ODE: Hw = 1, where H is
the second-order linear differential operator given by

Hv := −κ

4
(1 + x2)vxx + (κ + 2)xvx − (4 + 3κ/2)x2 − (4 + κ/2)

1 + x2
v.

Claim 3. w(x) = (x2 + 1)/4.

Proof of Claim 1. It follows from the scaling property of SLE that |ft(x + iy) +√
κBt| and |f ′

t(x + iy)| have the same distribution as y|fty−2(x/y + i) +
√

κBty−2 |
and |f ′

ty−2(x/y + i)|, respectively. Consequently, we observe that |∂tSft(x + iy)|
and y−4|(∂tSf)ty−2(x/y + i)| are identically distributed. With the substitution
s = ty−2, we have

y2
E

∫ ∞

0

|∂tSft(x + iy)| dt = E

∫ ∞

0

|∂sSfs(
x

y
+ i)| ds,

which completes the proof. �

Proof of Claim 2. For z = x + i ∈ H and any nonnegative number u, we set a
stopping time

(2.14) τu = τu(z) := inf{t ≥ 0 : Im ft(z) ≥ yeu}.
τu is well-defined since Im ft is monotone increasing in t. Use a change of variable
u = Ut = log(Im ft(z)/ Im f0(z)), dUt = 2/|ft(z) +

√
κBt|2dt to get

E

∫ ∞

0

|∂tSft(z)| dt = 12E

∫ ∞

0

|f ′
t(z)|2 dt

|ft(z) +
√

κBt|4

= 6E

∫ ∞

0

|f ′
τu

(z)|2 du

|fτu
(z) +

√
κBτu

|2 .
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Let v(x, s) := E
(
|(x + i)f ′

τs
(x + i)|2/|fτs

(x + i) +
√

κBτs
|2

)
. We will show that v is

a solution to the parabolic PDE: vs = −Hv with an initial condition v(x, 0) = 1.
By (2.5) and the Itô formula, we have

d log
f ′

t(z)
ft(z) +

√
κBt

=
( 1
2κ + 4)

(ft(z) +
√

κBt)2
dt

−
√

κ

ft(z) +
√

κBt
dBt.

Let Xu = Re(fτu
(z) +

√
κBτu

)/ Im(fτu
(z) +

√
κBτu

). Then Xu is an Itô diffusion

(2.15) dXu = −2Xudu +
√

κ

2

√
1 + X2

udBu,

with X0 = x. Now, v can be expressed as a Feynman-Kac type integral in terms of
Xu:

v(x, s) = E

(
exp

[
(4 +

κ

2
)
∫ s

0

X2
u − 1

X2
u + 1

du −
√

2κ

∫ s

0

Xu√
X2

u + 1
dBu

])
.

Therefore, v satisfies the following parabolic equation with an initial condition:

vs = −Hv and v(x, 0) ≡ 1.

Here, we use the following version of the Feynman-Kac formula: If Xt is an Itô
diffusion with

dXt = b(Xt)dt + σ(Xt)dBt,

then

v = v(x, s) = E
x
(

exp
[ ∫ s

0

p(Xt) dBt −
1
2

∫ s

0

p(Xt)2 dt −
∫ s

0

q(Xt) dt
])

satisfies

vs =
1
2
σ2vxx + (b + pσ)vx − qv.

Observe that

w(x) =
∫ ∞

0

v(x, t) dt =
∫ ∞

0

e−Htv(x, 0) dt =
∫ ∞

0

e−Ht dt.

Using the formula

(H + λI)−1 =
∫ ∞

0

e−Hte−λt dt,

we deduce that w is a solution to the inhomogeneous ODE: Hw = 1. �

Proof of Claim 3. The function w is of the form

w(x) = c1(1 + x2)
3
2+ 2

κ pµ
ν (x) + c2(1 + x2)

3
2+ 2

κ qµ
ν (x)

+ (1 + x2)
3
2+ 2

κ pµ
ν (x)

∫ ∞

x

4
κ + 8

qµ
ν (t)

(1 + t2)
3
2+ 2

κ

dt

− (1 + x2)
3
2+ 2

κ qµ
ν (x)

∫ ∞

x

4
κ + 8

pµ
ν (t)

(1 + t2)
3
2+ 2

κ

dt,
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where c1 and c2 are two constants and pµ
ν and qµ

ν are two independent solutions to
the homogeneous ODE with initial conditions:

(1 + x2)y′′ + 2xy′ − [ν(ν + 1) − µ2/(1 + x2)]y = 0,

pµ
ν (0) = 0, qµ

ν (0) =
Γ(

3
2

+ ν)Γ(
1
2
)

Γ(1 +
µ + ν

2
)Γ(1 +

−µ + ν

2
)
,

(pµ
ν )′(0) = 1, (qµ

ν )′(0) =
Γ(

3
2

+ ν)Γ(−1
2
)

Γ(
1 − µ + ν

2
)Γ(

1 + µ + ν

2
)
,

where ν = 4/κ and µ = 1− ν. To see this, set w(x) = w0(x)(1 + x2)
3
2+ 2

κ . Then w0

is a solution to the inhomogeneous ODE:

y′′ +
2x

1 + x2
y′ +

−ν(ν + 1)x2 + 1 − 3ν

(1 + x2)2
y =

−ν

(1 + x2)
5
2+ 2

κ

.

Thus, there are constants C1 and C2 such that

w0(x) = C1p
µ
ν (x) + C2q

µ
ν (x)

−
∫ x

0

pµ
ν (x)qµ

ν (t) − qµ
ν (x)pµ

ν (t)
W (t)

−ν

(1 + t2)
5
2+ 2

κ

dt,

where the Wronskian W is of the form W (x) = W (0) exp(−
∫ x

0
2t/(1 + t2)) dt =

W (0)/(1 + x2). After changing the limits,

w0(x) = c1p
µ
ν (x) + c2q

µ
ν (x)

+
∫ ∞

x

pµ
ν (x)qµ

ν (t) − qµ
ν (x)pµ

ν (t)
W (0)

−ν

(1 + t2)
3
2+ 2

κ

dt,

where W = W [pµ
ν , qµ

ν ]. We expand pµ
ν and qµ

ν as hypergeometric functions:

(2.16) pµ
ν (x) = (1 + x2)

1
2ν

2F1(
µ − ν

2
,−µ + ν

2
;
1
2
− ν;

1
1 + x2

)

and

(2.17) qµ
ν (x) = (1 + x2)−

1
2ν− 1

2 2F1(
1 − µ + ν

2
,
1 + µ + ν

2
;
3
2

+ ν;
1

1 + x2
)

on the set R+ of all positive real numbers. Formally, the classical generalized
Legendre function Pµ

ν (z) of the first kind and Qµ
ν (z) of the second kind are linear

combinations of pµ
ν (iz) and qµ

ν (iz). For special functions, see [11]. In particular, the
expansion (2.16) has an extension to all of R given by

(2.18) pµ
ν (x) = x(1 + x2)

ν−1
2 = x(1 + x2)

2
κ− 1

2 .

We will show w(x) = (x2 + 1)/4. One can easily get c1 = 0 by the distortion
theorem (1.5) and the unboundedness of pµ

ν (x)(1+x2)
1
2+ 2

κ as x → ∞. By the sym-
metry of SLE, we have w′(0) = 0. This information makes it possible to determine
the value of c2. Therefore, with the properties that w is even and w(x)/(1 + x2) is
bounded, w is the unique solution to the inhomogeneous ODE: Hw = 1. One can
easily check that w(x) = (x2 + 1)/4 is the desired solution. �
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Recall that the Schwarzian derivative, after we subtract a negligible term, is a
complex martingale (1.20). Set

(2.19) w(x) := 2(x2 + 1)2E

∫ ∞

0

|f ′
t(x + i)|4

|ft(x + i) +
√

κBt|6
dt.

As in (2.13), it follows from the scaling property of SLE that

(2.20) E

∫ ∞

0

|f ′
t(z)|4

|ft(z) +
√

κBt|6
dt =

1
2y4

w(x/y)
(1 + x2/y2)2

.

As in the pre-Schwarzian, the function w satisfies the inhomogeneous ODE: Hw =
1, where H is the second-order linear differential operator given by

Hv = −κ

4
(1 + x2)vxx + (2 + 2κ)xvx − (8 + 5κ)x2 − (8 + κ)

1 + x2
v.

To see this, let v(x, s) := E
(
|(x + i)f ′

τs
(x + i)|4/|fτs

(x + i) +
√

κBτs
|4

)
, where the

stopping time τs is defined by (2.14). Then v can be expressed as a Feynman-Kac
type integral

v(x, s) = E

(
exp

[
(8 + κ)

∫ s

0

X2
u − 1

X2
u + 1

du − 2
√

2κ

∫ s

0

Xu√
X2

u + 1
dBu

])
,

where Xu := Re(fτu
(z) +

√
κBτu

)/ Im(fτu
(z) +

√
κBτu

) is an Itô diffusion (2.15).
Therefore, v satisfies the following parabolic equation with an initial condition:

vs = −Hv and v(x, 0) ≡ 1.

On the other hand, with the properties that w(x)/(1 + x2)2 is bounded and w
is even, w is the unique solution to the inhomogeneous ODE: Hw = 1. It is easy
to check that

(2.21) w(x) =
8 + 3κ

32(6 + κ)
x4 +

16 + 3κ

16(6 + κ)
x2 +

24 + 3κ

32(6 + κ)
.

By (2.20) and (2.21), we obtain

(2.22) E

∫ ∞

0

|f ′
t(z)|4

|ft(z) +
√

κBt|6
dt =

1
y4

3κ + 8
64(κ + 6)

+
1

y2(x2 + y2)
1

4(κ + 6)
.

For x �= 0, we have

lim
y→0

E

∫ ∞

0

|yf ′
t(z)|4

|ft(z) +
√

κBt|6
dt =

3κ + 8
64(κ + 6)

,

which proves the second part of Theorem 3.
Because of (2.22), it is useful to study the Itô derivatives

d
|f ′

t(z)|4

(ft(z) − ft(z))2|ft(z) +
√

κBt|2
and d

|f ′
t(z)|4

(ft(z) − ft(z))4

in order to derive the Schwarzian expectation, and we now turn to this task.
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Schwarzian expectation.

Proof of Theorem 3. Use (1.9),(2.5), and Goluzin’s identity (2.9) to derive

d
f ′

t(z)f ′
t(z)

(ft(z) − ft(z))2
f ′

t(z)f ′
t(z)

(ft(z) +
√

κBt)(ft(z) +
√

κBt)

=
|f ′

t(z)|4

(ft(z) − ft(z))2|ft(z) +
√

κBt|2

×
( κ + 4
(ft(z) +

√
κBt)2

+
κ + 4

(ft(z) +
√

κBt)2
+

κ

|ft(z) +
√

κBt|2
)
dt

+
2f ′

t(z)2f ′
t(z)2

(ft(z) +
√

κBt)3(ft(z) +
√

κBt)3
dt + martingale

=
(κ + 6)f ′

t(z)2f ′
t(z)2

(ft(z) +
√

κBt)3(ft(z) +
√

κBt)3
dt

+
3κ + 8

4
d

f ′
t(z)2f ′

t(z)2

(ft(z) − ft(z))4
+ martingale.

By the optional stopping theorem, the above equality implies that

E

∫ Tu

0

|f ′
s(z)|4

|fs(z) +
√

κBs|6
ds =

3κ + 8
64(κ + 6)

( 1
y4

− E
|f ′

Tu
(z)|4

(Im fTu
(z))4

)
+

1
4(κ + 6)

( 1
y2(x2 + y2)

− E
|f ′

Tu
(z)|4

(Im fTu
(z))2|fTu

(z) +
√

κBTu
|2

)
.

However, by (2.1), (1.20), and the optional stopping theorem, we obtain

lim
y→0

E

∣∣∣y2SfTu
(z) +

12
3κ + 8

(y2

z2
−

y2f ′
Tu

(z)2

(fTu
(z) +

√
κBTu

)2
)∣∣∣2

=
576κ

(3κ + 8)2
lim
y→0

E

∫ Tu

0

|yf ′
s(z)|4

|fs(z) +
√

κBs|6
ds

=
9κ

(κ + 6)(3κ + 8)
,

unless x = 0. One can easily check that E|yf ′
Tu

(z)/(fTu
(z) +

√
κBTu

)|4 → 0 as
y → 0. (See the calculation used in (2.10).) This completes the proof of the first
part, equation (1.18). The second part, equation (1.19), was proved in (2.22). �
Schwarzian and BMO.

Proof of Theorem 4. Suppose a stopping time τ is given. By the strong Markov
property, we have

y4

∫ ∞

τ

E
[ |f ′

t(z)|4
|ft(z) +

√
κBt|6

∣∣Fτ

]
dt

= y4|f ′
τ (z)|4

∫ ∞

0

E
|f ′

t(fτ (z) +
√

κBτ )|4
|ft(fτ (z) +

√
κBτ ) +

√
κBt|6

dt.

The Schwarz lemma implies y|f ′
τ (z)| ≤ Im(fτ (z) +

√
κBτ ). Therefore, it suffices to

show that

E

∫ ∞

0

|yf ′
t(z)|4

|ft(z) +
√

κBt|6
dt
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is uniformly bounded above by a universal constant C = C(z). By (2.22), we have

E
(
|S∞ − Sτ |2

∣∣Fτ

)
≤ 9κ

(3κ + 8)(κ + 6)
+

y2

x2 + y2

144κ

(κ + 6)(3κ + 8)2
,

and S is a BMO martingale. �

3. Exponential decay of correlations

In many problems, random variables with exponential decay of correlations are
the appropriate substitutes for the independent random variables. For example,
B. Schmuland and W. Sun proved the law of the iterated logarithm for a random
field with exponential decay of correlations. See [32].

Proof of Theorem 5. By (1.17), (1.9), and the chordal version of Goluzin’s identity
(2.9), we obtain

E(Lt(z1)Lt(z2)) =
4

(
√

κ/4 +
√

4/κ)2
E

∫ t

0

y1y2f
′
s(z1)f ′

s(z2)
(fs(z1) +

√
κBs)2(fs(z2) +

√
κBs)2

ds

=
2

(
√

κ/4 +
√

4/κ)2
E

[ y1y2f
′
t(z1)f ′

t(z2)
(ft(z1) − ft(z2))2

− y1y2

(z1 − z2)2
]
.

Recall the definition of the hyperbolic distance (1.21) or

y1y2

|z1 − z2|2
=

1
4

cosh−2
(dH(z1, z2)

2
)
.

On the other hand,

lim sup
t→∞

∣∣∣E( y1y2f
′
t(z1)f ′

t(z2)
(ft(z1) − ft(z2))2

)∣∣∣ ≤ 1
4

lim sup
t→∞

E

(∣∣∣ y1f
′
t(z1)

Im ft(z1)

∣∣∣∣∣∣ y2f
′
t(z2)

Im ft(z2)

∣∣∣) = 0,

which implies (1.22). It follows from identity (2.7) that |yf ′
t(z)/(Im ft(z))| is mono-

tone decreasing in t. Hence,∣∣∣E( y1y2f
′
T∗
0
(z1)f ′

T∗
0
(z2)

(fT∗
0
(z1) − fT∗

0
(z2))2

)∣∣∣ ≤ 1
4

2∏
j=1

√
E

(∣∣∣ yjf ′
T0(zj)

(zj)

Im fT0(zj)(zj)

∣∣∣2).

In the proof of Theorem 1, we have shown that E|yf ′
T0(z)(z)|2 converges to 0 as

y → 0. Estimate (1.23) now follows by scale invariance. �

Proof of Theorem 6. By (1.20) and (1.9), we obtain

E

(
Sft(z1)Sft(z2)

)
=

576κ

(3κ + 8)2
E

∫ t

0

y2
1y2

2f ′
s(z1)2f ′

s(z2)2

(fs(z1) +
√

κBs)3(fs(z2) +
√

κBs)3
ds.

Use Goluzin’s identity to derive

d
f ′

t(z1)f ′
t(z2)

(ft(z1) − ft(z2))2
f ′

t(z1)f ′
t(z2)

(ft(z1) +
√

κBt)(ft(z2) +
√

κBt)

= (κ + 6)
f ′

t(z1)2f ′
t(z2)2

(ft(z1) +
√

κBt)3(ft(z2) +
√

κBt)3

+
3κ + 8

4
d

f ′
t(z1)2f ′

t(z2)2

(ft(z1) − ft(z2))4
+ martingale.
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Taking the expectation in the above equation, we obtain

E

∫ t

0

y2
1y2

2f ′
s(z1)2f ′

s(z2)2

(fs(z1) +
√

κBs)3(fs(z2) +
√

κBs)3
ds

=
3κ + 8

4(κ + 6)
y2
1y2

2

(z1 − z2)4
− 1

κ + 6
y2
1y2

2

(z1 − z2)2z1z2

− 3κ + 8
4(κ + 6)

E
y2
1y

2
2f ′

t(z1)2f ′
t(z2)2

(ft(z1) − ft(z2))4

+
1

κ + 6
E

y1y2f
′
t(z1)f ′

t(z2)
(ft(z1) − ft(z2))2

y1y2f
′
t(z1)f ′

t(z2)
(ft(z1) +

√
κBt)(ft(z2) +

√
κBt)

.

The estimates (1.24) and (1.25) can be easily obtained by the same method used
in the proof of Theorem 5. �

4. Hölder continuity

S. Rohde and O. Schramm’s estimate. The derivative expectation E[|g′t(1)|p]
was computed by G. F. Lawler, O. Schramm, and W. Werner to obtain the crossing
exponent for SLEκ, which is closely related to the Brownian intersection exponent.
This computation led them to prove the Mandelbrot conjecture. To obtain more
information about the regularity of the backward flows, the derivative expectation
or moment generating function for |g′t(z)| for an arbitrary complex number z has
been computed in [31]. Using this, S. Rohde and O. Schramm proved that g−1

t is
almost surely Hölder continuous when κ �= 4.

For z ∈ H and u ∈ R, set

(4.1) Tu = Tu(z) := sup{t ∈ R : Im(gt(z)) ≥ eu}
and

Xu = Re(gTu(z)(z) −
√

κBTu
).

The stopping time Tu is well-defined since Im gt(z) is monotone decreasing in t for
each z ∈ H. It is well known that for all z ∈ H, almost surely Tu �= ±∞.

Theorem (S. Rohde, O. Schramm). Suppose z = x + iy ∈ H with y < 1 given.
For each b ∈ R, define p and q by

(4.2) p := 2b + κb(1 − b)/2, q := 4b + κb(1 − 2b)/2.

Then

(4.3) yp
E

[
(1 + X2

0 )b|g′T0(z)(z)|p
]

= (1 + x2/y2)byq.

Corollary (S. Rohde, O. Schramm). For b ∈ [0, 1+4/κ], there is a constant C(κ, b),
depending only on κ and b, such that the following derivative upper bound estimate
holds for all t ∈ [0, 1], y, δ ∈ (0, 1] and x ∈ R.

P[|f ′
t(x + iy)| ≥ δy−1] ≤ C(κ, b)(1 + x2/y2)b(y/δ)qθ(δ, p − q),

where

θ(δ, s) =

⎧⎪⎨⎪⎩
δ−s s > 0,

1 + | log δ| s = 0,

1 s < 0.
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Theorem (S. Rohde, O. Schramm). For every κ �= 4, there exists h̃(κ) > 0 such
that for each bounded set D ⊂ H and each t > 0, almost surely ft is Hölder
continuous with Hölder exponent h̃(κ) on D,

|ft(z) − ft(w)| ≤ C|z − w|h̃(κ), z, w ∈ D,

where C is a random constant depending on t and D. Moreover,

lim
κ↘0

h̃(κ) =
1
2

and lim
κ↗∞

h̃(κ) = 1.

Here, by bounded set we mean bounded in the sense of the Euclidean metric on
R2 (not the hyperbolic metric on H). When κ = 0, the Schramm-Loewner evolution
is not a stochastic process anymore. In this case, the backward flow ft coincides
with g−1

t and is given by
ft(z) =

√
z2 − 4t,

which has a Hölder exponent of 1/2. However, it has a local Hölder exponent of 1
except at z = ±2

√
t. These two points are mapped into the base point, where the

geometry of Loewner evolution is different from any other points. The geometry
of the base point will not be taken into consideration with the conditioning on
the event that Im f1(z) ≥ c on D. For example, to compute the size of the hull
boundary, S. Rohde and O. Schramm considered the collection Wc of the Whitney
squares Q of H1 such that dist(Q, K1) ≤ 1 and sup{Im z : z ∈ Q} ≥ c. For δ > 0,
they introduced

Sc(δ) :=
∑

Q∈Wc

d(Q)δ

and computed the convergence exponent δ(κ) such that E[Sc(δ)] = ∞ if and only
if δ ≤ δ(κ). It is conjectured that the convergent exponent δ(κ) is the Hausdorff
dimension for the boundary of the hull.

From (4.3), we have the following estimate for the derivative expectation: For
each bounded set D ⊂ H,

(4.4) E|g′T0
(z)|p ≤ Cyp(1− 1−

√
1−2p/µ

p/µ ),

where µ = κ/4 + 2 + 4/κ and C is a constant depending on D. Without rigorous
proof, we will derive the estimate on the distributions for the derivatives from (4.4)
in the next subsection. With the conditioning on the event Im f1(z) ≥ c on D,
we will rigorously derive the conjectured sharp estimate on the Hölder exponent in
the last subsection. The next subsection may be of help to formulate Theorem 7.
However, the reader may wish to skip it.

Distributions for derivatives. Set the distribution G(λ) = P[|g′T0
(z)/y| > λ].

Then estimate (4.4) says∫ ∞

0

pG(λ)λp−1 dλ ≤ Cy−µ+µ
√

1−2p/µ.

Use the substitution r = 1 − 2p/µ (0 < r < 1) and ν = λ−µ/2 to obtain

(4.5)
∫ ∞

0

yµ G(λ)
ν

νr−1 dν ≤ C
e−

√
ar

1 − r
,

where
√

a = µ log y−1. We will estimate yµG(λ)/ν by taking the inverse Mellin
transform of e−

√
ar/(1 − r) formally on both sides of the above inequality.
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Let us recall the definition of the Mellin transform and the Laplace transform.
The Mellin transform M [f ] is defined as

M [f ](z) =
∫ ∞

0

tz−1f(t) dt,

and its inverse transform M−1[φ] is defined as

M−1[φ](t) =
1

2πi

∫ c+i∞

c−i∞
t−zφ(z) dz.

The transform φ(z) = M [f ](z) exists if the integral∫ ∞

0

|f(x)|xk−1 dx

is bounded for some k > 0, in which case the inverse f(t) = M−1[φ](t) exists when
c > k. The Laplace transform L is defined by

L[f ](s) =
∫ ∞

0

f(t)e−st dt.

If f is a piecewise continuous function on every finite interval in [0,∞) satisfying
|f(t)| ≤ Ceat for all t ∈ [0,∞), then L[f ](s) exists for all s > a. The Laplace
transform is unique, and its inverse transform L−1 is defined as

L−1[φ](t) =
1

2πi

∫ c+i∞

c−i∞
etzφ(z) dz.

The error function and the complementary error function are defined as

(4.6) erf(x) =
2√
π

∫ x

0

e−t2 dt, erfc(x) = 1 − erf(x).

We will use the following elementary properties of the complementary error func-
tion.

(1) It satisfies the identity: erfc(−x) = 2 − erfc(x).
(2) It has the tail estimate: For x > 0,

(4.7)
2√
π

e−x2

x +
√

x2 + 2
< erfc(x) <

2√
π

e−x2

x +
√

x2 + 4
π

.

To compute the inverse Mellin transform of e−
√

ar/(1−r), we need the following
lemma.

Lemma 4.1. The inverse Laplace transform of e−
√

ar/(1 − r) on 0 < r < 1 is

1
2πi

∫ r+i∞

r−i∞

exz−√
az

1 − z
dz =

1
2
ex

[
e−

√
a erfc

(√
x − 1

2

√
a

x

)
− e

√
a erfc

(1
2

√
a

x
+
√

x
)]

,

where erfc is the complementary error function.

Proof. It is well known that

L−1(
e−

√
ap

p
)(x) = erfc

(1
2

√
a

x

)
.
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See p. 264 in [12]. It follows from the basic properties of the Laplace transform
that

L−1(
e−

√
ap

p − 1
)(x) = ex

∫ x

0

e−tL−1(e−
√

ap)(t) dt

= ex

∫ x

0

e−t d

dt
L−1(

e−
√

ap

p
)(t) dt

= ex

∫ x

0

e−t d

dt
erfc

(1
2

√
a

t

)
dt

=
1
2
ex

[
e−

√
a erfc

(1
2

√
a

x
−
√

x
)

+ e
√

a erfc
(1
2

√
a

x
+
√

x
)]

.

Suppose p > 1 and 0 < r < 1. Then, using a contour integral, we obtain

1
2πi

∫ r+i∞

r−i∞

exz−√
az

1 − z
dz = Resz=1

(exz−√
az

z − 1
)
− 1

2πi

∫ p+i∞

p−i∞

exz−√
az

z − 1
dz

= ex−
√

a − 1
2
ex

[
e−

√
a erfc

(1
2

√
a

x
−
√

x
)

+ e
√

a erfc
(1
2

√
a

x
+
√

x
)]

=
1
2
exe−

√
a
[
2 − erfc

(1
2

√
a

x
−
√

x
)]

− 1
2
exe

√
a erfc

(1
2

√
a

x
+
√

x
)

=
1
2
exe−

√
a erfc

(√
x − 1

2

√
a

x

)
− 1

2
exe

√
a erfc

(1
2

√
a

x
+
√

x
)
.

This completes the proof. �

Fix κ �= 4. By scaling, we may assume D = [−1, 1] × (0, 1]. With ν = λ−µ/2,√
a = µ log y−1, and e−x = ν, we take the inverse Mellin transform on both sides

of (4.5) to formally derive the following estimate without rigorous proof:

P

[∣∣∣g′T0
(z)
y

∣∣∣ > λ
]
≤ C

(
erfc(

√
µ

2
log(λy)√

log λ
) − 1

y2µ
erfc(

√
µ

2
log(λ/y)√

log λ
)
)
.

From the above estimate, it is not hard to obtain the following estimate. The reader
can find the details in the next subsection. Let c > 0. Then

P

[∣∣∣f ′
1(z)
y

∣∣∣ > λ
∣∣∣ inf

z∈D
Im f1(z) ≥ c

]
≤ C

(
erfc(

√
µ

2
log(λy)√

log λ
) − 1

y2µ
erfc(

√
µ

2
log(λ/y)√

log λ
)
)
.

With λ = yh−2 and y = 2−n, the above estimate gives

(4.8) P

[∣∣∣f ′
1(z)
y

∣∣∣ > λ
∣∣∣ inf

z∈D
Im f1(z) ≥ c

]
≤ C2−n µ

2
(1−h)2

2−h .

Consider the Whitney decomposition {Qj,n}(n ≥ 0, 1 ≤ j ≤ 2n) of D. Denote the
center of the Whitney square Qj,n by zj,n. By the Borel-Cantelli lemma and the
distortion theorem, f1 is almost surely h-Hölder in D on the event that Im f1(z) ≥ c
in D, if

∞∑
n=0

2n∑
j=1

P
[∣∣f ′

1(zj,n)
∣∣ > 2n(1−h)

∣∣ inf
z∈D

Im f1(z) ≥ c
]

< ∞.
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Figure 3. Whitney decomposition of H and its image under SLE.

This is summable if

(4.9) 1 − µ

2
(1 − h)2

2 − h
< 0,

or

h < h(κ) = 1 − 1
µ
−

√
1
µ2

+
2
µ

,

where µ = κ/4 + 2 + 4/κ. This motivates the formulation of Theorem 7.

Remark 4.2. Note that limκ→0 h(κ) = 1, limκ→∞ h(κ) = 1, and limκ→4 h(κ) = 0.
Also, the exponent h(κ) satisfies the Duplantier duality. I. Binder and B. Duplantier
derived the same formula from the multifractal spectrum of SLEκ independently.
Indeed, the exponent h(κ) satisfies f(1/h(κ)) = 0 for the multifractal spectrum
f of SLEκ. Here, f(α) = fmixed(α, 0) for the mixed multifractal spectrum fmixed

in (1.1). Hence, f(α) = α + b − bα2/(2α − 1), where b = (25 − c)/12 and c =
1− 6(

√
κ/4−

√
4/κ)2. However, their result is not rigorous. We note that J. Lind

has also obtained Theorem 7 independently. She has shown that (ft(
√

z)+
√

κBt)2

is almost surely h-Hölder continuous provided h < h(κ). See [28] for this.

Conjectured sharp estimate for the Hölder exponent. We will prove Theo-
rem 7 rigorously in this subsection.

Proof of Theorem 7. Fix κ �= 4. By scaling, we may assume D = [−1/4, 1/4]×(0, 1].
Consider the Whitney decomposition {Qj,n} of D such that Qj,n is a square of side
length 2−n−1 (n ≥ 0, 1 ≤ j ≤ 2n). We denote the center of the Whitney square Qj,n

by zj,n. Recall that f1 is almost surely h-Hölder in D on the event that Im f1(z) ≥ c
in D provided

∞∑
n=0

2n∑
j=1

P
[∣∣f ′

1(zj,n)
∣∣ > 2n(1−h)

∣∣ inf
z∈D

Im f1(z) ≥ c
]

< ∞.

Take m ∈ Z such that em ≤ c < em+1. Recall the stopping time (4.1) and the
fact that f ′

1 has the same distribution as g′−1. As in the proof of Corollary 3.5
in [31], we may assume T0(zj,n) ≥ 1 with probability one. Let E be the event
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E := {infz∈D Im f1(z) ≥ c}. For fixed z = zj,n and k = m, · · · , 0, let Ek be the
event Ek := {Tk(z) ≤ 1 < Tk+1(z)}. Then

P
[
y
∣∣f ′

1(z)
∣∣ > λ

∣∣E]
≤ C1

0∑
k=m

P
[
y
∣∣g′Tk(z)(z)

∣∣ > C2λ
∣∣EEk

]
P
[
Ek

∣∣ E
]

≤ C
0∑

k=m

λ−pekpFp(e−kz),

where the moment generating function Fp is given by Fp(z) = yp
E

[
|g′T0(z)(z)|p

]
.

It follows from the above estimate and the estimate (4.4) that
∞∑

n=0

2n∑
j=1

P
[∣∣f ′

1(zj,n)
∣∣ > 2n(1−h)

∣∣ E
]
≤

∞∑
n=0

C2n(1+ph−2p+µ−µ
√

1−2p/µ).

The right-hand side in the above inequality is summable if

h < hκ(p) := 2 − 1
p

+
µ

p
(
√

1 − 2
p

µ
− 1).

As a function of p, hκ(p) has the derivative

h′
κ(p) =

(
1 − p√

1 − 2
p

µ

− µ(
√

1 − 2
p

µ
− 1)

) 1
p2

and takes the critical value at p = pc, where

pc = −(2 +
1
µ

) + (µ + 1)
√

1
µ2

+
2
µ

.

Furthermore, the critical value is

hκ(pc) = 2 − 1
pc

+
1
pc

(
1 − pc√

1 − 2
pc

µ

)

= 2 − 1√
1 − 2

pc

µ

= 1 − 1
µ
−

√
1
µ2

+
2
µ

= h(κ),

which gives the conjectured sharp estimate for the Hölder exponent. �

Remark 4.3. For the backward flow of SLE4 one expects a continuity property of
logarithmic type instead of Hölder continuity.
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