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GLOBAL WELL-POSEDNESS OF THE BENJAMIN-ONO
EQUATION IN LOW-REGULARITY SPACES

ALEXANDRU D. IONESCU AND CARLOS E. KENIG

1. INTRODUCTION

In this paper we consider the Benjamin—Ono initial-value problem

a1 {atu+7'la§u+81(u2/2):00n R, x Ry;

u(0) = ¢,

where H is the Hilbert transform operator defined (on the spaces C(R: H?), o0 € R)
by the Fourier multiplier —isgn(¢). The Benjamin—Ono equation is a model for
one-dimensional long waves in deep stratified fluids ([I] and [16]) and is completely
integrable. The initial-value problem for this equation has been studied extensively
for data in the Sobolev spaces H? (R), o > 0[] 1t is known that the Benjamin—Ono
initial-value problem has weak solutions in HY(R), Y *(R), and HL(R) (see [5],
[25], and [I8]) and is globally well-posed in HZ(R), o > 1 (see [22], as well as
[7, [17], [12], and [8] for earlier local and global well-posedness results in higher
regularity spaces). In this paper we prove that the Benjamin-Ono initial-value
problem is globally well-posed in HZ (R), o > 0.

Let H*(R) = (0., H?(R) with the induced metric. Let S : H>°(R) — C(R:
H2(R)) denote the (nonlinear) mapping that associates to any data ¢ € HS® the
corresponding classical solution u € C(R : HZ®) of the initial-value problem (II]).
We will use the L? conservation law: if ¢ € H>® and u = S°°(¢), then

(1.2) /Ru(x,t)2 dx = /qu(:c)2 dz for any t € R.

For T > 0 let S° : H*X(R) — C([-T,T) : H°(R)) denote the restriction of the
mapping S to the time interval [T, 7).
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Theorem 1.1. (a) Assume T > 0. Then the mapping S : H>* — C([-T,T] :
H°) extends uniquely to a continuous mapping S» : H® — C([-T,T) : H?) and

152(0) (D e = ||¢l|mg for any t € [T, T), ¢ € H}.

The function S%(¢) solves the initial-value problem (L) in C([-T,T] : H?) for
any ¢ € HY.
(b) In addition, for any o >0, S¥(H?) C C([-T,T): H?),

152(Dllo-r.m:m2) < C(T, 0 [16ll17),
and the mapping S§ = S9|gs : H — C([=T,T]: HY) is continuous.

Clearly, if T < T" and ¢ € HZ, then S%(¢)(t) = ST, (¢)(t) for any t € [-T,T].
We mention that the flow map ¢ — S%(¢) fails to be uniformly continuous on
bounded sets in HZ for any T > 0 and o > 0; see [I3]. In a forthcoming paper
[6] we prove a local well-posedness theorem for complex-valued data. See also the
very recent papers [3] and [I5] (which became available after the submission of
this work) for other well-posedness results on the Benjamin-Ono equation and the
periodic Benjamin-Ono equation.

We discuss now some of the ingredients in the proof of Theorem [Tl The main
obstruction to simply using bilinear estimates in some X space (in a way similar
to the case of the KdV equation in [2] or nonlinear wave equations in [10]) is the lack
of control of the interaction between very high and very low frequencies of solutions
(cf. [14] and [13]). Following [22], we first construct a gauge transformation that
weakens this interaction, in the sense that we will be able to assume that low
frequency functions have some additional structure (see the space Z; defined in
Section [3). Even with this low-frequency assumption, the use of standard X7
spaces for high-frequency functions (i.e., spaces defined by suitably weighted norms
in the frequency space) seems to lead inevitably to logarithmic divergences in the
modulation variable (see [4]). To avoid these logarithmic divergences, we work
with high-frequency spaces that have two components: an X7°-type component
measured in the frequency space and a normalized L. L? component measured in
the physical space. These types of spaces have been used in the context of wave
maps (see, for example, [II], [23], [24], [19], and [20]); we remark that for the
physical space component we use a suitable normalization of the local smoothing
space LLL? instead of the energy space L;L2. Then we prove suitable linear and
bilinear estimates in these spaces and conclude the proof of Theorem [[I] using a
fixed-point argument.

The rest of the paper is organized as follows: in Section[2 we construct our gauge
transformation and reduce solving the initial-value problem (1) to solving three
easier initial-value problems. The point of this reduction is that the initial data of
the resulting three initial-value problems have some special structure at very low
frequencies (see the spaces H? defined in ([BI0)). In Sections Bl and @l we construct
our main Banach spaces and prove some of their elementary properties. In Section
we prove several linear estimates using these Banach spaces. In Sections [ [7] and
[l we prove our main bilinear estimates. In Section [ we prove several bounds for
operators defined by multiplication with certain smooth bounded functions (such
estimates are delicate in the context of X7 spaces). Finally, in Section [I0 we
combine all these estimates and a recursive argument to complete the proof of
Theorem [L1]
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2. THE GAUGE TRANSFORMATION

The first step is to construct a gauge transformation to weaken significantly the
contribution coming from the low frequencies of the data. Assume ¢ € H>° and
u=85%(¢p) € C(R: H®). On L*(R) we define the operators

Pioy defined by the Fourier multiplier § — 1{_g10 2107(£);
Pipign defined by the Fourier multiplier § — 1jg10 ) (££);
Py defined by the Fourier multiplier £ — 1jg o0 (£).

Let ¢o = Pow® € H2°, ug = S*(do), u = u — ug. Since |[¢o||ns < Col|d|[r2 for
any o > 0, it follows from the equation of ug that

(2.1) sup ]IlﬁflﬁgzuO(-J)l\Lg < Coy0 /025 01,02 € [0,00) N Z.
te[—2,2

Using the equation (1),
Oyt + HOXU + 0, (ug - 1) + 0, (u?/2) = 0;
1(0) = Pynigh® + P_nigh®-

We apply Pihigh, P—nigh, and Py to ([22)) to obtain

(2.3) Ot (Pinight) F i » 0%(Pinightt) + PinighOx (U0 - @) + PanighOr (U?/2) = 0;
(Pinightt)(0) = Pinignh@

(2.2)

and

2.4) { O (Piowil) + HO2(Piowt) + Piow s (g - ) + Plow 0y (2/2) = 0;
' (Pow)(0) = 0.

We now let

~_ =il .
P pighu = ™" 0wy;
(2.5) P_pightt = etVoy_;

]Dlowu = Wo,

where Uy is a suitable gauge that depends only on ug. As in [22], we define first
U(0,t) on the time axis = 0 by the formula

1 1
(2.6) 0:Up(0,t) + iHﬁwuo(O,t) + Zug(o, t) =0, Uy(0,0) =0,
and then we construct Up(z,t) using the formula
1
(2.7) 0, Up(x,t) = §u0(x,t).

It is important to notice that Uy is real-valued, since ¢g and ug are both real-valued.
Using the equation (L) for up = S (¢o) and (1), we have

0:[0:Uy + HO2Uy + (0,Up)?] =0 on R x R.
Using (2.8 and 7)) it follows that

1 1
(2.8) Uy = —iHﬁxuo - iug on R xR.
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In particular, in view of [27) and [Z8)), Uy € C*°(R x R). In fact, it follows from
1), @), and 28] that for any integers 01,02 > 0, (01, 02) # (0,0),
(2.9) sup |07 072 Uo(-, 1)Lz < Coy o0l 2-
te[—2,2]
We substitute now the formulas Py pighti = e~ Yowy and 4 = e~ Vow +etow_+

wp in the equation Z3) for Pypignt; the term Py pign(uge Y0 8,w,) cancels (using
@), and the result is

(2.10) { (O MOy = B (we, w0, wo);
wi(0) = Vo0 Py,
where
Ey(wyw_,wp) = =" Pypign[0z (e Powy + ePow_ + wp)?/2]

— €' P yign [0 [uo (6™ w_ + wp)]]

+ " (P_pigh + Piow) (uoe™ "0 dpwy) + 2iP— (87w )

— € Py yign [0 (uoe ™ 00) - wy ] + (8 Uy — 102Uy — (9,Up)?) - w..
Since wy = €Yo P pign (e Vow, ), wo = eV P_pin (e™Pow_), and wy = Plow(wo)
(see (Z.3), we use [27) and (2.8)) to rewrite F; (w4, w—_,wp) in the form

By (wiw_,wo) = =€ Pyyign[0s (7" wy + 0w +wp)?/2]
— €O P yigh[0x [to - Ponigh (e™°w_) 4+ ug  Piow (wo)]]
(2.11) + " (P_pigh + Plow) 02 (o - Pinign(e™PPwy))]
+ 2iP_[02(e" Pypign(e™ " w))]
— PL0yup - w4 .

A similar computation using the equation ([Z3)) for P_p;znu gives

(212 { (Ot 1o =1 (s wo)
w_(0)=e ZUO("O)P_high¢7
where
E_(wiw-,wo) = —e ™" P_yign [0, (7w + w4 wy)? /2]

— ¢ " P_yigh[0u[uo - Pynign(e” "0 wy.) + ug - Piow (wo)]]
(2.13) + e (Pynigh + Plow) [0 (uo - P-nign(e’w_))]

— 2iP;[02(e YO P_pign(ePow_))]

— P_0yup - w_.

Finally, using (2.4),

(2.14) (0r + HO?)wo = Eo(wy, w_,wp);
wo(()) = 0,
where
1 ) )
(2.15)  Eo(wy,w_,wp) = —= Plow[0:[(e""Pow, + ePow_ + wo + up)? — ud]].

2
We summarize our construction in the following lemma.
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Lemma 2.1. Assume ¢ € H® and u= S>(¢p) € C(R: H>®). Then
u = e*"UOer + Vo _ 4 wo + Ug,
where ug = S®(Pow(@)) satisfies (1)), Uy satisfies @A), and w,, w—_, and wy

satisfy the equations (210), ZI2), and @2I4), where E,, E_, and Ey are as in
E10), @13), and ZI5).

Remark. The expressions Ey and E_ in (211 and (2.I3) appear complicated due
to the various terms. We observe however that only the nonlinear terms in the first
lines are difficult to handle: the terms in the second, third, and fourth lines are
essentially of the form

P, [smooth function - P (rough function)].

Such expressions have a strong smoothing effect on the rough function. Also, in
the term in the fifth line, the derivative acts on the smooth function.

3. THE BANACH SPACES

In this section we construct our main resolution spaces. In view of the L?
conservation law ([L2), it will suffice to construct the solution on the time interval
[-1,1]. The resolution spaces we construct below are implicitly adapted to this
restriction in timelq The factor ¢ in (8], the restriction j > 0 in all the definitions,
and the operators [ —9? in (3.I0]) are related to the uncertainty principle satisfied by
functions that are essentially supported in R x[—1, 1]. This implicit time restriction,
which is needed for the L2 L$° bound in Lemmal£Z] creates a significant distinction
between frequencies that are < 1 (for which the dispersive factor w(§) is < 1, thus
negligible in view of the uncertainty principle) and frequencies that are > 1. Our
spaces reflect this distinction (see also the definitions of the sets Dy, ; and the factors
Ay below).

Let 1o : R — [0, 1] denote an even smooth function supported in [—8/5,8/5] and
equal to 1 in [~5/4,5/4]. For I € Z let x;(&) = no(£/2)) —no(£/2171), xi supported
in {1 €] € [(5/8) - 21, (8/5) - 21]}, and

la
X[i1,l2] = le for any i <ly €.
1=l
For simplicity of notation, let n; = x; if I > 1 and g, = 0 if I < —1. Also, for

1 <ly €Zlet
2

l2
My lo) = Zm and n<;, = Z ue

=l l=—00

For any integer k > 0 and ¢ € L?(R) we define the operator Py by the formula

Pid(€) = n(€)9(6)-
By a slight abuse of notation we also define the operators P, on L?(R x R) by the

formula F(Pru)(&,7) = nk () F(u) (&, 7).
Let Zy =ZN[0,00). For € € R let

(3.1) w(§) = —¢[¢l.

2However, this time restriction is not exact; we do not multiply by cutoff functions in ¢ in the
definition of the resolution spaces, since this would not be compatible with the atomic decompo-

sitions (@) and (Z2).
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Forle Zlet I; = {€ € R: [¢] € [2'71, 2"} For [ € [0,00) N Z let I = [-2,2] if
l=0and ; =1;if [ >1. For k€ Z and j > 0 let

Dpj={(T)ERXR: €, T—w(E) €L} if k> 1;
Dy;={(¢&7) €ERxR: (€T}, T} itk <O.

We define first the Banach spaces X, = Xi(R xR), k € Z: for k > 1 we define
X, ={f € L? : f supported in I x R and

3.2 <
32 1l 1= 32297280 4llms (7 — ()16, ) 122 < o0},
=0
where
(3.3) By =14 207202,

The precise choice of the coefficients 3y ; is important in order for all the bilinear
estimates (1)), (7.2), (8)), and (82) to hold. Notice that 27/243; ; ~ 2/ when k is
small. For kK = 0 we define

Xo ={f € L?: f supported in Iy x R and

s} 1
1l =D D 27 lIni(m)xw (©)F(67) Iz, < oo}

j=0k/'=—c0

The spaces X}, are not sufficient for our purpose, due to various logarithmic diver-
gences. For k> 100 and k = 0 we also define the Banach spaces Vi, = Y, (R x R).
Let F and F; denote the Fourier transform operators on &'(R x R) and S’(R),
respectively. For k > 100 we define

k—1
Y, = {f € L? : f supported in U Dy, ; and
(3.5) et

1/l == 272 F (= w(€) + D) F (€ Tl ars < o0}
For k = 0 we define
Yy = {f € L? : f supported in Iy x R and
(3.6) e
1£llvo := D 2 [F Iy (1) (&l zazz < o0}
§=0
Then we define
(37) Zp =X if 1 <k<99and Z; := Xi + Y, if K> 100 or kK = 0.

The spaces Zj, are our basic Banach spaces. The spaces X, are X7 b-type spaces;
the spaces Y} are relevant due to the local smoothing inequality

|0zul|peor2 < C(0: + H&‘i)uHL;L% for any u € S(R x R).

Remark. For k € [1,99] N Z we could define the spaces Yj as in (BX) and let
Zy, := Xy, + Yx. This is not necessary, however, in view of Lemma F.T|b) below.
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In some estimates we will also need the space Zy, Zg C Zo,
Zo={f € L*(R xR) : f supported in Iy x R and
(3.8) o
Ufllz, = 3 2l (r)f (6, Lz < oo,
=0

We also define the space By(R) by
By ={f € L*(R) : f supported in Iy and

(3.9) , B LI
1£llo = inf 1177 @)llsx + D7 27 [l -l < oo}

k'=—oc0
For k € Z; let
A, m)=17—w(&) +iif k> 1;
A&, 1) =14+ if k=0.
For 0 > 0 we define the Banach spaces H° = H?(R), F° = F°(R x R), and
N7 = N°(R x R):
(3.10)

H = {6 € L2 ||8]1%, = lIno - Fo(0)lIB, + Y 22 llm - Fa(9) 13 < o0

k=1

(3.11)

Fo={ue S®xR): |lulfts == > 27 m(€)(I - 02)F ), < oo},

k=0

and
(3.12)

N7 = {ue SRxR): |luldr = 3 22 Ink(©) An(€, ) T Flu)ll, < oo}

k=0

4. PROPERTIES OF THE SPACES Zj

We start with some basic properties of the spaces Z;. Using the definitions, if
k> 1 and fx € Zi, then f; can be written in the form

o0
fe = Zofk,j + gk;
i=

(4.1) o
%2j/25k,j | frj
]:

Iz + llgkllvi < 2/ fxll 2,

such that fy ; is supported in Dy ; and g is supported in U?;g Dy ; (if k£ <99,
then g = 0). If fo € Zp, then fy can be written in the form

00 1 , e
fo=X X f5+ X g0
(42) j=0k'=—00 7=0

oo 1 . , , e’} .
> X YISl + X 2 IF (g0 ) s < 2l1follz,
j=0k'=—00 Jj=0

such that fé“:j is supported in Dy ; and go ; is supported in 170 X fj
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Lemma 4.1. (a) If m,m' :R— C, k>0, and f € Zy, then
1m(€) fi(&, Tl 2 < CIFT M) Lyl frll 2,5
|lm/ (7) fe (& Tl zie < ClmV|| Lo ) [ frl| 2., -

(b) If k> 1, 5 >0, and fy, € Z, then

(4.3)

(4.4) [Inj (7 = w(€) fu(&, T)lIx, < Cllfillz,-
(c) If k> 1, j €[0,k], and fi is supported in I, X R, then
(4.5) IF < (7 = w(@) i€ Tl Laez < CUFH(fa)ll oy z-

Proof of Lemma Bl Part (a) follows directly from Plancherel’s theorem and the
definitions.
For part (b), we may assume k > 100, fi = gr € Yk, and j < k. We notice that
if gr € Yj, then g can be written in the form
(4.6)
96 (&, 7) =221 ) () (7 — w(&) +9) <k (T — w(§)) [ e h(, T) da;
gkllvi = CllRllLy 2.

The inequality in part (b) follows easily since |[{¢ € I, : |[T—w(€)| < 27H1} < C27F;

see (BI).
For part (c¢), using Plancherel’s theorem, it suffices to prove that
(4.7) | [ e=xsnen©nss(r - wien |, <c.
R LlL®

In proving (7)), we may assume k > 100. Then the function in the left-hand side
of (@) is not zero only if 7 ~ 22*. Simple estimates using the change of variable
7 — w(§) = o and integration by parts show that
| [ xtmsinn @nssr — () de] < Oy
§ ks =CTr @y
if 7 ~ 22 which suffices to prove ([ET)). O

Using (£1) and Lemma[LT|(b), (c), it follows easily (see the proof of Lemma [5.2]
for a similar argument) that if £ > 1 and (I — 8?)fx € Zi, then fj can be written
in the form

Je = i frg + gr;
(4.8) w 0

2 272611 = ) fesllne + 11U = B)gllv, < CINT = 92)fel
j:

such that f ; is supported in Dy ; and g is supported in U;:go Dy ; (it k <99,

then g = 0). We prove now several estimates using the spaces Zj.

Lemma 4.2. (a) If k>0, t € R, and fi € Zx, then

(4.9) { i fRfk(faT)eftT dTHLg <COllfellz, fk>1;
| fu fol€. ) dr|| . < Cllfollz, if k =0.

As a consequence,

(4.10) F° CC(R: H?) for any o > 0.
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(b) If k> 1 and (I — 82)fy € Zy, then

(4.11) IF (fillzoe < C2%2(|(1 = 02) fiul| 2, -
(c) If k > 1 and f, € Zy, then
(4.12) NF T fill e rz < C27%2)| £l 2,

Proof of Lemma 2. For part (a), k > 1, we use the representation ({I]). Assume
first that fk = ka'. Then

‘ ‘ /R fr (€, m)eT dT’

which proves (3] in this case.
Assume now that k > 100, fr = gx € Y, and write gx as in (£8). We define the
modified Hilbert transform operator

(413)  La(g)(p) = / ()T — p+ i) en(r — p) dr, g € L3(R).

Lo SOl (& mzzny < C22 | fijllre
3

Clearly, ||Ck|lr2—r2 < C, uniformly in k. We examine the formula (@6l and
let h*(x,pn) = Li[e®®h(x, 7)](1), [[P*|e2rz < Cl|hl[r1zz. Then, using (L0), the
Minkowski inequality, and a change of variables,

| [ atemietmar], < €27 xumrnin(© [ e ol dal
R L R

<O 27| e

< Cllgillvi

which completes the proof of ([£.9) in the case k > 1.
Assume now k = 0. We use the representation (L2]). Assume first that fo = fé“lj

is supported in Dy, ||follz, & 29 7%'||f§}]|12. Then

2
Lg

(4.14)

| [ et rll, < c2v

which suffices. L
Assume now that fo = go,; is supported in Io x I, || foll z, = 27[|F " (g0,5)| L1 13-
Then

I / 90,(& 1)e" drl| 5 < CIIF Hgo)lrre < 22| F " (go.)lpa 2,
R

Jusgstenarll,y < 022211 e

which completes the proof of part (a).
For part (b) we use the representation (.8). Assume first that fi = f; and let

f}fj(&ﬂ) = fi;(& p+w(€)). By integration by parts, the left-hand side of (EIT)
is dominated by

c e
Z i /IN H /R(I _ aZ)f]ﬁj(g,u)emﬁeztw(f) d&’ o

nez z7ten—1/2,n+1/2]

du.

The bound (£II]) now follows from the standard maximal function estimate

(4.15) I /}R g(E)e=c© e

< O2lg|| .

LgL?Z[—l/Q,l/ﬂ
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for any function g supported in Ij; see [9, Theorem 2.7]. In fact, the argument
above and ([dI3) show that if fi € X}, then
‘L? L

(4.16) H/ fu(€, 7)™ dedr
R2 zte[—1/2,1/2]

Remark. The inequality (£I1)) is relevant only when j < k. For j > k the Sobolev
imbedding theorem easily gives a stronger estimate.

< 022/ fulx,.-

Assume now that k& > 100, fi = gr, (I — 02)gr € Y. By integration by parts,
the left-hand side of ([@II]) is dominated by

> ;zgi‘i\’jg2<1._ a$>gk<s77>e”fei“'dfd7W}LzL

nez z ;.2[71.71/2,71.4»1/2]

We write now (I —8?)gy as in {@6). In view of [{6) and the Minkowski inequality
(notice that (I — 0%)gx can be thought of as a superposition in yo of functions of
the form 25/2x (.1 1411(€) (T — w(&) +9) " n<i (T — w(€)) - e~ h(yo, 7)), it suffices
to prove that if

(4.17) FET) =22t ) (O (7 — w(€) +4) e (T — w(€)) - A7),
then

4.18 W e C25/2||p]|;».

(4.18) HAj@ﬂee 57hﬂ%wum§ 1]l

Since k > 100 and [¢] € [2F72,2F+2]) we may assume that the function A in (ZI7) is
supported in the set {7 : |7| € [22710 22KF101} Let hy = h-1[ o0), h— = h-1(_oo )
and define the corresponding functions fi and f_ as in ([{I7). By symmetry, it
suffices to prove the bound (#IJ)) for the function f, which is supported in the set
{(6,7): & € [-2k+2 —2k=2] 7 ¢ [22k—10 22k+101) T view of B, 7—w(¢) = 7—£2
on the support of fi, and fy(£,7) = 0 unless |/7 + £ < C. Let (by freezing
£= 7
(4.19) i) = Qk/QX[kq,kJrl](—\E)(T—g + (VT +E+ivr2Th)T!
X No(VT +&) - hy (7).
Simple estimates show that, with p = |7 — £2| + 1,
1

£2(6:7) = £1l67)| < Oy (B2 (2 B,

As in the proof of Lemma T(b), it follows that
f+ = fillx, < Cllhy]| 2.

Thus, using @I6), ||[F(f+ — f)llr2r= < C2F/2||hy||z2. To estimate

z - te[—1/2,1/2] —
Hf—l(f'/'r)HLZsz[,l/z o> We make the change of variables { = —/7 + 1. Then

FHf) (1) = 2k/2/ h+(7)(2\/7_')71X[k—1,k+1](—\/;)eme*”ﬁdT
(4.20) R

[ e+ i/2 ) e

The absolute value of the integral in g in (£20) is bounded by C. We make the
change of variables 7 = 6? in the first integral and use the bound [@IH). It follows
that || F~1(f4)]|p2 o < C2%/?||h |12, which completes the proof of [EIS).

zHte(—1/2,1/2] —
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For part (c) we use the representation ([.I)). Assume first that fy = fi ; and let
f]j,éj(§7 ) = fr;(& p+w(§)). It suffices to prove the stronger bound

fra (€)' e" dedr |

I < C27H 22| iyl o,

Dy ; L?
for any zy € R. Using Plancherel’s theorem, duality, and the Holder inequality, the
left-hand side of the inequality above is dominated by

C sup / € )] b+ w(€))] dedu

||h||L2(]R):1 Iy ><Ij

<c s [ ([ 1stenrae)”( [ s wtepra)” a

Hh‘HL2(R):1

< 092 k/293/2 (/
I

as desired.

Assume now that k > 100, fr = gr € Y; and write g as in ([@G). Using
Plancherel’s theorem and the Minkowski inequality (see the explanation preceding
&I7)), it suffices to prove that

1/2
A& )P dedpe)

kXIj

(21) | / € 1) (6)(7 — (&) + ) el — w(€)) de] < C27F,

uniformly in z¢ and 7 (assuming k& > 100). We may assume |7| € [22k—10 22k+10]

and, by symmetry, 7 > 0. Then the variable £ in the integral in (Z2T]) is in the
interval [—/7 — C, —/T + C] and 7 — w(§) = 7 — €2, As in part (b), see [EI9),
we replace the integrand 1o o) (&)X[k—1,k+1)()(T — €2 + i) Incp(t — €2) with
X[k—1,k+1) (—V/T) (T — E 4+ (VT +O? +iyT27F) "o (\/T + €) at the expense of an
error dominated by

CR7" + (VT £ + 1) o, (VT + €D

The Lé norm of this error is < C2 5. Then we make the change of variables
¢ = —\/7 + 1 and use the uniform boundedness of the integral in p in ([@20)). The
bound (@21]) follows. O

5. LINEAR ESTIMATES

For any u € C'(R : L?) let u(.,t) € C(R : L?) denote its partial Fourier transform
with respect to the variable x. For ¢ € L%(R) let W(t)¢ € C(R : L?) denote the
solution of the free Benjamin—Ono evolution given by

(5.1) [W(t)o] ™ (€, 1) = O g(¢),

where w(§) is defined in (BI). Assume ¢ : R — [0,1] is an even smooth function
supported in the interval [-8/5,8/5] and equal to 1 in the interval [—5/4,5/4] and

let o = — 9" € S(R).
Lemma 5.1. Ifoc >0 and ¢ € IA{TU, then
(@) - (W ($))l|r- < Clloll 5 -



764 ALEXANDRU D. IONESCU AND CARLOS E. KENIG

Proof of Lemma 1l A straightforward computation shows that

(5.2) Fl(t) - (W ()@)€, 7) = ST —w(©)).
Then, directly from the definitions,
1) - (W) [ = Y 22| (©)d()p(r — wl())I[7,
keZ,
(5.3) -

Z 2275 |11 (€) p(€) 2 (7 — w(€))[ %, + IIno(€)D(E) (T — w(€))I[,

Since ¢ € S(R), for any k > 1

1)) (7 — (€)1, < Cllmk - 6l 2.
For k = 0, write 7 - q? =g+ Zk’gl hy, hy supported in I, and

(5.4) 17 @Iz + Y 27 [l 2 < 2[no - &l 5,
k<1

Then
g(€)p(T —w(E))llzo < [19(E)(T)lly, + [lg(€)lp(T — w(&)) — (7]l x,
< CIFT @ + Cllg@©& A + 7)™ lxe < ClFT (9)]lre.
Also,
1 (©)(7 = w(€))lz0 < 1A (E)p(T = w(€))l|x0 < C27F ||| 2.
Lemma [5.1] follows from (£.4). O

Lemma 5.2. Ifoc >0 and u € N° NC(R: H~2), then

Hl/J(t) ) /Ot W(t — s)(u(s)) dsHFU < Cljul|no.

Proof of Lemma B2l A straightforward computation shows that

(55 i
/Wtfs ds} T fc/]: &7 )7/’( _T;),:zg)_w(g))dT/'

For k € Z+ let fk(fa - )(ga ) (f)Ak(ga ) !. For fk € Zy let
—p(r—w()

66 TUET) / fie D ar

In view of the definitions, it suffices to prove that

(5.7) |T||z,—z, < C uniformly in k € Z..

We consider first the case k > 1. To prove (B1), we use the representation
(@I). Assume first that f; = fi ; is a function supported in Dy, ;. Let f,fj &)=

Fos €1+ () and T(fe ) (6 1) = T(fes)(E 1+ w(€)). Then,
68 TU*en - [ e ) P M;} P (1 4 i)yt

We use the elementary bound

PUZIDZ A (4 )] < L+ )™+ (1 b= )7
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Then, using (E3),
. 1/2
Tl < O+ )22 |15 6 ) P ]

Oy ez (1) / 6 ) (L + [ — )~

It follows from the definition of the spaces X} that
(5.9) 1T x,—x, <C uniformly in k > 1,

as desired.

Assume now that fi = g € Yy, so k > 100. In view of Lemma II(b), (c), and
(53), we may assume that g is supported in the set {(&,7') : |7/ — w(&)| < 220},
We write
i

ng(fa 7'/)-

(6 = 2 (o) +

T —w(€)+i

Using Lemma BI(b), [[i(7" — w(§) +4) " gx(§, 7')[|x, < Cllgrllvi- In view of B3,
it suffices to prove that

6.10) || [ e m)ptr—r)

The bound for the second term in the left-hand side of (EI0) follows from ({.I4)
with ¢ = 0. To bound the first term, we write

et [ae ]| <l

T —w(é)+i T—1 ]
T—w@+i T—w(é+id

The first term in the left-hand side of (&I0) is dominated by
(5.11)
| [mosn(r = ()T = () + 7" [ gule ™) = () + il — )’
R

g (6,7) = gu(&.7) |

Y

L2

+C Y022 |ns(r = wl(€)(r — w() +)! / gr (&7 )p(r = ) (r = 7') dr’
i<k *

+C 3 20, = w(©) [ a6 el =) ar

Jj=k—1

L2
For the first term in (&I1]), we use Lemma [£)c) to bound it by
C27 | F () - FH( = w(€) +0)gr (€, mlla s < Cllgel v

as desired. Let g,f(f,u’) = gr(& 1 +w(€)) and for j' € [0,k — 20] let g;f)j/ & u)=
g (&, 1)y (1'). In view of LemmaBETI(b), 27'/2||gr || 22 < C|lgk|ly;, so the second
term in (5.10]) is dominated by

k k—20

O3 ST 2792073 P g il 12] < Cllgellya.-
7=0 j’'=0



766 ALEXANDRU D. IONESCU AND CARLOS E. KENIG

The third term in (GI1)) is dominated by

co  k—20

¢3S 27359 2 g e < Cllgal s

j=k—1 j'=0

since ¢ € S(R). This completes the proof of ([E.I0).

We consider now the case k = 0. To prove (5.7)), we use the representation ([A2)).
Assume first that fo = fé“:j is a function supported in Dy ;, || fol| z, = 21—k | \f07/j||L2.
For |¢] < 2 we have the elementary bound

p(r —7) —p(r —w(©)
T —w(()
Then, using the formula (5.0)),

’ . ’ 1/2
TSN < O )22 ] [ 156 P ar

(7 + )| < CL+ )™ + (L | = 7)Y,

e gea(7) / €A+ r— ) ar,

It follows from the definition of the spaces X that ||T||x,—x, < C, as desired.
Assume now that fo = go ; is supported in Iy x I;. We can write

(5.12) 90,5 (& 7") =270 1) (npy—1,541) (7)) Jg ez, ') da;
PNF Hgo)llrrz = ClIrll Ly r2, -

We have two cases: 7 < 5 and j > 6. If j <5, we write

QP(T_T’)—¢(T—W(§))_C ' "(T—at — (1 - a)w a
T —w(§) - /0 o e

For (B.7), it suffices to prove that
6.13) || [ (670 (=o' (1 =)l @)+ ar

for any « € [0,1]. For |¢| < 2 and |7'| < C we write
¢(r—ar’ = (1= a)w(@)(v' +1i) = ¢'(r —ar) (7' + i) + R 7, 7),

< OllF (9o )22
Zo

where
[R(E,7,7)| < CE1+|r]) "
The left-hand side of (.13]) is dominated by

| /Rgoﬁa'@”’)@’ﬁ —ar)(@ +iydr|| e ) / 90, (& 7)1 ar']|

which is easily seen to be dominated by H]—"’l(gOJ)HL;Lg (using the representation

(E12). This completes the proof of (5.7) in the case j < 5.
Assume now that j > 6. Since |7/| > C and |¢] < 2, we can write

@(T B T;)/ _EEE)_ L«)(f)) (7_/ + Z) — @(T B T;)/ B QO(T) (7_/ + ’L) + Rl(f, T, 7_/)’
where
[R'(& )| <[+ T+ (A +|r =771
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Using the representation (5.12) and the definitions, it follows as before that
!/
o(r—1") = (T ,
| [ soaterE=DL= 2D iy ar| | 4| [ o6l 1R 6 o) e
R 0 R

-
is dominated by C27||F~"(go )12, which completes the proof of (5.7). O

Xo

6. LOCALIZED L? ESTIMATES

In this section we prove several localized L? estimates for nonnegative functions.
Such L? estimates are closely connected to bilinear estimates in the spaces X7°
(see [2]] for a more general discussion). For &1,6 € R and w : R — R as in (3.1)
let
(6.1) Q(&1,&2) = —w(& + &) +w(&) +w(ba).

For compactly supported functions f,g,h € L?(R x R) let

(6.2) J(f,g,h) = /R4 f(&1, 1) g(&a, pa)h(E1+E2, a1+ 12+ (&1, &2)) dérdEadprdps.

Given a triplet of real numbers (a1, as, a3), let min (a7, ag, az), max (a1, as, as),
and med (aq, ag, @3) denote the minimum, the maximum, and the median (i.e.,
med (aq, a9, @3) = a1+ +az—max (a1, ag, ag) —min (g, @z, a3)) of the numbers
ag, ag, and ag.
Lemma 6.1. Assume ki, ko, ks € Z, j1,j2,73 € Z, and fy, ;, € L*(R x R) are
functions supported in I, x qu, 1=1,2,3.

(a) For any kla k27k3 €Z and j17j27j3 € Z+7

3
(63) |J(fk17j1 ) fkmjz’ fksJS )| < szin (kl,k2,k3)/22min (1.72,90)/2 H kaz WJi | ‘L2'
=1

(b) If max (k1, ko, k3) > min (k1, k2, k3) + 5 and i € {1,2,3}, then

3
(6.4) T (fr oo Frasgas fraga)| < €201 925320/ 29= k02 TT || | .

i=1
(c) For any k1,ka, ks € Z and j1, jo, js € Ly,
3

(65) 1T (fr.jis Fragor fg o) < O2M Grd2ids)2omed Guodzds T f ] 2.

i=1

, 12 .

Proof of Lemma 61l Let Ay, (§) = [I]R | fres s (€, )] du} , 1 =1,2,3. Using the
Holder inequality and the support properties of the functions fy, j,,
(6.6)

| T (frygns Fragns Friangs)| < CQmin(jl’jz’jS)/2/ Ay (§1) Ak, (§2) Ak, (&1 + &2) d1dE
R2

3
< Comin (k1,k2,k3)/29min (j1,52,53)/2 H ||f,C
i=1

i»Ji l1L2s

which is part (a).
For part (b) we observe that

(6.7) €261, €2)| = 2min (&1, [€2], [€1 + €2]) - med ([&1], [€l, [€1 + €2)-
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Also, by examining the supports of the functions, J(fi, j, s fra,jo» frs,js) = 0 unless
(6.8) max (ki, ko, k3) < med (k1, ko, k3) + 2,
and
(6.9) { max (j1, o) € b -5,k 45 or o

max (j1,J2,73) > k + 5 and max (j1, j2, j3) — med (j1, jo, j3) < 5,
where k = min (ki1 k2, k3) + med (k1 ks, ks).

Simple changes of variables and the observation that the function w is odd show
that

(6.10) [T (f,9,h)] = |T (g, f, h)| and |J(f,g.h)| = |J(f.h.g)|,

where f(&, ) = f(—¢,—p). Thus, by symmetry, in proving ([6.4]), we may assume
1 =3. Let

1 o o 1/2
Bue.n) = [ [ (ot at B +a/20) 20+ /22 dads]
R2
Clearly,
(6.11) ||Brs||z2 = C|| frs,js |22 and By, is supported in I, x R.

Also, by the Holder inequality,
‘J(fklyjl ) fk27j2a szij)‘

(6.12) < Ol ti2)/2 /R2 Ay (§1)Ap, (§2) Bry (&1 + &2, (&1, &2)) dE1dEs.

We have three cases depending on the relative sizes of |£1], |€2| and &1 + &»|. Let

Ry = {(&1,82) + |&1 + & < 6] and [&2] < |61},
Ry = {(&1,62) : |61 + &2f < 62| and [&1] < |62},
R3 = {(&,&) : 61| < &1+ &2 and |&| < |61 + &}
For (£1,&2) € Ry, using G.1), (&1, 82) = £262(&1 + &2). We define By (€, 1) =

By (€,28p), ||By, |22 ~ 27%3/2||By,||g2. The integral over R; in the right-hand
side of (6.12)) is dominated by

C/ Ak, (61)Ar, (£2)[ By, (61 + €2, &2) + By, (&1 + &2, —&2)] dE1dés
R2

< C27 2| A, || 2| Ak, || 2| Brs | 2
which gives (G4]) in this case (see ([GITI)).

The bound for the integral over (£1,£3) € Ro is identical. We consider now the
integral over (£1,&) € Rs, in which case Q(&1,&) = £2£1&. By symmetry, to
bound the right-hand side of (612)), it suffices to bound

(6.14) i Ap, (§1) A, (§2) Bry (&1 + &2, 26182) d&rdEa.

We define By, (£, 1) = By, (&, p+62/2), so || B, ||2 = || Brs||r>. Using (6.8) and the
assumption max (k1, k2, k3) > min (k1, k2, k3)+5, if &1 € Iy, &2 € Iy, (§1,&2) € Rs,
and &) + & € Iy, then & — &| > 2K37190 The integral in (6.14)) is dominated by

(6.15) / A, (1) Ak, (&2)BY, (61 + &2, — (&1 — £2)7/2) dé1déo.
{|€1—&5|>2k3 100}

(6.13)
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Using the Holder inequality and a simple change of variables, the integral in (6.15))
is dominated by C2‘k3/2\|Ak1\|Lz||Ak2||L2HB§€’3||Lz, which completes the proof of

@3).

For part (c¢), using part (a), we may assume
(6.16) med (41, 2, 73) < 2min (ky, ko, k3).
Using (G.I0)), we may also assume j; = min (j1, jo, j3) and jo = med (j1, jo2, j3). Let
Rj, = {(&1,&) : |4 — &| > 27277},
For the integral over (&1,&2) € Cﬁjz =R2 \Eh we use a bound similar to (G.6]):

‘ [R szkl,jl (&1s 1) fra o (€2, 142) Freg js (61 + &2, po1 + p2 + Q(&1, &2))dE1dEadp dpnn
< con /2 [E A (€0) Ary (€2) Ay (61 + E2) drdEs
<co [ (Gt (€A (26 + p) déad
|u|<292/2

) 1/2
<co [ (] a6+ Pl (@R ) 1A ed
lul<2i2/2 N JR
< 0P| Ay | A 1 A

which suffices for ([G5]). For the integral over (£1,&2) € ]%»2 we use a bound similar
to (612):
(6.17)

‘ /R P (€ fia 52 (€0 112) Fis 3 (€1 4 €0, i+ g2+ Q& &) drdadpindpy

< C2(j1+j2)/2/§ Ak, (61) Ak, (§2) Brey (&1 + &2, (&1, 2)) d61dS.

We further decompose the integral in the right-hand side of (6I7) into three parts,
corresponding to the regions Ry, Rs, and R3. Using (613)), the integrals over the
regions Rj, N Ry and R;, N Ry are dominated by C27%3/2|| Ay, || 12 || Ak, |22 || Brs | 22
which suffices in view of the assumption (G.I0). For the integral over the region
E]é N R3, by symmetry it suffices to control

(6.18) [ ()A€ Bl + o260 e
Rj2 NR3
As in the estimate of the integral in (6.14), the integral in (G.I8) is dominated by
/ A, (1) Ak, (&) By (&1 + &2, — (&1 — &)?/2) d€1déo.
{l61 621227272}

The bound (63)) follows using the Holder inequality and a simple change of vari-
ables. O

We restate now Lemma in a form that is suitable for the bilinear estimates
in the next sections.



770 ALEXANDRU D. IONESCU AND CARLOS E. KENIG

Corollary 6.2. Assume ki, ks, ks € Z, j1,j2,73 € Zy, and fy, j, € L*(R x R) are
functions supported in Dy, j,, © = 1,2.

(a) For any ki, ke, ks € Z and j1, j2, j3 € Ly,
(6.19)

2
1104, 1,6 T) (Frr g * Fraja) (€, 7) |2 S C2mIn (hrkaka) [2gmin Gz ds) 2 TT | £ | e

i=1

(b) If max (k1, ko, k3) > min (k1, k2, k3) + 5 and i € {1,2,3}, then
(6.20)

2
11D, 5, (6,7 (Fris * Fraa) (€, 7|2 < C2UrHI2H3) 29— Gtk 2 TT ||y,

2.
i=1
(c) For any ki, ks, ks € Z and j1, jo, js € Ly,
(6.21)
2
1111y (E0T) (Frr * Firaia) (€ 7)| |2 < C2m Grdzds) [2med Gz o) I T £ e
i=1

(d) In addition, 1Dk3,j3 (577)(fk1»j1 * fk27j2)(€’7—) = 0 unless
(6.22) max (ki, k2, k3) < med (ky, ka2, k3) + 2,
and

(623) { max (j17j27j3) [%—87%+8] or

€
max (ji1, j2, j3) > k + 8 and max (j1, jo, j3) — med (j1, jo, j3) < 10,

where k = min (ky, ko, k3) + med (ky, k2, ks3).
Proof of Corollary 621 Clearly,

1ty ) o Frai) €Dz = sup | [ f (i ¢ o) der|

HfHL2:1 k3,i3

Let fi,j, = 1p,,,, - f, and then £ (&, 1) = fu, j, (& p+w(€)), i = 1,2,3. The

functions f,ff]q are supported in Iy, X U\, <3 Lji+m: ||f,fjl||L2 = || fri.5;||L2, and,
using simple changes of variables,
/ I (fkhjl * sz’j2) dédr = J(flfijl ’ f/f;jz’ f’i;js)'
Dirg,is
Corollary follows from Lemma [61], (6.8)), and (69). O

7. BILINEAR ESTIMATES I

In this section we prove two bilinear estimates, which correspond to Low x
High — High interactions:

Proposition 7.1. Assume k > 20, ky € [k — 2,k + 2], fr, € Zk,, and fo € Zp.
Then

(7.1) 2|k (€) - (7 = w(€) + )™ fuy * fol| 5, < Cllfiallzi, |l follzo-
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Proposition 7.2. Assume k > 20, ko € [k — 2,k + 2], fu, € Zy,, and fi, € Z,
for any ki € [1,k — 10| NZ. Then

(7.2)
k—10

() (r—w (@) + D) frx Y fully, < Cllfallze,  sup U = 82)fiu ||z, -
P k1€[1,k—10]

The main ingredients in the proofs of Propositions[7.Iland [Z.2] are the definitions,

the representations ([@1l), [@2)), and (£1), Lemma 1] LemmalZ2(b), (c), Corollary
62 and the L? estimates in Lemma [7.3] below.

Lemma 7.3. Assume that k > 20, k1 € (—o0,k — 10| NZ, ko € [k — 2,k + 2],
Jyd1yd2 € Zi, frijy is an L% function supported in Dy, j,, and f, ;, is an L?
function supported in Dy, j,. Then, with i x, = (2F1/2 4 2=k/2)=1

2°2972 31 Ik (€)n; (7 = () (T = (&) +8) ™ (s * o)l 2
< Cips - 2281 u a2 - 227 B o || fra o | 22
where, by definition, By, j, = 271/2 if ky < 0. In addition,
1oy, (&) (Fhrgn * fragn) =0

(7.3)

unless

(74) max(j,jl,jg) c [k+k1—10,k—|—]€1+10} or
. max (j, j1,j2) > k + k1 + 10 and max (4, j1, jo) — med (4, j1, j2) < 10.

Remark. The bound (3] holds for k; both positive and negative. However, when
k1 <0, the right-hand side contains the large factor 74 i, . This factor is the main
reason why interactions between “general” L? functions of very low frequency and
derivatives of L? functions of high frequency cannot be estimated using our bilinear
estimates.

Proof of Lemma [[3l The restriction ([Z4) follows directly from ([G23]). For (Z3)
we use the bounds (@19)), (620), and ([G21)) in Corollary The left-hand side of
[T3) is dominated by
2k2_j/26kvj||1Dk,j (fa T)(fkhjl * fk2,12)||L2-
For (C3)) it suffices to prove that
Dy ; (& T) (Frrgn * Fraio)l L2

< C2 My, 29280 By i B || 22| s gl 22

Let IT = || feyill22]|frs,alln2.  We have several cases: if j = max (j, j1,Jj2),
then, using (6:20), the left-hand side of (73] is dominated by C2~%/2201+72)/2]];
in addition ﬁkl,jlﬁkz,hﬁkf} > O~ ! and 20/2 > C~1(20+kD/2 4 1) using (7)), so
the bound (1)) follows in this case.

If jo = max (4, j1, j2), then, using (6.20)), the left-hand side of (7.0 is dominated
by C27F/220+i1)/21]; in addition

Bry g BranjaBpy > C71 and  272/2 > ¢ (2 FRO/2 4 ),
using (Z.4)), so the bound (73] follows in this case.

(7.5)
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If j1 = max (j,51,72) > k + k1 — 20 and k; > 0, then, using ([6.20) and (G.21]),
the left-hand side of (ZH]) is dominated by

Cc9—31/2 (le /2 + Qmﬂx(j7j2)/4)—12(j+j1+12)/21‘[;

in addition 271/28, ;, > C~1217k g . > 1 and B, < CPj,- Using (T4),
2jlﬁ,;}1 > C~12%+%1 and the bound (Z.35) follows. We notice also that the restric-
tion j; = max (J, j1,j2) was not important. For later use, we restate the stronger
estimate that we obtain in this case: if k1 > 0 and j; > k + k1 — 20, then

(76) 25228 | Imk () (7 — w(€)) (7 = w(€) + 1) (Fr g * Frago) |12
< C(2k1/2 + QmaX(j7j2)/4)_l ’ 2j1/25k1,j1‘|f/€17j1‘|112 ’ 2j2/2ﬁk2,j2||fk2’j2||112'
If j3 = max (4, j1,72) > k+ k1 — 20 and k; < 1, then, using (6.I9]), the left-hand
side of () is dominated by C2¥1/2207+32)/29=max(7.42)/21]; in addition 2/1/23y, j,
=2, Br, 4, > 1, and B ; < CB ;. Using (T4), 2715,;}1 > C~1(2kk 1), and
the bound (Z5) follows since 2k 4+ 27%F > C_lﬁy,;il. For later use, we restate the

stronger estimate that we obtain in this last case: if ky <1 and j; > k + k1 — 20,
then

25297281 il Imk (©)m; (7 — w(O) (T = w(€) +8) " (frvgr * Fransa)l| 22
<02 max(jvjz)/Q,yhh . 2j1||fk1,j1||L2 . 2j2/26k2,j2|‘fk2,j2”L2-
O

(7.7)

We prove now Propositions [.1] and

Proof of Proposition [[Jl We use the representations (&) and (£2) and analyze
three cases.
Case 1: fy = f&_l is supported in Dy, j,, fr, = fr,.j, 1S supported in Dy, j.,

J1,J2 2 0, k1 < 1, HfOHZo ~ 2j1_k1|‘f(])€1j1||L2’ and ||fk2HZk2 ~ 2j2/26k2,j2||fk27j2||L2'

)

The bound (ZI]) which we have to prove becomes
(7.8)
2| [k (€) - (T = () +4) " frag * fo || 5 < C2 RIS, 122 - 272 Br | Fra o | 2

Let hg(6,7) = ni (&) (T —w(&) +1) 1 (fry g * éiljl)(g, 7). The first observation is that
for most choices of j; and js, depending on k and k1, the function hy is supported
in a bounded number of regions Dy, ;, so (T.3)) suffices to control 2¥||hy || x,. In view
of (Z4), the function hy is supported in a bounded number of regions Dy, ;, and

[T8) follows from (7)), unless
|j17(k+k1)| § 10 andjg § k+k:1+100r
(7.9) |j2—(k+/€1)|§10 and j; <k+k +10or
1,02 > k+ky — 10 and |]1 —jg‘ < 10.

Assume (Z9) holds. Using (Z4), 1p, (£, 7) - hy = 0 unless j < max(ji, j2) + C.
We have two cases: if j1 > k + k1 — 20, then, in view of [Z9), j» < j1 + C and the
function hy is supported in Uj§j1+C Dy, ;. By (D),

2| hnllx, <C2% D 2728y 5Ims (m — w(©))hn(€, 7|
i<iri+C

<c[ Y ammeRRlgmh 2 gn g ] s - 2228, | frs a2
1<ii+C
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which suffices for (Z8)). Assume now that j; < k + k1 — 20, so, in view of ([Z9l),
j2 = (k + k1)[ < 10 and the function hy, is supported in (J; <4, 1o Drk,j- Then,
using Lemma . T[(b) and (¢) (in fact the proof of part (b)),
2%kl 2 < C2Y2NF (T — w(€) + D) hie(€ ]l a2

< C2Y2)|\F (o ez o IF " (fia o)l 2.2

< CQ(jlikl)ﬂHf(iljl ||L2 ! 2(k+k1)/2||fk27j2”L2,
which suffices for (Z8) since |j2 — (k + k1)| < 10. For later use we notice that we
proved the slightly stronger estimate, with the factor 27%1 in the right-hand side
of (Z.8) replaced by 2-F1/2,
(7.10) |
2" | ’ﬁk(f)(T—w(€)+i)_1sz,j2 *f(;c,ljl ’ ’Zk < CQ]l_kl/Z'lf(iljl | ‘L2 '2j2/2ﬁk2)j2 | |fk2’j2 | |L2'

Case 2: fy = féiljl is supported in Dy, j,, j1 > 0, k1 <1, fr, = gk, is supported
. — k
in Uj, <1 Diaias 1follze = 2777125, 22, and (| feollze, = llgk.llvi,- The
bound (I]) which we have to prove becomes
k N k 1~k || ok
(7.11)  2%[|ne(€) - (m = w(€) + ) gy * fo | 5, < C2 T 1S M2 - e Iy, -

As before, let hy(€,7) = i (€) (7 — w(€) + 1)~ (gr, * (Iiljl)(é, 7). In view of Lemma
EI(b), (c), and the bound (I0)), we may assume that gx, is supported in the set
{(€2,70) : &3 € Iy, |To —w(&o)| < 2KHK1=201 We have two cases: if j; > k+ k1 — 20,
then let ks .52 (52; TZ) = Gk, (52, TQ)”]Q (TQ - w(EQ)) USing Xk norms, Lemma m(b)a
and (1), the left-hand side of (ZI1l) is dominated by

C X 2Bl (r = w(©)(r = w(€) +0) (S, * 9hasn)llne

Jj2<j1+C
< C'Yk7k1 ’ QjIHf(]illeLQ Z 2_maX(j7j2)/2 ’ 2j2/25k2’j2‘|gk2)j2|‘L2
J:32<51+C

< Cviey - 21 f55, 12 - 9ka vy
which suffices to prove ((T.I1]) in this case. Assume now that j; <k + k; —20. In
view of ([Z4)), the function in the left-hand side of ([ZI1]) is supported in the union
of a bounded number of dyadic regions Dy, ;, |7 — (k + k1)| < C. Then, using X,

norms in the left-hand side of (ZI1]) and Lemma [£2(c), the left-hand side of (1))
is dominated by

- k - 1/ ok _
C2R 2RI i x gry ]2 < C2FFO 2N FL (G iz e [1F " (9 1o 23
_ ; k _
< C20 k02 9 2| f e - 272 g, Iy,
i — k
< C2U RO g5 e - gk lyi,
which completes the proof of (TITI).
Case 3: fo = go,; is supported in Iox I, j1 > 0, || follz, = 27 [|F (90,5, )| 11 13-
The bound (1) which we have to prove becomes

(7.12) 2¥[|mi(€) - (T =w(€)+) " fra 901 [ 5, < C2NF ™ (G030l a2z el 2,

Using the representation (5.12)), we see easily that
(7.13) ||]:71(90,j1)||L;L$° + ‘|-7:71(907j1)||L§L§° < C2j1/2‘|-7:71(907j1)”L;L$-
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Thus, using the definitions, Lemma [T(b), (c), and Lemma [£2)¢),
2% | (On<kro (T — w(©) (T —w (&) + ) fi * 90| 5,

< C2"2)\ F M (fiy % 90,31l

< C2*2||F 7 (fro)ll e 215~ (90,50 |21 pge

< C2 2| F N go ) parz - I frallze, -
Thus, for ([ZI2), it suffices to prove that

2" Y 278k (i (7 — w(©) fra * 90 2
(7.14) ey
< C2M|IF N go.4) s ez - lfisllz, -
Using Lemma [.2(c) and (ZI3)) again,
|| ()3 (7 = w(€)) fra * G0 [| 12 < CHF T (fra) Lo 22 1F " (90,50 L2 1o
< C2 2| F N go)llparz - 272 | froll 24, -

We use this bound to control the sum over j < 2k + j; + C in (ZI4). For j >

2k + 51+ C, 2’j/26k,j ~ 27% and for (TI2), it suffices to prove that
(7.15)

S Im©ni(r = w(©) fra * 90,31 || 2 < C2NF " gog) 1222 - I frall 24, -
j>2k+51+C

By examining the supports of the functions, 7, (&)n; (T — w(§)) fr, * goj; = 0 if
frs € Yi, and j > 2k+j1+C. So, in (LI0), we may assume fi, = fk, j, is supported
in Dy, j,, jo > 2k+j1+C. The sum in j in (TI5]) is taken over |j — j2| < C. Using
Lemma [£2)c) and (I3]), the left-hand side of (TIH]) is dominated by

Ol F (Fraga)llnge 2 [1F (903l p2 e < C22NF g0 )l a2~ 1o ol 2, -
This completes the proof of ((I5) and (T.12)). O

For later use, we notice that a simplified version of our argument can be used to
prove the following: if k > 20, ks € [k — 2,k + 2], fx, € Zi,, and fy € Zp, then

(7.16) [ (€) - (7 = (&) + 1) fia * fol| 5, < Cllfaallze, |1 follz,-

To prove (ZI6), we use Lemma EI(b) to bound |[|fy,llz,, > C7'k7|fr,llx,, -
Then, we write fo = 37 50 2, <1 fr1,j1s fri g supported in Dy, j, and || follz, >
D20 2ok <1 2012k1/4|| i ||p2. In view of the definitions, for (ZI6) it suffices to
prove that if fy, j, is supported in Dy, j,, then

> 27928y il 1n,  Fra g * Fer g 2 SCE 2272 B, o || Fro gl 227 254/ iy g | 2
5

Using (m)7 we bound ||1Dk,j 'fk27j2*fk1,j1||L2 < 02k1/22j1/2||fk2,j2|‘L2'kal’h”LQ'
So, it suffices to prove that
2’61/4]{2273'/25]%. < O2Uti2)/2,
J

where the sum is taken over j satisfying (T4]). This follows easily by examining the
cases max(j1,j2) < k + k1 — 20 and max(ji, j2) > k + k1 — 20 (in the second case
we estimate 277/23;, ; < O).
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Proof of Proposition [[2l The proof is similar to the proof of Proposition [Tl with
an additional technical difficulty related to the sum in %y in the left-hand side of
(Z2). Our main tools are the bounds (Z3) (with vxx, ~ 27%/2 if k; > 1) and
(T4). For any k; € [1,k — 10] we decompose
(717) fro = fi + foy = o (L= <htis—20(T = ()] + fry - M<hihs —20 (T —w(€))-
We show first that
(7.18)  2M||m(&)(r—w(&) + ) o ¢ [, < C275 | frall 2, |1 24, -

Assuming ([ZI8)), we can use the factor 27%1/4 to sum in k; and obtain

(7.19)
k—10
QkH’nk(g)(T_w(g)—i_i)ilsz * Z fl?lHXk SC”szHZkz sSup ||fk1||Zk1‘
Pt} k1€[1,k—10]

To prove (ZI8), we use the representation (@I and (ZG). We may assume f}! =

fk17j1 is supported in Dkl,ju 1= k+ k=20, Hflglnzkl ~ 2j1/2/8k1,j1||fk1’]’1||L2‘
We have two cases: if fr, = f,j, is supported in Dy, j,, jo > 0, [|fr,lz,, =~

292/2 B i || froin| |12, then, using (Z8) and the definitions, the left-hand side of
([TI8) is dominated by

C[Z(le/g + 2j/4)_1] ’ 2j1/25k17j1”fk17j1 ||L2 : 2j2/2/8k2’]’2||fk2’]’2”l/2
J
< C27 M2 2B | Frr L2 - 2727 Brs o Fro o || 2,

which gives (ZI8) in this case. If fr, = gk, is supported in U;, <4, 1 Dkssjos
ka2||Zk2 ~ ||gk2”Yk2? then let k2,52 (52,7—2) = Yk (5237_2)7%2 (TQ - W(EZ)) In view of
Lemma [£I(b), (Z4), and (Z.4), the left-hand side of (TI8)) is dominated by

C S 2P (€ (r — ()T — w(€) + 1) (Gka o * i)l 22
J.d2<i1+C
<CYPB jllfrgille Y (207 4 2max)/4)T190/2 g e
J.d2<i1+C
< C2 M2 2B fr L2 gk vy »

which completes the proof of (T.Ig]).
In view of (ZI9), for (Z2) it suffices to prove that

(7.20)
k—10

2k|’nk(€)(7—_w(€)+i)71fk2 * Z f/l€1||Zk < C”szﬂzkz L [SUIE) ) ]||(I_872')fllcl||zk1
ki1=1 1€1,k—

for any functions f,l€1 supported in Uj1§k+k1719 Dy, ;.- Using the representation
(1D, we analyze two cases.
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Case 1: fi, = sz,jz is supported in Dy s ||fk2||Zk2 ~ 2j2/26k2112||fk27j2||112’
j2 > 0. The bound ([C20)) which we have to prove becomes

k—10
28| (€)(7 = w(€) + D) fraio * D S,
(7.21) ki=1
< 02]2/26k27j2|‘fk2,12|‘L2 sup ||(I—872')f1l€1‘|zk1’
k1€[1,k—10]

for any functions fi supported in U, <kak,—10 Dii,ji- Notice that jo is fixed in
(T21)). We divide the set of indices k; into two sets:

{ Apjy = {k1 € [Lk —10] : |k + k1 — jo| < 15};

By j, ={k1 € [1,k —10] : |k + k1 — j2| > 16}.

The set Ay j, has at most 31 elements, so, for (ZZI)) it suffices to prove that
(7.22)
25| () (7 = (&) + ) fraie * Fh | 5, < CF Bl Fraiallea T = 8251, |z,
for k1 € Ay, and
(7.23)
28|k (€) (7 — (&) + )7 fi o * fi |1, < C27M 22260, I iy a2 F, Nl 2,

for k1 € Bk7j2.

We prove first (22). In view of the restriction on the support of f,lcl, the
condition k; € Ay j,, and (T4), the function ny(£)(7 — w(§) + i)~  fay gy * ff, 18
supported in UjSkJrkH_C Dy, ;. In view of the definition of the space Zj, for (.22)
it suffices to prove that

_— 2* ||k 1 (7 — w(€)mk(€) (T — (&) +0) ™ fra o * |y,
' < 022281, i fuaa 22| (L = 02 1, 1] 24,

and
k+ki+C

2k " 228 5l |ni (1 — w(€)me(€) (T — w(€) + 1) frgo * Fho || 2
(7.25) =

< C22 B, iy || fragall L2 1 1 1| 24, -

For (7.24) we use Lemma [LI](a), (c), and Lemma [L2(b). Since |k + k1 — j2| < 10,
the left-hand side of (24]) is dominated by

C2 2| F ™ (frao * i) sz < C22NF 7 (frauio 2 IF 7 (i) 12 15
< C22|\ fi oIz - 2721 = ) fi, Nl 2, »

which completes the proof of (T24). For (.20, we notice that the sum in the
left-hand side contains at most k1 + C terms. In addition, using Lemma ETIIDb),
Hfllcl”Zkl > Ck;1|‘fllc1 HXkl’ and, using m)v for any j € [k7k + k1 + C]

2X2972 By | nj (1 — w(€) )k () (T — w(€) + 1) fiaga * fio || 2

< 02_k1/22j2/2ﬁk2)j2||fk2,j2||L2 . ||fllcl||Xk1

This completes the proof of (.25 and (.22)).
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We prove now the bound (723). The main observation is that the function
M () (7 — w(€) + )7 fry g * f,lCl is supported in a bounded number of regions Dy, ;
(assuming jo and k; fixed). This is due to the support property of the function f,il,
the assumption |k + k1 — jo| > 16, and (4). Thus, using (73), the left-hand side
of (T23) is dominated by

C sup 282772 By, i|n; (1 = w(€))ne(§) (T — w(€) + ) frgja * Fho || 12
J

< 02_k1/22j2/26k27j2||fk27j2||L2 : ||fllc1||Xk1’

which suffices for ([[23]) since Hf,lﬁHZk1 > Ck:l_1||f,il\|xk1 (see Lemma [AT](b)).

Case 2: fj, = gi, is supported in szgkz—ZO Dy ja ||fk2||Zk2 ~ ||gk2”Yk2' The
bound (20)) which we have to prove becomes

k—10
2| | (&) (7 — w(&) + ) gra fill s, < Cllgallvi,  sup (1= 32) fr, |z,
P k1€[1,k—10]

for any functions f,é1 supported in Uj1<k+k1_19 Dy, j,. Using Lemma T[b) again,
it suffices to prove that

(7.26)  2%[[m(©) (7 = w(€) + ) grs * fi, |, < C27M P grs Iy, i, llx, -

Using ([C4]) and the support properties of g, and f,il, me(€) (T —w(&) +1) " Lgr, ﬂkf,é1
is supported in a bounded number of regions Dy, ;, |k + ki — j| < C. Thus, for
((C24) it suffices to prove that if fi, j, is supported in Dy, j,, j1 < k+ ki —19 and
|7 —k — k1| < C, then
(7'27) 2k/2||1Dk,j ’ (gkz * fkhjl)HLZ < CHgszYkZ : 2j1/2‘|fk1>j1 ||L2'

To prove (L27), we may assume ko > 100. For jo < ko let gp, j,(§,7) =
N, (T — w(§)) g, (&, 7). Notice that in view of (6.20) and Lemma [ZIIb)
2k/2H1Dk,j ’ (gk27j2 * fkhjl)HLZ < 02]'2/2”9]”7],2”[/2 : 2j1/2|‘fk1111|‘L2

< C||gk2”Yk2 ’ 2j1/2‘|fk17j1”l/27

for any jo < ko. To prove (.27), we have to avoid the logarithmic divergence that
appears when summing the bound ([7Z.28) over jo < ky. In view of (6] and the
Minkowski inequality (see the explanation preceding ([{I7)), we may assume

(7.20) { s (6,7) = 282723y 1 1) (€) (7 — w(€) + 1) " iy (T — w(€))(7);
19k, = ClIP[|L2-

(7.28)

We argue as in the proof of Lemma[42(b). Let hy = h-1jg ), h- = h - 1(_ ]
and define the corresponding functions gy, + and gi, — as in (Z.29). By symmetry,
it suffices to prove the bound (.27 for the function g, +, which is supported in
the set {(&,7) : € € [—2k2F2 —2k2=2] 7 ¢ [22k2710 92Zk2H101L Ty view of (B.),
7 —w(€) =7 — &2 on the support of gk, +, and g, +(&,7) = 0 unless |\/7+¢| < C.
Let

Gy (6:7) =252, 1) (VT (1= + (VT + €)% +iy/T2 ) !

(7.30)
X No(VT +&) - hay (7).
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Using Lemma [LT|(b), it is easy to see that ||gk,,+ — g, 1 |[x,, < Cllhy]|z2. In view
of ([Z.28)), for ([Z.27) it suffices to prove that
(731) 2k/2‘ |gl/€2>+ * fkl,jl ‘ |L2 < C||h+||L2 . 2j1/2”f1€17j1 ||L2'
We substitute the formula (Z30) and make the change of variables &, = — /T2 + 2.
The left-hand side of (31 is dominated by
1 !
H /R2 Frr g (EHV/T2 = p2, 7 — 72) - HO(M2>W ' h+(T2)du2de} .

where 1, (12) = h(T2) X[ky—1,k,+1] (—v/T2) (27 //T2) is supported in [22F274, 22k +4],
|||z = ||hy]|L2. By duality, for (Z31) it suffices to prove that for any m € L?

1
li
‘A4fk1,jl(€1771)h+(T2) 'UO(Mz)m

x m(& — /T2 + pi2, 71 + 72) dpadradéydry | < Climl|p2 B[] £227 2| fiy o |l 2

Let m(&,7) = [ m(& + p2, T)nmo(p2) (2 + /224 "V dpa, |||z < Cllml[r2. In
the left-hand side of the expression above we make the change of variable 7 =

p + w(&r), f}fhjl(fla p1) = frygi (€15 1 +w(€1))- It suffices to prove that

’ / FE 5 6L m)R(72) - &y — V72, + (&) + 72) dradSidpn
R3
< Ol el |Wy ez - 27211 5 e
The integral in the left-hand side of ([7.32)) is over the set
(€1, p1,72) € Ty x I, x [2242 7, 22024,

Using the Holder inequality, for ((32]) it suffices to prove that

sup / (€L — /T3 1 + w(Er) + 7o) dradéy < C||i| o,
11 ER J T, x[22k2—1 22ka+4]

b

(7.32)

which is easy to see by changing variables and recalling that k1 < ky — 8. This
completes the proof of ([T21). O

8. BILINEAR ESTIMATES II

In this section we prove two bilinear estimates, which correspond to High x
High — Low interactions.

Proposition 8.1. Assume k, ki, ko € Z have the property that max (k, k1, ko) <
min (k, k1, k2) + 30, fi, € Zy,, and fx, € Zy,. Then

(81) 2k||77k(€) : Ak(& T)ilflﬁ * fk2 ’ ‘Zk < CkalHZAl kaQHZkQ'
Moreover, any spaces Zy in the right-hand side of &) can be replaced with Z.

Proposition 8.2. Assume k,ki,ks € Zy, k1, ko > k+10, |ky — k2| <2, fi, € Z,,
and fr, € Zy,. Then

(8.2) € (&) - Ar(&.7) " fie, = szHXk < C27Y | fi |z N frall 24, -

The main ingredients in the proofs of Propositions B.Iland B2 are the definitions,
the representations (1) and (£.2), Lemma 1] and Corollary
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Proof of Proposition [l We analyze two cases.

Case 1: min (k, k1, k2) > 200. In this case we prove the (stronger) bound (81
with the space Zj replaced by Xj in the left-hand side. We show first that if
J1,J2 >0, fr, j, is an L? function supported in Dy, j,, and fy, j, is an L? function
supported in Dy, ;,, then

26N " 2972 By i mi (€)m (7 = w(©)) (T = (&) + 1)~ (frw s * Fraro)|z2
(8.3) J
< C'Y(jlvj2ak)2jl/2ﬁk1,j1kahleLz ’ 2j2/2ﬁk2)j2||f’€2’j2||L2’

where

2~ max(j,32)/4if max(ji, jo) < 2k — 80;
8.4 1,2, k) = in(jr,j > 7
(8.4) v(j1s g2, k) {Q_mm(gl,gz)/s if max(ji,ja2) > 2k — 80.

To prove ([83), we notice that, in view of ([6.23)),

M (€)n; (T — W) (T — w(&) + 1) (frygs * frayo) =0

unless

(8.5) max (4, j1,j2) € [2k — 70,2k + 70] or
' max (j, j1, j2) > 2k + 70 and max (4, j1, j2) — med (4, j1, j2) < 10.

We notice that for j,j1,j2 as in @3), Br,; < CBk,.j1 Brs.jp- Also, using ([E21]),

| (E)m; (T — w())(T = w(&) + 1) (Frrju * frarjo)llz2

< 027U Hi2)/2gmmax (J,1,52) /29— med (5.51.52) /4| £, i |2 Frangol 22 -
Thus, for ([B3), it suffices to prove that

(8.6) ok Z g—max (j,j1,j2)/29—med (j,j1,j2) /4 < Cv(j1,j2, k),
J

where the sum in (84) is taken over j satisfying (83). If max(ji1,72) < 2k — 80,
then j € [2k — 70,2k + 70] and the bound (86 follows easily from the definition
B4). If j; = max(j1,72) > 2k — 80, then the sum in (84 is taken over j < j; + C
and is dominated by

C2F Z 9—J1/29—max(j,j2)/4 < C(ja + 1)273'2/4’
i<iri+C

which suffices. The case jo = max(j1, j2) > 2k — 80 is identical. This completes the

proof of ([&3)).

We turn to the proof of (8I]). We use the representation (I)). If fi, = fx, j, €
Xk, and fr, = fr,j» € Xk,, then BI) follows directly from (B3] and the defini-
tions. Assume now that fx, = gk, € Yk, fao = ko € Yio, [fillze, = gk llvi, s
and || fi, |z, = gk, |y, - For j1 € [0, k1] and ja € [0, ko] let

k1,51 (f’ T) = T (T - w(g))gkl (fa T) and k2,52 (57 T) = MNj (T - W(E))gkz (57 T)-
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We use [B3), Lemma (@I (b), and the definition [84]) in the case max(ji,j2) <
2k — 80 to write

28| |m (&) - (7 — w(&) + 1) gr, * gszXk

<C Z 2k}|nk(§) (Tiw(£)+i)7lgk1,j1 *gkz,szXk
J1,J2<k+30

<C Z Vs d2s )22 ks i 122272 2 gy o || 12
J1,J2<k+30
< Cllgk, lvi, l1grs i, -
as desired.
Finally, assume fx, = fi, i € Xbyy foo = Gk € Yios [[fiallze, = lgkllva,

and ka1||Zk1 ~ 2j1/25k17j1||fk17j1||,;2, and write g, = Z?;ZO Gk,.j, as before. If
71 < 2k — 80, then we can use the same computation as before. If j; > 2k — 80,
then we use (B3], Lemma ([ZI)(b), and the definition (84 to write

Qk“nk(f) . (T - w(«f) + i)_lfkl,jd *gk2HXk
<C Z 2kH"7k(§) : (T - w(é) + i)_lfkhji * gk2,j2”xk

J2<kz

<C Z 2_]2/82]1/2ﬁk1>j1kabjl||L22]2/2||gk2>j2||L2
J2<ks
< CP2 Bk, i frn a1 2219k v,
as desired. This completes the proof of (BI) in the case min (k, k1, k2) > 200.
Case 2: min(k, ki, k2) < 200. In view of the hypothesis, max (k, ki, ks) <
230. If &y = 0 or ks = 0, we may replace the spaces Zj in the right-hand of
(BI) with the larger spaces Zo; see the definition [38). Clearly, the proofs are

identical to the proofs in the corresponding cases k1 = 1 or ko = 1. There-
fore we may assume ki,ka > 1. In view of Lemma 1] (b) and the represen-
tation (@), we may assume fp, = fi, ;, is supported in Dy, i, foo = frjs

Q

is supported in Dy, j,, [|fallze, = 2728k, jil|fernllz = 27| fay g llL2, and
ka2||Zk2 ~ 232/2ﬁk2’j2||fk2’j2||Lz ~ 22||fiy.jollL2. Using the definitions and the
fact that k < 230, for (8 it suffices to prove that

Z 2j|’f_1[nj(7)ﬁk(f)(7 + i>_1fk1,j1 * fk2>j2]HL;Lf
J

< O\ ey gLz - 272|| fragol| L2

By examining the supports of the functions, we may assume that the sum in (87)
is taken over

(8.8) Jj < max(j1,72) + C.

Assume j; = max(ji, j2) (the case jo = max(ji, j2) is identical). The left-hand side
of (87) is dominated by

C > F T (Fra sz,jz)HLglng < (1 + ONF " fra i) 22 1F " (Frango) 22 Loe
J<j1+C
< C2||fry a2z - 2272 fra ol 24
which completes the proof of ([81). O
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For later use, we rewrite the stronger bound that we proved in this last case: if
k,k1,ke € Z4 have the property that max (k, k1, k2) < min (k, k1, ko) + 30 < 230,
fi, € Zg,, and fr, € Zy,, then

(89) 2k||77k(€) : Ak(gvT)ilf/ﬂ * fk2HZk < CkalH?kl ka2‘|7k27
where?k:Zk lsz 1 and?k :70 if k=0.

Proof of Proposition B2l We analyze two cases.
Case 1: k£ > 1. We show first that if j;, jo > 0, fi, j, isan L? function supported
in Dy, j,, and fg, j, is an L? function supported in Dy, ;,, then

237 2972651 (€5 (7 — (€)= () + 1) (fru * Fraa)ls
(8.10) j
< CY(j1, Jos k>2j1/2/8k717j1||fk?1,j1||L2 ) 2j2/2@k2,j2‘|fk27j2”[,2,
where
(8.11) V' Grs jo, k) = (2872 4 gmax(inda)/4)=2/3

To prove ([8I0), we notice that, in view of (6.23),
1k (€)1 (T = w()(T = w(€) + )7 (fra s * fraga) =0

unless

(8.12) max (J, j1,72) € [k + k1 — 10,k + k; + 10] or
. maX(.jajlan) Z k+ kl + 10 and maX(jajlan) —med (jaj17j2) S 10.

Also, combining (6.20) and (621),

|71 (€)1 (7 — W(E)) (T — w(€) + ) T (o * Frpja)| |12 < C2772U T FI)/2

x [20HR)/2  g(max(ji,j2)+ki)/2 | gmax (juj1.z)/2gmed (j,j1,2) /4] =1 | Frw o 22 || Fra o | 22 -

Thus, for (8I0), it suffices to prove that
Qk Z /6k: j [2(]+k)/2 + Q(max(jl7j2)+k1)/2+2max (j7j17j2)/22m8d (j1j17j2)/4]71
(8.13) J
S C’y/(j17j27 k)/Bkhjlﬁkg,ij
where the sum in ([8I3)) is taken over j satisfying (812). If max(j1,j2) < k-+k1—20,
then j € [k + ki — 10,k 4 ky + 10]; we ignore the term 2(max(71.72)+k1)/2 and the
bound (BI3) follows easily from the definitions. If j; = max(j1,j2) > k + k1 — 20,

then the sum in (8I3)) is taken over j < j; + C. The left-hand side of (8I3) is
dominated by

2k Z 5k7j27(maX(j1,j2)+k1)/2 < Ck127k1/2 < C'}/(jlan, k)ﬂkhjr
j<ii+C
The case jo = max(ji,j2) > k + k1 — 20 is identical, which completes the proof of

B.I0).

We turn to the proof of (8.2). We use the representation (I)). If fi, = fr, j, €
X, and fu, = fry,jo € Xk,, then B2) follows directly from (8I0) and the defini-
tions. Assume now that fk1 =0k, € qu ka = Ok, € Yk27 Hflﬁ”Zkl ~ Hgk1||Yk17

and ||fk52||Zk2 ~ HngHYkQ' For j; € [07 kl] and jo € [07k2] let gkl,j1(€77-) =
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i (T - w(f))glﬂ (67 T) and Gks2,j2 (fa 7—) = Nj (T - w(f))gkz (57 7—)' We use m and
Lemma [I))(b) to write

2 e (€) - (7 — w(&) + 1) gy * Gy | |Xk
< C Z 2k||77k(€) : (wa(£)+i)7lgk1,j1 *gkz,szXk
J1,J2<k1+10
<C Y A de B2 gk 12272 gk a2
J1,52<k1+10

< 027" Igi, Iy, [19ka v,

as desired. Finally, if fr, = fr, ;i € Xps fro = Gk € Yo, ||fk2HZk2 ~ HngHYkQ’

and ||fk1”Zk1 ~ 2j1/26k1,j1||fk17j1||142’ we write g, = ZZQ:O ks,j» s before and
repeat the same estimate, without the sum in j;. This completes the proof of (82)
in the case k£ > 1.

Case 2: k = 0. We show first that if ji, jo > 0, fx, j, is an L? function supported
in Dy, j,, and f, j, is an L? function supported in Dy, j,, then

1 oo
S S i () - £+ ) (B * Fra)l 2

k=00 j=0
< O maxUrd)/t 90 /28 | Fry gl p2 - 2722 By gl fraia | 2

To prove ([8I4), we notice that, in view of (623),

Xk ()i (7) - €T+ ) (fragn * froign) =0

(8.14)

unless

(8 15) max (], jl,jg) € [k/ + k1 — 10,]45/ + k1 + 10] or
. max (.jajlan) > K’ + kl + 10 and maX(j?jlva) — med (.j?jlan) < 10.

Also, using ([619),

Xk (€)n5(7) - €T+ 1) (o * Franga) 22

< O I g g G 2 i f e

Thus, for (8I4), it suffices to prove that
1
(8.16) Z Z ok'/2 < 6’211130((]'1)]‘2)/47
k'=—oo j
where the sum in (816]) is taken over j satisfying (813). If max(ji,j2) < k'+k1—20,
then j € [k’ 4+ k1 — 10, k' + k1 + 10], so (810 is clear. If max(j1, j2) > k' + k1 — 20,
then the sum in [8I6) is taken over j < max(ji,j2) + C, and (BI0) follows easily.

Given (BI4), the bound (B2) follows as in the case k > 1, using the definition
of the space Xy. This completes the proof of Proposition O

For later use, we notice that the bound (RI4) also shows that

(8.17) [0 () - (7 +4) " fr, * f’“ZHZO < O frsllzi, | fral 24y -
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9. MULTIPLICATION BY SMOOTH BOUNDED FUNCTIONS

In this section we consider operators on Z; given by convolutions with Fourier
transforms of certain smooth bounded functions. For integers N > 100 we define
the space of admissible factors

S¥ = {m :R? — C :m is supported in R x [~2,2] and

(9.1) N o NN o o
Imllsg == D> 107 mlles, + > Y 1071072 ml| 2, < oo}

o1=0 o1=002=1

The precise value of N is not important (in fact, we will always take N = 100 or
N = 110). Notice that bounded functions such as ¥(t)e*%0, g € R, Uy as in (23,
are in SRP. We also define the space of restricted admissible factors

S% = {m R? — C:m is supported in R x [—2,2] and

(9.2) NN
Imllss, == > > 1187 07°ml| 2, < oo}

0’1:0 0'2:0
Using the Sobolev imbedding theorem, it is easy to verify the following properties:
S% C SN-10}
SY - SK S SR 105
S% - S¥% S SX_108
92S% € S¥_10-

(9.3)

For k € Z, we define

(9.4) Z,};ligh = {frx € Zx : fi is supported in {7 —w(§) € U E}}

§>k—20
Clearly, Z,"8" = Zj if k < 20. For k € Z and € € {—1,0} let AL(¢,7) = [Ax(&, 7))
Lemma 9.1. Assume ki, ko € Zy, |k1 — ko| < 10, and f,?ligh € Z,}C‘jgh. Then, for

m € S5, and € € {—1,0},
(9.5)

s (€045, (€2.72) - Flm - FH (A€ )|, < Cllmlsgs, - 11457, £ 12,

Remark. We do not need to consider convolutions of low-modulation functions and
Fourier transforms of admissible factors, in view of the identity (I0.I3]).

Proof of Lemma @Il We may assume ||m||sss = 1. For any j” € Z, and k" € Z
let

(9:6) mpr g = F [0y (7)xar () F (m)]
and m<prr jor = 3 pm < M . Using (@) and the Sobolev imbedding theorem,

H@le‘?mHLzL?Q < C for any oy € ZN1[0,90], o5 € ZN[1,90].
Thus, for any j” € Z, and k" € Z,

(9.7) Mg llnz, < 0275097
. 2k/l||mk//,j//||LiLf° + Hmk//,j//HL;?t < O(l + 2k”)_802—80j”.
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We turn now to the proof of ([@H). Assume first that kq,ke > 1. In view of the
definition of Z,"¢" and Lemma EI(b), we may assume that f:llgh = fr,jr is an L?

M . . h' h ~ . . 2
functhn supported in Dkl;jl) J12 k1—20, |‘Ai1 fk;g ||Zk1N 2¢71271/ 5k11j1 | |fk17j1 | |L2'
We write

o0 o0 oo
(9.8) m = Z m<—100,5” + Z Z My .

j=0 k''=—-99 j/'=0
For ([@.3]) it suffices to prove that for e € {—1,0}
Z ‘ |77k2 (52)"46(527 7—2) ) [fklgjl * f(mgfloo,j”)](fg, 7—2) ‘ |Zk2

§"'20
09+ 33 (@A ) - Uiy < Flmpr )2, 72)] |5,
k/lz_ggj//zo
< 2801 . 2j1/25k1,j1 ||fk1,j1”L2'

To bound the first sum in (@.9)), we make the changes of variables 72 = ps+w(&2),
71 = p1 + w(&) and write

Jrrgy * F(m<—100,57) (82, p2 + w(&2))

= /R2 a1 (€15 1+ w(&)) F(m<—100,57) (&2 — &1, 2 — i1 + w(&2) —w(&r)) d&rdm.
By examining the supports of the functions and using the fact that |w(&2) —w(&1)] <
2k1=50 4 & — £1] < 2799 together with j; > ky — 20, we see that 7, (12 — w(&2)) -
[fklyjl * f(mgflooyju)}(fg, T2> = 0 unless

(9.10) lj1 = 2| < C or j1,52 < j" +C.

We use the X}, norm to bound the first sum in (@9). Using Plancherel’s theorem

and (@0),

|| fier.gn * Fm<—100,) ’Lg < C27%| fy o2
2,72
Thus, the X}, norm of the first sum in (@9) is dominated by
¢ Z Z 26j22j2/2ﬁk27j22_80j ||fk1’j1HL2’
J""20j220

where the sum is over jo,j” satisfying (@I0). The bound (@9) for the first sum
follows easily (recall that |k1 — k2| < 10).

To bound the second sum in (@), assume first that e = 0. We notice that if
€2 — &1] € 2871281 then |w(&) — w(&)] < C2MFF 50

s (T2 = w(&2)) * [fiy o * F (Mg j)](§2,72) =0

unless

(9.11) lj1 — g2l <4 or ji1, 5o <k + K" +5"+C.
Using Plancherel’s theorem and ([@.7]),

(9.12) | Figi * Flmr )| g < C27F 27| fy 1

272

The bound (@) for the second sum follows by using the X}, norm since

jo/2 10k’ 5105 j1/2
E 2J2/ ﬂkmjz <C2 27 '2J1/ 6k17j1'
Je<j1+k"+3"+C
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We bound now the second sum in (@.9) when ¢ = —1. The main difficulty is the
presence of the indices jo < j;. In fact, for indices jo > j; — 10, the argument
above applies since the left-hand side is multiplied by 2772 and the right-hand side
is multiplied by 2771, In view of (@.I1)), it suffices to prove that

(9.13)
Do e E)nerar(r2 = w(€) AL (€2, 72) frs gu * Flmie j)](62, )|,
k4§ 21—k —C
J2<j1—10 )
+ Z Z 27]2/26k27j2 ’ }nkz (52)77j2 (7—2 - w(£2))fk1>j1 * f(mk/lvj”)
K"t =C a2k
< OQijl/Zﬂkhjl | |fk17j1 HL2'

Using Lemma [I(c) and ([@.7), the first sum in the left-hand side of @I3) is
dominated by

—ka/2 —ka2/2 —70(j1—k

c Z 27822 i, e llmur ol |2 pee < C2772/2| fi, || 227 700 R0,

k45" >j1—k1—C
which clearly suffices. Using ([@.12)), the second sum in the left-hand side of (@.13)
is dominated by

02_70(j1_k1)||fk1’j1||112 © Sup 2_j2/2@k27j2 < C12_3‘1/2||f’€1>]‘1 ||L27
J2€[k2,41]

which completes the proof of (O.13)).

We prove now the bound ([@.3]) in the case k1 = ko = 0. We use the representation
@Z). Assume first that fo'®" = go, is an L? function supported in Iy x I,

high o1l T .

1AG fo ™" || 2o = 29271 || F =4 (go,ju )| 11 12 We write

(9.14) m= meigt Y. > My

j3'=0 k!'=5j""=0

and notice that 179(£2)(go 5, * F(myr i) (€2, m2) = 0if & > 5. For (@), using only
the Yy norm, it suffices to prove that for e € {—1,0}

=

o0

9¢j29J2 }'7177.27 9o, * F(m<q jv)) (&2, T s
(9.15) j;()jzzzo H [ J ( 2)( 0, ( <4,j ))( 2 2)”|LmLt

< C27 2 |F (g0l rs-
By examining the supports of the functions, n;,(72)(go,;, * F(m<a,j))(&2,72) =0
unless
(9.16) lje — j1| < C or j1,jo < j" +C.
In addition,

|| F = n), (72) (90,5, *f(m§4,j”))(€2a7'2)]"LéL% < ONF M gog)lrzzllme<ajollLe, -
The bound (@I5) follows from (@7) and (@I6).

Assume now that féligh = f(ﬁljl is an L? function supported in Dy j,, k' < 1,

HA(EJf(;lithZO ~ 2€j12j1_k/|\f(’i;l [|L2. We decompose

(9.17) m = Z M<k—10,57 + Z Z My o

j”:O k//:k,/_gj//:()
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We observe that f(’i;l % F(m<g—10,,) is supported in the set {(&2, ) @ |&2] €

272 2K 421} In addition, nj, (r2)(f&;, * F(m<p—3,j))(&2,72) = 0 unless ([@.I6)
holds. The same argument as before, using Plancherel’s theorem and the bound
@0), shows that

||70(&2) A (&2, 72) fo] Z F(m<p—10,57)] (&2, 72) HX < O299r9n | oJ1||L2
// 0

To handle the part corresponding to the second sum in the right-hand side of (@.17]),
we use the space Yj. It suffices to prove that

5 [ee) o)
S 33 2 | F iy, (r) (f, x F(mpr ) (€2, m2)]|[ 1 g2

(9.18)  wvS—9;7=04,=0
< 02D H ||l
As before, we may assume that jo satisfies the restriction (Q.I6]) and estimate
|17 0 (72) (£, « F(mur o)) (€2, m2)]|[ 11 2 < CIF Sz, lmws ol 2 15
< 28" 27K £ e,

using Plancherel’s theorem and ([@.7)). The bound (@.I8) follows.

We prove now the bound (@5) in the case ko = 0 and k; € [1,10]. As be-

high

fore, we may assume f; ©° = fi, j, is an L? function supported in Dy, j,, j1 > 0,

A, f hlgh||Z,€1 ~ zealzﬂl/wkmu frvilloe & 2992271 fi, S|l z2. We use the decompo-
sition [@I7) in the case k¥’ = 1. The proof of the bound (@.H) is then identical to
the proof in the case considered before k; = 0, fi'&" = fé":jl, K =1.

Finally, in the case k; = 0, ko € [1,10], we have the stronger bound

019)  ||ma(@) 4L (& m)Flm - FH A€ )|, < CIAGL™ 7,

where Z is defined in ([@3.8). The proof of this bound is identical to the proof of
[@3) in the case considered before k1 = 1, ko > 1. O

In some estimates the delicate structure of the spaces Zj is not necessary. For
€ [—20, 20] and k > 1 we define

o ={f € L?: fsupported in I} x R and

(9.20) . ,
11150 =2 ’“anmmﬂm 2z, < oo},
§=0
For k£ = 0, for simplicity of notation we define Ey . = Zy. We notice that
(921) Ek,4 C Z, C Ek,_4 for any ke Z+.
Lemma 9.2. (a) Assume k1 € Zy, ka € [1,00) NZ, and I; C fkl, I, C sz are
intervals. Then, for m € 555, o € [—20,20], € € {—1,0}, and fx, € Ek, .o
[1n(€)(re + 0 Flm - F (1, ) )]
ko,

< ClL+d(I, L)~ Iml|sgg, - (m + ) fra |y o

where d(I1, I2) denotes the distance between the sets Iy and Is.

(9.22)
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(b) Assume kv € Zo. Then, for m € S35y, o € [-20,20], ¢ € {—1,0}, and
fir € By, 0
(9.23)

() (ra+ )¢ Flm - F1 ||, < 027 g -1 +0) i sy o

Proof of Lemma B2l We may assume ||m||s;s, = 1 and argue as in the proof of

Lemma We may assume fi, = fi,j, is an L? function supported in Iy, x I;,,
(1 + ) frr |y, o = C7129%129 204 |[ fi 5 [ L2. With the notation in Lemma [.1]
we write

(924) m = Z m<o,;" -+ Z Z M o7

§=0 k/'=1j"=0
For ([9.:22)) it suffices to prove that
(9.25)
2ok2 N 992972 |0y (1) 15, (§2) - [(11, (€0) Frain) * Flm<o )]

J2,3"" 20
+ 200 Z Z 2972972 ‘ ‘77]'2 (TQ)]-IQ (62) ) [(111 (51)fk1>j1> * f(mk”7j”)]HL2
k'">1j2,5"" 20
< C[l + d(Ilv IQ)]7502M€1 201 2j1|‘fk1,j1||L2'

By examining the supports of the functions, we see that the first sum in the
left-hand side of ([@.25) is nontrivial only if d(I1,I3) < C (so |k — ke| < C). In
addition, Mja (7—2)112 (52) ’ [(111 (gl)fklijl) * ',F(mﬁo’j”)} = 0 unless
(9.26) lj1 = J2| < C or j1,j2 <" +C.

Using Plancherel’s theorem and ([@.7),

(X1, (60) frr ) * Fme<o )] 2 < C27%" | fuy gy Il 2

The bound (@28) for the first sum follows easily. For the second sum, we may
assume that 28" > C~1d(Iy, 1) (so 2" > C~12F1=F2l) and that the restriction
([@:26)) still holds. Using Plancherel’s theorem and (@.7)),

(15, (60) fir ) F(mgr jor)|| Lo < C275F 275007 fi e
The bound ([@.23]) for the second sum follows easily. This completes the proof of
part (a).
For part (b), we may assume k; > 10 (in view of Lemma@.2) and f, = fx, j, is
as before. We decompose m as in (@.24). For ([@23)) it suffices to prove that

Z Z 26j22j2Hf71["7j2 (7_2)770(52) ’ (fkhjl * ‘,F(mk”’j”))]HLiLf

(9.27) |k —F1|<2 j2,5" 20

< C2—50k1 20‘kl 26j1 2j1 ‘ |fk1,j1 ‘ |L2 '

We may also assume that the restriction ([@26]) holds. Using Plancherel’s theorem

and (D)
||'7:71[77j2 (72)770(52) ) (fk17j1 * f(mk”,j”)ﬂ | ’L;L?
< Cllmpr jorl |z oo [|F~ (Fry )2

’ <11
< 278 980" e
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The bound [@:27)) follows easily. This completes the proof of part (b). O

We state now a slightly stronger form of Lemma that will be used in the next
section.
Corollary 9.3. (a) If ky,ko € Z 1, € € {—1,0}, fl?ligh € Z]k“igh, and m € S5, then
(9.28)
(€20 A5, (€2 m2) - Flm - FA(AEM|| < 2720 el [ A5, £,

100
k2
(b) If ko € Zy, e € {—1,0}, fo € Zo, and m’ € S%y,, then
(9:29)  ||mea(€2) AT, (€2 m2) - Fl' - FA(fo)]|| < C273% |35, |46 oLz,
kg

100

Proof of Corollary B3 Part (a) follows from Lemma [0] Lemma 02 and (@21)).
For part (b), we notice that ||m’. ;u||r2pe < 0278%" for any k" € Z, j" € 7.
The bound (@:29) then follows from the proof of (@15, the bound ([@I9)), and the
proof of Lemma [0.2(a) with &k = 1. O

10. PrROOF oF THEOREM [I.1]

In this section we complete the proof of Theorem [Tl The main ingredients are
Lemma 2. Lemma 5.l Lemma [5.2] Proposition [Z.I Proposition [[.2] Proposition
B, Proposition B2l Lemma [@.2] and Corollary We start by showing that the
data eXiU0(-0) Pyyiy ¢ of the initial-value problems (ZI0) and ZI2) are in H,
o> 0.

Lemma 10.1. Assume U : R — R satisfies the bounds

(10.1) [1022U||p2 < 1 for any o2 € [1,110] N Z.
Then, for any o € [0,20] and ¢ € H,
(10.2) 1€ Penigndll - < ClIgl| e

Proof of Lemma [I0L1l To fix the notation, assume that the sign in the left-hand
side of (I0.2)) is +. So we may assume that ¢ is supported in the interval [21°, 00).
For any k" € 7Z let

(10.3) Vir = Fi o (€ F1[e )]
and Ve = 3 4 pn Vigr. Using (I0.]) and the Sobolev imbedding theorem,

(104)  |[Veollz= < C and |[Vir |2 + |[Vir |1 < C275%" for any K > 1.

We turn now to the proof of [I0.2)). For any k1 > 10 let ¢, = Py, ¢. In view of
the definitions, it suffices to prove that

|| Pay (€7 gy )| L2 < C27 40 =R2l gy || 2 i Ky > 15
{ 1Po(e™ ¢, ) |1 < C274%1|g, || 2.

For the first bound in (I03), if |k — k2| < 10, then || Pr, (€'Y ér, )22 < Cl|ox, |12
as desired. If |ky — ko| > 10, then

1Pkl < Y (1P (Virdy )l 2

k! >k —ko|-C

<C Y WVarllzellw e,

k" >|k1—k2|-C

(10.5)
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which suffices in view of (I04]). For the second bound in (I03), since k; > 10,

1Po(eV o)l < D [Po(Vardw)ll <C Y |Virllpellwal 2,

[k —ky | <2 [k —ky | <2

which suffices in view of (I0.4). O

We prove now our main bilinear estimate for functions in F.

Proposition 10.2. If m € S5, m' € S}o, 0 € [0,20], and u,v € F°, then

(10.6) 10 (m - wv)|| v 4 ||m" - (wv)|| e

< C(llmllsg, + [1m/llsz,,)([ullee[[vl]zo + [ullpol[vll#~)-

Proof of Proposition [[0.2l 'We show first that

(10.7) 10z (uv)||Ne < C([ullpe[[v][po + [[ul[Fol|v]Fo)-

For k € Zy let Fi(&,7) = ne(§)F(u)(&,7) and Gi(&,7) = ni(§)F(v)(&, 7). Then

Jullfe = 35— 275 [( = 02) B, |17+
1ol = k=0 227" (1 = 0) G, |12,

and

e (©)F[0z(u-0)(&,7) = C& > me()[Fr, * Gr,)(§, 7).

k1,k2€Z

We observe that ng(€)[Fk, * Gk,](£,7) = 0 unless
k1 <k—10and ke € [k — 2,k + 2] or
ki € [k—2,k+2} and k; <k —10 or
ki, ko € U’C* 10,]€+20] or
kl,kg 2 k-f— 10 and |k1 - kg‘ S 2.
For k, k1, ko € Z let

Hk7k17k2 (ga 7_) = Uk(f)Ak(ﬁa 7_)715 : (Fk1 * sz)(ga 7_)'

Using the definitions,

2
Zi

(10.8) 102 0)lZer = €S 22| 3 Hiron

k>0 k1,k2



790 ALEXANDRU D. IONESCU AND CARLOS E. KENIG

For k € Z, fixed we estimate, using Propositions [[1] [[2] Bl and B2

H § :Hk,kl,kz

k1,k2 Zi
< Y | X A, + X || X Henw
Z, Z
lko—k|<2  ki<k—10 lki—k|<2  ka<k—10
+ > [ H ks s || 2, + > [ H ks k2 || 2,
k1,k2€[k—10,k+20] k1,ka>k4+10, |k1 —k2|<2
<ClL > NGrllzy) Nullpo +C[ D NFkllz, ] - ollro
[k2—k|<2 [k1—k|<2
+C[ Z |‘F/€1||Zk1][ Z HGk:ZHZkQ}
k1 —k|<20 ks —K|<20
_ 1/2 1/2
F O ML Rl )7 S NGk I3,

k1>k ka>k

The bound ([T follows. A similar estimate, using Proposition 8] and (817),
shows that

_ - _ 1/2
Im0(€)Ao(&. ) F )z, + [ 3 2 lnk(€) Ax(e, 1) F o) 12,]
(10.9) E>1
< C(llullpelvllro + [l pol[v]|Fe).
We would like now to use the bound ([@28) to include the factor m. We may

assume ||m||se, = 1. For any u € C(R : H~?) we write u = u'°% + uhigh,

u®V = 3 F () F (W)(€,7) ner—1s(T —w(§)] = 3 FHA™);

k>0 k>0 _
e = 3 F U (OF ()(€.7) - (1 = neoralr —wl€)] = X F )

Then, using ([Q.28) with ¢ =0,

[ b2 = 37 22K gy (€ F((12 + 1)mutie |2,

k>0
g - ' ?
<O 2 Y @ F(E + Dm- FH Az
(10.10) k20 k20
<CY 2 2T R £ g, )
k>0 k>0
< Olfullz-

for any w € F°. A similar estimate, using ([@.28) with e = —1, gives

(10.11) ||m - wE || e < C||w|| e

for any w € N?. We estimate now the first term in the left-hand side of (I0.6]) by
10 [(mut e o) || ve 4[]0 [ (mv )] e

Hlm - 8y (V) || v 4 (|05 - (W) ye

In view of (I07) and (I0I0), the first two terms in (I0I2) can be estimated by
C(||ul|ze||v||Fo+||ul|Fo||v|| Fo), as desired. For the third term, we use the important

(10.12)
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observation that the product of two low-modulation functions has high modulation:
(10.13) (uloVolov)lov = 0.
Assuming ([I0T3]), the third term in (I0I2) can be estimated by

CllullpellvllFo + [lull pollvllFo),
using (I07) and (I0I1). To prove (I0.I3), we write
ulow — Z ffl(fllfow) and Ulow — Z ‘7;~71(‘g}€ow)7

k>15 k>15

low low

where f,° and g,"" are supported in Uj<k_15 Dy, ;. For (I0.13) it suffices to prove
that -

nk(f)ngk,m(T — w(«f))( IIC?W * g}COZW) = 0, where k,k‘l, kg Z 15,

which follows easily from (6.22) and ([623).
In view of ([@.3), for (I0.6), it suffices to prove that if |[m/|[gz =1, then

(10.14) [Im” - (uv)l|we < C(||ullpe |[v]lpo + [[ullpollv]F-)-

We write u = ubigh 4 ylow ¢ = phish 4 ylow a5 hefore. Then, using (I0LT), the bound
@29) with ks = 0, and Lemma [02(b),

|1 Po(m - wo)||ne < C([lullpe][vllpo + [[ul|pol [v]| 7).
Also, using (I0:9) and (I0I0) as before,
1(1 = Po)(m’ - uM0)|| o +[|(I = Po)(m - ul™ v v
< C(llullpellvllpo + llullpollv]|#-).
Finally, using (I0.IT), @29), and the observation (I0.I3),
1(I = Po)(m - u'*v'™™)||ne < C(lJullpe |[vllpo + [[ull o] [0]| =),
which completes the proof of (I0.14). O

To bound the error terms in the formulas (2.11) and (2I3) of E, and E_, we
use the less demanding spaces Ej, o defined in (3:20) for k£ > 1,

Ey.o ={f € L? : f supported in I} x R and
11 Ba =277 Y 2l (r) f(€,7) Iz, < o0}
j=0
For 0 > 0 and « € [—20, 20] we define

Fg = {ue S®xR): |lullt; == > 2Hm () - ) F [}, , < oo}
k=0

and
N = {ue S ®RxR): ully = S 27Hm(©)(r + i) Fw)llh, , < oo}
k=0

In view of (@21]),
(10.15) F¢ C F° C F° and N C N° C N7,
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Lemma 10.3. If m € S, 0 € [0,20], a € [-20,20], and u € FZ, then

(10.16) { [l -

llm - ullng < Climllsgs, |lullng -

Fg < Cllmllsgllullrg;

Proof of Lemma [I0.3. We may assume ||m|[sps, = 1. Let frr = nw (§)F(u), k' €
Z. . Using Lemma [0.2] with ¢ = 0, we have

[l - ulldy = > 227l (O FI(E + Vm - ]|,

k>0
i _ 2
<O 2 IIm©FE + Vm-F 7 (fo)llls,..]
k>0 k>0
<Oy 2 2 s, )
k>0 k>0
< CHUH%&’

A similar estimate using Lemma 0.2l with e = —1 gives the second bound in (I0.I6).
(]

Lemma 10.4. (a) Assume that I # I' € {[-21°,219],[210 o), (—o0, —219]} and
m € S75y- Then, for any o € [0,20] and u € F%,,

(10.17) [1Prlm - Pro(w)]llrg, < Cllmllss, llul e,
[|1Prlm - Pp(u)]llng, < Cllmllsg,llullne,,,

where Py denotes the operator defined by the multiplier (£,7) — 17(§).
(b) In addition, for any o € [0,20] and u € F7,,,
(10.18)
1052 P (m - Pryign(u)|| g, + 102 Py (m - Popign(w)|| 7y, < Cllm|lsss, lullpe,,-

10 —

Proof of Lemma [[0.4. We may assume ||m||sg = 1 and use Lemma and the

definitions. The main observation is that if k,k € Z,, then d(I N I, I' N fk/) >
C=1(2F +2%). Let frr = mu (€) - F(u)(€, 7). Using Lemma (.2 with € = 0, we have

|1Prlm - Pr()llf7e, = > 227F [k ()11(€) - FI(E + V)m - Pr(u)]l[3, ,,
k>0

<CY 230 (@) - FIE + Dy FH (L fio) o]

k>0 k'>0
<O 22k [ N7 (2 4 ob)50920K 9ok 9ok ]
k>0 k'>0
2
< Cllullze -

2

A similar estimate using Lemma [@2 with € = —1 gives the second bound in (I0I7).

For part (b) the same argument as before works, except for the dyadic piece
corresponding to k = 0 (in the left-hand side). To handle this dyadic piece, we
need the additional observation

1621£(&)m0(§) fll 20 < [1€%00() fllx0 < Cllmo(€) flIz, < Climo(€) fllzo.
where 11 denotes the characteristic function of the interval {£ : £¢ € [0,00)}. O
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We can now analyze the nonlinear terms Ey, E_, and Ey in (Z11)), I3), and
[215). We assume that ug, Uy : R x [-2,2] — R are fixed functions that satisfy the
bounds (compare with (2.1 and (29]))

(10.19) 107 072 uol| 2 , < & for any oy, 09 € [0,120] N Z;

' 1072072 Up|| 2, < 6 for any oy € [0,120] N Z, 05 € [1,120] N Z,
for some 6 < 1, and Ey, E_, and Ey are defined as in (ZI1I), 2I3]), and ZI5).
For simplicity of notation, let w = (w4, w_,wp) and

E(W) = <E+(w+7w—aw0)a E—(w-Hw—va)v EO(w-Hw—awO))'
For any Banach space B let ||w||g = ||wi]||B + |[|lw_]||B + |Jwo||s and
EW)[B = [[E4 (wy, w_, wo)|[p + [|E-(wi, w—,wo)l| 5 + || Eo(wy, w—, wo)|| -

Proposition 10.5. Assume that o € [0,20], ug, Uy satisfy (I0I19), w,w’ € F7,
and ¥ : R — [0,1] is the smooth function defined in Section Bl Then

[ EW) = E(W)]l|ne <Cllw = w'||ze (6 + [[w][po + [[W/][ o)

(10.20)
+C|lw = W[ po ([[w][po + [[W']| 7).

Proof of Proposition I0.5l Let T; y and T; _, i € {1,2,3,4,5}, denote the terms in
line ¢ in the formulas (ZI1) and 2I3). To control || (¢)[T1,+ (W) — Th +(W')]||ne
it suffices to prove that

(10.21) [Im - Pinign (0x (m'wo))||ve < C(l[ullpe[[o]|po + [[ullpollv]| 7o),

for any functions u,v € F?, where ||m||ses. = ||m/||gee. = 1. We bound the left-

hand side of (I0.21)) by
[[(P-pigh + Plow)[m - Pynigh(0z (m/uv))]|| v+
(10.22) +I[Pinign[m - (P-nigh + Plow) (92 (m'uv))]||n-
+{|Pinigh[m - (9z(m/uv))]||ne

For the first two terms in (I0.22) we use Lemma [[0.4)(a), Proposition [0.2] and
([I0I5). For the third term in (I0:22) we use Proposition and [@3). The
bound (I02I)) follows.

To control ||¢(t)[To 4+ (W) — To 4 (W')]||we, it suffices to prove that
(10.23)
[ P nign [0z (0 P—nign (m/w))]|| o +[[m- P nign [0x (0 Plow (m'u))] || e < Collul|po

for any u € F'7, where ||m|[se, = |[m/|[sec, = 1. We use Lemma [0.3] Lemma

[04Ya), and ([IOI5). The first term in the left-hand side of (I0:23) is dominated
by

o] o]
110 110

[[m + Pinigh [0z (uo - Ponign(m'u))]||ng < C||Pinigh[uo - P-nigh(m'u)]||re
< Cd||m'ul|pe, < C6||ul|pe,

—10 —
as desired. The bound for the second term is similar. Furthermore, the bound for
[|19(t)[T5,+ (W) — T3 4 (w')]|| v follows in the same way.
To control ||¢(¢)[Ta + (W) — Ty +(W')]||ne, it suffices to prove that

(10.24) 102P-[((I = Po)e™®) - Piign(mu)]||ne < C6|ful|po

for any w € F?, where ||m||se = 1. This follows as before, using Lemma 0.3}

Lemma [[0.4(b), (I0.I5), and the observation that ||(I — Py)e!’0||g~ < C6.

110
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To control ||¢(t)[T5 4+ (W) — T5 +(W')]||we, it suffices to prove that

(10.25) 1Py 0zug - ul| e < CO|uf| o
for any u € F'°. We bound the left-hand side of (I0.25]) by
(10.26)

[|(T=Po)[(1=Fo) (P10zu0)ul|[ v +[| (1= Po) [(Po Py O o) ul| | vo +|| P[Py O o-ul || -

For the first term in (I0:26]) we use Proposition [0:2 with m = 1, m’ = 0. For the
second term in (I020) we use the bound (ZI6). For the third term in (I0:20) we
use Lemma [T0.3}

[PolPy-0,u0 - ull [y < CI|Psdsuq -l e, < C6[ul| e

—10 — 10’

as desired.

The proofs for the terms T; _ are identical. To control ||1)(¢)[Eo(w)—Eo(W')]||ne,
it suffices to prove that
(10.27) |[Plow 0z (muv)||ne < C(||ullpe||v]| o + [|ullpolv]| 7o );

H]Dlowam(muou)”N” S Cf5| |U| ‘FU

for any functions u,v € F?, where ||m|[se_ = 1. For the first bound in (I0.27) we
use Proposition[I0.21 For the second bound we use Lemma [I0.3] and the observation
[|mug||sse, < C4§. This completes the proof of Proposition [[0.5] O

110 —

Proof of Theorem [L1l. For any interval I C R and o > 0 we define the Banach
spaces
Fo(I) ={uec SR xI):||ul|po) = ﬂ:uiijXIHﬂHFa < oo}
No(I)={u e S"(RxI): ||ul|x-) := a:uicr)lnfRXI||ﬂ|\ch < 00}

With this notation, the estimates in Lemma 5.1 and Lemma become

(10.28) [[W (t — t0) || po (jto—a,to+a) < ClIOllzx
and
t
10.29 H/Wt—s u(s ds’ < Cllul| §o (1t —a.to+al)s
(10.29) \ (t = s)(u(s)) Fo (to—atorral) [lullve (fto—a,to+a)

for any o € [0,20], to € R and ¢ € [0,5/4]. The estimate in Proposition
becomes
[E(w) — E(W')||neory) <Cllw — W |[po 1) (6 4 [[W]|pory + W[ pory)

(10.30)
+C||lw — WIHFO(I)(HWHFU(I) + ||W/|\Fa(1)),

for any o € [0,20] and I C [—5/4,5/4], provided that (I0I9) holds.
_ Assume that ug, Uy are fixed and satisfy (I0.I9). For data ® = (¢4, ¢_, o) €
H?Y with the property

(10.31) @]l 70 <9,
we consider the vector-valued initial-value problem

{ (0 + HO2)v = E(v) on R x [~5/4,5/4];

(10.32) O =
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We can construct a solution of ([I0.32) by iteration: let v? = (0,0,0) and let
t
(10.33) VL () D +/ Wt — s)(B()(s)) ds, k= 0,1,....
0

In view of (I0.28), ([0.29), (I030), and @Q3T), ||[v¥||po(—5/4,5/4)) < C6 for any
k > 0. Thus, using (I0.28), (10.29), (I0.30), and (I0.31]) again,

(1034) ||Vk+1 - VkHFO([,5/475/4]) < (Cd)lﬂ_l for any k= O, 1, e

Using ([0.28), ([0.29), ([030), ([031), and ([034), we obtain ||v¥|| pa((—5/4,5/4) <
C||®||z., o € [0,20], and then

A

V5 = vE o (/4,574 < (C8)*|@ ]|, for any k=0,1,....

Thus the sequence v¥ converges in the space F2°([—5/4,5/4]) to a function v =
v(®). In addition, for any o € [0, 20],

(10.35) V(@I e ((-5/4,5/4) < Cll®II7,

v(®) € C([—5/4,5/4] : H?®) (using @I0)), v(®) solves the initial-value problem
[I0.32), and if ||| 50, [[®'[|70 < 6, then

[1v(®) = V()| o ((-5/4.5/4)

< Cl12 = @Iz, + CUI12lI7. + 12|l7)IV(®) = V()| Fo(—5/4,5/4)-

In particular, when o = 0, |[v(®) — v(®')|[po([—5/4,5/4) < C[|® — @[] 7.
Assume now that we start with data ¢ € H>° with the property

(10.37) [|6]|r2 < do = 6/C, where C is sufficiently large.

(10.36)

We construct the functions ug, u, Uy, w = (wy,w_,wp), and
d = (¢+7 qs*a ¢0) = (eiUD(”O)PJrhighqsa e_iUD(.7O)P7high¢7 0)

as in Section @ Clearly, (II3T) holds due to Lemma [0} and ® € H2°. We show
now that
(10.38) w=v(®) in R x [-1,1],
where v(®) is constructed as before. This is somewhat delicate since it is not clear
how to show algebraically that the function e~*Yov . 4 e?Vov_ + v + 1y is a solution
of the original initial-value problem.

To prove ([I03])), we show first that
(10.39) [[w(t)||z0 < Cdo for any t € [~5/4,5/4].
For the functions wy and w_ this follows directly using the definition (23] and
Lemma [[0.J] since, in view of the conservation law (L2]),
(10.40) [tl|pserz2 + [|uollzger2 < 3o for any ¢ € [-5/4,5/4].

To prove ([I0.39) for the function wg, we use first the definition (ZH) and (I0:40),
so it suffices to prove that

(10.41) [0 (&) F1(wo () (€)l5, < Cdo, t € [-5/4,5/4].
For this we use the equation ([24) (notice w(0) = 0). It suffices to prove that
(10.42)

170 (€)€2sgn.(&) F1 (@(t) ) ()l 3o + |Imo(€)EF1(@(H) (U(t) /2 + uo(t))) (€)l| 5, < Cdo,
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for any t € [—5/4,5/4]. We bound the first term in (I0:42)) by

Y 27l (OEFL @) ()l < Cll®)]] 2 < Cdo,

k<1
as desired. We bound the second term in (I0:42) by
17T [0 (€)6F1 (@(t) (@(t) /2 + uo (1)) (E)]l|x. < Cla(t)l] 2 () /2 + uo(®)ll Lz,

which suffices in view of (I040). This completes the proof of (I039).
Next, we show that there is € = &(||¢||g100) with the property that

(10.43) W[ Fo((to—e ty+e)) < Cdo for any to € [—1,1].

Let g = ¢(t)(0; + HO?)w. In view of ([0.28), (1029), (I0.39), and ([[0.I5), for
(I043)) it suffices to prove that

(10.44) 10((t = to)/2) - gllng < C(l|]lgrao0)e™/™.
We show first that for any ¢ € [—5/4,5/4]
(10.45) (I = 02)gM)lz20 < CJ[]]rr100).-

For ([[0.45) we notice first that Hd2 : H° — H°~2 is a bounded operator. Thus
it suffices to prove that |[0f w||zs0 < C([[9l|f100), 0 = 0,1,2,3. For wy and w_
this is clear using the definitions wy = e**Uo Pinigntt and Lemma [[0.Jl For wy this
follows using the identity (2.4

Orwo = —HO?*wo — Plows((uo + u/2) - 1),

the bound (I0.39), and the same argument as in the proof of (I0.41]). This completes

the proof of (I0.40). To pass from ([[0.45) to (I0.44), we may assume to = 0 and
g = g is scalar valued. It suffices to prove that

(10.46) 19(t/) - gllng < CHII(1 = 7)gll s oo
In view of the L} norm in the right-hand side of ([0.46), we may assume that
g(x,t) = h(z)K(t —t), where K (t) = fR(TQ +1)7te' dr and ||(I — (’9,52)g||L%H20 ~
||]||7720- The bound (I0.48]) then follows easily from the definitions.
We can now complete the proof of (I0.38). Assume w(ty) = v(to) = ¥ for some

to € [-1,1]. Then, for t € [ty — &,to + €] we write

w(t) = W(t—to)¥ + [, W(t—s)(E(w)(s))ds;

¢

v(t) =W(t =)V + [, W(t—s)(E(V)(s))ds.
We subtract the two identities and use (I0:29), (I030), (I035) (all with o = 0),
and (I043). The result is
1V =Wllro(to—c.to+e) < CIEV) =E(W)[[No(t—c.to+]) < COlV=WI[ro(itg—c.tgte))-

Sov =win R X [tg —&,tg + ¢€]. Since w(0) = v(0) = P, this suffices to prove

(I0.38).

We prove now part (a) of the theorem. Assume that

¢n € H® and lim ¢, = ¢ in L2
n—oo
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By rescalingd, we may assume [|9|l2 < 80/2, as in (I037). By using the conser-
vation law (L2), we may assume T = 1. It suffices to prove that for any ¢ > 0

(10.47) [[ST°(¢n) — S7°(Pm)||Leer2 < € for m, n sufficiently large.

We fix M = M(¢,¢) sufficiently large and define 51‘7(5) = 1_mm (€)p(€) and

@?(g) = 11—, M (5)&;(5) It is known that the flow map S7° extends continuously
on, say, H? (see, for example, [17]). Since lim,, o, ¢ = ¢M in H2,

im0 = S (08l = 0.

We estimate now [[S7°(¢n) —S7° (¢ )||Lzor2. As in Section 2} we construct ug p,
Uo.n (which are identical for both functions ¢, and ¢M),

b, = (erO’nPJrhigh(ﬁna e_ZUD’npfhigh(bna 0)

and
M = (e'Vor Pypignon’, e Von P_pind?, 0).

Using Lemma 2711 the identity (I0.38), (I0.36) with o = 0, (@I0), and Lemma
0T

157 (én) = ST (dn gz < ClIv(®n) = v(@)llnge, 22 < Cll®n — €3/l 70

te[—1,1

< Cllén — 0122 < C(llé — M| + |6 — dullr2)-

The bound ([I0A47) follows if M = M (¢, ) and n are sufficiently large.
For part (b) of the theorem, we may assume that ¢ < 2. The same argument as
before works, once we observe that, using (I0.30)),

V(@) — V(P | po (50574 < Cll1®n — O, (L + || @0l 50 + || @2 ] 57,)-
O
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