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GLOBAL WELL-POSEDNESS OF THE BENJAMIN–ONO
EQUATION IN LOW-REGULARITY SPACES

ALEXANDRU D. IONESCU AND CARLOS E. KENIG

1. Introduction

In this paper we consider the Benjamin–Ono initial-value problem

(1.1)

{
∂tu + H∂2

xu + ∂x(u2/2) = 0 on Rx × Rt;
u(0) = φ,

where H is the Hilbert transform operator defined (on the spaces C(R : Hσ), σ ∈ R)
by the Fourier multiplier −i sgn(ξ). The Benjamin–Ono equation is a model for
one-dimensional long waves in deep stratified fluids ([1] and [16]) and is completely
integrable. The initial-value problem for this equation has been studied extensively
for data in the Sobolev spaces Hσ

r (R), σ ≥ 0.1 It is known that the Benjamin–Ono
initial-value problem has weak solutions in H0

r (R), H
1/2
r (R), and H1

r (R) (see [5],
[25], and [18]) and is globally well-posed in Hσ

r (R), σ ≥ 1 (see [22], as well as
[7], [17], [12], and [8] for earlier local and global well-posedness results in higher
regularity spaces). In this paper we prove that the Benjamin–Ono initial-value
problem is globally well-posed in Hσ

r (R), σ ≥ 0.
Let H∞

r (R) =
⋂∞

σ=0 Hσ
r (R) with the induced metric. Let S∞ : H∞

r (R) → C(R :
H∞

r (R)) denote the (nonlinear) mapping that associates to any data φ ∈ H∞
r the

corresponding classical solution u ∈ C(R : H∞
r ) of the initial-value problem (1.1).

We will use the L2 conservation law: if φ ∈ H∞
r and u = S∞(φ), then

(1.2)
∫

R

u(x, t)2 dx =
∫

R

φ(x)2 dx for any t ∈ R.

For T > 0 let S∞
T : H∞

r (R) → C([−T, T ] : H∞
r (R)) denote the restriction of the

mapping S∞ to the time interval [−T, T ].
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1In this paper Hσ

r = Hσ
r (R) denotes the space of real-valued functions φ with the usual norm

||φ||Hσ
r

= ||φ||Hσ = ||(1 + |ξ|2)σ/2φ̂(ξ)||L2
ξ
. All the other Banach spaces of functions, such as L2,

Hσ , H̃σ, F σ, Nσ, etc., are defined as spaces of complex-valued functions.
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Theorem 1.1. (a) Assume T > 0. Then the mapping S∞
T : H∞

r → C([−T, T ] :
H∞

r ) extends uniquely to a continuous mapping S0
T : H0

r → C([−T, T ] : H0
r ) and

||S0
T (φ)(t)||H0

r
= ||φ||H0

r
for any t ∈ [−T, T ], φ ∈ H0

r .

The function S0
T (φ) solves the initial-value problem (1.1) in C([−T, T ] : H−2

r ) for
any φ ∈ H0

r .
(b) In addition, for any σ ≥ 0, S0

T (Hσ
r ) ⊆ C([−T, T ] : Hσ

r ),

||S0
T (φ)||C([−T,T ]:Hσ

r ) ≤ C(T, σ, ||φ||Hσ
r
),

and the mapping Sσ
T = S0

T |Hσ
r

: Hσ
r → C([−T, T ] : Hσ

r ) is continuous.

Clearly, if T ≤ T ′ and φ ∈ Hσ
r , then Sσ

T (φ)(t) = Sσ
T ′(φ)(t) for any t ∈ [−T, T ].

We mention that the flow map φ → Sσ
T (φ) fails to be uniformly continuous on

bounded sets in Hσ
r for any T > 0 and σ > 0; see [13]. In a forthcoming paper

[6] we prove a local well-posedness theorem for complex-valued data. See also the
very recent papers [3] and [15] (which became available after the submission of
this work) for other well-posedness results on the Benjamin-Ono equation and the
periodic Benjamin-Ono equation.

We discuss now some of the ingredients in the proof of Theorem 1.1. The main
obstruction to simply using bilinear estimates in some Xσ,b space (in a way similar
to the case of the KdV equation in [2] or nonlinear wave equations in [10]) is the lack
of control of the interaction between very high and very low frequencies of solutions
(cf. [14] and [13]). Following [22], we first construct a gauge transformation that
weakens this interaction, in the sense that we will be able to assume that low
frequency functions have some additional structure (see the space Z0 defined in
Section 3). Even with this low-frequency assumption, the use of standard Xσ,b

spaces for high-frequency functions (i.e., spaces defined by suitably weighted norms
in the frequency space) seems to lead inevitably to logarithmic divergences in the
modulation variable (see [4]). To avoid these logarithmic divergences, we work
with high-frequency spaces that have two components: an Xσ,b-type component
measured in the frequency space and a normalized L1

xL2
t component measured in

the physical space. These types of spaces have been used in the context of wave
maps (see, for example, [11], [23], [24], [19], and [20]); we remark that for the
physical space component we use a suitable normalization of the local smoothing
space L1

xL2
t instead of the energy space L1

t L
2
x. Then we prove suitable linear and

bilinear estimates in these spaces and conclude the proof of Theorem 1.1 using a
fixed-point argument.

The rest of the paper is organized as follows: in Section 2 we construct our gauge
transformation and reduce solving the initial-value problem (1.1) to solving three
easier initial-value problems. The point of this reduction is that the initial data of
the resulting three initial-value problems have some special structure at very low
frequencies (see the spaces H̃σ defined in (3.10)). In Sections 3 and 4 we construct
our main Banach spaces and prove some of their elementary properties. In Section
5 we prove several linear estimates using these Banach spaces. In Sections 6, 7 and
8 we prove our main bilinear estimates. In Section 9 we prove several bounds for
operators defined by multiplication with certain smooth bounded functions (such
estimates are delicate in the context of Xσ,b spaces). Finally, in Section 10 we
combine all these estimates and a recursive argument to complete the proof of
Theorem 1.1.
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2. The gauge transformation

The first step is to construct a gauge transformation to weaken significantly the
contribution coming from the low frequencies of the data. Assume φ ∈ H∞

r and
u = S∞(φ) ∈ C(R : H∞

r ). On L2(R) we define the operators

Plow defined by the Fourier multiplier ξ → 1[−210,210](ξ);

P±high defined by the Fourier multiplier ξ → 1[210,∞)(±ξ);

P± defined by the Fourier multiplier ξ → 1[0,∞)(±ξ).

Let φ0 = Plowφ ∈ H∞
r , u0 = S∞(φ0), ũ = u − u0. Since ||φ0||Hσ

r
≤ Cσ||φ||L2 for

any σ ≥ 0, it follows from the equation of u0 that

(2.1) sup
t∈[−2,2]

||∂σ1
t ∂σ2

x u0(., t)||L2
x
≤ Cσ1,σ2 ||φ||L2 , σ1, σ2 ∈ [0,∞) ∩ Z.

Using the equation (1.1),

(2.2)

{
∂tũ + H∂2

xũ + ∂x(u0 · ũ) + ∂x(ũ2/2) = 0;
ũ(0) = P+highφ + P−highφ.

We apply P+high, P−high, and Plow to (2.2) to obtain

(2.3)

{
∂t(P±highũ) ∓ i · ∂2

x(P±highũ) + P±high∂x(u0 · ũ) + P±high∂x(ũ2/2) = 0;
(P±highũ)(0) = P±highφ

and

(2.4)

{
∂t(Plowũ) + H∂2

x(Plowũ) + Plow∂x(u0 · ũ) + Plow∂x(ũ2/2) = 0;
(Plowũ)(0) = 0.

We now let

(2.5)

⎧⎪⎨⎪⎩
P+highũ = e−iU0w+;
P−highũ = eiU0w−;
Plowũ = w0,

where U0 is a suitable gauge that depends only on u0. As in [22], we define first
U(0, t) on the time axis x = 0 by the formula

(2.6) ∂tU0(0, t) +
1
2
H∂xu0(0, t) +

1
4
u2

0(0, t) = 0, U0(0, 0) = 0,

and then we construct U0(x, t) using the formula

(2.7) ∂xU0(x, t) =
1
2
u0(x, t).

It is important to notice that U0 is real-valued, since φ0 and u0 are both real-valued.
Using the equation (1.1) for u0 = S∞(φ0) and (2.7), we have

∂x[∂tU0 + H∂2
xU0 + (∂xU0)2] = 0 on R × R.

Using (2.6) and (2.7) it follows that

(2.8) ∂tU0 = −1
2
H∂xu0 −

1
4
u2

0 on R × R.
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In particular, in view of (2.7) and (2.8), U0 ∈ C∞(R × R). In fact, it follows from
(2.1), (2.7), and (2.8) that for any integers σ1, σ2 ≥ 0, (σ1, σ2) 	= (0, 0),

(2.9) sup
t∈[−2,2]

||∂σ1
t ∂σ2

x U0(., t)||L2
x
≤ Cσ1,σ2 ||φ||L2 .

We substitute now the formulas P+highũ = e−iU0w+ and ũ = e−iU0w++eiU0w−+
w0 in the equation (2.3) for P+highũ; the term P+high(u0e

−iU0∂xw+) cancels (using
(2.7)), and the result is

(2.10)

{
(∂t + H∂2

x)w+ = E+(w+, w−, w0);
w+(0) = eiU0(.,0)P+highφ,

where
E+(w+,w−, w0) = −eiU0P+high[∂x(e−iU0w+ + eiU0w− + w0)2/2]

− eiU0P+high[∂x[u0(eiU0w− + w0)]]

+ eiU0(P−high + Plow)(u0e
−iU0∂xw+) + 2iP−(∂2

xw+)

− eiU0P+high[∂x(u0e
−iU0) · w+] + i(∂tU0 − i∂2

xU0 − (∂xU0)2) · w+.

Since w+ = eiU0P+high(e−iU0w+), w− = e−iU0P−high(eiU0w−), and w0 = Plow(w0)
(see (2.5)), we use (2.7) and (2.8) to rewrite E+(w+, w−, w0) in the form

E+(w+,w−, w0) = −eiU0P+high[∂x(e−iU0w+ + eiU0w− + w0)2/2]

− eiU0P+high[∂x[u0 · P−high(eiU0w−) + u0 · Plow(w0)]]

+ eiU0(P−high + Plow)[∂x(u0 · P+high(e−iU0w+))]

+ 2iP−[∂2
x(eiU0P+high(e−iU0w+))]

− P+∂xu0 · w+.

(2.11)

A similar computation using the equation (2.3) for P−highũ gives

(2.12)

{
(∂t + H∂2

x)w− = E−(w+, w−, w0);
w−(0) = e−iU0(.,0)P−highφ,

where
E−(w+,w−, w0) = −e−iU0P−high[∂x(e−iU0w+ + eiU0w− + w0)2/2]

− e−iU0P−high[∂x[u0 · P+high(e−iU0w+) + u0 · Plow(w0)]]

+ e−iU0(P+high + Plow)[∂x(u0 · P−high(eiU0w−))]

− 2iP+[∂2
x(e−iU0P−high(eiU0w−))]

− P−∂xu0 · w−.

(2.13)

Finally, using (2.4),

(2.14)

{
(∂t + H∂2

x)w0 = E0(w+, w−, w0);
w0(0) = 0,

where

(2.15) E0(w+, w−, w0) = −1
2
Plow[∂x[(e−iU0w+ + eiU0w− + w0 + u0)2 − u2

0]].

We summarize our construction in the following lemma.
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Lemma 2.1. Assume φ ∈ H∞
r and u = S∞(φ) ∈ C(R : H∞

r ). Then

u = e−iU0w+ + eiU0w− + w0 + u0,

where u0 = S∞(Plow(φ)) satisfies (2.1), U0 satisfies (2.9), and w+, w−, and w0

satisfy the equations (2.10), (2.12), and (2.14), where E+, E−, and E0 are as in
(2.11), (2.13), and (2.15).

Remark. The expressions E+ and E− in (2.11) and (2.13) appear complicated due
to the various terms. We observe however that only the nonlinear terms in the first
lines are difficult to handle: the terms in the second, third, and fourth lines are
essentially of the form

P±[smooth function · P∓(rough function)].

Such expressions have a strong smoothing effect on the rough function. Also, in
the term in the fifth line, the derivative acts on the smooth function.

3. The Banach spaces

In this section we construct our main resolution spaces. In view of the L2

conservation law (1.2), it will suffice to construct the solution on the time interval
[−1, 1]. The resolution spaces we construct below are implicitly adapted to this
restriction in time.2 The factor i in (3.5), the restriction j ≥ 0 in all the definitions,
and the operators I−∂2

τ in (3.11) are related to the uncertainty principle satisfied by
functions that are essentially supported in R×[−1, 1]. This implicit time restriction,
which is needed for the L2

xL∞
t bound in Lemma 4.2, creates a significant distinction

between frequencies that are ≤ 1 (for which the dispersive factor ω(ξ) is ≤ 1, thus
negligible in view of the uncertainty principle) and frequencies that are ≥ 1. Our
spaces reflect this distinction (see also the definitions of the sets Dk,j and the factors
Ak below).

Let η0 : R → [0, 1] denote an even smooth function supported in [−8/5, 8/5] and
equal to 1 in [−5/4, 5/4]. For l ∈ Z let χl(ξ) = η0(ξ/2l)− η0(ξ/2l−1), χl supported
in {ξ : |ξ| ∈ [(5/8) · 2l, (8/5) · 2l]}, and

χ[l1,l2] =
l2∑

l=l1

χl for any l1 ≤ l2 ∈ Z.

For simplicity of notation, let ηl = χl if l ≥ 1 and ηl ≡ 0 if l ≤ −1. Also, for
l1 ≤ l2 ∈ Z let

η[l1,l2] =
l2∑

l=l1

ηl and η≤l2 =
l2∑

l=−∞
ηl.

For any integer k ≥ 0 and φ ∈ L2(R) we define the operator Pk by the formula

P̂kφ(ξ) = ηk(ξ)φ̂(ξ).

By a slight abuse of notation we also define the operators Pk on L2(R × R) by the
formula F(Pku)(ξ, τ) = ηk(ξ)F(u)(ξ, τ).

Let Z+ = Z ∩ [0,∞). For ξ ∈ R let

(3.1) ω(ξ) = −ξ|ξ|.
2However, this time restriction is not exact; we do not multiply by cutoff functions in t in the

definition of the resolution spaces, since this would not be compatible with the atomic decompo-
sitions (4.1) and (4.2).
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For l ∈ Z let Il = {ξ ∈ R : |ξ| ∈ [2l−1, 2l+1]}. For l ∈ [0,∞) ∩ Z let Ĩl = [−2, 2] if
l = 0 and Ĩl = Il if l ≥ 1. For k ∈ Z and j ≥ 0 let{

Dk,j = {(ξ, τ) ∈ R × R : ξ ∈ Ik, τ − ω(ξ) ∈ Ĩj} if k ≥ 1;
Dk,j = {(ξ, τ) ∈ R × R : ξ ∈ Ik, τ ∈ Ĩj} if k ≤ 0.

We define first the Banach spaces Xk = Xk(R×R), k ∈ Z+: for k ≥ 1 we define

Xk ={f ∈ L2 : f supported in Ik × R and

||f ||Xk
:=

∞∑
j=0

2j/2βk,j ||ηj(τ − ω(ξ))f(ξ, τ) ||L2
ξ,τ

< ∞},(3.2)

where

(3.3) βk,j = 1 + 2(j−2k)/2.

The precise choice of the coefficients βk,j is important in order for all the bilinear
estimates (7.1), (7.2), (8.1), and (8.2) to hold. Notice that 2j/2βk,j ≈ 2j when k is
small. For k = 0 we define

X0 ={f ∈ L2 : f supported in Ĩ0 × R and

||f ||X0 :=
∞∑

j=0

1∑
k′=−∞

2j−k′
||ηj(τ )χk′(ξ)f(ξ, τ) ||L2

ξ,τ
< ∞}.

(3.4)

The spaces Xk are not sufficient for our purpose, due to various logarithmic diver-
gences. For k ≥ 100 and k = 0 we also define the Banach spaces Yk = Yk(R × R).
Let F and F1 denote the Fourier transform operators on S ′(R × R) and S ′(R),
respectively. For k ≥ 100 we define

Yk = {f ∈ L2 : f supported in
k−1⋃
j=0

Dk,j and

||f ||Yk
:= 2−k/2||F−1[(τ − ω(ξ) + i)f(ξ, τ)]||L1

xL2
t

< ∞}.

(3.5)

For k = 0 we define

Y0 = {f ∈ L2 : f supported in Ĩ0 × R and

||f ||Y0 :=
∞∑

j=0

2j ||F−1[ηj(τ )f(ξ, τ)]||L1
xL2

t
< ∞}.

(3.6)

Then we define

(3.7) Zk := Xk if 1 ≤ k ≤ 99 and Zk := Xk + Yk if k ≥ 100 or k = 0.

The spaces Zk are our basic Banach spaces. The spaces Xk are Xσ,b-type spaces;
the spaces Yk are relevant due to the local smoothing inequality

||∂xu||L∞
x L2

t
≤ C||(∂t + H∂2

x)u||L1
xL2

t
for any u ∈ S(R × R).

Remark. For k ∈ [1, 99] ∩ Z we could define the spaces Yk as in (3.5) and let
Zk := Xk + Yk. This is not necessary, however, in view of Lemma 4.1(b) below.
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In some estimates we will also need the space Z0, Z0 ⊆ Z0,

Z0 ={f ∈ L2(R × R) : f supported in Ĩ0 × R and

||f ||Z0
:=

∞∑
j=0

2j ||ηj(τ )f(ξ, τ) ||L2
ξ,τ

< ∞}.
(3.8)

We also define the space B0(R) by

B0 ={f ∈ L2(R) : f supported in Ĩ0 and

||f ||B0 := inf
f=g+h

||F−1
1 (g)||L1

x
+

1∑
k′=−∞

2−k′ ||χk′ · h||L2
ξ

< ∞}.
(3.9)

For k ∈ Z+ let {
Ak(ξ, τ) = τ − ω(ξ) + i if k ≥ 1;
Ak(ξ, τ) = τ + i if k = 0.

For σ ≥ 0 we define the Banach spaces H̃σ = H̃σ(R), F σ = F σ(R × R), and
Nσ = Nσ(R × R):

H̃σ =
{
φ ∈ L2 : ||φ||2

H̃σ
:= ||η0 · F1(φ)||2B0

+
∞∑

k=1

22σk||ηk · F1(φ)||2L2 < ∞
}

,

(3.10)

F σ =
{

u ∈ S ′(R × R) : ||u||2F σ :=
∞∑

k=0

22σk||ηk(ξ)(I − ∂2
τ )F(u)||2Zk

< ∞
}

,

(3.11)

and

Nσ =
{

u ∈ S ′(R × R) : ||u||2Nσ :=
∞∑

k=0

22σk||ηk(ξ)Ak(ξ, τ)−1F(u)||2Zk
< ∞

}
.

(3.12)

4. Properties of the spaces Zk

We start with some basic properties of the spaces Zk. Using the definitions, if
k ≥ 1 and fk ∈ Zk, then fk can be written in the form

(4.1)

⎧⎪⎪⎨⎪⎪⎩
fk =

∞∑
j=0

fk,j + gk;
∞∑

j=0

2j/2βk,j ||fk,j ||L2 + ||gk||Yk
≤ 2||fk||Zk

,

such that fk,j is supported in Dk,j and gk is supported in
⋃k−1

j=0 Dk,j (if k ≤ 99,
then gk ≡ 0). If f0 ∈ Z0, then f0 can be written in the form

(4.2)

⎧⎪⎪⎨⎪⎪⎩
f0 =

∞∑
j=0

1∑
k′=−∞

fk′

0,j +
∞∑

j=0

g0,j ;

∞∑
j=0

1∑
k′=−∞

2j−k′ ||fk′

0,j ||L2 +
∞∑

j=0

2j ||F−1(g0,j)||L1
xL2

t
≤ 2||f0||Z0 ,

such that fk′

0,j is supported in Dk′,j and g0,j is supported in Ĩ0 × Ĩj .
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Lemma 4.1. (a) If m, m′ : R → C, k ≥ 0, and fk ∈ Zk, then

(4.3)

{
||m(ξ)fk(ξ, τ)||Zk

≤ C||F−1
1 (m)||L1(R)||fk||Zk

;
||m′(τ )fk(ξ, τ)||Zk

≤ C||m′||L∞(R)||fk||Zk
.

(b) If k ≥ 1, j ≥ 0, and fk ∈ Zk, then

(4.4) ||ηj(τ − ω(ξ))fk(ξ, τ)||Xk
≤ C||fk||Zk

.

(c) If k ≥ 1, j ∈ [0, k], and fk is supported in Ik × R, then

(4.5) ||F−1[η≤j(τ − ω(ξ))fk(ξ, τ)]||L1
xL2

t
≤ C||F−1(fk)||L1

xL2
t
.

Proof of Lemma 4.1. Part (a) follows directly from Plancherel’s theorem and the
definitions.

For part (b), we may assume k ≥ 100, fk = gk ∈ Yk, and j ≤ k. We notice that
if gk ∈ Yk, then gk can be written in the form
(4.6){

gk(ξ, τ) = 2k/2χ[k−1,k+1](ξ)(τ − ω(ξ) + i)−1η≤k(τ − ω(ξ))
∫

R
e−ixξh(x, τ) dx;

||gk||Yk
= C||h||L1

xL2
τ
.

The inequality in part (b) follows easily since |{ξ ∈ Ik : |τ−ω(ξ)| ≤ 2j+1}| ≤ C2j−k;
see (3.1).

For part (c), using Plancherel’s theorem, it suffices to prove that

(4.7)
∣∣∣∣∣∣ ∫

R

eixξχ[k−1,k+1](ξ)η≤j(τ − ω(ξ)) dξ
∣∣∣∣∣∣

L1
xL∞

τ

≤ C.

In proving (4.7), we may assume k ≥ 100. Then the function in the left-hand side
of (4.7) is not zero only if τ ≈ 22k. Simple estimates using the change of variable
τ − ω(ξ) = α and integration by parts show that∣∣∣ ∫

R

eixξχ[k−1,k+1](ξ)η≤j(τ − ω(ξ)) dξ
∣∣∣ ≤ C

2j−k

1 + (2j−kx)2

if τ ≈ 22k, which suffices to prove (4.7). �

Using (4.1) and Lemma 4.1(b), (c), it follows easily (see the proof of Lemma 5.2
for a similar argument) that if k ≥ 1 and (I − ∂2

τ )fk ∈ Zk, then fk can be written
in the form

(4.8)

⎧⎪⎪⎨⎪⎪⎩
fk =

∞∑
j=0

fk,j + gk;
∞∑

j=0

2j/2βk,j ||(I − ∂2
τ )fk,j ||L2 + ||(I − ∂2

τ )gk||Yk
≤ C||(I − ∂2

τ )fk||Zk
,

such that fk,j is supported in Dk,j and gk is supported in
⋃k−20

j=0 Dk,j (if k ≤ 99,
then gk ≡ 0). We prove now several estimates using the spaces Zk.

Lemma 4.2. (a) If k ≥ 0, t ∈ R, and fk ∈ Zk, then

(4.9)

{ ∣∣∣∣ ∫
R

fk(ξ, τ)eitτ dτ
∣∣∣∣

L2
ξ
≤ C||fk||Zk

if k ≥ 1;∣∣∣∣ ∫
R

f0(ξ, τ)eitτ dτ
∣∣∣∣

B0
≤ C||f0||Z0 if k = 0.

As a consequence,

(4.10) F σ ⊆ C(R : H̃σ) for any σ ≥ 0.
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(b) If k ≥ 1 and (I − ∂2
τ )fk ∈ Zk, then

(4.11) ||F−1(fk)||L2
xL∞

t
≤ C2k/2||(I − ∂2

τ )fk||Zk
.

(c) If k ≥ 1 and fk ∈ Zk, then

(4.12) ||F−1(fk)||L∞
x L2

t
≤ C2−k/2||fk||Zk

.

Proof of Lemma 4.2. For part (a), k ≥ 1, we use the representation (4.1). Assume
first that fk = fk,j . Then∣∣∣∣∣∣ ∫

R

fk,j(ξ, τ)eitτ dτ
∣∣∣∣∣∣

L2
ξ

≤ C||fk,j(ξ, τ)||L2
ξL1

τ
≤ C2j/2||fk,j ||L2

ξ,τ
,

which proves (4.9) in this case.
Assume now that k ≥ 100, fk = gk ∈ Yk, and write gk as in (4.6). We define the

modified Hilbert transform operator

(4.13) Lk(g)(µ) =
∫

R

g(τ )(τ − µ + i)−1η≤k(τ − µ) dτ, g ∈ L2(R).

Clearly, ||Lk||L2→L2 ≤ C, uniformly in k. We examine the formula (4.6) and
let h∗(x, µ) = Lk[eitτh(x, τ)](µ), ||h∗||L1

xL2
µ
≤ C||h||L1

xL2
τ
. Then, using (4.6), the

Minkowski inequality, and a change of variables,∣∣∣∣∣∣ ∫
R

gk(ξ, τ)eitτ dτ
∣∣∣∣∣∣

L2
ξ

≤ C2k/2
∣∣∣∣∣∣χ[k−1,k+1](ξ)

∫
R

e−ixξh∗(x, ω(ξ)) dx
∣∣∣∣∣∣

L2
ξ

≤ C2k/2 · 2−k/2||h∗||L1
xL2

µ

≤ C||gk||Yk
,

(4.14)

which completes the proof of (4.9) in the case k ≥ 1.
Assume now k = 0. We use the representation (4.2). Assume first that f0 = fk′

0,j

is supported in Dk′,j , ||f0||Z0 ≈ 2j−k′ ||fk′

0,j ||L2 . Then∣∣∣∣ ∫
R

fk′

0,j(ξ, τ)eitτ dτ
∣∣∣∣

B0
≤ C2−k′∣∣∣∣ ∫

R

|fk′

0,j(ξ, τ)| dτ
∣∣∣∣

L2
ξ
≤ C2−k′

2j/2||fk′

0,j ||L2 ,

which suffices.
Assume now that f0 = g0,j is supported in Ĩ0× Ĩj , ||f0||Z0 ≈ 2j ||F−1(g0,j)||L1

xL2
t
.

Then∣∣∣∣ ∫
R

g0,j(ξ, τ)eitτ dτ
∣∣∣∣

B0
≤ C||F−1(g0,j)||L1

xL∞
t

≤ C2j/2||F−1(g0,j)||L1
xL2

t
,

which completes the proof of part (a).
For part (b) we use the representation (4.8). Assume first that fk = fk,j and let

f#
k,j(ξ, µ) = fk,j(ξ, µ + ω(ξ)). By integration by parts, the left-hand side of (4.11)

is dominated by∑
n∈Z

C

n2 + 1

∫
Ĩj

∣∣∣∣∣∣ ∫
R

(I − ∂2
µ)f#

k,j(ξ, µ)eixξeitω(ξ) dξ
∣∣∣∣∣∣

L2
xL∞

t∈[n−1/2,n+1/2]

dµ.

The bound (4.11) now follows from the standard maximal function estimate

(4.15)
∣∣∣∣∣∣ ∫

R

g(ξ)eixξeitω(ξ) dξ
∣∣∣∣∣∣

L2
xL∞

t∈[−1/2,1/2]

≤ C2k/2||g||L2
ξ
,
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for any function g supported in Ik; see [9, Theorem 2.7]. In fact, the argument
above and (4.15) show that if fk ∈ Xk, then

(4.16)
∣∣∣∣∣∣ ∫

R2
fk(ξ, τ)eixξeitτ dξdτ

∣∣∣∣∣∣
L2

xL∞
t∈[−1/2,1/2]

≤ C2k/2||fk||Xk
.

Remark. The inequality (4.11) is relevant only when j ≤ k. For j ≥ k the Sobolev
imbedding theorem easily gives a stronger estimate.

Assume now that k ≥ 100, fk = gk, (I − ∂2
τ )gk ∈ Yk. By integration by parts,

the left-hand side of (4.11) is dominated by∑
n∈Z

C

n2 + 1

∣∣∣∣∣∣ ∫
R2

(I − ∂2
τ )gk(ξ, τ)eixξeitτ dξdτ

∣∣∣∣∣∣
L2

xL∞
t∈[n−1/2,n+1/2]

.

We write now (I − ∂2
τ )gk as in (4.6). In view of (4.6) and the Minkowski inequality

(notice that (I − ∂2
τ )gk can be thought of as a superposition in y0 of functions of

the form 2k/2χ[k−1,k+1](ξ)(τ − ω(ξ) + i)−1η≤k(τ − ω(ξ)) · e−iy0ξh(y0, τ )), it suffices
to prove that if

(4.17) f(ξ, τ) = 2k/2χ[k−1,k+1](ξ)(τ − ω(ξ) + i)−1η≤k(τ − ω(ξ)) · h(τ ),

then

(4.18)
∣∣∣∣∣∣ ∫

R2
f(ξ, τ)eixξeitτ dξdτ

∣∣∣∣∣∣
L2

xL∞
t∈[−1/2,1/2]

≤ C2k/2||h||L2 .

Since k ≥ 100 and |ξ| ∈ [2k−2, 2k+2], we may assume that the function h in (4.17) is
supported in the set {τ : |τ | ∈ [22k−10, 22k+10]}. Let h+ = h·1[0,∞), h− = h·1(−∞,0],
and define the corresponding functions f+ and f− as in (4.17). By symmetry, it
suffices to prove the bound (4.18) for the function f+, which is supported in the set
{(ξ, τ) : ξ ∈ [−2k+2,−2k−2], τ ∈ [22k−10, 22k+10]}. In view of (3.1), τ−ω(ξ) = τ−ξ2

on the support of f+, and f+(ξ, τ) = 0 unless |
√

τ + ξ| ≤ C. Let (by freezing
ξ = −

√
τ )

f ′
+(ξ, τ) = 2k/2χ[k−1,k+1](−

√
τ)(τ−ξ2 + (

√
τ + ξ)2 + i

√
τ2−k)−1

× η0(
√

τ + ξ) · h+(τ ).
(4.19)

Simple estimates show that, with µ = |τ − ξ2| + 1,

|f+(ξ, τ)− f ′
+(ξ, τ)| ≤ C2k/2|h+(τ )|η≤k+5(µ)

µ

( 1
µ

+
µ

2k

)
.

As in the proof of Lemma 4.1(b), it follows that

||f+ − f ′
+||Xk

≤ C||h+||L2 .

Thus, using (4.16), ||F−1(f+ − f ′
+)||L2

xL∞
t∈[−1/2,1/2]

≤ C2k/2||h+||L2 . To estimate
||F−1(f ′

+)||L2
xL∞

t∈[−1/2,1/2]
, we make the change of variables ξ = −

√
τ + µ. Then

F−1(f ′
+)(x, t) = 2k/2

∫
R

h+(τ )(2
√

τ)−1χ[k−1,k+1](−
√

τ)eitτe−ix
√

τ dτ

×
∫

R

η0(µ)(µ + i/2k+1)−1eixµ dµ.

(4.20)

The absolute value of the integral in µ in (4.20) is bounded by C. We make the
change of variables τ = θ2 in the first integral and use the bound (4.15). It follows
that ||F−1(f ′

+)||L2
xL∞

t∈[−1/2,1/2]
≤ C2k/2||h+||L2 , which completes the proof of (4.18).
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For part (c) we use the representation (4.1). Assume first that fk = fk,j and let
f#

k,j(ξ, µ) = fk,j(ξ, µ + ω(ξ)). It suffices to prove the stronger bound∣∣∣∣∣∣ ∫
Dk,j

fk,j(ξ, τ)eix0ξeitτ dξdτ
∣∣∣∣∣∣

L2
t

≤ C2−k/22j/2||fk,j ||L2 ,

for any x0 ∈ R. Using Plancherel’s theorem, duality, and the Hölder inequality, the
left-hand side of the inequality above is dominated by

C sup
||h||L2(R)=1

∫
Ik×Ĩj

|f#
k,j(ξ, µ)| · |h(µ + ω(ξ))| dξdµ

≤ C sup
||h||L2(R)=1

∫
Ĩj

(∫
Ik

|f#
k,j(ξ, µ)|2 dξ

)1/2( ∫
Ik

|h(µ + ω(ξ))|2 dξ
)1/2

dµ

≤ C2−k/22j/2
( ∫

Ik×Ĩj

|f#
k,j(ξ, µ)|2 dξdµ

)1/2

,

as desired.
Assume now that k ≥ 100, fk = gk ∈ Yk and write gk as in (4.6). Using

Plancherel’s theorem and the Minkowski inequality (see the explanation preceding
(4.17)), it suffices to prove that

(4.21)
∣∣∣ ∫

R

eix0ξχ[k−1,k+1](ξ)(τ − ω(ξ) + i)−1η≤k(τ − ω(ξ)) dξ
∣∣∣ ≤ C2−k,

uniformly in x0 and τ (assuming k ≥ 100). We may assume |τ | ∈ [22k−10, 22k+10]
and, by symmetry, τ ≥ 0. Then the variable ξ in the integral in (4.21) is in the
interval [−

√
τ − C,−

√
τ + C] and τ − ω(ξ) = τ − ξ2. As in part (b), see (4.19),

we replace the integrand 1(−∞,0](ξ)χ[k−1,k+1](ξ)(τ − ξ2 + i)−1η≤k(τ − ξ2) with
χ[k−1,k+1](−

√
τ)(τ − ξ2 + (

√
τ + ξ)2 + i

√
τ2−k)−1η0(

√
τ + ξ) at the expense of an

error dominated by

C[2−k + (22k|
√

τ + ξ|2 + 1)−1]1[0,C](|
√

τ + ξ|).

The L1
ξ norm of this error is ≤ C2−k. Then we make the change of variables

ξ = −
√

τ + µ and use the uniform boundedness of the integral in µ in (4.20). The
bound (4.21) follows. �

5. Linear estimates

For any u ∈ C(R : L2) let ũ(., t) ∈ C(R : L2) denote its partial Fourier transform
with respect to the variable x. For φ ∈ L2(R) let W (t)φ ∈ C(R : L2) denote the
solution of the free Benjamin–Ono evolution given by

(5.1) [W (t)φ]˜(ξ, t) = eitω(ξ)φ̂(ξ),

where ω(ξ) is defined in (3.1). Assume ψ : R → [0, 1] is an even smooth function
supported in the interval [−8/5, 8/5] and equal to 1 in the interval [−5/4, 5/4] and
let ϕ = ψ̂ − ψ̂′′ ∈ S(R).

Lemma 5.1. If σ ≥ 0 and φ ∈ H̃σ, then

||ψ(t) · (W (t)φ)||F σ ≤ C||φ||
H̃σ .
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Proof of Lemma 5.1. A straightforward computation shows that

(5.2) F [ψ(t) · (W (t)φ)](ξ, τ) = φ̂(ξ)ψ̂(τ − ω(ξ)).

Then, directly from the definitions,

||ψ(t) · (W (t)φ)||2F σ =
∑

k∈Z+

22σk||ηk(ξ)φ̂(ξ)ϕ(τ − ω(ξ))||2Zk

≤
∞∑

k=1

22σk||ηk(ξ)φ̂(ξ)ϕ(τ − ω(ξ))||2Xk
+ ||η0(ξ)φ̂(ξ)ϕ(τ − ω(ξ))||2Z0

.

(5.3)

Since ϕ ∈ S(R), for any k ≥ 1

||ηk(ξ)φ̂(ξ)ϕ(τ − ω(ξ))||Xk
≤ C||ηk · φ̂||L2 .

For k = 0, write η0 · φ̂ = g +
∑

k′≤1 hk′ , hk′ supported in Ik′ and

(5.4) ||F−1
1 (g)||L1

x
+

∑
k′≤1

2−k′ ||hk′ ||L2 ≤ 2||η0 · φ̂||B0 .

Then
||g(ξ)ϕ(τ − ω(ξ))||Z0 ≤ ||g(ξ)ϕ(τ )||Y0 + ||g(ξ)[ϕ(τ − ω(ξ)) − ϕ(τ )]||X0

≤ C||F−1
1 (g)||L1

x
+ C||g(ξ)ξ2(1 + |τ |)−4||X0 ≤ C||F−1

1 (g)||L1
x
.

Also,

||hk′(ξ)ϕ(τ − ω(ξ))||Z0 ≤ ||hk′(ξ)ϕ(τ − ω(ξ))||X0 ≤ C2−k′
||hk′ ||L2 .

Lemma 5.1 follows from (5.4). �

Lemma 5.2. If σ ≥ 0 and u ∈ Nσ ∩ C(R : H−2), then∣∣∣∣∣∣ψ(t) ·
∫ t

0

W (t − s)(u(s)) ds
∣∣∣∣∣∣

F σ
≤ C||u||Nσ .

Proof of Lemma 5.2. A straightforward computation shows that
(5.5)

F
[
ψ(t) ·

∫ t

0

W (t − s)(u(s))ds
]
(ξ, τ) = c

∫
R

F(u)(ξ, τ ′)
ψ̂(τ − τ ′) − ψ̂(τ − ω(ξ))

τ ′ − ω(ξ)
dτ ′.

For k ∈ Z+ let fk(ξ, τ ′) = F(u)(ξ, τ ′)ηk(ξ)Ak(ξ, τ ′)−1. For fk ∈ Zk let

(5.6) T (fk)(ξ, τ) =
∫

R

fk(ξ, τ ′)
ϕ(τ − τ ′) − ϕ(τ − ω(ξ))

τ ′ − ω(ξ)
Ak(ξ, τ ′) dτ ′.

In view of the definitions, it suffices to prove that

(5.7) ||T ||Zk→Zk
≤ C uniformly in k ∈ Z+.

We consider first the case k ≥ 1. To prove (5.7), we use the representation
(4.1). Assume first that fk = fk,j is a function supported in Dk,j . Let f#

k,j(ξ, µ
′) =

fk,j(ξ, µ′ + ω(ξ)) and T (fk,j)#(ξ, µ) = T (fk,j)(ξ, µ + ω(ξ)). Then,

(5.8) T (fk,j)#(ξ, µ) =
∫

R

f#
k,j(ξ, µ

′)
ϕ(µ − µ′) − ϕ(µ)

µ′ (µ′ + i) dµ′.

We use the elementary bound∣∣∣ϕ(µ − µ′) − ϕ(µ)
µ′ (µ′ + i)

∣∣∣ ≤ C[(1 + |µ|)−4 + (1 + |µ − µ′|)−4].
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Then, using (5.8),

|T (fk,j)#(ξ, µ)| ≤ C(1 + |µ|)−42j/2
[ ∫

Ĩj

|f#
k,j(ξ, µ

′)|2 dµ′
]1/2

+ Cη[j−2,j+2](µ)
∫

Ĩj

|f#
k,j(ξ, µ

′)|(1 + |µ − µ′|)−4 dµ′.

It follows from the definition of the spaces Xk that

(5.9) ||T ||Xk→Xk
≤ C uniformly in k ≥ 1,

as desired.
Assume now that fk = gk ∈ Yk, so k ≥ 100. In view of Lemma 4.1(b), (c), and

(5.9), we may assume that gk is supported in the set {(ξ, τ ′) : |τ ′ −ω(ξ)| ≤ 2k−20}.
We write

gk(ξ, τ ′) =
τ ′ − ω(ξ)

τ ′ − ω(ξ) + i
gk(ξ, τ ′) +

i

τ ′ − ω(ξ) + i
gk(ξ, τ ′).

Using Lemma 4.1(b), ||i(τ ′ − ω(ξ) + i)−1gk(ξ, τ ′)||Xk
≤ C||gk||Yk

. In view of (5.9),
it suffices to prove that

(5.10)
∣∣∣∣∣∣ ∫

R

gk(ξ, τ ′)ϕ(τ−τ ′) dτ ′
∣∣∣∣∣∣

Zk

+
∣∣∣∣∣∣ϕ(τ−ω(ξ))

∫
R

gk(ξ, τ ′) dτ ′
∣∣∣∣∣∣

Xk

≤ C||gk||Yk
.

The bound for the second term in the left-hand side of (5.10) follows from (4.14)
with t = 0. To bound the first term, we write

gk(ξ, τ ′) = gk(ξ, τ ′)
[τ ′ − ω(ξ) + i

τ − ω(ξ) + i
+

τ − τ ′

τ − ω(ξ) + i

]
.

The first term in the left-hand side of (5.10) is dominated by

C
∣∣∣∣∣∣η[0,k−1](τ − ω(ξ))(τ − ω(ξ) + i)−1

∫
R

gk(ξ, τ ′)(τ ′ − ω(ξ) + i)ϕ(τ − τ ′) dτ ′
∣∣∣∣∣∣

Yk

+ C
∑
j≤k

2j/2
∣∣∣∣∣∣ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1

∫
R

gk(ξ, τ ′)ϕ(τ − τ ′)(τ − τ ′) dτ ′
∣∣∣∣∣∣

L2

+ C
∑

j≥k−1

2j/2βk,j

∣∣∣∣∣∣ηj(τ − ω(ξ))
∫

R

gk(ξ, τ ′)ϕ(τ − τ ′) dτ ′
∣∣∣∣∣∣

L2
.

(5.11)

For the first term in (5.11), we use Lemma 4.1(c) to bound it by

C2−k/2||F−1
1 (ϕ) · F−1[(τ ′ − ω(ξ) + i)gk(ξ, τ ′)]||L1

xL2
t
≤ C||gk||Yk

,

as desired. Let g#
k (ξ, µ′) = gk(ξ, µ′ + ω(ξ)) and for j′ ∈ [0, k − 20] let g#

k,j′(ξ, µ′) =
g#

k (ξ, µ′)ηj′(µ′). In view of Lemma 4.1(b), 2j′/2||gk,j′ ||L2 ≤ C||gk||Yk
, so the second

term in (5.11) is dominated by

C

k∑
j=0

k−20∑
j′=0

2−j/22−j′/2[2j′/2||gk,j′ ||L2 ] ≤ C||gk||Yk
.
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The third term in (5.11) is dominated by

C

∞∑
j=k−1

k−20∑
j′=0

2−3j2j′/2||gk,j′ ||L2 ≤ C||gk||Yk
,

since ϕ ∈ S(R). This completes the proof of (5.10).
We consider now the case k = 0. To prove (5.7), we use the representation (4.2).

Assume first that f0 = fk′

0,j is a function supported in Dk′,j , ||f0||Z0 ≈ 2j−k′ ||fk′

0,j ||L2 .
For |ξ| ≤ 2 we have the elementary bound∣∣∣ϕ(τ − τ ′) − ϕ(τ − ω(ξ))

τ ′ − ω(ξ)
(τ ′ + i)

∣∣∣ ≤ C[(1 + |τ |)−4 + (1 + |τ − τ ′|)−4].

Then, using the formula (5.6),

|T (fk′

0,j)(ξ, τ)| ≤ C(1 + |τ |)−42j/2
[ ∫

Ĩj

|fk′

0,j(ξ, τ
′)|2 dτ ′

]1/2

+ Cη[j−4,j+4](τ )
∫

Ĩj

|fk′

0,j(ξ, τ
′)|(1 + |τ − τ ′|)−4 dτ ′.

It follows from the definition of the spaces X0 that ||T ||X0→X0 ≤ C, as desired.
Assume now that f0 = g0,j is supported in Ĩ0 × Ĩj . We can write

(5.12)

{
g0,j(ξ, τ ′) = 2−jη[0,1](ξ)η[j−1,j+1](τ ′)

∫
R

e−ixξh(x, τ ′) dx;
2j ||F−1(g0,j)||L1

xL2
t

= C||h||L1
xL2

τ′
.

We have two cases: j ≤ 5 and j ≥ 6. If j ≤ 5, we write

ϕ(τ − τ ′) − ϕ(τ − ω(ξ))
τ ′ − ω(ξ)

= c

∫ 1

0

ϕ′(τ − ατ ′ − (1 − α)ω(ξ)) dα.

For (5.7), it suffices to prove that

(5.13)
∣∣∣∣∣∣ ∫

R

g0,j(ξ, τ ′)ϕ′(τ −ατ ′− (1−α)ω(ξ))(τ ′+ i) dτ ′
∣∣∣∣∣∣

Z0

≤ C||F−1(g0,j)||L1
xL2

t

for any α ∈ [0, 1]. For |ξ| ≤ 2 and |τ ′| ≤ C we write

ϕ′(τ − ατ ′ − (1 − α)ω(ξ))(τ ′ + i) = ϕ′(τ − ατ ′)(τ ′ + i) + R(ξ, τ, τ ′),

where
|R(ξ, τ, τ ′)| ≤ Cξ2(1 + |τ |)−4.

The left-hand side of (5.13) is dominated by∣∣∣∣∣∣ ∫
R

g0,j(ξ, τ ′)ϕ′(τ − ατ ′)(τ ′ + i) dτ ′
∣∣∣∣∣∣

Y0

+ C
∣∣∣∣∣∣ξ2(1 + |τ |)−4

∫
Ĩj

|g0,j(ξ, τ ′)| dτ ′
∣∣∣∣∣∣

X0

,

which is easily seen to be dominated by ||F−1(g0,j)||L1
xL2

t
(using the representation

(5.12)). This completes the proof of (5.7) in the case j ≤ 5.
Assume now that j ≥ 6. Since |τ ′| ≥ C and |ξ| ≤ 2, we can write

ϕ(τ − τ ′) − ϕ(τ − ω(ξ))
τ ′ − ω(ξ)

(τ ′ + i) =
ϕ(τ − τ ′) − ϕ(τ )

τ ′ (τ ′ + i) + R′(ξ, τ, τ ′),

where
|R′(ξ, τ, τ ′)| ≤ Cξ2[(1 + |τ |)−4 + (1 + |τ − τ ′|)−4].
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Using the representation (5.12) and the definitions, it follows as before that∣∣∣∣∣∣ ∫
R

g0,j(ξ, τ ′)
ϕ(τ − τ ′) − ϕ(τ )

τ ′ (τ ′+i) dτ ′
∣∣∣∣∣∣

Y0

+
∣∣∣∣∣∣ ∫

R

|g0,j(ξ, τ ′)|·|R′(ξ, τ, τ ′)| dτ ′
∣∣∣∣∣∣

X0

is dominated by C2j ||F−1(g0,j)||L1
xL2

t
, which completes the proof of (5.7). �

6. Localized L2
estimates

In this section we prove several localized L2 estimates for nonnegative functions.
Such L2 estimates are closely connected to bilinear estimates in the spaces Xσ,b

(see [21] for a more general discussion). For ξ1, ξ2 ∈ R and ω : R → R as in (3.1)
let

(6.1) Ω(ξ1, ξ2) = −ω(ξ1 + ξ2) + ω(ξ1) + ω(ξ2).

For compactly supported functions f, g, h ∈ L2(R × R) let

(6.2) J(f, g, h) =
∫

R4
f(ξ1, µ1)g(ξ2, µ2)h(ξ1+ξ2, µ1+µ2+Ω(ξ1, ξ2)) dξ1dξ2dµ1dµ2.

Given a triplet of real numbers (α1, α2, α3), let min (α1, α2, α3), max (α1, α2, α3),
and med (α1, α2, α3) denote the minimum, the maximum, and the median (i.e.,
med (α1, α2, α3) = α1+α2+α3−max (α1, α2, α3)−min (α1, α2, α3)) of the numbers
α1, α2, and α3.

Lemma 6.1. Assume k1, k2, k3 ∈ Z, j1, j2, j3 ∈ Z+, and fki,ji
∈ L2(R × R) are

functions supported in Iki
× Ĩji

, i = 1, 2, 3.
(a) For any k1, k2, k3 ∈ Z and j1, j2, j3 ∈ Z+,

(6.3) |J(fk1,j1 , fk2,j2 , fk3,j3)| ≤ C2min (k1,k2,k3)/22min (j1,j2,j3)/2
3∏

i=1

||fki,ji
||L2 .

(b) If max (k1, k2, k3) ≥ min (k1, k2, k3) + 5 and i ∈ {1, 2, 3}, then

(6.4) |J(fk1,j1 , fk2,j2 , fk3,j3)| ≤ C2(j1+j2+j3)/22−(ji+ki)/2
3∏

i=1

||fki,ji
||L2 .

(c) For any k1, k2, k3 ∈ Z and j1, j2, j3 ∈ Z+,

(6.5) |J(fk1,j1 , fk2,j2 , fk3,j3)| ≤ C2min (j1,j2,j3)/2+med (j1,j2,j3)/4
3∏

i=1

||fki,ji
||L2 .

Proof of Lemma 6.1. Let Aki
(ξ) =

[ ∫
R
|fki,ji

(ξ, µ)|2 dµ
]1/2

, i = 1, 2, 3. Using the
Hölder inequality and the support properties of the functions fki,ji

,

|J(fk1,j1 , fk2,j2 , fk3,j3)| ≤ C2min (j1,j2,j3)/2

∫
R2

Ak1(ξ1)Ak2(ξ2)Ak3(ξ1 + ξ2) dξ1dξ2

≤ C2min (k1,k2,k3)/22min (j1,j2,j3)/2
3∏

i=1

||fki,ji
||L2 ,

(6.6)

which is part (a).
For part (b) we observe that

(6.7) |Ω(ξ1, ξ2)| = 2 min (|ξ1|, |ξ2|, |ξ1 + ξ2|) · med (|ξ1|, |ξ2|, |ξ1 + ξ2|).



768 ALEXANDRU D. IONESCU AND CARLOS E. KENIG

Also, by examining the supports of the functions, J(fk1,j1 , fk2,j2 , fk3,j3) ≡ 0 unless

(6.8) max (k1, k2, k3) ≤ med (k1, k2, k3) + 2,

and

(6.9)

{
max (j1, j2, j3) ∈ [k̃ − 5, k̃ + 5] or
max (j1, j2, j3) ≥ k̃ + 5 and max (j1, j2, j3) − med (j1, j2, j3) ≤ 5,

where k̃ = min (k1, k2, k3) + med (k1, k2, k3).
Simple changes of variables and the observation that the function ω is odd show

that

(6.10) |J(f, g, h)| = |J(g, f, h)| and |J(f, g, h)| = |J(f̃ , h, g)|,
where f̃(ξ, µ) = f(−ξ,−µ). Thus, by symmetry, in proving (6.4), we may assume
i = 3. Let

Bk3(ξ, µ) =
[ 1
2j12j2

∫
R2

|fk3,j3(ξ, µ + α + β)|2(1 + α/2j1)−2(1 + β/2j2)−2 dαdβ
]1/2

.

Clearly,

(6.11) ||Bk3 ||L2 = C||fk3,j3 ||L2 and Bk3 is supported in Ik3 × R.

Also, by the Hölder inequality,
|J(fk1,j1 , fk2,j2 , fk3,j3)|

≤ C2(j1+j2)/2

∫
R2

Ak1(ξ1)Ak2(ξ2)Bk3(ξ1 + ξ2, Ω(ξ1, ξ2)) dξ1dξ2.
(6.12)

We have three cases depending on the relative sizes of |ξ1|, |ξ2| and |ξ1 + ξ2|. Let⎧⎪⎨⎪⎩
R1 = {(ξ1, ξ2) : |ξ1 + ξ2| ≤ |ξ1| and |ξ2| ≤ |ξ1|},
R2 = {(ξ1, ξ2) : |ξ1 + ξ2| ≤ |ξ2| and |ξ1| ≤ |ξ2|},
R3 = {(ξ1, ξ2) : |ξ1| ≤ |ξ1 + ξ2| and |ξ2| ≤ |ξ1 + ξ2|}.

For (ξ1, ξ2) ∈ R1, using (6.7), Ω(ξ1, ξ2) = ±2ξ2(ξ1 + ξ2). We define B′
k3

(ξ, µ) =
Bk3(ξ, 2ξµ), ||B′

k3
||L2 ≈ 2−k3/2||Bk3 ||L2 . The integral over R1 in the right-hand

side of (6.12) is dominated by

C

∫
R2

Ak1(ξ1)Ak2(ξ2)[B′
k3

(ξ1 + ξ2, ξ2) + B′
k3

(ξ1 + ξ2,−ξ2)] dξ1dξ2

≤ C2−k3/2||Ak1 ||L2 ||Ak2 ||L2 ||Bk3 ||L2 ,

(6.13)

which gives (6.4) in this case (see (6.11)).
The bound for the integral over (ξ1, ξ2) ∈ R2 is identical. We consider now the

integral over (ξ1, ξ2) ∈ R3, in which case Ω(ξ1, ξ2) = ±2ξ1ξ2. By symmetry, to
bound the right-hand side of (6.12), it suffices to bound

(6.14)
∫

R3

Ak1(ξ1)Ak2(ξ2)Bk3(ξ1 + ξ2, 2ξ1ξ2) dξ1dξ2.

We define B′′
k3

(ξ, µ) = Bk3(ξ, µ+ξ2/2), so ||B′′
k3
||L2 = ||Bk3 ||L2 . Using (6.8) and the

assumption max (k1, k2, k3) ≥ min (k1, k2, k3)+5, if ξ1 ∈ Ik1 , ξ2 ∈ Ik2 , (ξ1, ξ2) ∈ R3,
and ξ1 + ξ2 ∈ Ik3 , then |ξ1 − ξ2| ≥ 2k3−100. The integral in (6.14) is dominated by∫

{|ξ1−ξ2|≥2k3−100}
Ak1(ξ1)Ak2(ξ2)B′′

k3
(ξ1 + ξ2,−(ξ1 − ξ2)2/2) dξ1dξ2.(6.15)
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Using the Hölder inequality and a simple change of variables, the integral in (6.15)
is dominated by C2−k3/2||Ak1 ||L2 ||Ak2 ||L2 ||B′′

k3
||L2 , which completes the proof of

(6.4).
For part (c), using part (a), we may assume

(6.16) med (j1, j2, j3) ≤ 2 min (k1, k2, k3).

Using (6.10), we may also assume j1 = min (j1, j2, j3) and j2 = med (j1, j2, j3). Let

R̃j2 = {(ξ1, ξ2) : |ξ1 − ξ2| ≥ 2j2/2}.

For the integral over (ξ1, ξ2) ∈ cR̃j2 = R2 \ R̃j2 we use a bound similar to (6.6):∣∣∣ ∫
cR̃j2×R2

fk1,j1(ξ1, µ1)fk2,j2(ξ2, µ2)fk3,j3(ξ1 + ξ2, µ1 + µ2 + Ω(ξ1, ξ2))dξ1dξ2dµ1dµ2

∣∣∣
≤ C2j1/2

∫
cR̃j2

Ak1(ξ1)Ak2(ξ2)Ak3(ξ1 + ξ2) dξ1dξ2

≤ C2j1/2

∫∫
|µ|≤2j2/2

Ak1(ξ2 + µ)Ak2(ξ2)Ak3(2ξ2 + µ) dξ2dµ

≤ C2j1/2

∫
|µ|≤2j2/2

( ∫
R

|Ak1(ξ2 + µ)|2|Ak2(ξ2)|2 dξ2

)1/2

||Ak3 ||L2dµ

≤ C2j1/22j2/4||Ak1 ||L2 ||Ak2 ||L2 ||Ak3 ||L2 ,

which suffices for (6.5). For the integral over (ξ1, ξ2) ∈ R̃j2 we use a bound similar
to (6.12):

∣∣∣ ∫
R̃j2×R2

fk1,j1(ξ1, µ1)fk2,j2(ξ2, µ2)fk3,j3(ξ1 + ξ2, µ1 + µ2 + Ω(ξ1, ξ2))dξ1dξ2dµ1dµ2

∣∣∣
≤ C2(j1+j2)/2

∫
R̃j2

Ak1(ξ1)Ak2(ξ2)Bk3(ξ1 + ξ2, Ω(ξ1, ξ2)) dξ1dξ2.

(6.17)

We further decompose the integral in the right-hand side of (6.17) into three parts,
corresponding to the regions R1, R2, and R3. Using (6.13), the integrals over the
regions R̃j2 ∩R1 and R̃j2 ∩R2 are dominated by C2−k3/2||Ak1 ||L2 ||Ak2 ||L2 ||Bk3 ||L2 ,
which suffices in view of the assumption (6.16). For the integral over the region
R̃j2 ∩ R3, by symmetry it suffices to control

(6.18)
∫

R̃j2∩R3

Ak1(ξ1)Ak2(ξ2)Bk3(ξ1 + ξ2, 2ξ1ξ2) dξ1dξ2.

As in the estimate of the integral in (6.14), the integral in (6.18) is dominated by∫
{|ξ1−ξ2|≥2j2/2}

Ak1(ξ1)Ak2(ξ2)B′′
k3

(ξ1 + ξ2,−(ξ1 − ξ2)2/2) dξ1dξ2.

The bound (6.5) follows using the Hölder inequality and a simple change of vari-
ables. �

We restate now Lemma 6.1 in a form that is suitable for the bilinear estimates
in the next sections.
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Corollary 6.2. Assume k1, k2, k3 ∈ Z, j1, j2, j3 ∈ Z+, and fki,ji
∈ L2(R × R) are

functions supported in Dki,ji
, i = 1, 2.

(a) For any k1, k2, k3 ∈ Z and j1, j2, j3 ∈ Z+,
(6.19)

||1Dk3,j3
(ξ, τ)(fk1,j1 ∗fk2,j2)(ξ, τ)||L2 ≤C2min (k1,k2,k3)/22min (j1,j2,j3)/2

2∏
i=1

||fki,ji
||L2 .

(b) If max (k1, k2, k3) ≥ min (k1, k2, k3) + 5 and i ∈ {1, 2, 3}, then
(6.20)

||1Dk3,j3
(ξ, τ)(fk1,j1 ∗ fk2,j2)(ξ, τ)||L2 ≤ C2(j1+j2+j3)/22−(ji+ki)/2

2∏
i=1

||fki,ji
||L2 .

(c) For any k1, k2, k3 ∈ Z and j1, j2, j3 ∈ Z+,
(6.21)

||1Dk3,j3
(ξ, τ)(fk1,j1 ∗ fk2,j2)(ξ, τ)||L2 ≤C2min (j1,j2,j3)/2+med (j1,j2,j3)/4

2∏
i=1

||fki,ji
||L2 .

(d) In addition, 1Dk3,j3
(ξ, τ)(fk1,j1 ∗ fk2,j2)(ξ, τ) ≡ 0 unless

(6.22) max (k1, k2, k3) ≤ med (k1, k2, k3) + 2,

and

(6.23)

{
max (j1, j2, j3) ∈ [k̃ − 8, k̃ + 8] or
max (j1, j2, j3) ≥ k̃ + 8 and max (j1, j2, j3) − med (j1, j2, j3) ≤ 10,

where k̃ = min (k1, k2, k3) + med (k1, k2, k3).

Proof of Corollary 6.2. Clearly,

||1Dk3,j3
(ξ, τ)(fk1,j1 ∗ fk2,j2)(ξ, τ)||L2 = sup

||f ||L2=1

∣∣∣ ∫
Dk3,j3

f · (fk1,j1 ∗ fk2,j2) dξdτ
∣∣∣.

Let fk3,j3 = 1Dk3,j3
· f , and then f#

ki,ji
(ξ, µ) = fki,ji

(ξ, µ + ω(ξ)), i = 1, 2, 3. The
functions f#

ki,ji
are supported in Iki

×
⋃

|m|≤3 Ĩji+m, ||f#
ki,ji

||L2 = ||fki,ji
||L2 , and,

using simple changes of variables,∫
Dk3,j3

f · (fk1,j1 ∗ fk2,j2) dξdτ = J(f#
k1,j1

, f#
k2,j2

, f#
k3,j3

).

Corollary 6.2 follows from Lemma 6.1, (6.8), and (6.9). �

7. Bilinear estimates I

In this section we prove two bilinear estimates, which correspond to Low ×
High → High interactions:

Proposition 7.1. Assume k ≥ 20, k2 ∈ [k − 2, k + 2], fk2 ∈ Zk2 , and f0 ∈ Z0.
Then

(7.1) 2k
∣∣∣∣ηk(ξ) · (τ − ω(ξ) + i)−1fk2 ∗ f0

∣∣∣∣
Zk

≤ C||fk2 ||Zk2
||f0||Z0 .
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Proposition 7.2. Assume k ≥ 20, k2 ∈ [k − 2, k + 2], fk2 ∈ Zk2 , and fk1 ∈ Zk1

for any k1 ∈ [1, k − 10] ∩ Z. Then

2k
∣∣∣∣ηk(ξ)(τ−ω(ξ) + i)−1fk2 ∗

k−10∑
k1=1

fk1

∣∣∣∣
Zk

≤ C||fk2 ||Zk2
sup

k1∈[1,k−10]

||(I − ∂2
τ )fk1 ||Zk1

.

(7.2)

The main ingredients in the proofs of Propositions 7.1 and 7.2 are the definitions,
the representations (4.1), (4.2), and (4.8), Lemma 4.1, Lemma 4.2(b), (c), Corollary
6.2, and the L2 estimates in Lemma 7.3 below.

Lemma 7.3. Assume that k ≥ 20, k1 ∈ (−∞, k − 10] ∩ Z, k2 ∈ [k − 2, k + 2],
j, j1, j2 ∈ Z+, fk1,j1 is an L2 function supported in Dk1,j1 , and fk2,j2 is an L2

function supported in Dk2,j2 . Then, with γk,k1 = (2k1/2 + 2−k/2)−1,

2k2j/2βk,j ||ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1,j1 ∗ fk2,j2)||L2

≤ Cγk,k1 · 2j1/2βk1,j1 ||fk1,j1 ||L2 · 2j2/2βk2,j2 ||fk2,j2 ||L2 ,
(7.3)

where, by definition, βk1,j1 = 2j1/2 if k1 ≤ 0. In addition,

1Dk,j
(ξ, τ)(fk1,j1 ∗ fk2,j2) ≡ 0

unless

(7.4)

{
max (j, j1, j2) ∈ [k + k1 − 10, k + k1 + 10] or
max (j, j1, j2) ≥ k + k1 + 10 and max (j, j1, j2) − med (j, j1, j2) ≤ 10.

Remark. The bound (7.3) holds for k1 both positive and negative. However, when
k1 ≤ 0, the right-hand side contains the large factor γk,k1 . This factor is the main
reason why interactions between “general” L2 functions of very low frequency and
derivatives of L2 functions of high frequency cannot be estimated using our bilinear
estimates.

Proof of Lemma 7.3. The restriction (7.4) follows directly from (6.23). For (7.3)
we use the bounds (6.19), (6.20), and (6.21) in Corollary 6.2. The left-hand side of
(7.3) is dominated by

2k2−j/2βk,j ||1Dk,j
(ξ, τ)(fk1,j1 ∗ fk2,j2)||L2 .

For (7.3) it suffices to prove that

||1Dk,j
(ξ, τ)(fk1,j1 ∗ fk2,j2)||L2

≤ C2−kγk,k12
(j+j1+j2)/2βk1,j1βk2,j2β

−1
k,j ||fk1,j1 ||L2 ||fk2,j2 ||L2 .

(7.5)

Let Π = ||fk1,j1 ||L2 ||fk2,j2 ||L2 . We have several cases: if j = max (j, j1, j2),
then, using (6.20), the left-hand side of (7.5) is dominated by C2−k/22(j1+j2)/2Π;
in addition βk1,j1βk2,j2β

−1
k,j ≥ C−1 and 2j/2 ≥ C−1(2(k+k1)/2 + 1), using (7.4), so

the bound (7.5) follows in this case.
If j2 = max (j, j1, j2), then, using (6.20), the left-hand side of (7.5) is dominated

by C2−k/22(j+j1)/2Π; in addition

βk1,j1βk2,j2β
−1
k,j ≥ C−1 and 2j2/2 ≥ C−1(2(k+k1)/2 + 1),

using (7.4), so the bound (7.5) follows in this case.
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If j1 = max (j, j1, j2) ≥ k + k1 − 20 and k1 ≥ 0, then, using (6.20) and (6.21),
the left-hand side of (7.5) is dominated by

C2−j1/2(2k1/2 + 2max(j,j2)/4)−12(j+j1+j2)/2Π;

in addition 2j1/2βk1,j1 ≥ C−12j1−k1 , βk2,j2 ≥ 1, and βk,j ≤ Cβk,j1 . Using (7.4),
2j1β−1

k,j1
≥ C−12k+k1 , and the bound (7.5) follows. We notice also that the restric-

tion j1 = max (j, j1, j2) was not important. For later use, we restate the stronger
estimate that we obtain in this case: if k1 ≥ 0 and j1 ≥ k + k1 − 20, then

2k2j/2βk,j ||ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1,j1 ∗ fk2,j2)||L2

≤ C(2k1/2 + 2max(j,j2)/4)−1 · 2j1/2βk1,j1 ||fk1,j1 ||L2 · 2j2/2βk2,j2 ||fk2,j2 ||L2 .
(7.6)

If j1 = max (j, j1, j2) ≥ k + k1 − 20 and k1 ≤ 1, then, using (6.19), the left-hand
side of (7.5) is dominated by C2k1/22(j+j2)/22−max(j,j2)/2Π; in addition 2j1/2βk1,j1

= 2j1 , βk2,j2 ≥ 1, and βk,j ≤ Cβk,j1 . Using (7.4), 2j1β−1
k,j1

≥ C−1(2k+k1 + 1), and
the bound (7.5) follows since 2k1 + 2−k ≥ C−1γ−2

k,k1
. For later use, we restate the

stronger estimate that we obtain in this last case: if k1 ≤ 1 and j1 ≥ k + k1 − 20,
then

2k2j/2βk,j ||ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1,j1 ∗ fk2,j2)||L2

≤ C2−max(j,j2)/2γk,k1 · 2j1 ||fk1,j1 ||L2 · 2j2/2βk2,j2 ||fk2,j2 ||L2 .
(7.7)

�
We prove now Propositions 7.1 and 7.2.

Proof of Proposition 7.1. We use the representations (4.1) and (4.2) and analyze
three cases.

Case 1: f0 = fk1
0,j1

is supported in Dk1,j1 , fk2 = fk2,j2 is supported in Dk2,j2 ,
j1, j2 ≥ 0, k1 ≤ 1, ||f0||Z0 ≈ 2j1−k1 ||fk1

0,j1
||L2 , and ||fk2 ||Zk2

≈ 2j2/2βk2,j2 ||fk2,j2 ||L2 .
The bound (7.1) which we have to prove becomes
(7.8)
2k

∣∣∣∣ηk(ξ) ·(τ−ω(ξ)+i)−1fk2,j2 ∗fk1
0,j1

∣∣∣∣
Zk

≤ C2j1−k1 ||fk1
0,j1

||L2 ·2j2/2βk2,j2 ||fk2,j2 ||L2 .

Let hk(ξ, τ) = ηk(ξ)(τ−ω(ξ)+ i)−1(fk2,j2 ∗fk1
0,j1

)(ξ, τ). The first observation is that
for most choices of j1 and j2, depending on k and k1, the function hk is supported
in a bounded number of regions Dk,j , so (7.3) suffices to control 2k||hk||Xk

. In view
of (7.4), the function hk is supported in a bounded number of regions Dk,j , and
(7.8) follows from (7.3), unless

(7.9)

⎧⎪⎨⎪⎩
|j1 − (k + k1)| ≤ 10 and j2 ≤ k + k1 + 10 or
|j2 − (k + k1)| ≤ 10 and j1 ≤ k + k1 + 10 or
j1, j2 ≥ k + k1 − 10 and |j1 − j2| ≤ 10.

Assume (7.9) holds. Using (7.4), 1Dk,j
(ξ, τ) · hk ≡ 0 unless j ≤ max(j1, j2) + C.

We have two cases: if j1 ≥ k + k1 − 20, then, in view of (7.9), j2 ≤ j1 + C and the
function hk is supported in

⋃
j≤j1+C Dk,j . By (7.7),

2k||hk||Xk
≤ C2k

∑
j≤j1+C

2j/2βk,j ||ηj(τ − ω(ξ))hk(ξ, τ)||L2

≤ C
[ ∑

j≤j1+C

2−max(j,j2)/2
]
2−k1/2 · 2j1 ||fk1

0,j1
||L2 · 2j2/2βk2,j2 ||fk2,j2 ||L2 ,
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which suffices for (7.8). Assume now that j1 ≤ k + k1 − 20, so, in view of (7.9),
|j2 − (k + k1)| ≤ 10 and the function hk is supported in

⋃
j≤k+k1+C Dk,j . Then,

using Lemma 4.1(b) and (c) (in fact the proof of part (b)),

2k||hk||Zk
≤ C2k/2||F−1[(τ − ω(ξ) + i)hk(ξ, τ)]||L1

xL2
t

≤ C2k/2||F−1(fk1
0,j1

)||L2
xL∞

t
||F−1(fk2,j2)||L2

xL2
t

≤ C2(j1−k1)/2||fk1
0,j1

||L2 · 2(k+k1)/2||fk2,j2 ||L2 ,

which suffices for (7.8) since |j2 − (k + k1)| ≤ 10. For later use we notice that we
proved the slightly stronger estimate, with the factor 2−k1 in the right-hand side
of (7.8) replaced by 2−k1/2,
(7.10)
2k

∣∣∣∣ηk(ξ)(τ−ω(ξ)+i)−1fk2,j2∗fk1
0,j1

∣∣∣∣
Zk

≤ C2j1−k1/2||fk1
0,j1

||L2 ·2j2/2βk2,j2 ||fk2,j2 ||L2 .

Case 2: f0 = fk1
0,j1

is supported in Dk1,j1 , j1 ≥ 0, k1 ≤ 1, fk2 = gk2 is supported
in

⋃
j2≤k2−1 Dk2,j2 , ||f0||Z0 ≈ 2j1−k1 ||fk1

0,j1
||L2 , and ||fk2 ||Zk2

≈ ||gk2 ||Yk2
. The

bound (7.1) which we have to prove becomes

(7.11) 2k
∣∣∣∣ηk(ξ) · (τ − ω(ξ) + i)−1gk2 ∗ fk1

0,j1

∣∣∣∣
Zk

≤ C2j1−k1 ||fk1
0,j1

||L2 · ||gk2 ||Yk2
.

As before, let hk(ξ, τ) = ηk(ξ)(τ − ω(ξ) + i)−1(gk2 ∗ fk1
0,j1

)(ξ, τ). In view of Lemma
4.1(b), (c), and the bound (7.10), we may assume that gk2 is supported in the set
{(ξ2, τ2) : ξ2 ∈ Ik2 , |τ2−ω(ξ2)| ≤ 2k+k1−20}. We have two cases: if j1 ≥ k+k1−20,
then let gk2,j2(ξ2, τ2) = gk2(ξ2, τ2)ηj2(τ2 − ω(ξ2)). Using Xk norms, Lemma 4.1(b),
and (7.7), the left-hand side of (7.11) is dominated by

C
∑

j,j2≤j1+C

2k2j/2βk,j ||ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1
0,j1

∗ gk2,j2)||L2

≤ Cγk,k1 · 2j1 ||fk1
0,j1

||L2

∑
j,j2≤j1+C

2−max(j,j2)/2 · 2j2/2βk2,j2 ||gk2,j2 ||L2

≤ Cγk,k1 · 2j1 ||fk1
0,j1

||L2 · ||gk2 ||Yk2
,

which suffices to prove (7.11) in this case. Assume now that j1 ≤ k + k1 − 20. In
view of (7.4), the function in the left-hand side of (7.11) is supported in the union
of a bounded number of dyadic regions Dk,j , |j − (k + k1)| ≤ C. Then, using Xk

norms in the left-hand side of (7.11) and Lemma 4.2(c), the left-hand side of (7.11)
is dominated by

C2k2−(k+k1)/2||fk1
0,j1

∗ gk2 ||L2 ≤ C2(k−k1)/2||F−1(fk1
0,j1

)||L2
xL∞

t
||F−1(gk2)||L∞

x L2
t

≤ C2(k−k1)/2 · 2j1/2||fk1
0,j1

||L2 · 2−k/2||gk2 ||Yk2

≤ C2(j1−k1)/2||fk1
0,j1

||L2 · ||gk2 ||Yk2
,

which completes the proof of (7.11).
Case 3: f0 = g0,j is supported in Ĩ0×Ĩj1 , j1 ≥ 0, ||f0||Z0 ≈ 2j1 ||F−1(g0,j1)||L1

xL2
t
.

The bound (7.1) which we have to prove becomes

(7.12) 2k
∣∣∣∣ηk(ξ) ·(τ −ω(ξ)+ i)−1fk2 ∗g0,j1

∣∣∣∣
Zk

≤ C2j1 ||F−1(g0,j1)||L1
xL2

t
· ||fk2 ||Zk2

.

Using the representation (5.12), we see easily that

(7.13) ||F−1(g0,j1)||L1
xL∞

t
+ ||F−1(g0,j1)||L2

xL∞
t

≤ C2j1/2||F−1(g0,j1)||L1
xL2

t
.
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Thus, using the definitions, Lemma 4.1(b), (c), and Lemma 4.2(c),

2k
∣∣∣∣ηk(ξ)η≤k+C(τ − ω(ξ))(τ − ω(ξ) + i)−1fk2 ∗ g0,j1

∣∣∣∣
Zk

≤ C2k/2||F−1(fk2 ∗ g0,j1)||L1
xL2

t

≤ C2k/2||F−1(fk2)||L∞
x L2

t
||F−1(g0,j1)||L1

xL∞
t

≤ C2j1/2||F−1(g0,j1)||L1
xL2

t
· ||fk2 ||Zk2

.

Thus, for (7.12), it suffices to prove that

2k
∑

j≥k+C

2−j/2βk,j

∣∣∣∣ηk(ξ)ηj(τ − ω(ξ))fk2 ∗ g0,j1

∣∣∣∣
L2

≤ C2j1 ||F−1(g0,j1)||L1
xL2

t
· ||fk2 ||Zk2

.

(7.14)

Using Lemma 4.2(c) and (7.13) again,∣∣∣∣ηk(ξ)ηj(τ − ω(ξ))fk2 ∗ g0,j1

∣∣∣∣
L2 ≤ C||F−1(fk2)||L∞

x L2
t
||F−1(g0,j1)||L2

xL∞
t

≤ C2j1/2||F−1(g0,j1)||L1
xL2

t
· 2−k/2||fk2 ||Zk2

.

We use this bound to control the sum over j ≤ 2k + j1 + C in (7.14). For j ≥
2k + j1 + C, 2−j/2βk,j ≈ 2−k, and for (7.12), it suffices to prove that
(7.15)∑

j≥2k+j1+C

∣∣∣∣ηk(ξ)ηj(τ − ω(ξ))fk2 ∗ g0,j1

∣∣∣∣
L2 ≤ C2j1 ||F−1(g0,j1)||L1

xL2
t
· ||fk2 ||Zk2

.

By examining the supports of the functions, ηk(ξ)ηj(τ − ω(ξ))fk2 ∗ g0,j1 ≡ 0 if
fk2 ∈ Yk2 and j ≥ 2k+j1+C. So, in (7.15), we may assume fk2 = fk2,j2 is supported
in Dk2,j2 , j2 ≥ 2k + j1 +C. The sum in j in (7.15) is taken over |j− j2| ≤ C. Using
Lemma 4.2(c) and (7.13), the left-hand side of (7.15) is dominated by

C||F−1(fk2,j2)||L∞
x L2

t
||F−1(g0,j1)||L2

xL∞
t

≤ C2j1/2||F−1(g0,j1)||L1
xL2

t
· ||fk2,j2 ||Zk2

.

This completes the proof of (7.15) and (7.12). �

For later use, we notice that a simplified version of our argument can be used to
prove the following: if k ≥ 20, k2 ∈ [k − 2, k + 2], fk2 ∈ Zk2 , and f0 ∈ Z0, then

(7.16)
∣∣∣∣ηk(ξ) · (τ − ω(ξ) + i)−1fk2 ∗ f0

∣∣∣∣
Zk

≤ C||fk2 ||Zk2
||f0||Z0

.

To prove (7.16), we use Lemma 4.1(b) to bound ||fk2 ||Zk2
≥ C−1k−1||fk2 ||Xk2

.
Then, we write f0 =

∑
j1≥0

∑
k1≤1 fk1,j1 , fk1,j1 supported in Dk1,j1 and ||f0||Z0

≥∑
j1≥0

∑
k1≤1 2j12k1/4||fk1,j1 ||L2 . In view of the definitions, for (7.16) it suffices to

prove that if fk2,j2 is supported in Dk2,j2 , then∑
j

2−j/2βk,j ||1Dk,j
·fk2,j2∗fk1,j1 ||L2 ≤Ck−12j2/2βk2,j2 ||fk2,j2 ||L2 ·2j12k1/4||fk1,j1 ||L2 .

Using (6.19), we bound ||1Dk,j
·fk2,j2∗fk1,j1 ||L2 ≤ C2k1/22j1/2||fk2,j2 ||L2 ·||fk1,j1 ||L2 .

So, it suffices to prove that

2k1/4k
∑

j

2−j/2βk,j ≤ C2(j1+j2)/2,

where the sum is taken over j satisfying (7.4). This follows easily by examining the
cases max(j1, j2) ≤ k + k1 − 20 and max(j1, j2) ≥ k + k1 − 20 (in the second case
we estimate 2−j/2βk,j ≤ C).
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Proof of Proposition 7.2. The proof is similar to the proof of Proposition 7.1, with
an additional technical difficulty related to the sum in k1 in the left-hand side of
(7.2). Our main tools are the bounds (7.3) (with γk,k1 ≈ 2−k1/2 if k1 ≥ 1) and
(7.6). For any k1 ∈ [1, k − 10] we decompose

(7.17) fk1 = fh
k1

+f l
k1

= fk1 · [1−η≤k+k1−20(τ −ω(ξ))]+fk1 ·η≤k+k1−20(τ −ω(ξ)).

We show first that

2k
∣∣∣∣ηk(ξ)(τ−ω(ξ) + i)−1fk2 ∗ fh

k1

∣∣∣∣
Xk

≤ C2−k1/4||fk2 ||Zk2
||fh

k1
||Zk1

.(7.18)

Assuming (7.18), we can use the factor 2−k1/4 to sum in k1 and obtain

2k
∣∣∣∣ηk(ξ)(τ−ω(ξ) + i)−1fk2 ∗

k−10∑
k1=1

fh
k1

∣∣∣∣
Xk

≤ C||fk2 ||Zk2
sup

k1∈[1,k−10]

||fk1 ||Zk1
.

(7.19)

To prove (7.18), we use the representation (4.1) and (7.6). We may assume fh
k1

=
fk1,j1 is supported in Dk1,j1 , j1 ≥ k + k1 − 20, ||fh

k1
||Zk1

≈ 2j1/2βk1,j1 ||fk1,j1 ||L2 .
We have two cases: if fk2 = fk2,j2 is supported in Dk2,j2 , j2 ≥ 0, ||fk2 ||Zk2

≈
2j2/2βk2,j2 ||fk2,j2 ||L2 , then, using (7.6) and the definitions, the left-hand side of
(7.18) is dominated by

C
[ ∑

j

(2k1/2 + 2j/4)−1
]
· 2j1/2βk1,j1 ||fk1,j1 ||L2 · 2j2/2βk2,j2 ||fk2,j2 ||L2

≤ C2−k1/4 · 2j1/2βk1,j1 ||fk1,j1 ||L2 · 2j2/2βk2,j2 ||fk2,j2 ||L2 ,

which gives (7.18) in this case. If fk2 = gk2 is supported in
⋃

j2≤k2−1 Dk2,j2 ,
||fk2 ||Zk2

≈ ||gk2 ||Yk2
, then let gk2,j2(ξ2, τ2) = gk2(ξ2, τ2)ηj2(τ2 − ω(ξ2)). In view of

Lemma 4.1(b), (7.4), and (7.6), the left-hand side of (7.18) is dominated by

C
∑

j,j2≤j1+C

2k2j/2βk,j ||ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(gk2,j2 ∗ fk1,j1)||L2

≤ C2j1/2βk1,j1 ||fk1,j1 ||L2

∑
j,j2≤j1+C

(2k1/2 + 2max(j,j2)/4)−12j2/2||gk2,j2 ||L2

≤ C2−k1/4 · 2j1/2βk1,j1 ||fk1,j1 ||L2 · ||gk2 ||Yk2
,

which completes the proof of (7.18).
In view of (7.19), for (7.2) it suffices to prove that

(7.20)

2k
∣∣∣∣ηk(ξ)(τ −ω(ξ)+ i)−1fk2 ∗

k−10∑
k1=1

f l
k1

∣∣∣∣
Zk

≤ C||fk2 ||Zk2
sup

k1∈[1,k−10]

||(I − ∂2
τ )f l

k1
||Zk1

for any functions f l
k1

supported in
⋃

j1≤k+k1−19 Dk1,j1 . Using the representation
(4.1), we analyze two cases.



776 ALEXANDRU D. IONESCU AND CARLOS E. KENIG

Case 1: fk2 = fk2,j2 is supported in Dk2,j2 , ||fk2 ||Zk2
≈ 2j2/2βk2,j2 ||fk2,j2 ||L2 ,

j2 ≥ 0. The bound (7.20) which we have to prove becomes

2k
∣∣∣∣ηk(ξ)(τ − ω(ξ) + i)−1fk2,j2 ∗

k−10∑
k1=1

f l
k1

∣∣∣∣
Zk

≤ C2j2/2βk2,j2 ||fk2,j2 ||L2 sup
k1∈[1,k−10]

||(I − ∂2
τ )f l

k1
||Zk1

,

(7.21)

for any functions f l
k1

supported in
⋃

j1≤k+k1−19 Dk1,j1 . Notice that j2 is fixed in
(7.21). We divide the set of indices k1 into two sets:{

Ak,j2 = {k1 ∈ [1, k − 10] : |k + k1 − j2| ≤ 15};
Bk,j2 = {k1 ∈ [1, k − 10] : |k + k1 − j2| ≥ 16}.

The set Ak,j2 has at most 31 elements, so, for (7.21) it suffices to prove that

2k
∣∣∣∣ηk(ξ)(τ − ω(ξ) + i)−1fk2,j2 ∗ f l

k1

∣∣∣∣
Zk

≤ C2j2/2βk2,j2 ||fk2,j2 ||L2 ||(I − ∂2
τ )f l

k1
||Zk1

(7.22)

for k1 ∈ Ak,j2 and

2k
∣∣∣∣ηk(ξ)(τ − ω(ξ) + i)−1fk2,j2 ∗ f l

k1

∣∣∣∣
Xk

≤ C2−k1/4 · 2j2/2βk2,j2 ||fk2,j2 ||L2 ||f l
k1
||Zk1

(7.23)

for k1 ∈ Bk,j2 .
We prove first (7.22). In view of the restriction on the support of f l

k1
, the

condition k1 ∈ Ak,j2 , and (7.4), the function ηk(ξ)(τ − ω(ξ) + i)−1fk2,j2 ∗ f l
k1

is
supported in

⋃
j≤k+k1+C Dk,j . In view of the definition of the space Zk, for (7.22)

it suffices to prove that

2k
∣∣∣∣η≤k−1(τ − ω(ξ))ηk(ξ)(τ − ω(ξ) + i)−1fk2,j2 ∗ f l

k1

∣∣∣∣
Yk

≤ C2j2/2βk2,j2 ||fk2,j2 ||L2 ||(I − ∂2
τ )f l

k1
||Zk1

(7.24)

and

2k
k+k1+C∑

j=k

2j/2βk,j

∣∣∣∣ηj(τ − ω(ξ))ηk(ξ)(τ − ω(ξ) + i)−1fk2,j2 ∗ f l
k1

∣∣∣∣
L2

≤ C2j2/2βk2,j2 ||fk2,j2 ||L2 ||f l
k1
||Zk1

.

(7.25)

For (7.24) we use Lemma 4.1(a), (c), and Lemma 4.2(b). Since |k + k1 − j2| ≤ 10,
the left-hand side of (7.24) is dominated by

C2k/2||F−1(fk2,j2 ∗ f l
k1

)||L1
xL2

t
≤ C2k/2||F−1(fk2,j2)||L2 ||F−1(f l

k1
)||L2

xL∞
t

≤ C2k/2||fk2,j2 ||L2 · 2k1/2||(I − ∂2
τ )f l

k1
||Zk1

,

which completes the proof of (7.24). For (7.25), we notice that the sum in the
left-hand side contains at most k1 + C terms. In addition, using Lemma 4.1(b),
||f l

k1
||Zk1

≥ Ck−1
1 ||f l

k1
||Xk1

, and, using (7.3), for any j ∈ [k, k + k1 + C]

2k2j/2βk,j

∣∣∣∣ηj(τ − ω(ξ))ηk(ξ)(τ − ω(ξ) + i)−1fk2,j2 ∗ f l
k1

∣∣∣∣
L2

≤ C2−k1/22j2/2βk2,j2 ||fk2,j2 ||L2 · ||f l
k1
||Xk1

.

This completes the proof of (7.25) and (7.22).



GLOBAL WELL-POSEDNESS OF THE BENJAMIN–ONO EQUATION 777

We prove now the bound (7.23). The main observation is that the function
ηk(ξ)(τ − ω(ξ) + i)−1fk2,j2 ∗ f l

k1
is supported in a bounded number of regions Dk,j

(assuming j2 and k1 fixed). This is due to the support property of the function f l
k1

,
the assumption |k + k1 − j2| ≥ 16, and (7.4). Thus, using (7.3), the left-hand side
of (7.23) is dominated by

C sup
j

2k2j/2βk,j

∣∣∣∣ηj(τ − ω(ξ))ηk(ξ)(τ − ω(ξ) + i)−1fk2,j2 ∗ f l
k1

∣∣∣∣
L2

≤ C2−k1/22j2/2βk2,j2 ||fk2,j2 ||L2 · ||f l
k1
||Xk1

,

which suffices for (7.23) since ||f l
k1
||Zk1

≥ Ck−1
1 ||f l

k1
||Xk1

(see Lemma 4.1(b)).
Case 2: fk2 = gk2 is supported in

⋃
j2≤k2−20 Dk2,j2 , ||fk2 ||Zk2

≈ ||gk2 ||Yk2
. The

bound (7.20) which we have to prove becomes

2k
∣∣∣∣ηk(ξ)(τ − ω(ξ) + i)−1gk2 ∗

k−10∑
k1=1

f l
k1

∣∣∣∣
Zk

≤ C||gk2 ||Yk2
sup

k1∈[1,k−10]

||(I − ∂2
τ )f l

k1
||Zk1

for any functions f l
k1

supported in
⋃

j1≤k+k1−19 Dk1,j1 . Using Lemma 4.1(b) again,
it suffices to prove that

2k
∣∣∣∣ηk(ξ)(τ − ω(ξ) + i)−1gk2 ∗ f l

k1

∣∣∣∣
Xk

≤ C2−k1/2||gk2 ||Yk2
||f l

k1
||Xk1

.(7.26)

Using (7.4) and the support properties of gk2 and f l
k1

, ηk(ξ)(τ −ω(ξ)+ i)−1gk2 ∗f l
k1

is supported in a bounded number of regions Dk,j , |k + k1 − j| ≤ C. Thus, for
(7.26) it suffices to prove that if fk1,j1 is supported in Dk1,j1 , j1 ≤ k + k1 − 19 and
|j − k − k1| ≤ C, then

2k/2
∣∣∣∣1Dk,j

· (gk2 ∗ fk1,j1)
∣∣∣∣

L2 ≤ C||gk2 ||Yk2
· 2j1/2||fk1,j1 ||L2 .(7.27)

To prove (7.27), we may assume k2 ≥ 100. For j2 ≤ k2 let gk2,j2(ξ, τ) =
ηj2(τ − ω(ξ))gk2(ξ, τ). Notice that in view of (6.20) and Lemma 4.1(b)

2k/2
∣∣∣∣1Dk,j

· (gk2,j2 ∗ fk1,j1)
∣∣∣∣

L2 ≤ C2j2/2||gk2,j2 ||L2 · 2j1/2||fk1,j1 ||L2

≤ C||gk2 ||Yk2
· 2j1/2||fk1,j1 ||L2 ,

(7.28)

for any j2 ≤ k2. To prove (7.27), we have to avoid the logarithmic divergence that
appears when summing the bound (7.28) over j2 ≤ k2. In view of (4.6) and the
Minkowski inequality (see the explanation preceding (4.17)), we may assume

(7.29)

{
gk2(ξ, τ) = 2k2/2χ[k2−1,k2+1](ξ)(τ − ω(ξ) + i)−1η≤k2(τ − ω(ξ))h(τ );
||gk2 ||Yk2

= C||h||L2
τ
.

We argue as in the proof of Lemma 4.2(b). Let h+ = h · 1[0,∞), h− = h · 1(−∞,0],
and define the corresponding functions gk2,+ and gk2,− as in (7.29). By symmetry,
it suffices to prove the bound (7.27) for the function gk2,+, which is supported in
the set {(ξ, τ) : ξ ∈ [−2k2+2,−2k2−2], τ ∈ [22k2−10, 22k2+10]}. In view of (3.1),
τ −ω(ξ) = τ − ξ2 on the support of gk2,+, and gk2,+(ξ, τ) = 0 unless |

√
τ + ξ| ≤ C.

Let

g′k2,+(ξ, τ) = 2k2/2χ[k2−1,k2+1](−
√

τ )(τ−ξ2 + (
√

τ + ξ)2 + i
√

τ2−k2)−1

× η0(
√

τ + ξ) · h+(τ ).
(7.30)
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Using Lemma 4.1(b), it is easy to see that ||gk2,+ − g′k2,+||Xk2
≤ C||h+||L2 . In view

of (7.28), for (7.27) it suffices to prove that

2k/2
∣∣∣∣g′k2,+ ∗ fk1,j1

∣∣∣∣
L2 ≤ C||h+||L2 · 2j1/2||fk1,j1 ||L2 .(7.31)

We substitute the formula (7.30) and make the change of variables ξ2 = −√
τ2 +µ2.

The left-hand side of (7.31) is dominated by∣∣∣∣∣∣ ∫
R2

fk1,j1(ξ+
√

τ2 − µ2, τ − τ2) · η0(µ2)
1

µ2 + i/2k2+1
· h′

+(τ2) dµ2dτ2

∣∣∣∣∣∣
L2

ξ,τ

,

where h′
+(τ2) = h+(τ2)χ[k2−1,k2+1](−

√
τ2)(2k/

√
τ2) is supported in [22k2−4, 22k2+4],

||h′
+||L2 ≈ ||h+||L2 . By duality, for (7.31) it suffices to prove that for any m ∈ L2∣∣∣ ∫
R4

fk1,j1(ξ1, τ1)h′
+(τ2) · η0(µ2)

1
µ2 + i/2k2+1

× m(ξ1 −
√

τ2 + µ2, τ1 + τ2) dµ2dτ2dξ1dτ1

∣∣∣ ≤ C||m||L2 ||h′
+||L22j1/2||fk1,j1 ||L2 .

Let m̃(ξ, τ) =
∫

R
m(ξ + µ2, τ )η0(µ2)(µ2 + i/2k2+1)−1 dµ2, ||m̃||L2 ≤ C||m||L2 . In

the left-hand side of the expression above we make the change of variable τ1 =
µ1 + ω(ξ1), f#

k1,j1
(ξ1, µ1) = fk1,j1(ξ1, µ1 + ω(ξ1)). It suffices to prove that∣∣∣ ∫

R3
f#

k1,j1
(ξ1, µ1)h′

+(τ2) · m̃(ξ1 −
√

τ2, µ1 + ω(ξ1) + τ2) dτ2dξ1dµ1

∣∣∣
≤ C||m̃||L2 ||h′

+||L2 · 2j1/2||f#
k1,j1

||L2 .

(7.32)

The integral in the left-hand side of (7.32) is over the set

(ξ1, µ1, τ2) ∈ Ĩk1 × Ĩj1 × [22k2−4, 22k2+4].

Using the Hölder inequality, for (7.32) it suffices to prove that

sup
µ1∈R

∫
Ĩk1×[22k2−4,22k2+4]

|m̃(ξ1 −
√

τ2, µ1 + ω(ξ1) + τ2)|2 dτ2dξ1 ≤ C||m̃||2L2 ,

which is easy to see by changing variables and recalling that k1 ≤ k2 − 8. This
completes the proof of (7.27). �

8. Bilinear estimates II

In this section we prove two bilinear estimates, which correspond to High ×
High → Low interactions.

Proposition 8.1. Assume k, k1, k2 ∈ Z+ have the property that max (k, k1, k2) ≤
min (k, k1, k2) + 30, fk1 ∈ Zk1 , and fk2 ∈ Zk2 . Then

(8.1) 2k
∣∣∣∣ηk(ξ) · Ak(ξ, τ)−1fk1 ∗ fk2

∣∣∣∣
Zk

≤ C||fk1 ||Zk1
||fk2 ||Zk2

.

Moreover, any spaces Z0 in the right-hand side of (8.1) can be replaced with Z0.

Proposition 8.2. Assume k, k1, k2 ∈ Z+, k1, k2 ≥ k+10, |k1−k2| ≤ 2, fk1 ∈ Zk1 ,
and fk2 ∈ Zk2 . Then

(8.2)
∣∣∣∣ξ · ηk(ξ) · Ak(ξ, τ)−1fk1 ∗ fk2

∣∣∣∣
Xk

≤ C2−k/4||fk1 ||Zk1
||fk2 ||Zk2

.

The main ingredients in the proofs of Propositions 8.1 and 8.2 are the definitions,
the representations (4.1) and (4.2), Lemma 4.1, and Corollary 6.2.
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Proof of Proposition 8.1. We analyze two cases.
Case 1: min (k, k1, k2) ≥ 200. In this case we prove the (stronger) bound (8.1)

with the space Zk replaced by Xk in the left-hand side. We show first that if
j1, j2 ≥ 0, fk1,j1 is an L2 function supported in Dk1,j1 , and fk2,j2 is an L2 function
supported in Dk2,j2 , then

2k
∑

j

2j/2βk,j ||ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1,j1 ∗ fk2,j2)||L2

≤ Cγ(j1, j2, k)2j1/2βk1,j1 ||fk1,j1 ||L2 · 2j2/2βk2,j2 ||fk2,j2 ||L2 ,

(8.3)

where

(8.4) γ(j1, j2, k) =

{
2−max(j1,j2)/4 if max(j1, j2) ≤ 2k − 80;
2−min(j1,j2)/8 if max(j1, j2) ≥ 2k − 80.

To prove (8.3), we notice that, in view of (6.23),

ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1,j1 ∗ fk2,j2) ≡ 0

unless

(8.5)

{
max (j, j1, j2) ∈ [2k − 70, 2k + 70] or
max (j, j1, j2) ≥ 2k + 70 and max (j, j1, j2) − med (j, j1, j2) ≤ 10.

We notice that for j, j1, j2 as in (8.5), βk,j ≤ Cβk1,j1βk2,j2 . Also, using (6.21),

||ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1,j1 ∗ fk2,j2)||L2

≤ C2−j2(j+j1+j2)/22−max (j,j1,j2)/22−med (j,j1,j2)/4||fk1,j1 ||L2 ||fk2,j2 ||L2 .

Thus, for (8.3), it suffices to prove that

(8.6) 2k
∑

j

2−max (j,j1,j2)/22−med (j,j1,j2)/4 ≤ Cγ(j1, j2, k),

where the sum in (8.6) is taken over j satisfying (8.5). If max(j1, j2) ≤ 2k − 80,
then j ∈ [2k − 70, 2k + 70] and the bound (8.6) follows easily from the definition
(8.4). If j1 = max(j1, j2) ≥ 2k − 80, then the sum in (8.6) is taken over j ≤ j1 + C
and is dominated by

C2k
∑

j≤j1+C

2−j1/22−max(j,j2)/4 ≤ C(j2 + 1)2−j2/4,

which suffices. The case j2 = max(j1, j2) ≥ 2k−80 is identical. This completes the
proof of (8.3).

We turn to the proof of (8.1). We use the representation (4.1). If fk1 = fk1,j1 ∈
Xk1 and fk2 = fk2,j2 ∈ Xk2 , then (8.1) follows directly from (8.3) and the defini-
tions. Assume now that fk1 = gk1 ∈ Yk1 , fk2 = gk2 ∈ Yk2 , ||fk1 ||Zk1

≈ ||gk1 ||Yk1
,

and ||fk2 ||Zk2
≈ ||gk2 ||Yk2

. For j1 ∈ [0, k1] and j2 ∈ [0, k2] let

gk1,j1(ξ, τ) = ηj1(τ − ω(ξ))gk1(ξ, τ) and gk2,j2(ξ, τ) = ηj2(τ − ω(ξ))gk2(ξ, τ).
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We use (8.3), Lemma (4.1)(b), and the definition (8.4) in the case max(j1, j2) ≤
2k − 80 to write

2k
∣∣∣∣ηk(ξ) · (τ − ω(ξ) + i)−1gk1 ∗ gk2

∣∣∣∣
Xk

≤ C
∑

j1,j2≤k+30

2k
∣∣∣∣ηk(ξ) · (τ − ω(ξ) + i)−1gk1,j1 ∗ gk2,j2

∣∣∣∣
Xk

≤ C
∑

j1,j2≤k+30

γ(j1, j2, k)2j1/2||gk1,j1 ||L22j2/2||gk2,j2 ||L2

≤ C||gk1 ||Yk1
||gk2 ||Yk2

,

as desired.
Finally, assume fk1 = fk1,j1 ∈ Xk1 , fk2 = gk2 ∈ Yk2 , ||fk2 ||Zk2

≈ ||gk2 ||Yk2
,

and ||fk1 ||Zk1
≈ 2j1/2βk1,j1 ||fk1,j1 ||L2 , and write gk2 =

∑k2
j2=0 gk2,j2 as before. If

j1 ≤ 2k − 80, then we can use the same computation as before. If j1 ≥ 2k − 80,
then we use (8.3), Lemma (4.1)(b), and the definition (8.4) to write

2k
∣∣∣∣ηk(ξ) · (τ − ω(ξ) + i)−1fk1,j1 ∗ gk2

∣∣∣∣
Xk

≤ C
∑

j2≤k2

2k
∣∣∣∣ηk(ξ) · (τ − ω(ξ) + i)−1fk1,j1 ∗ gk2,j2

∣∣∣∣
Xk

≤ C
∑

j2≤k2

2−j2/82j1/2βk1,j1 ||fk1,j1 ||L22j2/2||gk2,j2 ||L2

≤ C2j1/2βk1,j1 ||fk1,j1 ||L2 ||gk2 ||Yk2
,

as desired. This completes the proof of (8.1) in the case min (k, k1, k2) ≥ 200.
Case 2: min (k, k1, k2) ≤ 200. In view of the hypothesis, max (k, k1, k2) ≤

230. If k1 = 0 or k2 = 0, we may replace the spaces Z0 in the right-hand of
(8.1) with the larger spaces Z0; see the definition (3.8). Clearly, the proofs are
identical to the proofs in the corresponding cases k1 = 1 or k2 = 1. There-
fore we may assume k1, k2 ≥ 1. In view of Lemma 4.1 (b) and the represen-
tation (4.1), we may assume fk1 = fk1,j1 is supported in Dk1,j1 , fk2 = fk2,j2

is supported in Dk2,j2 , ||fk1 ||Zk1
≈ 2j1/2βk1,j1 ||fk1,j1 ||L2 ≈ 2j1 ||fk1,j1 ||L2 , and

||fk2 ||Zk2
≈ 2j2/2βk2,j2 ||fk2,j2 ||L2 ≈ 2j2 ||fk2,j2 ||L2 . Using the definitions and the

fact that k ≤ 230, for (8.1) it suffices to prove that∑
j

2j
∣∣∣∣F−1[ηj(τ )ηk(ξ)(τ + i)−1fk1,j1 ∗ fk2,j2 ]

∣∣∣∣
L1

xL2
t

≤ C2j1 ||fk1,j1 ||L2 · 2j2 ||fk2,j2 ||L2 .

(8.7)

By examining the supports of the functions, we may assume that the sum in (8.7)
is taken over

(8.8) j ≤ max(j1, j2) + C.

Assume j1 = max(j1, j2) (the case j2 = max(j1, j2) is identical). The left-hand side
of (8.7) is dominated by

C
∑

j≤j1+C

∣∣∣∣F−1(fk1,j1 ∗ fk2,j2)
∣∣∣∣

L1
xL2

t
≤ (j1 + C)||F−1(fk1,j1)||L2 ||F−1(fk2,j2)||L2

xL∞
t

≤ C2j1 ||fk1,j1 ||L2 · 2j2/2||fk2,j2 ||L2 ,

which completes the proof of (8.7). �
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For later use, we rewrite the stronger bound that we proved in this last case: if
k, k1, k2 ∈ Z+ have the property that max (k, k1, k2) ≤ min (k, k1, k2) + 30 ≤ 230,
fk1 ∈ Zk1 , and fk2 ∈ Zk2 , then

(8.9) 2k
∣∣∣∣ηk(ξ) · Ak(ξ, τ)−1fk1 ∗ fk2

∣∣∣∣
Zk

≤ C||fk1 ||Zk1
||fk2 ||Zk2

,

where Zk = Zk if k ≥ 1 and Zk = Z0 if k = 0.

Proof of Proposition 8.2. We analyze two cases.
Case 1: k ≥ 1. We show first that if j1, j2 ≥ 0, fk1,j1 is an L2 function supported

in Dk1,j1 , and fk2,j2 is an L2 function supported in Dk2,j2 , then

2k
∑

j

2j/2βk,j ||ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1,j1 ∗ fk2,j2)||L2

≤ Cγ′(j1, j2, k)2j1/2βk1,j1 ||fk1,j1 ||L2 · 2j2/2βk2,j2 ||fk2,j2 ||L2 ,

(8.10)

where

(8.11) γ′(j1, j2, k) = (2k/2 + 2max(j1,j2)/4)−2/3.

To prove (8.10), we notice that, in view of (6.23),

ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1,j1 ∗ fk2,j2) ≡ 0

unless

(8.12)

{
max (j, j1, j2) ∈ [k + k1 − 10, k + k1 + 10] or
max (j, j1, j2) ≥ k + k1 + 10 and max (j, j1, j2) − med (j, j1, j2) ≤ 10.

Also, combining (6.20) and (6.21),

||ηk(ξ)ηj(τ − ω(ξ))(τ − ω(ξ) + i)−1(fk1,j1 ∗ fk2,j2)||L2 ≤ C2−j2(j+j1+j2)/2

×[2(j+k)/2+2(max(j1,j2)+k1)/2+2max (j,j1,j2)/22med (j,j1,j2)/4]−1||fk1,j1 ||L2 ||fk2,j2 ||L2 .

Thus, for (8.10), it suffices to prove that

2k
∑

j

βk,j [2(j+k)/2 + 2(max(j1,j2)+k1)/2+2max (j,j1,j2)/22med (j,j1,j2)/4]−1

≤ Cγ′(j1, j2, k)βk1,j1βk2,j2 ,

(8.13)

where the sum in (8.13) is taken over j satisfying (8.12). If max(j1, j2) ≤ k+k1−20,
then j ∈ [k + k1 − 10, k + k1 + 10]; we ignore the term 2(max(j1,j2)+k1)/2 and the
bound (8.13) follows easily from the definitions. If j1 = max(j1, j2) ≥ k + k1 − 20,
then the sum in (8.13) is taken over j ≤ j1 + C. The left-hand side of (8.13) is
dominated by

C2k
∑

j≤j1+C

βk,j2−(max(j1,j2)+k1)/2 ≤ Ck12−k1/2 ≤ Cγ′(j1, j2, k)βk1,j1 .

The case j2 = max(j1, j2) ≥ k + k1 − 20 is identical, which completes the proof of
(8.10).

We turn to the proof of (8.2). We use the representation (4.1). If fk1 = fk1,j1 ∈
Xk1 and fk2 = fk2,j2 ∈ Xk2 , then (8.2) follows directly from (8.10) and the defini-
tions. Assume now that fk1 = gk1 ∈ Yk1 , fk2 = gk2 ∈ Yk2 , ||fk1 ||Zk1

≈ ||gk1 ||Yk1
,

and ||fk2 ||Zk2
≈ ||gk2 ||Yk2

. For j1 ∈ [0, k1] and j2 ∈ [0, k2] let gk1,j1(ξ, τ) =
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ηj1(τ − ω(ξ))gk1(ξ, τ) and gk2,j2(ξ, τ) = ηj2(τ − ω(ξ))gk2(ξ, τ). We use (8.10) and
Lemma (4.1)(b) to write

2k
∣∣∣∣ηk(ξ) · (τ − ω(ξ) + i)−1gk1 ∗ gk2

∣∣∣∣
Xk

≤ C
∑

j1,j2≤k1+10

2k
∣∣∣∣ηk(ξ) · (τ − ω(ξ) + i)−1gk1,j1 ∗ gk2,j2

∣∣∣∣
Xk

≤ C
∑

j1,j2≤k1+10

γ′(j1, j2, k)2j1/2||gk1,j1 ||L22j2/2||gk2,j2 ||L2

≤ C2−k/4||gk1 ||Yk1
||gk2 ||Yk2

,

as desired. Finally, if fk1 = fk1,j1 ∈ Xk1 , fk2 = gk2 ∈ Yk2 , ||fk2 ||Zk2
≈ ||gk2 ||Yk2

,
and ||fk1 ||Zk1

≈ 2j1/2βk1,j1 ||fk1,j1 ||L2 , we write gk2 =
∑k2

j2=0 gk2,j2 as before and
repeat the same estimate, without the sum in j1. This completes the proof of (8.2)
in the case k ≥ 1.

Case 2: k = 0. We show first that if j1, j2 ≥ 0, fk1,j1 is an L2 function supported
in Dk1,j1 , and fk2,j2 is an L2 function supported in Dk2,j2 , then

1∑
k′=−∞

∞∑
j=0

2j−k′ ||χk′(ξ)ηj(τ ) · ξ(τ + i)−1(fk1,j1 ∗ fk2,j2)||L2

≤ C2−max(j1,j2)/4 · 2j1/2βk1,j1 ||fk1,j1 ||L2 · 2j2/2βk2,j2 ||fk2,j2 ||L2 .

(8.14)

To prove (8.14), we notice that, in view of (6.23),

χk′(ξ)ηj(τ ) · ξ(τ + i)−1(fk1,j1 ∗ fk2,j2) ≡ 0

unless

(8.15)

{
max (j, j1, j2) ∈ [k′ + k1 − 10, k′ + k1 + 10] or
max (j, j1, j2) ≥ k′ + k1 + 10 and max (j, j1, j2) − med (j, j1, j2) ≤ 10.

Also, using (6.19),

||χk′(ξ)ηj(τ ) · ξ(τ + i)−1(fk1,j1 ∗ fk2,j2)||L2

≤ C2k′−j2k′/22(j1+j2)/22−max(j1,j2)/2||fk1,j1 ||L2 ||fk2,j2 ||L2 .

Thus, for (8.14), it suffices to prove that

1∑
k′=−∞

∑
j

2k′/2 ≤ C2max(j1,j2)/4,(8.16)

where the sum in (8.16) is taken over j satisfying (8.15). If max(j1, j2) ≤ k′+k1−20,
then j ∈ [k′ + k1 − 10, k′ + k1 + 10], so (8.16) is clear. If max(j1, j2) ≥ k′ + k1 − 20,
then the sum in (8.16) is taken over j ≤ max(j1, j2) + C, and (8.16) follows easily.

Given (8.14), the bound (8.2) follows as in the case k ≥ 1, using the definition
of the space X0. This completes the proof of Proposition 8.2. �

For later use, we notice that the bound (8.14) also shows that

(8.17)
∣∣∣∣η0(ξ) · (τ + i)−1fk1 ∗ fk2

∣∣∣∣
Z0

≤ C||fk1 ||Zk1
||fk2 ||Zk2

.



GLOBAL WELL-POSEDNESS OF THE BENJAMIN–ONO EQUATION 783

9. Multiplication by smooth bounded functions

In this section we consider operators on Zk given by convolutions with Fourier
transforms of certain smooth bounded functions. For integers N ≥ 100 we define
the space of admissible factors

S∞
N = {m : R

2 → C : m is supported in R × [−2, 2] and

||m||S∞
N

:=
N∑

σ1=0

||∂σ1
t m||L∞

x,t
+

N∑
σ1=0

N∑
σ2=1

||∂σ1
t ∂σ2

x m||L2
x,t

< ∞}.
(9.1)

The precise value of N is not important (in fact, we will always take N = 100 or
N = 110). Notice that bounded functions such as ψ(t)eiqU0 , q ∈ R, U0 as in (2.9),
are in S∞

N . We also define the space of restricted admissible factors

S2
N = {m :R2 → C : m is supported in R × [−2, 2] and

||m||S2
N

:=
N∑

σ1=0

N∑
σ2=0

||∂σ1
t ∂σ2

x m||L2
x,t

< ∞}.
(9.2)

Using the Sobolev imbedding theorem, it is easy to verify the following properties:

(9.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S2

N ⊆ S∞
N−10;

S∞
N · S∞

N ⊆ S∞
N−10;

S2
N · S∞

N ⊆ S2
N−10;

∂xS∞
N ⊆ S2

N−10.

For k ∈ Z+ we define

(9.4) Zhigh
k = {fk ∈ Zk : fk is supported in {τ − ω(ξ) ∈

⋃
j≥k−20

Ĩj}}.

Clearly, Zhigh
k = Zk if k ≤ 20. For k ∈ Z+ and ε ∈ {−1, 0} let Aε

k(ξ, τ) = [Ak(ξ, τ)]ε.

Lemma 9.1. Assume k1, k2 ∈ Z+, |k1 − k2| ≤ 10, and fhigh
k1

∈ Zhigh
k1

. Then, for
m ∈ S∞

100 and ε ∈ {−1, 0},
(9.5)∣∣∣∣∣∣ηk2(ξ2)Aε

k2
(ξ2, τ2) · F [m · F−1(fhigh

k1
)](ξ2, τ2)

∣∣∣∣∣∣
Zk2

≤ C||m||S∞
100

· ||Aε
k1

fhigh
k1

||Zk1
.

Remark. We do not need to consider convolutions of low-modulation functions and
Fourier transforms of admissible factors, in view of the identity (10.13).

Proof of Lemma 9.1. We may assume ||m||S∞
100

= 1. For any j′′ ∈ Z+ and k′′ ∈ Z

let

(9.6) mk′′,j′′ = F−1
[
ηj′′(τ )χk′′(ξ)F(m)

]
and m≤k′′,j′′ =

∑
k′′′≤k′′ mk′′′,j′′ . Using (9.1) and the Sobolev imbedding theorem,∣∣∣∣∂σ1

t ∂σ2
x m

∣∣∣∣
L2

xL∞
t

≤ C for any σ1 ∈ Z ∩ [0, 90], σ2 ∈ Z ∩ [1, 90].

Thus, for any j′′ ∈ Z+ and k′′ ∈ Z,

(9.7)

{
||m≤k′′,j′′ ||L∞

x,t
≤ C2−80j′′

;
2k′′ ||mk′′,j′′ ||L2

xL∞
t

+ ||mk′′,j′′ ||L∞
x,t

≤ C(1 + 2k′′
)−802−80j′′

.
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We turn now to the proof of (9.5). Assume first that k1, k2 ≥ 1. In view of the
definition of Zhigh

k and Lemma 4.1(b), we may assume that fhigh
k1

= fk1,j1 is an L2

function supported in Dk1,j1 , j1≥ k1−20, ||Aε
k1

fhigh
k1

||Zk1
≈ 2εj12j1/2βk1,j1 ||fk1,j1 ||L2 .

We write

(9.8) m =
∞∑

j′′=0

m≤−100,j′′ +
∞∑

k′′=−99

∞∑
j′′=0

mk′′,j′′ .

For (9.5) it suffices to prove that for ε ∈ {−1, 0}∑
j′′≥0

∣∣∣∣ηk2(ξ2)Aε(ξ2, τ2) · [fk1,j1 ∗ F(m≤−100,j′′)](ξ2, τ2)
∣∣∣∣

Zk2

+
∑

k′′≥−99

∑
j′′≥0

∣∣∣∣ηk2(ξ2)Aε(ξ2, τ2) · [fk1,j1 ∗ F(mk′′,j′′)](ξ2, τ2)
∣∣∣∣

Zk2

≤ C2εj1 · 2j1/2βk1,j1 ||fk1,j1 ||L2 .

(9.9)

To bound the first sum in (9.9), we make the changes of variables τ2 = µ2+ω(ξ2),
τ1 = µ1 + ω(ξ1) and write

fk1,j1 ∗ F(m≤−100,j′′)(ξ2, µ2 + ω(ξ2))

=
∫

R2
fk1,j1(ξ1, µ1 + ω(ξ1))F(m≤−100,j′′)(ξ2 − ξ1, µ2 − µ1 + ω(ξ2) − ω(ξ1)) dξ1dτ1.

By examining the supports of the functions and using the fact that |ω(ξ2)−ω(ξ1)| ≤
2k1−50 if |ξ2 − ξ1| ≤ 2−99, together with j1 ≥ k1 − 20, we see that ηj2(τ2 − ω(ξ2)) ·
[fk1,j1 ∗ F(m≤−100,j′′)](ξ2, τ2) ≡ 0 unless

(9.10) |j1 − j2| ≤ C or j1, j2 ≤ j′′ + C.

We use the Xk2 norm to bound the first sum in (9.9). Using Plancherel’s theorem
and (9.7), ∣∣∣∣fk1,j1 ∗ F(m≤−100,j′′)

∣∣∣∣
L2

ξ2,τ2

≤ C2−80j′′ ||fk1,j1 ||L2 .

Thus, the Xk2 norm of the first sum in (9.9) is dominated by

C
∑
j′′≥0

∑
j2≥0

2εj22j2/2βk2,j22
−80j′′

||fk1,j1 ||L2 ,

where the sum is over j2, j
′′ satisfying (9.10). The bound (9.9) for the first sum

follows easily (recall that |k1 − k2| ≤ 10).
To bound the second sum in (9.9), assume first that ε = 0. We notice that if

|ξ2 − ξ1| ∈ [2k′′−1, 2k′′+1], then |ω(ξ2) − ω(ξ1)| ≤ C2k1+k′′
, so

ηj2(τ2 − ω(ξ2)) · [fk1,j1 ∗ F(mk′′,j′′)](ξ2, τ2) ≡ 0

unless

(9.11) |j1 − j2| ≤ 4 or j1, j2 ≤ k1 + k′′ + j′′ + C.

Using Plancherel’s theorem and (9.7),

(9.12)
∣∣∣∣fk1,j1 ∗ F(mk′′,j′′)

∣∣∣∣
L2

ξ2,τ2

≤ C2−80k′′
2−80j′′ ||fk1,j1 ||L2 .

The bound (9.9) for the second sum follows by using the Xk2 norm since∑
j2≤j1+k′′+j′′+C

2j2/2βk2,j2 ≤ C210k′′
210j′′

· 2j1/2βk1,j1 .
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We bound now the second sum in (9.9) when ε = −1. The main difficulty is the
presence of the indices j2 � j1. In fact, for indices j2 ≥ j1 − 10, the argument
above applies since the left-hand side is multiplied by 2−j2 and the right-hand side
is multiplied by 2−j1 . In view of (9.11), it suffices to prove that

∑
k′′+j′′≥j1−k1−C

∣∣∣∣ηk2(ξ2)η≤k2−1(τ2 − ω(ξ2))A−1
k2

(ξ2, τ2)[fk1,j1 ∗ F(mk′′,j′′)](ξ2, τ2)
∣∣∣∣

Yk2

+
∑

k′′+j′′≥j1−k1−C

j2≤j1−10∑
j2≥k2

2−j2/2βk2,j2

∣∣∣∣ηk2(ξ2)ηj2(τ2 − ω(ξ2))fk1,j1 ∗ F(mk′′,j′′)
∣∣∣∣

L2

≤ C2−j1/2βk1,j1 ||fk1,j1 ||L2 .

(9.13)

Using Lemma 4.1(c) and (9.7), the first sum in the left-hand side of (9.13) is
dominated by

C
∑

k′′+j′′≥j1−k1−C

2−k2/2||fk1,j1 ||L2 ·||mk′′,j′′ ||L2
xL∞

t
≤ C2−k2/2||fk1,j1 ||L2 ·2−70(j1−k1),

which clearly suffices. Using (9.12), the second sum in the left-hand side of (9.13)
is dominated by

C2−70(j1−k1)||fk1,j1 ||L2 · sup
j2∈[k2,j1]

2−j2/2βk2,j2 ≤ C2−j1/2||fk1,j1 ||L2 ,

which completes the proof of (9.13).
We prove now the bound (9.5) in the case k1 = k2 = 0. We use the representation

(4.2). Assume first that fhigh
0 = g0,j1 is an L2 function supported in Ĩ0 × Ĩj1 ,

||Aε
0f

high
0 ||Z0 ≈ 2εj12j1 ||F−1(g0,j1)||L1

xL2
t
. We write

(9.14) m =
∞∑

j′′=0

m≤4,j′′ +
∞∑

k′′=5

∞∑
j′′=0

mk′′,j′′

and notice that η0(ξ2)(g0,j1 ∗F(mk′′,j′′))(ξ2, τ2) ≡ 0 if k′′ ≥ 5. For (9.5), using only
the Y0 norm, it suffices to prove that for ε ∈ {−1, 0}

∞∑
j′′=0

∞∑
j2=0

2εj22j2
∣∣∣∣F−1[ηj2(τ2)(g0,j1 ∗ F(m≤4,j′′))(ξ2, τ2)]

∣∣∣∣
L1

xL2
t

≤ C2εj12j1 ||F−1(g0,j1)||L1
xL2

t
.

(9.15)

By examining the supports of the functions, ηj2(τ2)(g0,j1 ∗ F(m≤4,j′′))(ξ2, τ2) ≡ 0
unless

(9.16) |j2 − j1| ≤ C or j1, j2 ≤ j′′ + C.

In addition,∣∣∣∣F−1[ηj2(τ2)(g0,j1 ∗ F(m≤4,j′′))(ξ2, τ2)]
∣∣∣∣

L1
xL2

t
≤ C||F−1(g0,j1)||L1

xL2
t
||m≤4,j′′ ||L∞

x,t
.

The bound (9.15) follows from (9.7) and (9.16).
Assume now that fhigh

0 = fk′

0,j1
is an L2 function supported in Dk′,j1 , k′ ≤ 1,

||Aε
0f

high
0 ||Z0 ≈ 2εj12j1−k′ ||fk′

0,j1
||L2 . We decompose

(9.17) m =
∞∑

j′′=0

m≤k′−10,j′′ +
∞∑

k′′=k′−9

∞∑
j′′=0

mk′′,j′′ .
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We observe that fk′

0,j1
∗ F(m≤k′−10,j′′) is supported in the set {(ξ2, τ2) : |ξ2| ∈

[2k′−2, 2k′+2]}. In addition, ηj2(τ2)(fk′

0,j1
∗ F(m≤k′−3,j′′))(ξ2, τ2) ≡ 0 unless (9.16)

holds. The same argument as before, using Plancherel’s theorem and the bound
(9.7), shows that∣∣∣∣η0(ξ2)Aε

0(ξ2, τ2)
[
fk′

0,j1 ∗
∞∑

j′′=0

F(m≤k′−10,j′′)
]
(ξ2, τ2)

∣∣∣∣
X0

≤ C2εj12j1−k′ ||fk′

0,j1 ||L2 .

To handle the part corresponding to the second sum in the right-hand side of (9.17),
we use the space Y0. It suffices to prove that

5∑
k′′=k′−9

∞∑
j′′=0

∞∑
j2=0

2εj22j2
∣∣∣∣F−1[ηj2(τ2)(fk′

0,j1 ∗ F(mk′′,j′′))(ξ2, τ2)]
∣∣∣∣

L1
xL2

t

≤ C2εj12j1−k′
||fk′

0,j1 ||L2 .

(9.18)

As before, we may assume that j2 satisfies the restriction (9.16) and estimate∣∣∣∣F−1[ηj2(τ2)(fk′

0,j1 ∗ F(mk′′,j′′))(ξ2, τ2)]
∣∣∣∣

L1
xL2

t
≤ C||F−1(fk′

0,j1)||L2
x,t

||mk′′,j′′ ||L2
xL∞

t

≤ C2−80j′′
2−k′′ ||fk′

0,j1
||L2

x,t
,

using Plancherel’s theorem and (9.7). The bound (9.18) follows.
We prove now the bound (9.5) in the case k2 = 0 and k1 ∈ [1, 10]. As be-

fore, we may assume fhigh
k1

= fk1,j1 is an L2 function supported in Dk1,j1 , j1 ≥ 0,
||Aε

k1
fhigh

k1
||Zk1

≈ 2εj12j1/2βk1,j1 ||fk1,j ||L2 ≈ 2εj12j1 ||fk1,j ||L2 . We use the decompo-
sition (9.17) in the case k′ = 1. The proof of the bound (9.5) is then identical to
the proof in the case considered before k1 = 0, fhigh

0 = fk′

0,j1
, k′ = 1.

Finally, in the case k1 = 0, k2 ∈ [1, 10], we have the stronger bound

(9.19)
∣∣∣∣∣∣ηk2(ξ2)Aε

k2
(ξ2, τ2)F [m · F−1(fhigh

0 )](ξ2, τ2)
∣∣∣∣∣∣

Zk2

≤ C||Aε
0f

high
0 ||Z0

,

where Z0 is defined in (3.8). The proof of this bound is identical to the proof of
(9.5) in the case considered before k1 = 1, k2 ≥ 1. �

In some estimates the delicate structure of the spaces Zk is not necessary. For
α ∈ [−20, 20] and k ≥ 1 we define

Ek,α ={f ∈ L2 : f supported in Ik × R and

||f ||Ek,α
:= 2αk

∞∑
j=0

2j ||ηj(τ )f(ξ, τ) ||L2
ξ,τ

< ∞}.(9.20)

For k = 0, for simplicity of notation we define E0,α = Z0. We notice that

(9.21) Ek,4 ⊆ Zk ⊆ Ek,−4 for any k ∈ Z+.

Lemma 9.2. (a) Assume k1 ∈ Z+, k2 ∈ [1,∞) ∩ Z, and I1 ⊆ Ĩk1 , I2 ⊆ Ĩk2 are
intervals. Then, for m ∈ S∞

100, α ∈ [−20, 20], ε ∈ {−1, 0}, and fk1 ∈ Ek1,α∣∣∣∣∣∣1I2(ξ2)(τ2 + i)ε · F [m · F−1(1I1(ξ1)fk1)]
∣∣∣∣∣∣

Ek2,α

≤ C[1 + d(I1, I2)]−50||m||S∞
100

· ||(τ1 + i)εfk1 ||Ek1,α
,

(9.22)

where d(I1, I2) denotes the distance between the sets I1 and I2.
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(b) Assume k1 ∈ Z+. Then, for m ∈ S∞
100, α ∈ [−20, 20], ε ∈ {−1, 0}, and

fk1 ∈ Ek1,α

(9.23)∣∣∣∣∣∣η0(ξ2)(τ2 + i)ε · F [m · F−1(fk1)]
∣∣∣∣∣∣

E0,α

≤ C2−50k1 ||m||S∞
100

· ||(τ1 + i)εfk1 ||Ek1,α
.

Proof of Lemma 9.2. We may assume ||m||S∞
100

= 1 and argue as in the proof of
Lemma 9.1. We may assume fk1 = fk1,j1 is an L2 function supported in Ĩk1 × Ĩj1 ,
||(τ1 + i)εfk1 ||Ek1,α

≥ C−12αk12εj12j1 ||fk1,j1 ||L2 . With the notation in Lemma 9.1,
we write

(9.24) m =
∞∑

j′′=0

m≤0,j′′ +
∞∑

k′′=1

∞∑
j′′=0

mk′′,j′′ .

For (9.22) it suffices to prove that

2αk2
∑

j2,j′′≥0

2εj22j2
∣∣∣∣ηj2(τ2)1I2(ξ2) · [(1I1(ξ1)fk1,j1) ∗ F(m≤0,j′′)]

∣∣∣∣
L2

+ 2αk2
∑

k′′≥1

∑
j2,j′′≥0

2εj22j2
∣∣∣∣ηj2(τ2)1I2(ξ2) · [(1I1(ξ1)fk1,j1) ∗ F(mk′′,j′′)]

∣∣∣∣
L2

≤ C[1 + d(I1, I2)]−502αk12εj12j1 ||fk1,j1 ||L2 .

(9.25)

By examining the supports of the functions, we see that the first sum in the
left-hand side of (9.25) is nontrivial only if d(I1, I2) ≤ C (so |k1 − k2| ≤ C). In
addition, ηj2(τ2)1I2(ξ2) · [(1I1(ξ1)fk1,j1) ∗ F(m≤0,j′′)] ≡ 0 unless

(9.26) |j1 − j2| ≤ C or j1, j2 ≤ j′′ + C.

Using Plancherel’s theorem and (9.7),∣∣∣∣(1I1(ξ1)fk1,j1) ∗ F(m≤0,j′′)
∣∣∣∣

L2 ≤ C2−80j′′ ||fk1,j1 ||L2 .

The bound (9.25) for the first sum follows easily. For the second sum, we may
assume that 2k′′ ≥ C−1d(I1, I2) (so 2k′′ ≥ C−12|k1−k2|) and that the restriction
(9.26) still holds. Using Plancherel’s theorem and (9.7),∣∣∣∣(1I1(ξ1)fk1,j1) ∗ F(mk′′,j′′)

∣∣∣∣
L2 ≤ C2−80k′′

2−80j′′
||fk1,j1 ||L2 .

The bound (9.25) for the second sum follows easily. This completes the proof of
part (a).

For part (b), we may assume k1 ≥ 10 (in view of Lemma 9.2) and fk1 = fk1,j1 is
as before. We decompose m as in (9.24). For (9.23) it suffices to prove that∑

|k′′−k1|≤2

∑
j2,j′′≥0

2εj22j2
∣∣∣∣F−1[ηj2(τ2)η0(ξ2) · (fk1,j1 ∗ F(mk′′,j′′))]

∣∣∣∣
L1

xL2
t

≤ C2−50k12αk12εj12j1 ||fk1,j1 ||L2 .

(9.27)

We may also assume that the restriction (9.26) holds. Using Plancherel’s theorem
and (9.7), ∣∣∣∣F−1[ηj2(τ2)η0(ξ2) · (fk1,j1 ∗ F(mk′′,j′′))]

∣∣∣∣
L1

xL2
t

≤ C||mk′′,j′′ ||L2
xL∞

t
||F−1(fk1,j1)||L2

≤ C2−80k′′
2−80j′′

||fk1,j1 ||L2 .
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The bound (9.27) follows easily. This completes the proof of part (b). �
We state now a slightly stronger form of Lemma 9.1 that will be used in the next

section.

Corollary 9.3. (a) If k1, k2 ∈ Z+, ε ∈ {−1, 0}, fhigh
k1

∈ Zhigh
k1

, and m ∈ S∞
100, then

(9.28)∣∣∣∣∣∣ηk2(ξ2)Aε
k2

(ξ2, τ2) · F [m · F−1(fhigh
k1

)]
∣∣∣∣∣∣

Zk2

≤ C2−30|k1−k2|||m||S∞
100

||Aε
k1

fhigh
k1

||Zk1
.

(b) If k2 ∈ Z+, ε ∈ {−1, 0}, f0 ∈ Z0, and m′ ∈ S2
100, then

(9.29)
∣∣∣∣∣∣ηk2(ξ2)Aε

k2
(ξ2, τ2) · F [m′ · F−1(f0)]

∣∣∣∣∣∣
Zk2

≤ C2−30k2 ||m′||S2
100

||Aε
0f0||Z0

.

Proof of Corollary 9.3. Part (a) follows from Lemma 9.1, Lemma 9.2, and (9.21).
For part (b), we notice that ||m′

≤k′′,j′′ ||L2
xL∞

t
≤ C2−80j′′

for any k′′ ∈ Z, j′′ ∈ Z+.
The bound (9.29) then follows from the proof of (9.15), the bound (9.19), and the
proof of Lemma 9.2(a) with k1 = 1. �

10. Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1. The main ingredients are
Lemma 2.1, Lemma 5.1, Lemma 5.2, Proposition 7.1, Proposition 7.2, Proposition
8.1, Proposition 8.2, Lemma 9.2, and Corollary 9.3. We start by showing that the
data e±iU0(.,0)P±highφ of the initial-value problems (2.10) and (2.12) are in H̃σ,
σ ≥ 0.

Lemma 10.1. Assume U : R → R satisfies the bounds

(10.1) ||∂σ2
x U ||L2

x
≤ 1 for any σ2 ∈ [1, 110] ∩ Z.

Then, for any σ ∈ [0, 20] and φ ∈ Hσ,

(10.2) ||e±iUP±highφ||
H̃σ ≤ C||φ||Hσ .

Proof of Lemma 10.1. To fix the notation, assume that the sign in the left-hand
side of (10.2) is +. So we may assume that φ̂ is supported in the interval [210,∞).
For any k′′ ∈ Z let

(10.3) Vk′′ = F−1
1

[
χk′′(ξ)F1[eiU(x)]

]
and V≤k′′ =

∑
k′′′≤k′′ Vk′′′ . Using (10.1) and the Sobolev imbedding theorem,

(10.4) ||V≤0||L∞
x

≤ C and ||Vk′′ ||L2
x

+ ||Vk′′ ||L∞
x

≤ C2−80k′′
for any k′′ ≥ 1.

We turn now to the proof of (10.2). For any k1 ≥ 10 let φk1 = Pk1φ. In view of
the definitions, it suffices to prove that

(10.5)

{
||Pk2(e

iUφk1)||L2 ≤ C2−40|k1−k2|||φk1 ||L2 if k2 ≥ 1;
||P0(eiUφk1)||L1 ≤ C2−40k1 ||φk1 ||L2 .

For the first bound in (10.5), if |k1 − k2| ≤ 10, then ||Pk2(e
iUφk1)||L2 ≤ C||φk1 ||L2

as desired. If |k1 − k2| ≥ 10, then

||Pk2(e
iUφk1)||L2 ≤

∑
k′′≥|k1−k2|−C

||Pk2(Vk′′φk1)||L2

≤ C
∑

k′′≥|k1−k2|−C

||Vk′′ ||L∞ ||φk1 ||L2 ,
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which suffices in view of (10.4). For the second bound in (10.5), since k1 ≥ 10,

||P0(eiUφk1)||L1 ≤
∑

|k′′−k1|≤2

||P0(Vk′′φk1)||L1 ≤ C
∑

|k′′−k1|≤2

||Vk′′ ||L2 ||φk1 ||L2 ,

which suffices in view of (10.4). �

We prove now our main bilinear estimate for functions in F σ.

Proposition 10.2. If m ∈ S∞
110, m′ ∈ S2

110, σ ∈ [0, 20], and u, v ∈ F σ, then

||∂x(m · uv)||Nσ + ||m′ · (uv)||Nσ

≤ C(||m||S∞
110

+ ||m′||S2
110

)(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ ).
(10.6)

Proof of Proposition 10.2. We show first that

(10.7) ||∂x(uv)||Nσ ≤ C(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ ).

For k ∈ Z+ let Fk(ξ, τ) = ηk(ξ)F(u)(ξ, τ) and Gk(ξ, τ) = ηk(ξ)F(v)(ξ, τ). Then

{
||u||2F σ =

∑∞
k1=0 22σk1 ||(I − ∂2

τ )Fk1 ||2Zk1
;

||v||2F σ =
∑∞

k2=0 22σk2 ||(I − ∂2
τ )Gk2 ||2Zk2

and

ηk(ξ)F [∂x(u · v)](ξ, τ) = Cξ
∑

k1,k2∈Z

ηk(ξ)[Fk1 ∗ Gk2 ](ξ, τ).

We observe that ηk(ξ)[Fk1 ∗ Gk2 ](ξ, τ) ≡ 0 unless

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k1 ≤ k − 10 and k2 ∈ [k − 2, k + 2] or
k1 ∈ [k − 2, k + 2] and k1 ≤ k − 10 or
k1, k2 ∈ [k − 10, k + 20] or
k1, k2 ≥ k + 10 and |k1 − k2| ≤ 2.

For k, k1, k2 ∈ Z let

Hk,k1,k2(ξ, τ) = ηk(ξ)Ak(ξ, τ)−1ξ · (Fk1 ∗ Gk2)(ξ, τ).

Using the definitions,

||∂x(u · v)||2Nσ = C
∑
k≥0

22σk
∣∣∣∣∣∣ ∑

k1,k2

Hk,k1,k2

∣∣∣∣∣∣2
Zk

.(10.8)
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For k ∈ Z+ fixed we estimate, using Propositions 7.1, 7.2, 8.1, and 8.2,∣∣∣∣∣∣ ∑
k1,k2

Hk,k1,k2

∣∣∣∣∣∣
Zk

≤
∑

|k2−k|≤2

∣∣∣∣∣∣ ∑
k1≤k−10

Hk,k1,k2

∣∣∣∣∣∣
Zk

+
∑

|k1−k|≤2

∣∣∣∣∣∣ ∑
k2≤k−10

Hk,k1,k2

∣∣∣∣∣∣
Zk

+
∑

k1,k2∈[k−10,k+20]

||Hk,k1,k2 ||Zk
+

∑
k1,k2≥k+10, |k1−k2|≤2

||Hk,k1,k2 ||Zk

≤ C
[ ∑
|k2−k|≤2

||Gk2 ||Zk2

]
· ||u||F 0 + C

[ ∑
|k1−k|≤2

||Fk1 ||Zk1

]
· ||v||F 0

+ C
[ ∑
|k1−k|≤20

||Fk1 ||Zk1

][ ∑
|k2−k|≤20

||Gk2 ||Zk2

]
+ C2−k/4

[ ∑
k1≥k

||Fk1 ||2Zk1

]1/2[ ∑
k2≥k

||Gk2 ||2Zk2

]1/2
.

The bound (10.7) follows. A similar estimate, using Proposition 8.1 and (8.17),
shows that

||η0(ξ)A0(ξ, τ)−1F(uv)||Z0
+

[ ∑
k≥1

22σk||ηk(ξ)Ak(ξ, τ)−1F(uv)||2Zk

]1/2

≤ C(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ ).
(10.9)

We would like now to use the bound (9.28) to include the factor m. We may
assume ||m||S∞

110
= 1. For any u ∈ C(R : H−2) we write u = ulow + uhigh,⎧⎪⎨⎪⎩

ulow =
∑
k≥0

F−1[ηk(ξ)F(u)(ξ, τ) · η≤k−15(τ − ω(ξ))] =
∑
k≥0

F−1(f low
k );

uhigh =
∑
k≥0

F−1[ηk(ξ)F(u)(ξ, τ) · (1 − η≤k−15(τ − ω(ξ)))] =
∑
k≥0

F−1(fhigh
k ).

Then, using (9.28) with ε = 0,

||m · uhigh||2F σ =
∑
k≥0

22σk||ηk(ξ)F [(t2 + 1)muhigh]||2Zk

≤ C
∑
k≥0

22σk
[ ∑

k′≥0

||ηk(ξ)F [(t2 + 1)m · F−1(fhigh
k′ )]||Zk

]2
≤ C

∑
k≥0

22σk
[ ∑

k′≥0

2−30|k−k′|||fhigh
k′ ||Zk′

]2
≤ C||u||2F σ

(10.10)

for any u ∈ F σ. A similar estimate, using (9.28) with ε = −1, gives

||m · whigh||Nσ ≤ C||w||Nσ(10.11)

for any w ∈ Nσ. We estimate now the first term in the left-hand side of (10.6) by

||∂x[(muhigh)v]||Nσ + ||∂x[ulow(mvhigh)]||Nσ

+||m · ∂x(ulowvlow)||Nσ + ||∂xm · (ulowvlow)||Nσ .
(10.12)

In view of (10.7) and (10.10), the first two terms in (10.12) can be estimated by
C(||u||F σ ||v||F 0+||u||F 0 ||v||F σ ), as desired. For the third term, we use the important
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observation that the product of two low-modulation functions has high modulation:

(10.13) (ulowvlow)low ≡ 0.

Assuming (10.13), the third term in (10.12) can be estimated by

C(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ ),

using (10.7) and (10.11). To prove (10.13), we write

ulow =
∑
k≥15

F−1(f low
k ) and vlow =

∑
k≥15

F−1(glow
k ),

where f low
k and glow

k are supported in
⋃

j≤k−15 Dk,j . For (10.13) it suffices to prove
that

ηk(ξ)η≤k−15(τ − ω(ξ))(f low
k1

∗ glow
k2

) ≡ 0, where k, k1, k2 ≥ 15,

which follows easily from (6.22) and (6.23).
In view of (9.3), for (10.6), it suffices to prove that if ||m′||S2

100
= 1, then

(10.14) ||m′ · (uv)||Nσ ≤ C(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ ).

We write u = uhigh +ulow, v = vhigh +vlow as before. Then, using (10.9), the bound
(9.29) with k2 = 0, and Lemma 9.2(b),

||P0(m′ · uv)||Nσ ≤ C(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ ).

Also, using (10.9) and (10.10) as before,

||(I − P0)(m′ · uhighv)||Nσ+||(I − P0)(m′ · ulowvhigh)||Nσ

≤ C(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ ).

Finally, using (10.11), (9.29), and the observation (10.13),

||(I − P0)(m′ · ulowvlow)||Nσ ≤ C(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ ),

which completes the proof of (10.14). �

To bound the error terms in the formulas (2.11) and (2.13) of E+ and E−, we
use the less demanding spaces Ek,α defined in (9.20) for k ≥ 1,

Ek,α ={f ∈ L2 : f supported in Ik × R and

||f ||Ek,α
:= 2αk

∞∑
j=0

2j ||ηj(τ )f(ξ, τ) ||L2
ξ,τ

< ∞}.

For σ ≥ 0 and α ∈ [−20, 20] we define

F σ
α =

{
u ∈ S ′(R × R) : ||u||2F σ

α
:=

∞∑
k=0

22σk||ηk(ξ)(I − ∂2
τ )F(u)||2Ek,α

< ∞
}

and

Nσ
α =

{
u ∈ S ′(R × R) : ||u||2Nσ

α
:=

∞∑
k=0

22σk||ηk(ξ)(τ + i)−1F(u)||2Ek,α
< ∞

}
.

In view of (9.21),

(10.15) F σ
6 ⊆ F σ ⊆ F σ

−6 and Nσ
6 ⊆ Nσ ⊆ Nσ

−6.
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Lemma 10.3. If m ∈ S∞
110, σ ∈ [0, 20], α ∈ [−20, 20], and u ∈ F σ

α , then

(10.16)

{
||m · u||F σ

α
≤ C||m||S∞

110
||u||F σ

α
;

||m · u||Nσ
α
≤ C||m||S∞

110
||u||Nσ

α
.

Proof of Lemma 10.3. We may assume ||m||S∞
110

= 1. Let fk′ = ηk′(ξ)F(u), k′ ∈
Z+. Using Lemma 9.2 with ε = 0, we have

||m · u||2F σ
α

=
∑
k≥0

22σk||ηk(ξ)F [(t2 + 1)m · u]||2Ek,α

≤ C
∑
k≥0

22σk
[ ∑

k′≥0

||ηk(ξ)F [(t2 + 1)m · F−1(fk′)]||Ek,α

]2
≤ C

∑
k≥0

22σk
[ ∑

k′≥0

2−50|k−k′|||fk′ ||Ek′,α

]2
≤ C||u||2F σ

α
.

A similar estimate using Lemma 9.2 with ε = −1 gives the second bound in (10.16).
�

Lemma 10.4. (a) Assume that I 	= I ′ ∈ {[−210, 210], [210,∞), (−∞,−210]} and
m ∈ S∞

110. Then, for any σ ∈ [0, 20] and u ∈ F σ
−10,

(10.17)

{
||PI [m · PI′(u)]||F σ

10
≤ C||m||S∞

110
||u||F σ

−10
;

||PI [m · PI′(u)]||Nσ
10

≤ C||m||S∞
110

||u||Nσ
−10

,

where PI denotes the operator defined by the multiplier (ξ, τ) → 1I(ξ).
(b) In addition, for any σ ∈ [0, 20] and u ∈ F σ

−10,
(10.18)

||∂2
xP−(m · P+high(u))||F σ

10
+ ||∂2

xP+(m · P−high(u))||F σ
10

≤ C||m||S∞
110

||u||F σ
−10

.

Proof of Lemma 10.4. We may assume ||m||S∞
110

= 1 and use Lemma 9.2 and the
definitions. The main observation is that if k, k′ ∈ Z+, then d(I ∩ Ĩk, I ′ ∩ Ĩk′) ≥
C−1(2k + 2k′

). Let fk′ = ηk′(ξ) · F(u)(ξ, τ). Using Lemma 9.2 with ε = 0, we have

||PI [m · PI′(u)]||2F σ
10

=
∑
k≥0

22σk||ηk(ξ)1I(ξ) · F [(t2 + 1)m · PI′(u)]||2Ek,10

≤ C
∑
k≥0

22σk
[ ∑

k′≥0

||ηk(ξ)1I(ξ) · F [(t2 + 1)m · F−1(1I′fk′)]||Ek,10

]2
≤ C

∑
k≥0

22σk
[ ∑

k′≥0

(2k + 2k′
)−50220k′

2−σk′
2σk′

||fk′ ||Ek′,−10

]2
≤ C||u||2F σ

−10
.

A similar estimate using Lemma 9.2 with ε = −1 gives the second bound in (10.17).
For part (b) the same argument as before works, except for the dyadic piece

corresponding to k = 0 (in the left-hand side). To handle this dyadic piece, we
need the additional observation

||ξ21±(ξ)η0(ξ)f ||Z0 ≤ ||ξ2η0(ξ)f ||X0 ≤ C||η0(ξ)f ||Z0
≤ C||η0(ξ)f ||Z0 ,

where 1± denotes the characteristic function of the interval {ξ : ±ξ ∈ [0,∞)}. �
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We can now analyze the nonlinear terms E+, E−, and E0 in (2.11), (2.13), and
(2.15). We assume that u0, U0 : R× [−2, 2] → R are fixed functions that satisfy the
bounds (compare with (2.1) and (2.9))

(10.19)

{
||∂σ1

t ∂σ2
x u0||L2

x,t
≤ δ for any σ1, σ2 ∈ [0, 120] ∩ Z;

||∂σ1
t ∂σ2

x U0||L2
x,t

≤ δ for any σ1 ∈ [0, 120] ∩ Z, σ2 ∈ [1, 120] ∩ Z,

for some δ � 1, and E+, E−, and E0 are defined as in (2.11), (2.13), and (2.15).
For simplicity of notation, let w = (w+, w−, w0) and

E(w) =
(
E+(w+, w−, w0), E−(w+, w−, w0), E0(w+, w−, w0)

)
.

For any Banach space B let ||w||B = ||w+||B + ||w−||B + ||w0||B and

||E(w)||B = ||E+(w+, w−, w0)||B + ||E−(w+, w−, w0)||B + ||E0(w+, w−, w0)||B.

Proposition 10.5. Assume that σ ∈ [0, 20], u0, U0 satisfy (10.19), w,w′ ∈ F σ,
and ψ : R → [0, 1] is the smooth function defined in Section 5. Then

||ψ(t)[E(w) − E(w′)]||Nσ ≤C||w − w′||F σ(δ + ||w||F 0 + ||w′||F 0)

+C||w − w′||F 0(||w||F σ + ||w′||F σ ).
(10.20)

Proof of Proposition 10.5. Let Ti,+ and Ti,−, i ∈ {1, 2, 3, 4, 5}, denote the terms in
line i in the formulas (2.11) and (2.13). To control ||ψ(t)[T1,+(w) − T1,+(w′)]||Nσ

it suffices to prove that

(10.21) ||m · P+high(∂x(m′uv))||Nσ ≤ C(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ ),

for any functions u, v ∈ F σ, where ||m||S∞
110

= ||m′||S∞
110

= 1. We bound the left-
hand side of (10.21) by

||(P−high + Plow)[m · P+high(∂x(m′uv))]||Nσ

+||P+high[m · (P−high + Plow)(∂x(m′uv))]||Nσ

+||P+high[m · (∂x(m′uv))]||Nσ .

(10.22)

For the first two terms in (10.22) we use Lemma 10.4(a), Proposition 10.2, and
(10.15). For the third term in (10.22) we use Proposition 10.2 and (9.3). The
bound (10.21) follows.

To control ||ψ(t)[T2,+(w) − T2,+(w′)]||Nσ , it suffices to prove that
(10.23)
||m·P+high[∂x(u0·P−high(m′u))]||Nσ +||m·P+high[∂x(u0·Plow(m′u))]||Nσ ≤ Cδ||u||F σ

for any u ∈ F σ, where ||m||S∞
110

= ||m′||S∞
110

= 1. We use Lemma 10.3, Lemma
10.4(a), and (10.15). The first term in the left-hand side of (10.23) is dominated
by

||m · P+high[∂x(u0 · P−high(m′u))]||Nσ
6
≤ C||P+high[u0 · P−high(m′u)]||F σ

7

≤ Cδ||m′u||F σ
−10

≤ Cδ||u||F σ ,

as desired. The bound for the second term is similar. Furthermore, the bound for
||ψ(t)[T3,+(w) − T3,+(w′)]||Nσ follows in the same way.

To control ||ψ(t)[T4,+(w) − T4,+(w′)]||Nσ , it suffices to prove that

(10.24) ||∂2
xP−[((I − P0)eiU0) · P+high(mu)]||Nσ ≤ Cδ||u||F σ

for any u ∈ F σ, where ||m||S∞
110

= 1. This follows as before, using Lemma 10.3,
Lemma 10.4(b), (10.15), and the observation that ||(I − P0)eiU0 ||S∞

110
≤ Cδ.
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To control ||ψ(t)[T5,+(w) − T5,+(w′)]||Nσ , it suffices to prove that

(10.25) ||P+∂xu0 · u||Nσ ≤ Cδ||u||F σ

for any u ∈ F σ. We bound the left-hand side of (10.25) by
(10.26)
||(I−P0)[(I−P0)(P+∂xu0)u]||Nσ +||(I−P0)[(P0P+∂xu0)u]||Nσ +||P0[P+∂xu0·u]||Nσ .

For the first term in (10.26) we use Proposition 10.2 with m ≡ 1, m′ ≡ 0. For the
second term in (10.26) we use the bound (7.16). For the third term in (10.26) we
use Lemma 10.3:

||P0[P+∂xu0 · u]||Nσ ≤ C||P+∂xu0 · u||F σ
−10

≤ Cδ||u||F σ
−10

,

as desired.
The proofs for the terms Ti,− are identical. To control ||ψ(t)[E0(w)−E0(w′)]||Nσ ,

it suffices to prove that

(10.27)

{
||Plow∂x(muv)||Nσ ≤ C(||u||F σ ||v||F 0 + ||u||F 0 ||v||F σ );
||Plow∂x(mu0u)||Nσ ≤ Cδ||u||F σ

for any functions u, v ∈ F σ, where ||m||S∞
115

= 1. For the first bound in (10.27) we
use Proposition 10.2. For the second bound we use Lemma 10.3 and the observation
||mu0||S∞

110
≤ Cδ. This completes the proof of Proposition 10.5. �

Proof of Theorem 1.1. For any interval I ⊆ R and σ ≥ 0 we define the Banach
spaces ⎧⎨⎩ F σ(I) = {u ∈ S ′(R × I) : ||u||F σ(I) := inf

ũ≡u on R×I
||ũ||F σ < ∞};

Nσ(I) = {u ∈ S ′(R × I) : ||u||Nσ(I) := inf
ũ≡u on R×I

||ũ||Nσ < ∞}.

With this notation, the estimates in Lemma 5.1 and Lemma 5.2 become

(10.28) ||W (t − t0)φ||F σ([t0−a,t0+a]) ≤ C||φ||
H̃σ

and

(10.29)
∣∣∣∣∣∣ ∫ t

t0

W (t − s)(u(s)) ds
∣∣∣∣∣∣

F σ([t0−a,t0+a])
≤ C||u||Nσ([t0−a,t0+a]),

for any σ ∈ [0, 20], t0 ∈ R and a ∈ [0, 5/4]. The estimate in Proposition 10.5
becomes

||E(w) − E(w′)||Nσ(I) ≤C||w − w′||F σ(I)(δ + ||w||F 0(I) + ||w′||F 0(I))

+C||w − w′||F 0(I)(||w||F σ(I) + ||w′||F σ(I)),
(10.30)

for any σ ∈ [0, 20] and I ⊆ [−5/4, 5/4], provided that (10.19) holds.
Assume that u0, U0 are fixed and satisfy (10.19). For data Φ = (φ+, φ−, φ0) ∈

H̃20 with the property

(10.31) ||Φ||
H̃0 ≤ δ,

we consider the vector-valued initial-value problem

(10.32)

{
(∂t + H∂2

x)v = E(v) on R × [−5/4, 5/4];
v(0) = Φ.
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We can construct a solution of (10.32) by iteration: let v0 = (0, 0, 0) and let

(10.33) vk+1 = W (t)Φ +
∫ t

0

W (t − s)(E(vk)(s)) ds, k = 0, 1, . . . .

In view of (10.28), (10.29), (10.30), and (10.31), ||vk||F 0([−5/4,5/4]) ≤ Cδ for any
k ≥ 0. Thus, using (10.28), (10.29), (10.30), and (10.31) again,

(10.34) ||vk+1 − vk||F 0([−5/4,5/4]) ≤ (Cδ)k+1 for any k = 0, 1, . . . .

Using (10.28), (10.29), (10.30), (10.31), and (10.34), we obtain ||vk||F σ([−5/4,5/4]) ≤
C||Φ||

H̃σ , σ ∈ [0, 20], and then

||vk+1 − vk||F σ([−5/4,5/4]) ≤ (Cδ)k||Φ||
H̃σ for any k = 0, 1, . . . .

Thus the sequence vk converges in the space F 20([−5/4, 5/4]) to a function v =
v(Φ). In addition, for any σ ∈ [0, 20],

(10.35) ||v(Φ)||F σ([−5/4,5/4]) ≤ C||Φ||
H̃σ ,

v(Φ) ∈ C([−5/4, 5/4] : H̃20) (using (4.10)), v(Φ) solves the initial-value problem
(10.32), and if ||Φ||

H̃0 , ||Φ′||
H̃0 ≤ δ, then

||v(Φ) − v(Φ′)||F σ([−5/4,5/4])

≤ C||Φ − Φ′||
H̃σ + C(||Φ||

H̃σ + ||Φ′||
H̃σ)||v(Φ) − v(Φ′)||F 0([−5/4,5/4]).

(10.36)

In particular, when σ = 0, ||v(Φ) − v(Φ′)||F 0([−5/4,5/4]) ≤ C||Φ − Φ′||
H̃0 .

Assume now that we start with data φ ∈ H∞
r with the property

(10.37) ||φ||L2 ≤ δ0 = δ/C, where C is sufficiently large.

We construct the functions u0, ũ, U0, w = (w+, w−, w0), and

Φ = (φ+, φ−, φ0) = (eiU0(.,0)P+highφ, e−iU0(.,0)P−highφ, 0)

as in Section 2. Clearly, (10.31) holds due to Lemma 10.1, and Φ ∈ H̃20. We show
now that

(10.38) w ≡ v(Φ) in R × [−1, 1],

where v(Φ) is constructed as before. This is somewhat delicate since it is not clear
how to show algebraically that the function e−iU0v+ +eiU0v− +v0 +u0 is a solution
of the original initial-value problem.

To prove (10.38), we show first that

(10.39) ||w(t)||
H̃0 ≤ Cδ0 for any t ∈ [−5/4, 5/4].

For the functions w+ and w− this follows directly using the definition (2.5) and
Lemma 10.1, since, in view of the conservation law (1.2),

(10.40) ||ũ||L∞
t L2

x
+ ||u0||L∞

t L2
x
≤ 3δ0 for any t ∈ [−5/4, 5/4].

To prove (10.39) for the function w0, we use first the definition (2.5) and (10.40),
so it suffices to prove that

(10.41) ||η0(ξ)F1(w0(t))(ξ)||B0 ≤ Cδ0, t ∈ [−5/4, 5/4].

For this we use the equation (2.4) (notice w0(0) ≡ 0). It suffices to prove that
(10.42)
||η0(ξ)ξ2sgn(ξ)F1(ũ(t))(ξ)||B0 + ||η0(ξ)ξF1(ũ(t)(ũ(t)/2 + u0(t)))(ξ)||B0 ≤ Cδ0,



796 ALEXANDRU D. IONESCU AND CARLOS E. KENIG

for any t ∈ [−5/4, 5/4]. We bound the first term in (10.42) by∑
k′≤1

2−k′
||χk′(ξ)ξ2F1(ũ(t))(ξ)||L2

ξ
≤ C||ũ(t)||L2

x
≤ Cδ0,

as desired. We bound the second term in (10.42) by

||F−1
1 [η0(ξ)ξF1(ũ(t)(ũ(t)/2 + u0(t)))(ξ)]||L1

x
≤ C||ũ(t)||L2

x
||ũ(t)/2 + u0(t)||L2

x
,

which suffices in view of (10.40). This completes the proof of (10.39).
Next, we show that there is ε = ε(||φ||H100) with the property that

(10.43) ||w||F 0([t0−ε,t0+ε]) ≤ Cδ0 for any t0 ∈ [−1, 1].

Let g = ψ(t)(∂t + H∂2
x)w. In view of (10.28), (10.29), (10.39), and (10.15), for

(10.43) it suffices to prove that

(10.44) ||ψ((t − t0)/ε) · g||N0
6
≤ C(||φ||H100)ε1/4.

We show first that for any t ∈ [−5/4, 5/4]

(10.45) ||(I − ∂2
t )g(t)||

H̃20 ≤ C(||φ||H100).

For (10.45) we notice first that H∂2
x : H̃σ → H̃σ−2 is a bounded operator. Thus

it suffices to prove that ||∂σ
t w||

H̃50 ≤ C(||φ||H100), σ = 0, 1, 2, 3. For w+ and w−
this is clear using the definitions w± = e±iU0P±highũ and Lemma 10.1. For w0 this
follows using the identity (2.4)

∂tw0 = −H∂2
xw0 − Plow∂x((u0 + ũ/2) · ũ),

the bound (10.39), and the same argument as in the proof of (10.41). This completes
the proof of (10.45). To pass from (10.45) to (10.44), we may assume t0 = 0 and
g = g is scalar valued. It suffices to prove that

(10.46) ||ψ(t/ε) · g||N0
6
≤ Cε1/4||(I − ∂2

t )g||
L1

t H̃20 .

In view of the L1
t norm in the right-hand side of (10.46), we may assume that

g(x, t) = h(x)K(t− t0), where K(t) =
∫

R
(τ2 + 1)−1eitτ dτ and ||(I − ∂2

t )g||
L1

t H̃20 ≈
||h|||

H̃20 . The bound (10.46) then follows easily from the definitions.
We can now complete the proof of (10.38). Assume w(t0) = v(t0) = Ψ for some

t0 ∈ [−1, 1]. Then, for t ∈ [t0 − ε, t0 + ε] we write{
w(t) = W (t − t0)Ψ +

∫ t

t0
W (t − s)(E(w)(s)) ds;

v(t) = W (t − t0)Ψ +
∫ t

t0
W (t − s)(E(v)(s)) ds.

We subtract the two identities and use (10.29), (10.30), (10.35) (all with σ = 0),
and (10.43). The result is

||v−w||F 0([t0−ε,t0+ε]) ≤ C||E(v)−E(w)||N0([t0−ε,t0+ε]) ≤ Cδ||v−w||F 0([t0−ε,t0+ε]).

So v ≡ w in R × [t0 − ε, t0 + ε]. Since w(0) = v(0) = Φ, this suffices to prove
(10.38).

We prove now part (a) of the theorem. Assume that

φn ∈ H∞
r and lim

n→∞
φn = φ in L2.
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By rescaling3, we may assume ||φ||L2 ≤ δ0/2, as in (10.37). By using the conser-
vation law (1.2), we may assume T = 1. It suffices to prove that for any ε > 0

(10.47) ||S∞
1 (φn) − S∞

1 (φm)||L∞
t L2

x
≤ ε for m, n sufficiently large.

We fix M = M(φ, ε) sufficiently large and define φ̂M (ξ) = 1[−M,M ](ξ)φ̂(ξ) and

φ̂M
n (ξ) = 1[−M,M ](ξ)φ̂n(ξ). It is known that the flow map S∞

1 extends continuously
on, say, H2

r (see, for example, [17]). Since limn→∞ φM
n = φM in H2

r ,

lim
n,m→∞

||S∞
1 (φM

n ) − S∞
1 (φM

m )||L∞
t H2

x
= 0.

We estimate now ||S∞
1 (φn)−S∞

1 (φM
n )||L∞

t L2
x
. As in Section 2, we construct u0,n,

U0,n (which are identical for both functions φn and φM
n ),

Φn = (eiU0,nP+highφn, e−iU0,nP−highφn, 0)

and
ΦM

n = (eiU0,nP+highφM
n , e−iU0,nP−highφM

n , 0).
Using Lemma 2.1, the identity (10.38), (10.36) with σ = 0, (4.10), and Lemma
10.1,

||S∞
1 (φn) − S∞

1 (φM
n )||L∞

t L2
x
≤ C||v(Φn) − v(ΦM

n )||L∞
t∈[−1,1]L

2
x
≤ C||Φn − ΦM

n ||
H̃0

≤ C||φn − φM
n ||L2 ≤ C(||φ − φM ||L2 + ||φ − φn||L2).

The bound (10.47) follows if M = M(φ, ε) and n are sufficiently large.
For part (b) of the theorem, we may assume that σ ≤ 2. The same argument as

before works, once we observe that, using (10.36),

||v(Φn) − v(ΦM
n )||F σ([−5/4,5/4]) ≤ C||Φn − ΦM

n ||
H̃σ(1 + ||Φn||H̃σ + ||ΦM

n ||
H̃σ).

�

Acknowledgments

We would like to thank S. Herr and H. Koch for useful discussions in the early
stages of this work.

References

[1] T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech.
29 (1967), 559–592.

[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applica-
tions to nonlinear evolution equations II. The KdV-equation. Geom. Funct. Anal. 3 (1993),
209–262. MR1215780 (95d:35160b)

[3] N. Burq and F. Planchon, On well-posedness for the Benjamin-Ono equation, preprint (2005).
[4] J. Colliander, C. E. Kenig, and G. Staffilani, Local well-posedness for dispersion-generalized

Benjamin-Ono equations, Differential Integral Equations 16 (2003), 1441–1472. MR2029909
(2005a:35240)

[5] J. Ginibre and G. Velo, Smoothing properties and existence of solutions for the general-

ized Benjamin–Ono equation, J. Differential Equations 93 (1991), 150–232. MR1122309
(93b:35116)

[6] A. D. Ionescu and C. E. Kenig, Complex-valued solutions of the Benjamin-Ono equation,
preprint (2006).

3The smooth flow has invariance property S∞(φλ) = [S∞(φ)]λ, where φλ(x) = λφ(λx) and
uλ(x, t) = λu(λx, λ2t).

http://www.ams.org/mathscinet-getitem?mr=1215780
http://www.ams.org/mathscinet-getitem?mr=1215780
http://www.ams.org/mathscinet-getitem?mr=2029909
http://www.ams.org/mathscinet-getitem?mr=2029909
http://www.ams.org/mathscinet-getitem?mr=1122309
http://www.ams.org/mathscinet-getitem?mr=1122309


798 ALEXANDRU D. IONESCU AND CARLOS E. KENIG

[7] R. J. Iorio, On the Cauchy problem for the Benjamin–Ono equation, Comm. Partial Differ-
ential Equations 11 (1986), 1031–1081. MR0847994 (88b:35034)

[8] C. E. Kenig and K. D. Koenig, On the local well-posedness of the Benjamin–Ono and modified
Benjamin–Ono equations, Math. Res. Lett. 10 (2003), 879–895. MR2025062 (2004j:35249)

[9] C. E. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the
Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323–347. MR1086966 (92c:35106)

[10] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence

theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268. MR1231427 (94h:35137)
[11] S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of wave maps

type, Comm. Partial Differential Equations 22 (1997), 901–918. MR1452172 (99c:35163)
[12] H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in

Hs(R), Int. Math. Res. Not. 2003 (2003), 1449–1464. MR1976047 (2004b:35284)
[13] H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin–Ono equation, Int.

Math. Res. Not. 2005 (2005), 1833–1847. MR2172940 (2006f:35245)
[14] L. Molinet, J.-C. Saut, and N. Tzvetkov, Ill-posedness issues for the Benjamin–Ono and

related equations, SIAM J. Math. Anal. 33 (2001), 928–988. MR1885293 (2002k:35281)
[15] L. Molinet, Global well-posedness in L2 for the periodic Benjamin-Ono equation, preprint

(2006).
[16] H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975), 1082–

1091. MR0398275 (53:2129)
[17] G. Ponce, On the global well-posedness of the Benjamin–Ono equation, Differential Integral

Equations 4 (1991), 527–542. MR1097916 (92e:35137)
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