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1. Introduction

1.1. Motivation and overview. Let G denote the identity component of the
special orthogonal group SO(n, 1), n ≥ 2, and V a finite-dimensional real vector
space on which G acts linearly from the right.

A discrete subgroup of a locally compact group with finite covolume is called a
lattice. For v ∈ V and a subgroup H of G, let Hv = {h ∈ H : vh = v} denote the
stabilizer of v in H.

A subgroup H of G is called symmetric if there exists a non-trivial involutive
automorphism σ of G such that the identity component of H is the same as the
identity component of Gσ = {g ∈ G : σ(g) = g}.

Theorem 1.1 (Duke-Rudnick-Sarnak [9]). Fix w0 ∈ V such that Gw0
is symmetric.

Let Γ be a lattice in G such that Γw0
is a lattice in Gw0

. Then for any norm ‖·‖
on V ,

lim
T→∞

#{w ∈ w0Γ : ‖w‖ < T}
vol(BT )

=
vol(Γw0

\Gw0
)

vol(Γ\G)
,
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where BT := {w ∈ w0G : ‖w‖ < T} and the volumes on Gw0
, G and w0G � Gw0

\G
are computed with respect to the right invariant measures chosen compatibly.

Eskin and McMullen [10] gave a simpler proof of Theorem 1.1 based on the
mixing property of the geodesic flow of a hyperbolic manifold with finite volume.
It may be noted that this approach for counting via mixing was used earlier by
Margulis in his 1970 thesis [20]. We also refer to [3] for a quantitative version of
Theorem 1.1.

The group G can be considered as the group of orientation preserving isometries
of the n-dimensional hyperbolic space H

n. The main achievement of this paper
lies in extending Theorem 1.1 to a suitable class of discrete subgroups Γ of infinite
covolume in G; namely, the groups Γ with finite Bowen-Margulis-Sullivan measure
mBMS on Γ\Hn. In particular, this class contains all geometrically finite subgroups
of G. The analogue of vol(Γw0

\Gw0
) turns out to be a very interesting quantity,

which we will call the ‘skinning size’ of w0 relative to Γ and denote by skΓ(w0). In
fact, skΓ(w0) will be the total mass of a Patterson-Sullivan type measure on the
unit normal bundle of a closed immersed submanifold of Γ\Hn associated to Gw0

.
One of the important components of this work is to completely determine when
skΓ(w0) is finite (Theorem 1.5). In particular, skΓ(w0) < ∞ for any geometrically
finite Γ whose critical exponent δ is greater than the codimension of the associated
submanifold.

The main ergodic theoretic ingredient in the proof is the description for the lim-
iting distribution of the evolution of the smooth measure on the unit normal bundle
of a closed totally geodesically immersed submanifold of Γ\Hn under the geodesic
flow. The corresponding equidistribution statement (Theorem 1.8) is applicable to
many other problems. For example, in [23, 24] it has been applied to the study of
the asymptotic distributions in circle packings in the Euclidean plane or a sphere,
invariant under a non-elementary group of Möbius transformations.

1.2. Statement of main result. Our generalization of Theorem 1.1 for discrete
subgroups which are not necessarily lattices involves terms which can be best ex-
plained in the language of hyperbolic geometry. Let Γ < G be a torsion-free discrete
subgroup which is non-elementary, that is, Γ has no abelian subgroup of finite in-
dex. This is a standing assumption on Γ throughout the whole paper. Now Γ
acts properly discontinuously on H

n. Let 0 < δ ≤ n − 1 be the critical exponent
of Γ (see §3.1.1). Let {νx}x∈Hn be a Γ-invariant conformal density of dimension
δ on the geometric boundary ∂Hn (see (2.11)) which exists by Patterson [26] and
Sullivan [36]. Let mBMS denote the Bowen-Margulis-Sullivan measure on the unit
tangent bundle T1(Γ\Hn) associated to {νx} (see (3.2)).

For u ∈ T1(Hn), we denote by u± ∈ ∂Hn the forward and the backward end-
points of the geodesic determined by u, respectively, and by π(u) ∈ H

n the base
point of u. Let p : T1(Hn) → T1(Γ\Hn) be the canonical quotient map.

Let V be a finite-dimensional vector space on which G acts linearly. Let w0 ∈ V
be such that Gw0

is a symmetric subgroup or the stabilizer GRw0
of the line Rw0 is

a parabolic subgroup. We define a subset Ẽ ⊂ T1(Hn) associated to the orbit w0Γ
in each case.

When Gw0
is a symmetric subgroup associated to an involution σ, choose a

Cartan involution θ of G which commutes with σ, and let o ∈ H
n be such that its

stabilizer Go is the fixed group of θ. Then S̃ := Gw0
.o is an isometric imbedding
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of Hk in H
n for some 0 ≤ k ≤ n− 1, where the embeddings of H0 and H

1 mean a
point and a complete geodesic, respectively. Let Ẽ ⊂ T1(Hn) be the unit normal

bundle of S̃.
In the case when GRw0

is parabolic, we fix any o ∈ H
n. If N is the unipotent

radical of GRw0
, then S̃ := N.o is a horosphere. We set Ẽ ⊂ T1(Hn) to be the

unstable horosphere over S̃.
Now in either case, we define the following Borel measure on Ẽ:

dμPS
Ẽ

(v) := eδβv+ (x,π(v)) dνx(v
+)

for x ∈ H
n, and βξ(x1, x2) denotes the value of the Busemann function, that is,

the signed distance between the horospheres based at ξ, one passing through x1

and the other through x2 (see (2.2)). This definition of μPS
Ẽ

is independent of the

choice of x ∈ H
n. Due to the Γ-invariance property of the conformal density {νx},

it induces a measure on E := p(Ẽ) which we denote by μPS
E .

Fix any X0 ∈ Ẽ based at o, and let A = {ar : r ∈ R} be a one-parameter
subgroup of G consisting of R-diagonalizable elements such that r �→ ar.X0 is a unit
speed geodesic. Note that A is contained in a copy of SO(2, 1) ∼= PSL(2,R) such
that ar corresponds to dr = diag(er/2, e−r/2). Any irreducible representation of
PSL(2,R) is given by the standard action of SL(2,R) on homogeneous polynomials
of degree k in two variables such that the action of −I is trivial, so k is even and
the largest eigenvalue of dr is e(k/2)r. Therefore, if λ denotes the log of the largest
eigenvalue of a1 on R- span(w0G), then λ ∈ N. We set

wλ
0 := lim

r→∞
e−λrw0ar 
= 0, by [13, Lemma 4.2].

Theorem 1.2. Let Γ < G be a non-elementary discrete subgroup with |mBMS| < ∞.
Suppose that w0Γ is discrete and that its skinning size skΓ(w0) := |μPS

E | is finite.
Then for any Go-invariant norm ‖·‖ on V , we have

(1.1) lim
T→∞

#{w ∈ w0Γ : ‖w‖ < T}
T δ/λ

=
|νo| · skΓ(w0)

δ · |mBMS| · ‖wλ
0‖δ/λ

.

Remark 1.3. (1) If Γ is convex cocompact, skΓ(w0) < ∞. In the case when GRw0

is parabolic, skΓ(w0) < ∞ as well. A finiteness criterion for skΓ(w0) is provided in
§1.4.

(2) Since w0Γ is infinite, skΓ(w0) > 0 (Proposition 6.7), and hence the limit (1.1)
is strictly positive.

(3) The description of the limit changes if we do not assume the Go-invariance
of the norm ‖·‖; see Theorem 7.8, Remark 7.9(3)-(5), and Theorem 7.10.

(4) If Gw0
is symmetric and Γ is Zariski dense in G, then the condition |μPS

E | < ∞
implies that w0Γ is discrete, for by Theorem 2.21 and Remark 2.22, w0Γ is closed
in w0G, and by [13, Lemma 4.2], w0G is closed in V . Therefore w0Γ is closed and
hence discrete in V .

(5) If GRw0
is parabolic, then the condition |μPS

E | < ∞ implies that w0Γ is

discrete. To see this, note that if the horosphere S̃ is based at ξ, then ∂S̃ = {ξ},
and by Theorem 2.21, ΓS̃ is closed in H

n and w0Γ is closed in w0G = w0G� {0}.
If w0Γ is not closed in V , w0γi → 0 for a sequence {γi} ⊂ Γ. Then γio → ξ
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Figure 1. An externally Γ-parabolic vector

and ξ is a horospherical limit point of Γ. Since |mBMS| is finite, the geodesic flow

is mixing (Theorem 3.2), and hence by [7, Thm. A and Prop. B], ΓS̃ is dense in

π({u : u− ∈ Λ(Γ)}), a contradiction to ΓS̃ being closed. Therefore w0Γ is closed
and hence discrete in V .

Thanks are due to the referee for the last two remarks.

A discrete group Γ is called geometrically finite if the unit neighborhood of its
convex core1 has finite Riemannian volume (see also Theorem 4.6). Any discrete
group admitting a finite sided polyhedron as a fundamental domain in H

n is geo-
metrically finite.

Sullivan [36] showed that |mBMS| < ∞ for all geometrically finite Γ. However,
Theorem 1.2 is not limited to those, as Peigné [27] constructed a large class of
geometrically infinite groups admitting a finite Bowen-Margulis-Sullivan measure.

We will provide a general criterion on the finiteness of skΓ(w0) in Theorem 1.14.
For the sake of concreteness, we first describe the results for the standard represen-
tation of G.

1.3. Standard representation of G. Let Q be a real quadratic form of signature
(n, 1) for n ≥ 2 and G the identity component of the special orthogonal group
SO(Q). Then G acts on R

n+1 by the matrix multiplication from the right, i.e.,
the standard representation. For any non-zero w0 ∈ R

n+1, up to conjugation and
commensurability, Gw0

is SO(n−1, 1) (resp. SO(n)) if Q(w0) > 0 (resp. if Q(w0) <
0). If Q(w0) = 0, the stabilizer of the line Rw0 is a parabolic subgroup. Therefore
Theorem 1.2 is applicable for any non-zero w0 ∈ R

n+1, provided skΓ(w0) < ∞ (in
this case, λ = 1).

An element γ ∈ Γ is called parabolic if there exists a unique fixed point of γ in
∂Hn. For ξ ∈ ∂Hn, we denote by Γξ the stabilizer of ξ in Γ and call ξ a parabolic
fixed point of Γ if ξ is fixed by a parabolic element of Γ.

Noting that Gw0
is the isometry group of the codimension one totally geodesic

subspace, say, S̃w0
, when Q(w0) > 0, we give the following:

Definition 1.4. Let w0Γ be discrete. Then w0 ∈ R
n+1 is said to be externally

Γ-parabolic if Q(w0) > 0 and there exists a parabolic fixed point ξ ∈ ∂S̃w0
for Γ

such that Gw0
∩ Γξ is trivial, where ∂S̃w0

⊂ ∂Hn denotes the boundary of S̃w0
in

Hn.

1The convex core CΓ ⊂ Γ\Hn of Γ is the image of the minimal convex subset of H
n which

contains all geodesics connecting any two points in the limit set of Γ.
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For n = 2, w0 ∈ R
3 with Q(w0) > 0 is externally Γ-parabolic if and only if the

projection of the geodesic S̃w0
in Γ\Hn is divergent in both directions, and at least

one end of S̃w0
goes into a cusp of a fundamental domain of Γ in H

2 (see Figure 1).

Theorem 1.5 (On the finiteness of skΓ(w0)). Let Γ be geometrically finite and w0Γ
be discrete.

(1) If δ > 1, then skΓ(w0) < ∞.
(2) If δ ≤ 1, then skΓ(w0) = ∞ if and only if w0 is externally Γ-parabolic.

Corollary 1.6. Let Γ be geometrically finite and w0Γ discrete. If either δ > 1 or
w0 is not externally Γ-parabolic, then (1.1) holds.

Remark 1.7. (1) For geometrically finite Γ, if the Riemannian volume of E is finite,
then skΓ(w0) < ∞ (Corollary 1.15).

(2) It can be proved that if δ ≤ 1 and w0 is externally Γ-parabolic, the asymptotic

count is of the order T log T if δ = 1 and of the order T if δ < 1, instead of Tδ

(cf. [25]).
(3) When Q(w0) < 0, the orbital counting with respect to the hyperbolic metric

balls was obtained by Lax and Phillips [19] for Γ geometrically finite with δ >
(n− 1)/2, by Lalley [18] for convex cocompact subgroups and by Roblin [31] for all
groups with finite Bowen-Margulis-Sullivan measure.

(4) When Q(w0) = 0 and Γ is geometrically finite with δ > (n− 1)/2, a version
of Theorem 1.2 was obtained in [17].

1.4. Equidistribution of expanding submanifolds. In this section, we will
describe the main ergodic theoretic ingredients used in the proof of Theorem 1.2.
Let Ẽ ⊂ T1(Hn) be one of the following:

(1) an unstable horosphere over a horosphere S̃ in H
n;

(2) the unit normal bundle of a complete proper connected totally geodesic

subspace S̃ of Hn; that is, S̃ is an isometric imbedding of Hk in H
n for

some 0 ≤ k ≤ n− 1.

Let Γ be a discrete subgroup of G, and set E := p(Ẽ) for the projection p :
T1(Hn) → T1(Γ\Hn).

Recall that {νx : x ∈ H
n} denotes a Patterson-Sullivan density of dimension δ.

Let {mx : x ∈ H
n} denote a G-invariant conformal density of dimension (n − 1).

We consider the following locally finite Borel measures on Ẽ:

dμLeb
Ẽ

(v) = e(n−1)βv+ (o,π(v))dmo(v
+), dμPS

Ẽ
(v) = eδβv+ (o,π(v))dνo(v

+),

where o ∈ H
n. Note that μLeb

Ẽ
is the measure associated to the Riemannian volume

form on Ẽ.
The measures μPS

Ẽ
and μLeb

Ẽ
are invariant under ΓẼ = {γ ∈ Γ : γ(Ẽ) = Ẽ} and

hence induce measures on ΓẼ\Ẽ. We denote by μLeb
E and μPS

E , respectively, the

projections of these measures on E via the projection map ΓẼ\Ẽ → E induced by
p.

Let mBR denote the Burger-Roblin measure on T1(Γ\Hn) associated to the con-
formal densities {νx} in the backward direction and {mx} in the forward direction
([6], [31], and see (3.3)).

Let {Gt} denote the geodesic flow on T1(Hn).
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Theorem 1.8. Suppose that |mBMS| < ∞ and |μPS
E | < ∞. Let F ⊂ E be a Borel

subset with μPS
E (∂F ) = 0. For any ψ ∈ Cc(T

1(Γ\Hn)),

(1.2) lim
t→+∞

e(n−1−δ)t ·
∫
F

ψ(Gt(v)) dμLeb
E (v) =

μPS
E (F )

|mBMS| ·m
BR(ψ).

In particular, this holds for F = E.

See Theorem 3.6 for a version of Theorem 1.8 without the finiteness assumption
on |μPS

E |.

Remark 1.9. Theorem 1.8 applies to F with μLeb
E (F ) = ∞ as well, provided

|μPS
E | < ∞. The proof for this generality requires greater care since it cannot

be deduced from the cases of F bounded. It is precisely this general nature of our
equidistribution theorem which enabled us to state Theorem 1.2 for general groups
Γ, only assuming the finiteness of the skinning size skΓ(w0) = |μPS

E | for a suitable
E.

When E is a horosphere and F is bounded, Theorem 1.8 was obtained earlier by
Roblin [31, p. 52]. We were motivated to formulate and prove the result from an
independent view point; our attention was especially on the case of π(E) being a
totally geodesic immersion. This case involves many new features, observations, and
applications (cf. [23], [24]). The main key to our proof is the transversality theorem,
Theorem 3.5, which was influenced by the work of Schapira [34]. The transversality
theorem provides a precise relation between the transversal intersections of geodesic
evolution of F with a given piece, say T , of a weak stable leaf and the transversal
measure corresponding to the mBMS measure on T .

For Γ Zariski dense, we generalize Theorem 1.8 to ψ ∈ Cc(Γ\G). To state the

generalization, we fix o ∈ H
n and X0 ∈ Ẽ based at o. Then, for K = Go and

M = GX0
, we may identify H

n and T1(Hn) with G/K and G/M , respectively. Let
A = {ar} be the one-parameter subgroup such that the right translation action by
ar on G/M corresponds to Gr. Let m̄BR denote the measure on Γ\G which is the
M -invariant extension of mBR via the natural projection map Γ\G → Γ\G/M =
T1(Γ\Hn). Let H = GẼ , and let dh denote the invariant measure on ΓH\H whose

projection to E coincides with μLeb
E .

Theorem 1.10. Let Γ be a Zariski dense discrete subgroup of G such that |mBMS| <
∞ and |μPS

E | < ∞. Then for any ψ ∈ Cc(Γ\G),

lim
r→∞

e(n−1−δ)r

∫
h∈ΓH\H

ψ(Γhar) dh =
|μPS

E |
|mBMS|m̄

BR(ψ).

When Γ is a lattice in G and E is of finite Riemannian volume, Theorem 1.10 is
due to Sarnak [33] for horocycles in H

2, Randol [28] for unit normal vectors based
at a point in the cocompact lattice case in H

2, and Duke-Rudnick-Sarnak [9] and
Eskin-McMullen [10] in general (also see [15, Appendix]).

In §7, we deduce Theorem 1.2 from Theorem 1.8. The standard techniques of
orbital counting via equidistribution results require significant modifications due to
the fact that mBR is not G-invariant.

1.5. On finiteness of μPS
E for geometrically finite Γ. An important condition

for the application of Theorem 1.8 is to determine when μPS
E is finite. In this

subsection we assume that Γ is geometrically finite. Letting Ẽ and S̃ = π(Ẽ) be
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as in §1.4, suppose further that the natural imbedding ΓS̃\S̃ → Γ\Hn is proper ; in

particular, p(S̃) is closed in Γ\Hn, where ΓS̃ = {γ ∈ Γ : γS̃ = S̃}.
When S̃ is a point or a horosphere, μPS

E is compactly supported (Theorem 4.9).

Theorem 1.11 (Theorem 4.7). If S̃ is totally geodesic, then ΓS̃ is geometrically
finite.

Definition 1.12 (Parabolic-corank). Let Λp(Γ) denote the set of parabolic fixed
points of Γ in ∂Hn. For any ξ ∈ Λp(Γ), Γξ is a virtually free abelian group of rank
at least one. Define

pb-corank(ΓS̃) = max
ξ∈Λp(Γ)∩∂(S̃)

(rank(Γξ)− rank(Γξ ∩ ΓS̃)) .

If Λp(Γ) ∩ ∂(S̃) = ∅, we set pb-corank(ΓS̃) = 0. In particular, the parabolic
corank of ΓS̃ is always zero when Γ is convex cocompact.

Lemma 1.13 (Lemma 6.2). If S̃ is totally geodesic, then

pb-corank(ΓS̃) ≤ codim(S̃).

Theorem 1.14 (Theorems 6.3 and 6.4). We have:

(1) supp(μPS
E ) is compact if and only if pb-corank(ΓS̃) = 0.

(2) |μPS
E | < ∞ if and only if pb-corank(ΓS̃) < δ.

Note that by [8, Prop. 2], δ > 1
2 maxξ∈Λp(Γ) rank(Γξ). As a consequence of

Theorem 1.14, we get:

Corollary 1.15 (Theorem 6.5). Suppose that dim(S̃) ≥ (n+ 1)/2. If |μLeb
E | < ∞,

then |μPS
E | < ∞.

1.6. Finiteness of μPS
E or μLeb

E and closedness of E. Let Ẽ and E be as in §1.4.
In [29], it is shown that |μLeb

E | < ∞ implies that E is a closed subset of T1(Γ\Hn).
We prove an analogous statement for μPS

E .

Theorem 1.16 (Theorem 2.21). Let Γ be a discrete Zariski dense subgroup of G.

If |μPS
E | < ∞, then the natural embedding ΓS̃\S̃ → Γ\Hn is proper.

1.7. Integrability of φ0 and a characterization of a lattice. Define φ0 ∈
C(Γ\Hn) by

φ0(x) := |νx| for x ∈ Γ\Hn.

The function φ0 is an eigenfunction of the hyperbolic Laplace operator with eigen-
value −δ(n − 1 − δ) (see [36]). Sullivan [37] showed that if δ > n−1

2 , then φ0 ∈
L2(Γ\Hn, dVolRiem) if and only if |mBMS| < ∞. The following theorem, which is a
novel application of Ratner’s theorem [30], relates the integrability of φ0 with the
finiteness of VolRiem(Γ\Hn):

Theorem 1.17 (§3.6). For any discrete subgroup Γ, the following statements are
equivalent:

(1) φ0 ∈ L1(Γ\Hn, dVolRiem);
(2) |mBR| < ∞;
(3) Γ is a lattice in G.

Although mBR depends on the choice of the base point o, its finiteness is inde-
pendent of the choice. If Γ is a lattice, then δ = n− 1, and hence φ0 is a constant
function by the uniqueness of the harmonic function [38].
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2. Transverse measures

2.1. Let (Hn, d) denote the hyperbolic n-space and ∂Hn its geometric boundary.
Let G denote the identity component of the isometry group of H

n. We denote
by T1(Hn) the unit tangent bundle of Hn and by π the natural projection from
T1(Hn) → H

n. By abuse of notation, we use d to denote a left G-invariant metric
on T1(Hn) such that d(π(u), π(v)) = min{d(u1, v1) : π(u1) = π(u), π(v1) = π(v)}.
For a subset A of T1(Hn) or Hn or ∂Hn and a subgroup H of G, we denote by HA

the stabilizer subgroup {g ∈ H : g(A) = A} of A in H.
Denote by {Gr : r ∈ R} the geodesic flow on T1(H). For u ∈ T1(Hn), we set

(2.1) u+ := lim
r→∞

Gr(u) and u− := lim
r→−∞

Gr(u),

which are the endpoints in ∂Hn of the geodesic defined by u. Note that (g(u))± =
g(u±) for g ∈ G. The map Viz : T1(Hn) → ∂Hn given by Viz(u) = u+ is called the
visual map.

2.2. The Busemann function β : ∂Hn × H
n × H

n → R is defined as follows: for
ξ ∈ ∂Hn and x, y ∈ H

n,

(2.2) βξ(x, y) = lim
r→∞

d(x, ξr)− d(y, ξr),

where ξr is any geodesic ray tending to ξ as r → ∞, and the limiting value is
independent of the choice of the ray ξr.

Note that β is differentiable and invariant under isometries; that is, for g ∈ G
and x, y ∈ H

n, βξ(x, y) = βg(ξ)(g(x), g(y)).

For u ∈ T1(Hn), the unstable horosphere based at u− is the set

H+
u = {v ∈ T1(Hn) : v− = u−, βu−(π(u), π(v)) = 0},

and the stable horosphere based at u+ is the set

H−
u = {v ∈ T1(Hn) : v+ = u+, βu+(π(u), π(v)) = 0}.

The weak stable manifold corresponding to u is

W̃ s
u = Viz−1(u+) = {v ∈ T1(Hn) : v+ = u+},

v1, v2 ∈ H+
u , r ∈ R ⇒ d(Gr(v1),Gr(v2)) = erd(v1, v2),(2.3)

v1, v2 ∈ W̃ s
u , r ≥ 0 ⇒ d(Gr(v1),Gr(v2)) ≤ d(v1, v2).(2.4)

The image under π of a stable or an unstable horosphere H in T1(Hn) based at
ξ is called a horosphere in H

n based at ξ. Hence π(H) = {y ∈ H
n : βξ(x, y) = 0}

for x ∈ π(H).

2.3. Let S̃ be one of the following: a horosphere or a complete connected totally
geodesic submanifold of Hn of dimension k for 0 ≤ k ≤ n − 1. Let Ẽ ⊂ T1(Hn)

denote the unstable horosphere with π(Ẽ) = S̃ if S̃ is a horosphere, and the unit

normal bundle over S̃ if S̃ is totally geodesic.
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Lemma 2.1. The visual map Viz restricted to Ẽ is a diffeomorphism onto ∂(Hn)�

∂(S̃).

Proof. The conclusion is obvious if S̃ is a point or a horosphere.
Now suppose that S̃ is a totally geodesic subspace of dimension 1 ≤ k ≤ n− 1.

Consider the upper half space model for Hn:

(2.5) H
n = {x+ jy : x ∈ R

n−1, y > 0, j = (0, . . . , 0, 1)},
and ∂Hn ∼= R

n−1∪{∞}. Without loss of generality, we may assume that ∞ ∈ ∂(S̃)

and hence ∂S̃ � {∞} is a (k − 1)-dimensional affine subspace, say F , of R
n−1.

For any x ∈ R
n−1

� L, let x1 be the orthogonal projection of x on L. Let x2 =
x1 + ‖x− x1‖ · j ∈ H

n. Let v ∈ T1(Hn) be the unit vector based at x2 in the same

direction as x− x1. Then v ∈ Ẽ and v+ = x. Now the conclusion of the lemma is
straightforward to deduce. �
2.3.1. Maps between Ẽ, and H+

v . For v ∈ T1(Hn), −v is the vector with the same

base point as v but in the opposite direction. For v ∈ Ẽ, let ξv : H+
v �Viz−1(∂S̃) →

Ẽ � {−v} be the map given by

(2.6) ξv(u) = Viz−1(u+) ∩ Ẽ.

Then ξv is a diffeomorphism. Its inverse, qv : Ẽ � {−v} → H+
v �Viz−1(∂S̃), is the

map given by

(2.7) qv(w) = Viz−1(w+) ∩H+
v .

Proposition 2.2. There exist C1 > 0 and ε0 > 0 such that:

(1) if v, w ∈ Ẽ and d(v, w) < ε0, then

|βw+(π(qv(w)), π(w))| ≤ d(qv(w), w) < C1d(w, v);

(2) if v ∈ Ẽ and w ∈ H+
v with d(v, w) < ε0, then

|βw+(π(ξv(w)), π(w))| ≤ d(ξv(w), w) < C1d(v, w).

Proof. In each of the two statements, the first inequality follows directly from the
definition of the Busemann function, so we only need to prove the second inequality.

Consider the upper half space model of H
n given by (2.5). By applying an

isometry g ∈ G, since qg(v)(gw) = g(qv(w)), we may assume that v is the unit

vector based at j so that v+ = {∞}.
Since f(u) := d(qv(u), u) is a differentiable function of u ∈ Ẽ, there exist ε0 > 0

and C ′
1 > 0 such that ‖Df(u)‖ ≤ C ′

1 for any u with d(v, u) < ε0. Therefore, since
f(v) = 0, there exists C1 > 0 such that |f(u)| = |f(u)− f(v)| ≤ C1 · d(v, u) for all
u ∈ Ẽ with d(u, v) < ε0. This proves (1), and (2) can be proved similarly. �
Remark 2.3. The following stronger form of statements in Proposition 2.2 hold:
There exist ε0 > 0 and C1 > 0 such that

|βw+(π(qv(w)), π(w))| ≤ C1d(v, w)
2, for all w ∈ Ẽ with d(w, v) < ε0;

|βw+(π(ξv(w), π(w)))| ≤ C1d(v, w)
2, for all w ∈ H+

v with d(w, v) < ε0.

We omit a proof, as the stronger version will not be used in this article.

Notation 2.4. Let Γ be a non-elementary torsion-free discrete subgroup of G and
set X := Γ\Hn. Both the natural projection maps Hn → X and T1(Hn) → T1(X)
will be denoted by p.
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2.4. Boxes, plaques and transversals. Let u ∈ T1(Hn). Consider a relatively
compact open set P containing u in H+

u , and a relatively compact open neighbor-
hood T of u in Viz−1(u+). For each t ∈ T and p ∈ P , the horosphere H+

t intersects
Viz−1(p+) at a unique vector: we define

tp := H+
t ∩Viz−1(p+) ∈ T 1(Hn).

The map (t, p) → tp provides a local chart of a neighborhood of u in T1(Hn). Since
u ∈ P , in this notation tu = t. We call the set

B(u) = {tp ∈ T1(Hn) : t ∈ T, p ∈ P}
a box around u if some neighborhood of B(u) injects into T1(X) under p. We write
B = B(u) = TP .

Note that P (resp. T ) may be disconnected and of ‘large’ diameter, and then
the corresponding T (resp. P ) will be chosen to be of small diameter in order to
achieve the required injectivity of p on a neighborhood of B(u).

For any t ∈ T , the set

tP := {tp : p ∈ P} ⊂ H+
t

is called a plaque at t, and for any p ∈ P , the set

Tp := {tp : t ∈ T} ⊂ Viz−1(p+)

is called a transversal at p. The holonomy map between the transversals Tp and
Tp′ is given by tp �→ tp′ for all t ∈ T .

Remark 2.5. If v = tp ∈ B, then tP ⊂ H+
v , Tp ⊂ Viz−1(v+) and B(v) = (Tp)(tP ) is

a box about v and TP = (Tp)(tP ). Also, B(u) and B(v) have the same collections
of plaques and transversals.

For small ε > 0, let

Tε+ = {s ∈ Viz−1(u+) : d(s, T ) < ε},
Tε− = {t ∈ T : d(t, ∂T ) > ε}, and Bε± = Tε±P.

Note that for any γ ∈ G, γP ⊂ H+
γu, γT ⊂ Viz−1((γu)+), γ(tp) = (γt)(γp) for

any (t, p) ∈ T × P , γ(TP ) = γ(B(u)) = B(γu) = (γT )(γP ), γ(tP ) is a plaque at
γt and γ(Tp) is a transversal at γp. Also, γBε± = (γT )±(γP ).

For r ∈ R, Gr(B(u)) = B(Gr(u)) = (Gr(T ))(Gr(P )).

2.5. For the rest of this section, let B = TP ⊂ T1(Hn) denote a box such that
Bε0+ injects into T1(X) for some ε0 > 0. By choosing a smaller ε0 if necessary, let
C1 > 0 be such that Proposition 2.2 holds. Let

(2.8) C2 = max{d(tp1, tp2) : t ∈ Tε0+, p1, p2 ∈ P}.
In this section we will develop auxiliary results to understand the intersection of

Gr(E) with p(B) for r � 1. First we will show that for any γ ∈ Γ if Gr(γẼ) ∩ B

is non-empty, there exists a unique t ∈ Tε0+ ∩ Gr(γẼ) and the sets Gr(γẼ) and
Gr(tP ) are contained in C1C2e

−r-tubular neighborhoods of each other.

Lemma 2.6. Let r ∈ R and γ ∈ Γ. Suppose that Gr(γẼ) � tp for some t ∈ T ,

p ∈ P . Let v = G−r(γ−1tp) ∈ Ẽ. Let p1 ∈ P , y = G−r(γ−1tp1) ∈ H+
v , and

w = ξv(y) ∈ Ẽ. Then w+ = y+,

d(v, y) ≤ C2e
−r and d(y, w) ≤ C1C2e

−r.
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Proof. By (2.6), w+ = y+. Since tp, tp1 ∈ H+
t , by (2.3) and (2.8),

d(v, y) = d(G−r(γ−1tp),G−r(γ−1tp1)) = d(G−r(tp),G−r(tp1))

≤ d(tp, tp1)e
−r ≤ C2e

−r.

By Proposition 2.2, d(y, w) = d(y, ξv(y)) ≤ C1d(v, y) ≤ C1C2e
−r. �

Lemma 2.7. For any r ∈ R and γ ∈ Γ,

#
(
T ∩ Gr(γẼ)

)
= #(G−r(γ−1T ) ∩ Ẽ) ≤ 1.

Proof. Since Viz(G−r(γ−1T )) = γ−1 Viz(T ) is a singleton set and Viz restricted to

Ẽ is injective, the conclusion follows. �

Notation 2.8. For r ∈ R and γ ∈ Γ, in view of Lemma 2.7, define

(2.9) Ẽr,γ =

{
ξG−r(γ−1t)(G−r(γ−1tP )) ⊂ Ẽ if T ∩ Gr(γẼ) = {t},
∅ if T ∩ Gr(γẼ) = ∅.

Proposition 2.9. For any 0 < ε ≤ ε0, r > rε := log(C1(C1 + 1)C2/ε) and γ ∈ Γ,
we have

(2.10) G−r(γ−1Bε−) ∩ Ẽ ⊂ Ẽr,γ ⊂ G−r(γ−1Bε+) ∩ Ẽ.

Proof of first inclusion in (2.10). Let γ ∈ Γ, t ∈ Tε− and p ∈ P be such that

v := G−r(γ−1tp) ∈ Ẽ. Let y = G−r(γ−1t) and w = ξv(y) ∈ Ẽ. By Lemma 2.6,

d(y, w) ≤ C1C2e
−r < ε/(C1 + 1) < ε.

Let t1 = Gr(γw). Since t = Gr(γy) and w+ = y+, t+1 = t+. By (2.4),

d(t, t1) = d(Gr(γy),Gr(γw)) ≤ d(γy, γw) = d(y, w) < ε.

Therefore t1 ∈ T , for t ∈ Tε−. Since (t1p)
+ = (tp)+, we have

G−r(γ−1t1p)
+ = G−r(γ−1tp)+ = v+.

Since w = G−r(γ−1t1), G−r(γ−1t1p) ∈ H+
w . Also, w, v ∈ Ẽ. Therefore by (2.6),

v = ξw(G−r(γ−1t1p)) ∈ Ẽr,γ .

�

Proof of second inclusion in (2.10). By Lemma 2.7, let {t} = T ∩Gr(γẼ) for some

γ ∈ Γ. Let v = G−r(γ−1t) ∈ Ẽ, p ∈ P , y = G−r(γ−1tp), and w = ξv(y) ∈ Ẽr,γ . By
Lemma 2.6,

d(v, w) ≤ d(v, y) + d(y, w) ≤ C2e
−r + C1C2e

−r ≤ ε/C1.

Put v1 = qw(v) ∈ H+
w . By (2.7), v+1 = v+, and by Proposition 2.2(1),

d(v, v1) ≤ C1d(v, w) ≤ ε.

Put t1 = Gr(γv1) ∈ H+
Gr(γw). Since t = Gr(γv), t+1 = t+. By (2.4),

d(t, t1) = d(Gr(γv),Gr(γv1)) ≤ d(γv, γv1) ≤ ε.

Hence t1 ∈ Tε+. Now Gr(γw), t1p ∈ H+
t1 . Since w+ = y+,

(Gr(γw))+ = (Gr(γy))+ = (tp)+ = (t1p)
+.

Since Viz is injective on H+
t1 , Gr(γw) = t1p. Hence w ∈ G−r(γ−1Bε+). �
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2.6. Measure on E corresponding to a conformal density on ∂Hn. Let
{μx : x ∈ H

n} be a Γ-invariant conformal density of dimension δμ > 0 on ∂Hn.
That is, for each x ∈ H

n, μx is a positive finite Borel measure on ∂Hn such that
for all y ∈ H

n, ξ ∈ ∂Hn and γ ∈ Γ,

(2.11) γ∗μx = μγx and
dμx

dμy
(ξ) = eδμβξ(y,x),

where γ∗μx(F ) := μx(γ
−1(F )) for any Borel subset F of ∂Hn.

Fix o ∈ H
n. We consider the measure on Ẽ given by

(2.12) dμẼ(v) = eδμβv+ (o,π(v)) dμo(v
+).

By (2.11), μẼ is independent of the choice of o ∈ H
n and γ∗μẼ = μγẼ for any

γ ∈ Γ. Let μΓẼ\Ẽ be the locally finite Borel measure on ΓẼ\Ẽ induced by μẼ as

follows: For any f ∈ Cc(Ẽ), let f̄(ΓẼv) =
∑

γ∈Γ f(γv), for all v ∈ Ẽ. Then f �→ f̄

is a surjective map from Cc(Ẽ) from to Cc(ΓẼ\Ẽ), and

(2.13)

∫
ΓẼ\Ẽ

f̄ dμΓẼ\Ẽ :=

∫
Ẽ

f dμẼ

is well defined; see [29, Chapter 1] for a similar construction.

Now let μE be the measure on E = p(Ẽ) defined as the pushforward of μΓẼ\Ẽ
from ΓẼ\Ẽ to T1(Γ\Hn) under the map ΓẼv �→ Γv. Thus for any set B ⊂ T1(Hn)
such that p is injective on B and for any measurable non-negative function f on
E ∩ p(B),

(2.14)

∫
E∩p(B)

f dμE =
∑

[γ]∈Γ/ΓẼ

∫
u∈γẼ∩B

f(p(u)) dμγẼ(u)

=
∑

[γ]∈Γ/ΓẼ

∫
u∈Ẽ∩γ−1B

f(p(u)) dμẼ(u),

where the integration over an empty set is defined to be 0. Therefore by Proposi-
tion 2.9 we obtain the following:

Proposition 2.10. Let 0 < ε ≤ ε0 and r > rε. Then for all Borel measurable
functions Ψ ≥ 0 on T1(X) with supp(Ψ) ⊂ p(Bε−) and f ≥ 0 on E, we have∫

u∈E
Ψ(Gr(u))f(u) dμE(u) =

∫
E∩p(G−r(Bε±))

Ψ(Gr(u))f(u) dμE(u)

=
∑

[γ]∈Γ/ΓẼ

∫
G−r(γ−1Bε±)∩Ẽ

Ψ(Gr(u))f(u) dμẼ(u)

=
∑

[γ]∈Γ/ΓẼ

∫
Ẽr,γ

Ψ(Gr(p(u)))f(p(u)) dμẼ(u).

Remark 2.11. (1) For the counting application in §7, we will use the results of this

section only for the case when the map ΓẼ\Ẽ → T1(Γ\Hn) is proper, in which case
μE is a locally finite Borel measure.

(2) In the general case, μE may not be σ-finite, but it is an s-finite measure;
namely, a countable sum of finite measures (with possibly non-disjoint supports).

(3) If the dimension of S̃ = π(Ẽ) in H
n is 0 or n−1, the map ΓẼ\Ẽ to T1(Γ\Hn)

is injective, and hence μE is σ-finite on T1(Γ\Hn).

2.6.1. Measures on horospherical foliation and their semi-invariance under geo-
desic flow. The conformal density {μx} induces a Γ-equivariant family of measures
{μH+

u
: u ∈ T1(Hn)} on the unstable horospherical foliation on T1(Hn):

(2.15) dμH+
u
(v) = eδμβv+ (o,π(v)) dμo(v

+).
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For any r ∈ R, since Gr(v)+ = v+ and

βv+(o, π(Gr(v)))− βv+(o, π(v)) = βv+(π(v), π(Gr(v))) = r,

by (2.11), we get for all γ ∈ Γ and r ∈ R,

(2.16) γ∗μH+
u
= μH+

γu
and Gr

∗μH+
u
= e−δμrμH+

Gr(u)
.

2.7. On transversal intersections of, Gr(ΓẼ) with B. Let a box B, ε0 > 0,
C1 > 0 and C2 > 0 be as described in the beginning of §2.5. For any 0 < ε ≤ ε0,
we put

(2.17) rε = log((C1 + 1)C1C2/ε).

Proposition 2.12. Let 0 < ε ≤ ε0, r > rε, and {t} = T ∩ Gr(γẼ) for some γ ∈ Γ.

Then for all measurable functions Ψ ≥ 0 on Bε0+ and f ≥ 0 on Ẽ,

(e−δμε)f−
ε (G−r(γ−1t))

∫
tP

Ψ−
ε dμH+

t

≤ eδμr
∫
w∈Ẽr,γ

Ψ(Gr(γw))f(w)dμẼ(w)

≤ (eδμε)f+
ε (G−r(γ−1t))

∫
tP

Ψ+
ε dμH+

t
,

where f±
ε on Ẽ and Ψ±

ε on Bε+ are defined as

(2.18)

f+
ε (u) = sup{u1∈Ẽ:d(u1,u)≤ε} f(u1),

f−
ε (u) = inf{u1∈Ẽ:d(u1,u)≤ε} f(u1),

Ψ+
ε (tp) = sup{t1∈Tε+:d(t1p,tp)≤ε} Ψ(t1p),

Ψ−
ε (tp) = inf{t1∈Tε+:d(t1p,tp)≤ε} Ψ(t1p).

Proof. Let v = G−r(γ−1t) ∈ Ẽ. Let φ : tP ⊂ H+
t → Ẽr,γ ⊂ Ẽ be the map given by

φ(tp) = w := ξv(y), where p ∈ P and y = G−r(γ−1tp). By Lemma 2.6,

(2.19) d(y, w) < C1C2e
−r < ε, d(v, w) < (C1 + 1)C2e

−r < ε,

and since w+ = y+,

d(Gr(γy),Gr(γw)) = d(Gr(y),Gr(w)) ≤ d(y, w) < ε,

and by Proposition 2.9, Gr(γw) ∈ Tε+p. Therefore,

f−
ε (v) ≤ f(w) ≤ f+

ε (v),(2.20)

Ψ−
ε (Gr(γy)) ≤ Ψ(Gr(γw)) ≤ Ψ+

ε (Gr(γy)).(2.21)

For the map tp �→ y := G−r(γ−1tp), by (2.16),

(2.22) eδμrdμH+
v
(y) = dμH+

t
(tp).

For the map y �→ w = ξv(y), by (2.12) and (2.15), since w+ = y+,

(2.23) dμẼ(w) =
eδμβw+ (o,π(w))

eδμβy+ (o,π(y))
dμH+

v
(y) = eδμβw+ (π(y),π(w))dμH+

v
(y).

By (2.19), |βw+(π(y), π(w))| ≤ d(π(y), π(w)) ≤ ε. Therefore,

(2.24) e−δμε < dμẼ(w)/dμH+
v
(y) < eδμε.
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Combining (2.22) and (2.24), for the map w = φ(tp) we get

(2.25) e−δμε ≤ eδμr
dμẼ(w)

dμH+
t
(tp)

≤ eδμε.

By noting that G−r(γ−1t) = v and tp = Gr(γy), the conclusion of the proposition
follows from (2.20), (2.21) and (2.25). �

Notation 2.13. For r ≥ 0 and t ∈ T ∩ Gr(ΓẼ), in view of Lemma 2.7 let

(2.26) Γ̄r,t = {[γ] ∈ Γ/ΓẼ : {t} = T ∩ Gr(γẼ)}.

Since p is injective on Bε0+, for notational convenience we identify t ∈ Tε0+ with
its image p(t) ∈ p(T ) ⊂ X. Therefore we have

(2.27) {[γ] ∈ Γ/ΓẼ : Ẽr,γ 
= ∅} =
⋃

t∈T∩Gr(ΓẼ)

Γ̄r,t =
⋃

t∈T∩Gr(E)

Γ̄r,t.

Combining Proposition 2.10 and Proposition 2.12, in view of (2.27) we deduce
the following:

Corollary 2.14. Let 0 < ε ≤ ε0 and r > rε. For all measurable functions Ψ ≥ 0
on Bε0+ with supp(Ψ) ⊂ Bε− and f ≥ 0 on E, we have

(e−δμε)
∑

t∈T∩Gr(E)

#(Γ̄r,t)f
−
ε (G−r(t)) ·

∫
tP

Ψ−
ε dμH+

t

≤ eδμr
∫
E

Ψ(Gr(u))f(u) dμE(u)

≤ (eδμε)
∑

t∈T∩Gr(E)

#(Γ̄r,t) · f+
ε (G−r(t)) ·

∫
tP

Ψ+
ε dμH+

t
,

where f±
ε on Bε+ and Ψ±

ε on E are defined as in (2.18).

2.8. Haar system and admissible boxes.

Lemma 2.15 ([31]). For a uniformly continuous Ψ ∈ C(B), the map

t ∈ T �→
∫
tP

Ψ dμH+
t

is uniformly continuous. In particular, the map t �→ μH+
t
(tP ) is uniformly contin-

uous.

Proof. Note that (tp)+ = p+. Therefore by (2.15)∫
tP

Ψ dμH+
t
=

∫
P

Ψ(tp)eδμβp+ (o,π(tp)) dμo(p
+).

Put φ(tp) = Ψ(tp)eδμβp+ (o,π(tp)). Since φ is uniformly continuous on B,∣∣∣∫
t1P

Ψ dμH+
t1

−
∫
t2P

Ψ dμH+
t2

∣∣∣ ≤ μo(Viz(P )) · sup
p∈P

|φ(t1p)− φ(t2p)| → 0

as d(t1, t2) → 0. �
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Definition 2.16. A box B = TP as defined in §2.4 is called admissible with
respect to the conformal density {μx} if every plaque of B has a positive measure
with respect to {μH+}; that is, μH+

t
(tP ) > 0 for all t ∈ T or, equivalently,

μx(Viz(tP )) = μx(P
+) > 0 for some (and hence all) x ∈ H

n.

Lemma 2.17. Fix a conformal density {μx}x∈Hn on ∂Hn. Then for any u ∈
T1(Hn), there exists an admissible box around u with respect to {μx}.
Proof. Fix any x ∈ H

n. Since Γu− is virtually abelian and since we assume that
Γ is non-elementary, Γ does not fix u−. Therefore by the Γ-invariance and the
conformality of the density {μx}, we have supp(μx) 
= {u−}. Since Viz : H+

u →
∂Hn

� {u−} is a diffeomorphism, there exists u1 ∈ H+
u such that u+

1 = Viz(u1) ∈
supp(μx). If γu = u1 for any γ ∈ Γ, then by the conformality, u ∈ supp(μH+

u
) and

we replace u1 by u. Since p is injective on {u, u1}, there exists a relatively compact
open subset P of H+

u containing {u, u1} such that p is injective on an open set Ω
of T1(Hn) containing P . Then μx(Viz(P )) > 0. By Lemma 2.15, we can choose
T a large enough ball in Viz−1(u+) so that some neighborhood of the closure of
B = TP is contained in Ω. Now B = TP is an admissible box. �
2.8.1. Let B = TP be an admissible box with respect to a conformal density {μx}
such that p is injective on a neighborhood of the closure of Bε0+ for some ε0 > 0.
Let C1, C2 be as described at the beginning of §2.5. For notational convenience,
we will identify Tε0+ and Bε0+ with their respective images in T1(X) under p.

Proposition 2.18. Let 0 < ε ≤ ε0 and r > rε (see (2.17)). Then for all measurable
functions ψ ≥ 0 on Tε0+ with supp(ψ) ⊂ Tε− and f ≥ 0 on E, we have

(e−δμε)

∫
E

Ψ−
ε (Gr(w))f−

ε (w) dμE(w)

≤ e−δμr
∑

t∈T∩Gr(E)

#(Γ̄r,t) · ψ(t)f(G−r(t))

≤ (e−δμε)

∫
E

Ψ+
ε (Gr(w))f+

ε (w)dμE(w),

where the function Ψ on Bε0+ is defined by

Ψ(p(tp)) := ψ(t)/μH+
t
(tP ), for all (t, p) ∈ Tε0+ × P ,

and Ψ±
ε on Bε+ and f±

ε on E are defined as in (2.18).

Proof. Since
∫
tP

Ψ dμH+
t
= ψ(t), the result is straightforward to deduce from Corol-

lary 2.14. �
In §3, Proposition 2.18 will enable us to describe the limiting distribution of

the transversal intersections T ∩ Gr(E) using the mixing of the geodesic flow with
respect to mBMS (cf. Theorem 3.5).

2.9. Some direct consequences. The results proved in this subsection are also
of independent interest. Let the notation be as in §2.8.1.
Corollary 2.19. Let 0 < ε ≤ ε0 and f be a measurable function on E such that
f+
ε ∈ L1(E, μE). Then for any r > rε and any measurable function ψ on T ,∑

t∈T∩Gr(E)

#(Γ̄r,t) · |ψ(t)f(G−r(t))| < ∞.
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In particular, if there exists a Γ-invariant conformal density {μx} and |μE | < ∞,
then ∑

t∈T∩GrE

#(Γ̄r,t) < ∞.

Proof. By Proposition 2.18 with Tε in place of T and declaring ψ to be zero outside
T , we obtain the first claim because∑

t∈T∩Gr(E)

#(Γ̄r,t) · |ψ(t)f(G−r(t))| ≤ (1 + ε)eδμr‖Ψ+
ε ‖∞ · μE(|f+

ε |).

To deduce the second claim from the first one, we choose f = 1 on E and ψ = 1 on
T . �

Definition 2.20 (Radial limit points). The limit set Λ(Γ) of Γ is the set of all

accumulation points of an orbit Γ(z) in H
n
for z ∈ H

n. As Γ acts properly discon-
tinuously on H

n, Λ(Γ) is contained in ∂Hn.
A point ξ ∈ Λ(Γ) is called a radial limit point if for some (and hence every)

geodesic ray β tending to ξ and some (and hence every) point x ∈ H
n, there is a

sequence γi ∈ Γ with γix → ξ, and d(γix, β) is bounded.
We denote by Λr(Γ) the set of radial limit points for Γ.
If Γ is non-elementary, Λr(Γ) is a non-empty Γ-invariant subset of Λ(Γ). Since

Λ(Γ) is a Γ-minimal closed subset of ∂Hn, we have that Λr(Γ) = Λ(Γ).

Theorem 2.21. Let C denote the smallest subsphere of Hn containing Λ(Γ). Sup-

pose that C = ∂S̃ or dim(C) > dim(∂S̃). If there exists a Γ-invariant conformal

density {μx : x ∈ H
n} such that |μE | < ∞, then the natural map p̄ : ΓẼ\Ẽ →

Γ\T1(Hn) is proper.

Proof. Note that Γ ⊂ GC = {g ∈ G : gC = C}, because if γ ∈ Γ, then γC ∩ C ⊃
Λ(Γ), hence by minimality γC = C.

Suppose C = ∂S̃. Then, since GS̃ = G∂S̃ , Γ = Γ ∩ GC = ΓS̃ = ΓẼ , and hence
the properness of p̄ is obvious.

Now suppose that dim(C) > dim(S̃) and that that p̄ is not proper. Then there

exist sequences γi ∈ Γ and ei ∈ Ẽ such that γiei converges to a vector v ∈ T1(Hn)
as i → ∞, and

(2.28) γiΓẼ 
= γjΓẼ , for all i 
= j.

Fix e0 ∈ Ẽ. Since GẼ acts transitively on Ẽ, there exists hi ∈ GẼ such that
ei = hie0. Then γihie0 converges to v. Therefore there exists g ∈ G such that
γihi → g and v = ge0.

Now Viz(gẼ) = ∂Hn − ∂(gS̃). Since dim(∂(gS̃)) = dim(S̃) < dim(C), we have

that Λ(Γ) � ∂(gS̃) is a non-empty open subset of Λ(Γ). Since Λr(Γ) is dense in
Λ(Γ), it follows that

Λr(Γ) ∩Viz(gẼ) 
= ∅.
Therefore there exists h0 ∈ GẼ such that Viz(gh0e0) = (gh0e0)

+ ∈ Λr(Γ). Hence

there exist ri → ∞ such that p̄(Gri(gh0e0)) converges to a point in T1(X). Then
there exists a sequence {γ′

i} ⊂ Γ such that Gri(γ′
igh0e0) → u for some u ∈ T1(Hn).

Let B = TP be an admissible box centered at u. Let ε > 0 be such that
u ∈ B3ε−. Fix k ∈ N such that rk > rε (see (2.17)) such that for γ′ = γ′

k, we have
Gr(γ′gh0e0) ∈ B2ε−.
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Since γihi → g, Gr(γ′γihih0e0) ∈ Bε− for all i ≥ i0 for some i0. Since hih0e0 ∈
Ẽ, by (2.10) ti ∈ T ∩ Gr(γ′γiẼ) for all i ≥ i0. Therefore,

(2.29) (ΓT ∩ GrẼ) ⊃ {(γ′γi)
−1ti : i ≥ i0}.

We claim that for any i ∈ N,

(2.30) ΓẼγ
−1
i (γ′)−1ti 
= ΓẼγ

−1
j (γ′)−1tj , for all but finitely many j.

To see this, since p is injective on T , if ti 
= tj , then Γti 
= Γtj , and hence (2.30)
holds. If ti = tj , then it follows from (2.28) as Γ ∩ G(γ′)−1ti is finite. Combining
(2.29) and (2.30), we get that

#(ΓẼ\(ΓT ∩ GrẼ)) = ∞.

We observe that if t ∈ T ∩ Gr(E), then ΓẼ\(Γt ∩ GrẼ) = Γ̄−1
r,t t. If |μPS

E | < ∞, then
by (2.19) of Corollary 2.19

#(ΓẼ\(ΓT ∩ GrẼ)) ≤
∑

t∈T∩Gr(E)

#(Γ̄r,t) < ∞,

which is a contradiction. �

Remark 2.22. (1) Theorem 2.21 holds for Γ Zariski dense: since Γ ⊂ GC and GC

is Zariski closed, we have C = ∂Hn for Γ Zariski dense.
(2) Theorem 2.21 holds in the case Λ(ΓS̃) = ∂S̃, since S̃ ⊂ C in this case, and

hence we have that either S̃ = C or dim(C) > dim(S̃).

3. Equidistribution of Gr
∗μ

Leb
E

3.1. BMS-measure and BR-measure on T1(X). As before, let Γ be a non-
elementary torsion-free discrete subgroup of G and set X := Γ\Hn. Let {μx} and
{μ′

x} be Γ-invariant conformal densities on ∂Hn of dimension δμ and δμ′ , respec-

tively. Following Roblin [31], we define a measure mμ,μ′
on T1(X) associated to

{μx} and {μ′
x} as follows. Fix o ∈ H

n. Then the map

u �→ (u+, u−, βu−(o, π(u)))

is a homeomorphism between T1(Hn) with

(∂Hn × ∂Hn
� {(ξ, ξ) : ξ ∈ ∂Hn})× R.

Hence we can define a measure m̃μ,μ′
on T1(Hn) by

(3.1) dm̃μ,μ′
(u) = eδμβu+ (o,π(u)) eδμ′βu− (o,π(u)) dμo(u

+)dμ′
o(u

−)ds,

where s = βu−(o, π(u)). Note that m̃μ,μ′
is Γ-invariant. Hence it induces a locally

finite measure mμ,μ′
on T1(X) such that if p is injective on Ω ⊂ T1(Hn), then

mμ,μ′
(p(Ω)) = m̃μ,μ′

(Ω).

This definition is independent of the choice of o ∈ H
n.

Two important conformal densities onH
n that we will consider are the Patterson-

Sullivan density and the G-invariant (Lebesgue) density.
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3.1.1. Critical exponent δΓ. We denote by δΓ the critical exponent of Γ which is
defined as the abscissa of convergence of a Poincaré series

∑
γ∈Γ e

−sd(o,γ(o)) for
some o ∈ H

n; that is, the series converges for s > δΓ and diverges for s < δΓ, and
the convergence property is independent of the choice of o ∈ H

n.
As Γ is non-elementary, we have δΓ > 0. Generalizing the work of Patterson [26]

for n = 2, Sullivan [36] constructed a Γ-invariant conformal density {νx : x ∈ H
n}

of dimension δΓ supported on Λ(Γ), which is unique up to homothety and is called
the Patterson-Sullivan density. From now on, we will simply write δ instead of δΓ.

We denote by {mx : x ∈ H
n} a G-invariant conformal density on the boundary

∂Hn of dimension (n−1), which is unique up to homothety, and eachmx is invariant
under the maximal compact subgroup Gx. It will be called the Lebesgue density.

The measure mν,ν on T1(X) is called the Bowen-Margulis-Sullivan measure
mBMS associated with {νx} ([5], [20], [37]):

(3.2) dmBMS(u) = eδβu+ (o,π(u)) · eδβu− (o,π(u)) dνo(u
+)dνo(u

−)ds.

The measure mν,m is called the Burger-Roblin measure mBR associated with
{νx} and {mx} ([6], [31]):

(3.3) dmBR(u) = e(n−1)βu+ (o,π(u)) · eδβu− (o,π(u)) dmo(u
+)dνo(u

−)ds.

We note that the support of mBMS and mBR are given respectively by {u ∈
T1(X) : u+, u− ∈ Λ(Γ)} and {u ∈ T1(X) : u− ∈ Λ(Γ)}.

3.2. Relation to classification of measures invariant under horocycles.
Burger [6] showed that for a convex cocompact hyperbolic surface Γ\H2 with δ >
1/2, mBR is a unique ergodic horocycle invariant locally finite measure which is not
supported on closed horocycles. Roblin extended Burger’s result in much greater
generality. By identifying the space ΩH of all unstable horospheres with ∂Hn × R

by H+(u) �→ (u−, βu−(o, π(u))), one defines the measure dμ̂(H) = dνo(ξ)e
δsds for

H = (ξ, s). Then Roblin’s theorem [31, Thm. 6.6] says that if |mBMS| < ∞, then
μ̂ is the unique Radon Γ-invariant measure on Λr(Γ) × R ⊂ ΩH. This important
classification result is not used in this article, but it suggests that the asymptotic
distribution of expanding horospheres should be described by mBR.

3.3. Patterson-Sullivan and Lebesgue measures on Ẽ, H+
u and E. Let S̃

and Ẽ be as in §2.3. The following measures are special cases of the measures
defined in §2.6.

Fix o ∈ H
n. Define the Borel measure μLeb

Ẽ
on Ẽ such that

(3.4) dμLeb
Ẽ

(v) = e(n−1)βv+ (o,π(v))dmo(v
+).

Since {mx} is a G-invariant conformal density on ∂Hn, the measure μLeb
Ẽ

is G-

invariant; that is, g∗μ
Leb
Ẽ

= μLeb
g(Ẽ)

. In particular, it is a GẼ invariant measure on

Ẽ.
Define the Borel measure μPS

Ẽ
on Ẽ such that

(3.5) dμPS
Ẽ

(v) = eδβv+ (o,π(v))dνo(v
+).

We note that μPS
Ẽ

is a Γ-invariant measure.

As described in §2.6, we denote by μLeb
E and μPS

E the measures on E = p(Ẽ)
induced by μLeb

Ẽ
and μPS

Ẽ
, respectively. Each of them is a pushforward of the

corresponding locally finite measure on ΓẼ\Ẽ.
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As in §2.6.1, we have families of measures μPS = {μPS
H+} and μLeb = {μLeb

H+} on
the unstable horospherical foliation satisfying

μPS
Gr(H+)(Gr(F )) = eδrμPS

H+(F ) and μLeb
Gr(H+)(Gr(F )) = e(n−1)rμLeb

H+ (F )

for any Borel subset F of p(H+).

3.4. Transverse measures for mBMS. For each measurable T contained in a weak
stable leaf of the geodesic flow on T1(Hn), called a transversal, define a measure
λT on T by

(3.6) dλT (t) = e−δs dνo(t
−)ds,

where s = βt−(o, π(t)). If B = TP is any box and p ∈ P , then (tp)− = t− and
H+

tp = H+
t , and hence β(tp)−(o, π(tp)) = βt−(o, π(t)). Hence

dλTp(tp) = dλT (t);

that is, λT is holonomy invariant, where the holonomy is given by t �→ tp.
Now for any Ψ ∈ C(B), by (3.2)-(3.6), we have∫

B

f dmBMS =

∫
T

∫
P

Ψ(tp) dμPS
H+

t
(tp)dλT (t),(3.7) ∫

B

f dmBR =

∫
T

∫
P

Ψ(tp) dμLeb
H+

t
(tp)dλT (t).(3.8)

3.4.1. Backward admissible box.

Lemma 3.1. For any u ∈ T1(Hn) and ε > 0, there exists a box B = TP about u
such that

(1) |λT | > 0, or equivalently νo({t− : t ∈ T}) > 0, and
(2) lim supr→∞ d(Gr(tp),Gr(t′p)) < ε, for all t, t′ ∈ T and p ∈ P .

Such a box B as above will be called a backward admissible box with asymptoti-
cally ε-thin transversals.

Proof. As in the proof of Lemma 2.17, there exists a relatively compact open
neighborhood P− of u in H−

u such that νo({t− : t ∈ P−}) > 0, and p is in-
jective on a neighborhood of the closure of P−. Let r0 = − log(ε/4 diam(P−)).
Then diam(Gr0(P−)) = ε/4 and p is injective on a neighborhood of the closure
of Gr0(P−). Let T1 be an open relatively compact neighborhood of Gr0(P−) in
Viz−1(u+) and P1 be an open relatively compact neighborhood of Gr0(u) in H+

Gr0 (u)

such that T1P1 is a box about Gr0(u) contained in a ball of radius ε/2 about u.
Let T = G−r0(T1) and P = G−r0(P1). Then B = TP has the required properties.
Property (1) holds because

{t− : t ∈ T} = {t− : t ∈ T1} ⊃ {t− : t ∈ Gr0(P−)} = {t− : t ∈ P−}.

For property (2), let t1 = Gr0(t) and t′1 = Gr0(t′) in T1 and p1 = Gr0(p) ∈ P1. Since
(t1p1)

+ = (t′1p1)
+, for any r > r0,

d(Gr(tp),Gr(t′p)) = d(Gr−r0(t1p1),Gr−r0(t′1p1)) ≤ d(t1p1, t
′
1p1) ≤ ε.

�
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3.5. Mixing of the geodesic flow. We assume that |mBMS| < ∞ for the rest of
this section. This implies that Γ is of divergent type; that is,

∑
γ∈Γ e

−δd(o,γo) = ∞
and the Γ-invariant conformal density of dimension δ is unique up to homothety
(see [31, Coro. 1.8]).

Hence, up to homothety, νx is the weak-limit as s → δ+ of the family of measures

νx,o(s) :=
1∑

γ∈Γ e
−sd(o,γo)

∑
γ∈Γ

e−sd(x,γo)δγo,

where δγo denotes the unit mass at γo for some o ∈ H
n.

The most crucial ergodic theoretic result involved in this work is the mixing of
geodesic flow which was obtained by Rudolph [32] for a geometrically finite Γ, and
by Roblin[31], as well as Babillot [1], in a much greater generality:

Theorem 3.2 (Rudolph, Roblin, Babillot). For any Ψ1 ∈ L2(T1(X),mBMS) and
Ψ2 ∈ L2(T1(X),mBMS),

lim
r→∞

∫
T1(X)

Ψ1(Gr(x))Ψ2(x) dm
BMS(x) =

1

|mBMS| m
BMS(Ψ1) ·mBMS(Ψ2).

From this theorem, we derive the following result, which generalizes the corre-
sponding result for PS-measures on unstable horospheres due to Roblin [31, Corol-
lary 3.2].

Theorem 3.3. For any Ψ ∈ Cc(T
1(X)) and f ∈ L1(E, μPS

E ),

(3.9) lim
r→∞

∫
x∈E

Ψ(Gr(x))f(x) dμPS
E (x) =

μPS
E (f)

|mBMS| ·m
BMS(Ψ).

We will deduce the above statement from its following version.

Proposition 3.4. Let Ψ ∈ L1(T1(X),mBMS) and f ∈ L1(E, μPS
E ) both be non-

negative, bounded and vanish outside compact sets. Then for any ε > 0,

lim sup
r→∞

∫
x∈E

Ψ(Gr(x))f(x) dμPS
E (x) ≤ μPS

E (f)

|mBMS| ·m
BMS(Ψ+

ε ),(3.10)

lim inf
r→∞

∫
x∈E

Ψ(Gr(x))f(x) dμPS
E (x) ≥ μPS

E (f)

|mBMS| ·m
BMS(Ψ−

ε ),(3.11)

where, for any u ∈ T1(Hn),

(3.12)
Ψ+

ε (p(u)) := sup{Ψ(p(v)) : d(v, u) < ε, v ∈ Viz−1(u+)},
Ψ−

ε (p(u)) := inf{Ψ(p(v)) : d(v, u) < ε, v ∈ Viz−1(u+)}.

Proof. By Lemma 3.1, there exists a finite open cover B of supp(f) ⊂ E ⊂ T1(X)
consisting of backward admissible boxes B with asymptotically ε-thin transversals;
we identify B ⊂ T1(Hn) with p(B). By considering a partition of unity subordinate
to this cover, f =

∑
B∈B φB, where φB ∈ L1(E, μPS

E ) is a non-negative function
whose support is contained in p(B). Therefore it is enough to prove (3.10) and
(3.11) for φB in place of f for each B ∈ B.
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Fix any B ∈ B. For each [γ] ∈ Γ/ΓẼ , let φγ(w) = φB(w) for all w ∈ γẼ. By
(2.14),

μPS
E (φB) =

∑
[γ]∈Γ/ΓẼ

μPS
γẼ

(φγ) and

∫
x∈E

Ψ(Gr(x))φB(x) dμ
PS
E (x) =

∑
[γ]∈Γ/ΓẼ

∫
w∈γẼ∩B

Ψ(Gr(w))φγ(w) dμ
PS
γẼ

(w).

Therefore to prove (3.10) and (3.11) for φB in place of f , it is enough to prove the

following: for any γ ∈ Γ and φ := φγ ∈ L1(γẼ, μPS
γẼ

) vanishing outside γẼ ∩B, we

have

lim sup
r→∞

∫
w∈γẼ∩B

Ψ(Gr(w))φ(w) dμPS
γẼ

(w) ≤
μPS
γẼ

(φ)

|mBMS|m
BMS(Ψ+

ε ),(3.13)

lim inf
r→∞

∫
w∈γẼ∩B

Ψ(Gr(w))φ(w) dμPS
γẼ

(w) ≥
μPS
γẼ

(φ)

|mBMS|m
BMS(Ψ−

ε ).(3.14)

Now we express B = TP . If γẼ ∩ B = ∅, then both sides of (3.13) are zero,
and hence the claim is true. Otherwise, there exists (t1, p1) ∈ T × P such that

v := t1p1 ∈ γẼ. We recall that as in §2.3.1, ξv : H+
v � (γ ·Viz−1(∂S̃)) → γẼ�{−v}

and qv : γẼ�{−v} → H+
v �(γ ·Viz−1(∂S̃)) are differentiable inverses of each other.

Letting

P1 = {p ∈ P : ξv(t1p) ∈ Tp},
we claim that

(3.15) γẼ ∩B = {ξv(t1p) : p ∈ P1}.

To see this, if tp ∈ γẼ for some (t, p) ∈ T × P , then

qv(tp) = H+
v ∩ Viz−1((tp)+) = H+

t1 ∩ Viz−1(p+) = t1p.

Hence ξv(t1p) = tp, and so p ∈ P1. The opposite inclusion is obvious.

We define a map ρ : TP → γẼ as follows:

ρ(tp) = ξv(t1p), for all (t, p) ∈ T × P .

For any t ∈ T , for the restricted map ρ : tP → γẼ, by (2.12) and (2.15), and
since (tp)+ = p+ = ρ(tp)+, we have

(3.16) dμPS
γẼ

(ρ(tp))/dμPS
H+

t
(tp) = eβp+ (π(tp),π(ρ(tp))).

In view of this, we define Φ ∈ L2(T1(X), μBMS) as follows: Φ(x) = 0 if x ∈ X � B
and

(3.17) Φ(tp) = φ(ρ(tp))eβp+ (π(tp),π(ρ(tp))) if x = tp ∈ B.

We note that

(3.18) Φ(tp) 
= 0 ⇒ ρ(tp) ∈ B ⇒ p ∈ P1.

Also, for t ∈ T and p ∈ P1, we have {ρ(tp), tp} ⊂ Tp. Since Gr(B) has ε-thin
transversals as r → ∞ (see Lemma 3.1(2)),

(3.19) lim sup
r→∞

d(Gr(ρ(tp)),Gr(tp)) ≤ ε for all p ∈ P1.
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By Theorem 3.2,

1

|mBMS| m
BMS(Ψ+

ε ) ·mBMS(Φ)(3.20)

= lim
r→∞

∫
B

Ψ+
ε (Gr(x))Φ(x) dmBMS(x)(3.21)

= lim
r→∞

∫
t∈T

(∫
p∈P1

Ψ+
ε (Gr(tp))Φ(tp) dμPS

H+
t
(tp)

)
dλT (t)(3.22)

= lim
r→∞

∫
t∈T

(∫
p∈P1

Ψ+
ε (Gr(tp))φ(ρ(tp)) dμPS

γẼ
(ρ(tp))

)
dλT (t)(3.23)

≥ |λT | · lim sup
r→∞

∫
w∈γẼ∩B

Ψ(Gr(w))φ(w) dμPS
γẼ

(w),(3.24)

where (3.22) follows from (3.7) and (3.18), (3.23) follows from (3.15), (3.16) and
(3.17), and to justify (3.24) we put w = ρ(tp) and use (3.12) and (3.19).

By putting Ψ(x) = 1 = Ψ+
ε (x) in (3.21)–(3.24) with equality in (3.24), we get

(3.25) mBMS(Φ) = |λT | · μPS
γẼ

(φ) < ∞.

Now (3.13) is deduced by comparing (3.20), (3.24) and (3.25), and noting that
|λT | 
= 0 by the backward admissibility of B. Similarly we can deduce (3.14). �

Proof of Theorem 3.3. Since both the sides of (3.9) are linear in Ψ, it is enough to
prove it for Ψ ≥ 0. Since Ψ is uniformly continuous and |mBMS| < ∞,

lim
ε→0

mBMS(Ψ+
ε −Ψ−

ε ) = 0.

Therefore by Proposition 3.4, we have that (3.9) holds for all non-negative bounded
measurable f with compact support on E. Since the set of such f ’s is dense in
L1(E, μPS

E ) and both sides of (3.9) are linear and continuous in f ∈ L1(E, μPS
E ),

(3.9) holds for all f ∈ L1(E, μPS
E ). �

The following result is one of the basic tools developed in this article.

Theorem 3.5 (Transversal equidistribution). Let f ∈ L1(E, μPS
E ) be such that

μPS
E (f+

ε − f−
ε ) → 0 as ε → 0. Let ψ ∈ Cc(T ) for a transversal T of a box B (§2.4).

Then

(3.26) lim
r→∞

e−δr
∑

t∈T∩Gr(E)

#(Γ̄r,t) · ψ(t) · f(G−r(t)) =
μPS
E (f)

|mBMS| · λT (ψ),

where

f+
ε (x) = sup

{y∈E:d(y,x)<ε}
f(y) and f−

ε (x) = inf
{y∈E:d(y,x)<ε}

f(y),

the transverse measure λT is defined by (3.6) and Γ̄r,t is defined by (2.27).

Proof. Since both sides of (3.26) are linear in f and in ψ, without loss of generality
we may assume that f ≥ 0 and ψ ≥ 0. By Lemma 2.17, supp(ψ) can be covered
by finitely many admissible boxes. By a partition of unity argument, in view of
Remark 2.5, we may assume without loss of generality that T is a transversal of an
admissible box B.
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Let ε0 > 0 be such that p is injective on Bε0+ and that ψ vanishes outside Tε0−.
We extend ψ to a continuous function on Tε0+ by putting ψ = 0 on Tε0+�T . Since
B is admissible, due to Lemma 2.15, if we define

Ψ(tp) = ψ(t)/μPS
H+

t
(tP ), for all (t, p) ∈ Tε0+ × P ,

then Ψ is a bounded continuous function on Bε0+ vanishing outside Bε0−. If Ψ
±
ε ∈

C(Bε+) are defined as in (3.12) for 0 < ε ≤ ε0, then

(3.27) lim
ε→0

‖Ψ+
ε −Ψ−

ε ‖∞ = 0.

By Proposition 3.4,

(3.28)
lim supr→∞

∫
E
Ψ+

ε (Gr(v))f+
ε (v) dμPS

E (v) ≤ μPS
E (f+

ε )mBMS(Ψ+
ε )

|mBMS| ,

lim infr→∞
∫
E
Ψ−

ε (Gr(v))f−
ε (v) dμPS

E (v) ≥ μPS
E (f−

ε )mBMS(Ψ−
ε )

|mBMS| .

Since mBMS(Bε0+) < ∞, by (3.27), we have that mBMS(Ψ+
ε −Ψ−

ε ) → 0 as ε → 0.
By our assumption, μPS

E (|f±
ε − f |) → 0 as ε → 0. Therefore by Proposition 2.18

and (3.28),

lim
r→∞

e−δr
∑

t∈T∩Gr(E)

#(Γ̄r,t) · ψ(t) · f(G−r(t)) =
μPS
E (f)mBMS(Ψ)

|mBMS| .

Also,

mBMS(Ψ) =

∫
T

dμT (t)

(∫
tP

Ψ(tp)dμPS
H+

t

)
= λT (ψ).

�

Now we state and prove the main equidistribution result of this article which is
more general than Theorem 1.8.

Theorem 3.6. Let f ∈ L1(E, μPS
E ) such that μPS

E (f+
ε − f−

ε ) → 0 as ε → 0. Let

Ψ ∈ Cc(T
1(X)). Then

lim
r→∞

e(n−1−δ)r

∫
u∈E

Ψ(Gr(u))f(u) dμLeb
E (u) =

μPS
E (f)

|mBMS|m
BR(Ψ).

In particular, the result applies to f = χF for a Borel measurable F ⊂ E such
that μPS

E (Fε1) < ∞ for some ε1 > 0 and μPS
E (∂F ) = 0.

Proof. By Lemma 2.17, the boxes admissible with respect to {μPS
H+} form a basis

of open sets in T1(X). By a partition of unity argument, without loss of generality
we may assume that supp(Ψ) ⊂ B for an admissible box B = TP . Let ε0 > 0 be
such that Ψ = 0 outside Bε0−. For 0 < ε ≤ ε0, let Ψ

±
ε be defined as in (2.18). Then

(3.29) lim
ε→0

‖Ψ+
ε −Ψ−

ε ‖∞ = 0.

For t ∈ Tε0 and ε > 0, define ψ±
ε (t) =

∫
tP

Ψ±
ε dμLeb

H+
t

. By Lemma 2.15, ψ±
ε ∈

Cc(T ) for any 0 < ε < ε0/2.
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For the conformal density, {μx} = {mx}, we have δμ = n−1, and by multiplying
all the terms in the conclusion of Corollary 2.14 by e−δr, for r > rε (see (2.17)), we
get

(e−(n−1)ε)e−δr
∑

t∈T∩Gr(E)

#(Γ̄r,t) · ψ−
ε (t) · f−

ε (G−r(t))

≤e(n−1−δ)r

∫
E

Ψ(Gr(u))f(u) dμLeb
E (u)

≤(e(n−1)ε)e−δr
∑

t∈T∩Gr(E)

#(Γ̄r,t) · ψ+
ε (t) · f+

ε (G−r(t)).

Define ψ(t) :=
∫
tP

Ψ(tp) dμLeb
H+

t

for all t ∈ T . Then λT (ψ) = mBR(Ψ) and

λT (ψ
±
ε ) = mBR(Ψ±

ε ). Since mBMS(Bε0+) < ∞, by (3.29),

λT (ψ
+)− λT (ψ

−) = mBR(Ψ+
ε −Ψ−

ε ) → 0, as ε → 0.

Also, since μPS
E (f+

ε − f−
ε ) → 0, by Theorem 3.5

lim
r→∞

e(n−1−δ)r

∫
E

Ψ(Gr(u))f(u) dμLeb
E (u) =

μPS
E (f)λT (ψ)

|mBMS| .

Since λT (ψ) = mBR(Ψ), we prove the claim.
In the particular case of f = χF , we have

inf
ε>0

f+
ε = χF and sup

ε>0
f−
ε = χint(F ), and

if μPS
E (f+

ε1) = μPS
E (Fε1) < ∞, then limε→0 μ

PS
E (f+

ε − f−
ε ) = μPS

E (∂F ). �

The idea of the above proof was influenced by the work of Schapira [34].
Our proof also yields the following variation of Theorem 3.6.

Theorem 3.7. Let F̃ ⊂ Ẽ be a Borel subset such that μPS
Ẽ

(F̃ε) < ∞ for some ε > 0

and μPS
Ẽ

(∂F̃ ) = 0. Then for any ψ ∈ Cc(T
1(Γ\Hn)),

lim
t→+∞

e(n−1−δ)t ·
∫
F̃

ψ(Gt(v)) dμLeb
Ẽ

(v) =
μPS
Ẽ

(F̃ )

|mBMS| ·m
BR(ψ).

3.6. Integrability of the base eigenfunction φ0.

Proof of Theorem 1.17. We want to prove equivalence of the following:

(1) φ0 ∈ L1(Γ\Hn, dVolRiem);
(2) |mBR| < ∞;
(3) Γ is a lattice in G.

The pushforward of mBR from Γ\T1(H1) to Γ\Hn is the measure corresponding
to φ0 dVolRiem (see [17, Lemma 6.7]). Therefore (1) and (2) are equivalent.

To prove that (2) implies (3), suppose that |mBR| < ∞. Since the left G-action
on T1(Hn) is transitive, we may identify T1(Γ\Hn) with Γ\G/M for a compact
subgroup M . We lift the measure mBR to a measure m on Γ\G as follows: for
any f ∈ Cc(Γ\G), we define m(f) = mBR(f̄), where f̄(ΓgM) =

∫
x∈M

f(Γgx) dx,
where dx is the probability Haar measure on M . Denote by U the horospherical
subgroup of G whose orbits in G project to the unstable horospheres in T1(Hn).
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Then M normalizes U and any unimodular proper closed subgroup of G containing
U is contained in the subgroup MU . As m is invariant under GH+ for any unstable
horosphere H+, it follows that m is a U -invariant finite measure on Γ\G. By
Ratner’s theorem [30], any ergodic component, say, λ, of m is a homogeneous
measure in the sense that λ is an H-invariant finite measure supported on a closed
orbit x0H for some x0 ∈ Γ\G and a unimodular closed subgroup H of G containing
U . If H 
= G, then H ⊂ MU and Γ∩H is cocompact in H. It follows by a theorem
of Bieberbach ([4, Theorem 2.25]) that Γ ∩ U is cocompact in U . Hence H = U .
Thus we can write m = m1 +m2, where m1 is G-invariant and m2 is supported on
a union of compact U -orbits.

If m1 = 0, then m = m2, and hence the projection of the support of mBR in
T1(Hn) is a union of compact unstable horospheres. It follows that the Patterson-
Sullivan density is concentrated on the set of parabolic fixed points of Γ, which is
a contradiction.

If m1 
= 0, then m1 is a finite G-invariant measure on Γ\G; that is, Γ is a lattice
in G. Hence (2) implies (3).

If Γ is a lattice, then {νx} = {mx} up to a constant multiple. Hence mBR is the
projection of a finite G-invariant measure of Γ\G to T1(Γ\Hn). Hence (3) implies
(2). �

4. Geometric finiteness of closed totally geodesic immersions

4.1. Parabolic fixed points and minimal subspaces. Let Γ be a torsion-free
discrete subgroup of G.

Definition 4.1. An element g ∈ G is called parabolic if Fix(g) := {ξ ∈ ∂Hn : gξ =
ξ} is a singleton set. An element ξ ∈ ∂Hn is called a parabolic fixed point of Γ if
there exists a parabolic element γ ∈ Γ such that Fix(γ) = {ξ}. Note that if ξ is a
parabolic fixed point for Γ, then ξ ∈ Λ(Γ). Let Λp(Γ) denote the set of parabolic
fixed points of Γ.

Let ξ ∈ Λp(Γ). In order to analyze the action of Γξ on ∂Hn
�{ξ}, it is convenient

to use the upper half space model Rn
+ = {(x, y) : x ∈ R

n−1, y > 0} for Hn, where ξ
corresponds to ∞ and ∂Hn

� {ξ} corresponds to ∂Rn
+ = {(x, 0) : x ∈ R

n−1}. The
subgroup Γ∞ acts properly discontinuously via affine isometries on ∂Hn

� {∞} ∼=
R

n−1. At this stage we will treat Rn−1 only as an affine space, and we will choose its
origin 0 later. Moreover, the action of Γ∞ preserves every horosphere R

n−1 × {y},
where y > 0, based at ∞.

By a theorem of Bieberbach ([4, 2.2.5]), Γ∞ contains a normal abelian subgroup
of finite index, say Γ′

∞. By [4, 2.1.5], any (non-empty) Γ′
∞-invariant affine subspace

of Rn−1 contains a (non-empty) minimal Γ′
∞-invariant affine subspace; we call such

an affine subspace a Γ′
∞-minimal subspace. By [4, 2.2.6], Γ′

∞ acts cocompactly
via translations on any Γ′

∞-minimal subspace. Moreover, any two Γ′
∞-minimal

subspaces are parallel, and if v1 and v2 belong to any two Γ′
∞-minimal subspaces,

then γv1 − γv2 = v1 − v2 for all γ ∈ Γ′
∞. Let rank(Γ∞) denote the rank of the

(torsion-free) Z-module Γ′
∞; it is independent of the choice of Γ′

∞, and it equals
the dimension of a Γ′

∞-minimal subspace.

Definition 4.2. A parabolic fixed point ξ ∈ Λp(Γ) is said to be bounded if
Γξ\(Λ(Γ) � {ξ}) is compact. Denote by Λbp(Γ) the set of all bounded parabolic
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fixed points for Γ. Therefore ∞ ∈ Λbp(Γ) if and only if ∞ ∈ Λp(Γ) and

(4.1) Λ(Γ)� {∞} ⊂ {x ∈ R
n−1 : dEuc(x, L) ≤ r0},

for some r0 > 0, where L is a Γ′
∞-minimal subspace.

4.2. On geometric finiteness of ΓS̃. For the rest of this section, let S̃ be a proper
connected totally geodesic subspace of Hn such that the natural projection map
ΓS̃\S̃ → X = Γ\Hn is proper or, equivalently, the map ΓS̃\GS̃ → Γ\G is proper

or, equivalently, ΓGS̃ is closed in G. Since S̃ is totally geodesic, the geometric

boundary ∂S̃ is the intersection of ∂Hn with the closure of S̃ in Hn.

Proposition 4.3. Let ∞ ∈ Λp(Γ) ∩ ∂S̃. Let L be a Γ′
∞-minimal subspace of

∂Hn
� {∞} ∼= R

n−1 and choose the origin 0 ∈ L. Then the intersection of L with

the (parallel) translate of the affine subspace ∂S̃ � {∞} through 0 is a (Γ′
∞ ∩GS̃)-

minimal subspace.

Proof. Let Γ′ = Γ′
∞, Δ = Γ′ ∩ GS̃ , and the affine subspace F = ∂S̃ � {∞}. Since

ΔF = F , let v belong to a Δ-minimal subspace of F . Since v and 0 belong to two Δ-
minimal subspaces, γv−γ0 = v−0 = v. Since γv ∈ F , we have γ0 = γv−v ∈ F−v.
Since 0 ∈ F − v, we have γ0 ∈ γ(F − v) ∩ (F − v). Now γ(F − v) and γF = F
are parallel. Therefore F − v and γ(F − v) are parallel, and since they intersect,
γ(F − v) = F − v. Thus Δ(F − v) = F − v. Therefore, Δ-action preserves
L0 := L ∩ (F − v). We want to prove that Γ′ ∩GS̃ acts cocompactly on L0.

Since ∞ ∈ Λp(Γ), by [4, Lemma 3.2.1] Γ∞ consists of parabolic elements of
G∞. That is, Γ∞ ⊂ MN , where N is the maximal unipotent subgroup of G
which acts transitively on R

n−1 = ∂Hn
�{∞} via translations and M is a compact

subgroup of G normalizing N that acts on R
n−1 by Euclidean isometries fixing 0.

Let U = {g ∈ N : gL = L}. Then U acts transitively on L by translations. Since
0 ∈ L and Γ′ acts cocompactly on L via translations, the connected component of
the Zariski closure of Γ′ in G is a connected abelian subgroup of the form MLU ,
where ML ⊂ M and ML acts trivially on L.

Since Γ′\L is a compact Euclidean torus, the closure of the image of L0 in
Γ′\L equals the image of an affine subspace, say L1, of L. Thus Γ′L0 = Γ′L1.
For i = 0, 1, let Ui = {u ∈ U : uLi = Li}. Then Ui acts transitively on Li, and
Γ′MLU0 = Γ′MLU1. Therefore the identity component of Γ′U0 is of the form M1U1,
where M1 ⊂ ML and (Γ′ ∩M1U1)\M1U1 is compact. In particular, Γ′ ∩M1U1 acts
cocompactly on L1.

By our assumption ΓGS̃ is a closed subset ofG. Therefore Γ′U0 ⊂ ΓGS̃ . SinceGS̃

is the identity component in ΓGS̃ , we have M1U1 ⊂ GS̃. It follows that U1 preserves
L0. Since U1 acts transitively on L1, L1 ⊂ L0; hence L1 = L0. In particular,
Γ′ ∩ M1U1 acts cocompactly on L0. Therefore Δ = Γ′ ∩ GS̃ acts cocompactly on
L0. �

Proposition 4.4. Let ∞ ∈ Λbp(Γ) ∩ ∂S̃ and ΓS̃ := Γ ∩GS̃. Then{
∞ ∈ Λbp(ΓS̃) if Γ∞ ∩ ΓS̃ is infinite,

∞ /∈ Λ(ΓS̃) if Γ∞ ∩ ΓS̃ is finite, hence trivial.

Proof. Let the notation be as in Proposition 4.3. Since ∞ ∈ Λbp(Γ), by (4.1),
Λ(Γ)� {∞} is contained in a bounded neighborhood of L, and hence in a bounded

neighborhood of L + v. Therefore (Λ(Γ) � {∞}) ∩ ∂S̃ is contained in a bounded
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neighborhood of L + v intersected with F = ∂S̃ � {∞}, and hence in a bounded
neighborhood of L0 = L ∩ (F − v) as well. By Proposition 4.3, L0 is a (ΓS̃ ∩ Γ′)-
minimal subspace. Now if Γ∞ ∩ ΓS̃ is infinite, or equivalently ∞ ∈ Λp(ΓS̃), then
∞ ∈ Λbp(ΓS̃).

Suppose that Γ∞∩ΓS̃ is finite. Then L0 is a singleton set. Therefore Λ(ΓS̃)�{∞}
is contained in a bounded subset of ∂S̃�{∞}. Then∞ ∈ ∂S̃ is isolated from Λ(ΓS̃).
Since the limit set of a non-elementary hyperbolic group is perfect, it follows that
ΓS̃ is elementary, and hence ΓS̃ is either parabolic or loxodromic. Now suppose
that ∞ ∈ Λ(ΓS̃). In the parabolic case Λ(ΓS̃) = {∞} = Λp(ΓS̃), contradicting the
assumption that Γ∞ ∩ ΓS̃ = {e}. In the loxodromic case, ∞ ∈ Λr(ΓS̃) ⊂ Λr(Γ),
contradicting the assumption that ∞ ∈ Λp(Γ). �

Lemma 4.5. We have

Λr(Γ) ∩ ∂S̃ = Λr(ΓS̃).

Proof. Let ξ ∈ Λr(Γ) ∩ ∂S̃. As S̃ is totally geodesic, there exists a geodesic ray,

say, β, lying in S̃ pointing toward ξ. Since ξ is a radial limit point, Γβ accumulates
on a compact subset of Hn. By the assumption that the natural projection map
ΓS̃\S̃ → X is proper, ΓS̃β accumulates on a compact subset of S̃. This implies
ξ ∈ Λr(ΓS̃). The other direction for the inclusion is clear. �

In [4], Bowditch proved the equivalence of several definitions of geometrically
finite hyperbolic groups. In particular, we have:

Theorem 4.6 ([2], [4], [21]). Γ is geometrically finite if and only if Λ(Γ) = Λr(Γ)∪
Λbp(Γ).

Hence, for geometrically finite Γ, we have Λp(Γ) = Λbp(Γ).

Theorem 4.7. If Γ is geometrically finite, then ΓS̃ is geometrically finite.

Proof. Since Λ(Γ) = Λr(Γ)∪Λbp(Γ), it follows from Proposition 4.4 and Lemma 4.5
that Λ(ΓS̃) = Λbp(ΓS̃) ∪ Λr(ΓS̃), proving the claim by Theorem 4.6. �

4.3. Compactness of supp(μPS
E ) for horospherical E.

Theorem 4.8 (Dal’bo [7]). Let Γ be geometrically finite. For a horosphere H in
T1(Hn) based at ξ ∈ ∂Hn, E := p(H) is closed in T1(X) if and only if either
ξ /∈ Λ(Γ) or ξ ∈ Λp(Γ).

Theorem 4.9. Let Γ be geometrically finite. If E := p(H) is a closed horosphere
in T1(X), then supp(μPS

E ) is compact.

Proof. Let ξ ∈ ∂Hn be the base point for H. The restriction of the visual map
Vis : v �→ v+ induces a homeomorphism ψ : H → ∂Hn

� {ξ}. As E is closed, by
Theorem 4.8 either ξ /∈ Λ(Γ) or ξ is a bounded parabolic fixed point. If ξ /∈ Λ(Γ),
then Λ(Γ) is a compact subset of ∂Hn

� {ξ}. Since supp(μPS
E ) = p(ψ−1(Λ(Γ))), it

follows that supp(μPS
E ) is compact.

Suppose now that ξ is a bounded parabolic fixed point. By Definition 4.2,
Γξ\(Λ(Γ) � {ξ}) is compact. Since Γξ is discrete, it preserves the horosphere H
based at ξ, and Γξ = ΓH. Therefore ψ induces a homeomorphism between ΓH\H
and ΓH\(∂Hn

� {ξ}). It follows that ΓH\ψ−1(Λ(Γ)� {ξ}) is compact and is equal
to supp(μPS

E ). �
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5. On the cuspidal neighborhoods of Λbp(Γ) ∩ ∂S̃

5.1. Throughout this section, let Γ be a torsion-free discrete subgroup of G and S̃ a
connected complete totally geodesic subspace of Hn such that the natural projection
ΓS̃\S̃ → Γ\Hn is a proper map.

The Dirichlet domain for ΓS̃ attached to some a ∈ S̃ is defined by

(5.1) D(a,ΓS̃) := {s ∈ S̃ : d(s, a) ≤ d(s, γa) for all γ ∈ ΓS̃}.

Proposition 5.1. Λr(Γ) ∩ ∂D(a,ΓS̃) = ∅.

Proof. Let ξ ∈ Λr(Γ) ∩ ∂D(a,ΓS̃). As

D(a,ΓS̃) = D(a,ΓS̃) ∪ (∂D(a,ΓS̃) ∩ ∂Hn)

is convex in H
n, there exists a geodesic {ξt} ⊂ D(a,ΓS̃) such that ξ0 = a and

ξ∞ = ξ. As ξ ∈ Λr(ΓS̃) by Lemma 4.5, there exist sequences ti → ∞ and γi ∈ ΓS̃

such that d(γiξti , a) is uniformly bounded for all i. Since d(ξti , a) → ∞, it follows
that for all large i, d(ξti , γ

−1
i a) < d(ξti , a), yielding the fact that ξti /∈ D(a,ΓS̃), a

contradiction. �

Let Ẽ ⊂ T1(Hn) denote the set of all normal vectors to S̃. Given U ⊂ ∂Hn, we
define

(5.2) EU = {v ∈ Ẽ : π(v) ∈ D(a,ΓS̃), v+ ∈ U ∩ Λ(Γ)}.

Remark 5.2. If ξ ∈ Λr(Γ) ∩ ∂S̃, then there exists a neighborhood U of ξ in ∂Hn

such that EU = ∅. To see this, note that if there exists a sequence {vi} ⊂ Ẽ such
that v+i → ξ, then π(vi) → ξ, and hence by Proposition 5.1 π(vi) 
∈ D(a,ΓS̃) for all
large i.

In view of Theorem 4.6 and Remark 5.2, the main goal of this section is to
describe the structure of EU for a neighborhood U of a point in Λbp(Γ) ∩ ∂S̃ and
to compute the measure μPS

Ẽ
(EU ).

In this section, we will use the upper half space model Hn = R
n−1 × R>0, and

first we assume that

∞ ∈ ∂S̃ ∩ Λp(Γ).

Here R
n−1 is to be treated as an affine space until we make a choice of the origin.

Hence S̃ is a vertical plane over the affine subspace ∂S̃ � {∞} of Rn−1. For any
affine subspace F of Rn−1, let PF : Rn−1 → F denote the orthogonal projection.
Let

(5.3) b : Rn−1 × R>0 → R
n−1 and h : Rn−1 × R>0 → R>0

denote the natural projections.
Let Γ′ = Γ′

∞ be a normal abelian subgroup of Γ∞ with finite index, as in §4.1,
and fix a Γ′-minimal subspace L of Rn−1. Noting that b(a) ∈ ∂S̃�{∞}, we choose
0 := PL(b(a)), the origin of Rn−1. This choice of 0 makes L a linear subspace. Set

W := {v− b(a) : v ∈ ∂S̃ � {∞}}, a linear subspace of Rn−1, and Δ := ΓS̃ ∩Γ′. By
Proposition 4.3, L0 := L ∩W is a Δ-minimal (linear) subspace.

Let V be the largest affine subspace of Rn−1 such that Δ acts by translations
on V . Then 0 ∈ L ⊂ V and V is the union of all (parallel) Δ-minimal subspaces of
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R
n−1. There exist group homomorphisms τ : Δ → L0 ⊂ R

n−1 and θ : Δ → O(n−1)
such that for any γ ∈ Δ,

(5.4) γ(x) = θ(γ)(x) + τ (γ), for all x ∈ R
n−1.

We note that V = {x ∈ R
n−1 : θ(Δ)x = x}, and V ⊥ is the sum of all non-trivial

(two-dimensional) θ(Δ)-irreducible subspaces of Rn−1.

Lemma 5.3. (1) W = (W ∩ V ) + (W ∩ V ⊥);
(2) W⊥ = (W⊥ ∩ V ) + (W⊥ ∩ V ⊥).

Proof. Put F = ∂S̃ � {∞}. Then ΔF = F , and there exists a Δ-minimal affine
subspace LS̃ ⊂ F . Choose 0′ ∈ LS̃ ⊂ F ∩ V . Since W is a parallel translate of F
through 0, we have W = F − 0′. As in the proof of Proposition 4.3, Δ(W ) = W .
Since 0 ∈ W , we have θ(Δ)(W ) = W , and hence θ(Δ)(W⊥) = W⊥. Thus W ∩ V
is the set of fixed points of θ(Δ) in W , and its orthocomplement in W is the sum
of all non-trivial θ(Δ)-irreducible subspaces of W and it is the same as W ∩ V ⊥.
Therefore (1) follows, and (2) is proved similarly. �

For any v ∈ Ẽ, π(v) ∈ S̃. By abuse of notation, we write b(v) := b(π(v)) ∈
∂S̃ � {∞} and h(v) := h(π(v)) ∈ R>0. We denote by σ(v) ∈ W⊥ the unique
element in W⊥ of norm one satisfying

(5.5) v+ := Viz(v) = b(v) + h(v)σ(v).

Bounded parabolic assumption. For the rest of this section we will further assume
that∞ ∈ ∂(S̃)∩Λbp(Γ). Hence there existsR0 > 0 such that for all x ∈ Λ(Γ)∩Rn−1,

(5.6) ‖PL⊥(x)‖ ≤ R0,

where ‖·‖ denotes the Euclidean norm.

Lemma 5.4. For any v ∈ Ẽ with v+ ∈ Λ(Γ),

‖PV ⊥(b(v))‖ ≤ R0.

Proof. Let 0′ ∈ V be as in the proof of Lemma 5.3. Since b(v)−0′ ∈ W and 0′ ∈ V ,
we have PV ⊥(0′) = 0, and by Lemma 5.3,

PV ⊥(b(v)) = PV ⊥(b(v)− 0′) ∈ W and PV ⊥(σ(v)) ∈ W⊥.

Therefore by (5.5), ‖PV ⊥(b(v))‖ ≤ ‖PV ⊥(v+)‖. Since L ⊂ V , we have V ⊥ ⊂ L⊥,
and hence by (5.6), ‖PV ⊥(v+)‖ ≤ ‖PL⊥(v+)‖ ≤ R0. �

Proposition 5.5. There exists R1 > 0 such that for all v ∈ E∂Hn ,

‖PL0
(v+)‖ ≤ R1.

Proof. Let v ∈ E∂Hn . Then for all γ ∈ Δ ⊂ ΓS̃ ,

(5.7) dhyp(π(v), a) ≤ dhyp(γπ(v), a) ⇒ deucl(b(v), b(a)) ≤ deucl(γ b(v), b(a)).

Now b(v)− b(a) ∈ W , L0 ⊂ W ∩ V , and PL0
(b(a)) = 0. As

W = (V ⊥ ∩W ) + L0 + (W ∩ V ∩ L⊥
0 ),

which is a sum of θ(Δ)-invariant orthogonal subspaces of W , we get

γ b(v)− b(a) = [θ(γ)PV ⊥(b(v))− PV ⊥(b(a))]

+ [PL0
(b(v)) + τ (γ)] + PV ∩W∩L⊥

0
(b(v)− b(a)).
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Comparing this with (5.7), for any γ ∈ Δ we get

(5.8) ‖PL0
(b(v))‖2 ≤ ‖θ(γ)PV ⊥(b(v))− PV ⊥(b(a))‖2 + ‖PL0

(b(v)) + τ (γ)‖2.
Since τ (Δ) is a lattice in L0, the radius of the smallest ball containing a fundamental
domain of τ (Δ) in L0 is finite, which we denote by R2. Then by (5.4) and (5.8),
we conclude that

‖PL0
(v+)‖2 = ‖PL0

(b(v))‖2 ≤ (R0 + ‖b(a)‖)2 +R2
2.

By setting R1 = ((R0 + ‖b(a)‖)2 +R2
2)

1/2, we finish the proof. �
5.2. Corank at ∞ and the structure of EU . Set

r∞ := rank(Γ∞)− rank(Γ∞ ∩ ΓS̃).

More precisely, r∞ = rank(Γ′)− rank(Δ) = dim(L)− dim(L0).

Proposition 5.6. If r∞ = 0, then there exists a neighborhood U of ∞ in ∂Hn such
that EU = ∅, where EU is defined in (5.2).

Proof. As r∞ = 0, we have L = L0. Therefore, for all x ∈ Λ(Γ) ∩ R
n−1,

‖PL⊥
0
(x)‖ ≤ R0.

Hence for any v ∈ E∂Hn , by Proposition 5.5,

‖v+‖2 = ‖PL0
(v+)‖2 + ‖PL⊥

0
(v+)‖2 ≤ R2

1 +R2
0.

Let U = {x ∈ R
n−1 : ‖x‖2 > R2

0 +R2
1} ∪ {∞}. Then EU = ∅. �

In the rest of this section, we now consider the case when

r := r∞ ≥ 1.

Notation 5.7. For any s = (s1, . . . , sr) ∈ R
r and an ordered r-tuple (w1, . . . , wr) of

vectors in R
n−1, we set s ·w := s1w1 + · · ·+ srwr ∈ R

n−1, Rrw := {s ·w : s ∈ R
r}

and |s| = max(|s1|, . . . , |sr|). For k ∈ Z
r and an ordered r-tuple γ = (γ1, . . . , γr)

of elements of G, we write γk = γk1
1 · · · γkr

r ∈ G.

Fix an ordered r-tuple γ = (γ1, . . . , γr) of elements of Γ′ = Γ′
∞ such that the

subgroup generated by γ∪Δ is of finite index in Γ′. For each γi, there exists wi ∈ L
and σi ∈ O(n− 1) such that for all x ∈ R

n−1,

γi(x) = σi(x) + wi.

Moreover, σi and the translation by wi commutes, and hence for any k ∈ Z, γk
i (x) =

σk
i (x) + kwi.
Setting w = (w1, . . . , wr) and σ = (σ1, . . . , σr), we have that for any x = y+ z ∈

R
n−1 with y ∈ L⊥ and z ∈ L and k = (k1, . . . , kr) ∈ Z

r,

(5.9) γk(x) = σk(y) + z + k ·w.

Let R0 and R1 be as in (5.6) and in Proposition 5.5, respectively. Set

B0 := {x ∈ L⊥ : ‖x‖ ≤ R0} and B1 := {x ∈ L0 : ‖x‖ ≤ R1}.
Let M1 := L ∩ L⊥

0 . Then Z
r · PM1

(w) is a lattice in M1 = R
rPM1

(w), which
admits a relatively compact fundamental domain, say F1. Let F2 be a relatively
compact fundamental domain for the lattice τ (Δ) in L0. We define the following
relatively compact subset of Rn−1:

(5.10) F := B0 + (B1 + F2) + F1 ⊂ L⊥ + L0 + (L ∩ L⊥
0 ).
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By (5.9),

γkF = F + k ·w.

For related variable quantities x ≥ 0 and y ≥ 0, the symbol x � y means that
there exists a constant C > 0 such that for all related x and y, x ≥ Cy, and the
symbol x � y means that x � y and y � x.

Proposition 5.8. There exists c0 ≥ 1 such that for all sufficiently large N ≥ 1,

(5.11) Viz(EUc0N
) ⊂

⋃
|k|≥N

Δγk(F),

where Uc0N = {x ∈ R
n−1 : ‖x‖ ≥ c0N}.

Proof. Since R
n−1 = L⊥ + L0 +M1 for M1 = L⊥

0 ∩ L, we have for any v ∈ R
n−1,

(5.12) v+ = PL⊥(v+) + PL0
(v+) + PM1

(v+).

Let v ∈ E∂Hn . By (5.6) and Proposition 5.5,

(5.13) PL⊥(v+) ∈ B0 and PL0
(v+) ∈ B1.

In order to control PM1
(v+), let k = k(v+) ∈ Z

r be such that PM1
(v+) ∈

k · PM1
(w) + F1, where k is uniquely determined. Let λk ∈ Δ be such that

PL0
(k ·w) ∈ τ (λk) + F2.

Since k · PM1
(w)− k ·w = PL0

(k ·w),

PM1
(v+) ∈ (k · PM1

(w)− k ·w) + (F1 + k ·w) ∈ τ (λk) + F2 + (F1 + k ·w).

Therefore by (5.12), for k = k(v+), we have

(5.14) v+ ∈ F + k ·w + τ (λk) = λkγ
k(F).

Since PM1
: Rrw → M1 is a linear isomorphism, there exists N1 ≥ 1 such that

for all k ∈ Z
r with |k| > N1,

(5.15) ‖PM1
(k ·w)‖ � |k|.

By (5.12) and (5.13), ‖PM1
(v+)−v+‖ ≤ R0+R1 and PM1

(v+)−PM1
(k ·w) ∈ F1

for k = k(v+). It follows that there exists a constant B > 0 such that for all
v ∈ E∂Hn ,

‖PM1
(k ·w)‖ −B ≤ ‖v+‖ ≤ ‖PM1

(k ·w)‖+B,

where k = k(v+). Hence by (5.15), there exists N2 ≥ 1 such that for all v ∈ E∂Hn

with |k(v+)| > N2,

‖v+‖ � |k(v+)|.
In view of (5.14), this finishes the proof. �

Lemma 5.9. There exists N0 ≥ 1 such that for all k ∈ Z
r with |k| > N0, the

following hold:

(1) For ξ ∈ γk(F), ‖ξ‖ � |k|.
(2) For v ∈ Ẽ with v+ ∈ γk(F), h(v) � |k|.
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Proof. If ξ ∈ γkF , then ‖ξ − k · w‖ ≤ diameucl(F). Hence ‖ξ‖ � ‖k · w‖ � |k|,
proving (1).

For v ∈ Ẽ such that v+ ∈ γk(F), by (5.5),

h(v) � ‖PW⊥(v+)‖ � PW⊥(k ·w).

Since W ∩ L = L0 and L = L0 ⊕ R
rw, the map PW⊥ : Rrw → W⊥ is injective.

Therefore

‖PW⊥(k ·w)‖ � ‖k ·w‖ � |k|,
from which (2) follows. �

Let o = (0, 1) ∈ R
n−1 × R>0. For T ≥ 1, put

(5.16) BT = {v ∈ Ẽ : β∞(o, π(v)) ≥ log T};
that is, BT is the intersection with Ẽ of a horoball based at ∞. We note that for
v ∈ Ẽ, β∞(o, π(v)) = log h(v). Hence in the vertical plane model of S̃, BT consists

of vectors v ∈ Ẽ whose base points have the Euclidean height at least T .

Proposition 5.10. Let F0 := B0 + F2 + F1. Then νo(F0) > 0, and for all suffi-
ciently large T , there exists N � T such that

(5.17) Viz(BT ) ⊃
⋃

|k|≥N

γk(F0).

Proof. Since ΔF2 = L0 and γZ
r

F1 = M1,

Δ(
⋃

k∈Zr

γk(F0)) = B0 + L0 +M1 = B0 + L ⊃ Λ(Γ)� {∞}.

Therefore, if νo(F0) = 0, then by the conformality, it follows that νo(Λ(Γ)�{∞}) =
0. Since Γ does not fix ∞, by the Γ-invariance of {νx} we get νo(Λ(Γ)) = 0, which
is a contradiction, proving the first claim.

If v ∈ Ẽ and v+ ∈ γk(F0), then by Lemma 5.9, h(v) � |k|. If h(v) > T , then
v ∈ BT . Therefore (5.17) holds for suitable N � T . �

5.3. Estimation of μPS
Ẽ

(EU ). Let V−1 : Rn−1
� ∂S̃ → Ẽ be the inverse of the

restriction of the visual map Viz : Ẽ → ∂Hn
� ∂S̃ = R

n−1
� ∂S̃.

Lemma 5.11. There exists N1 ≥ 1 such that for all k ∈ Z
r with |k| > N1,∫

ξ∈γkF
eδβξ(o,π(V

−1(ξ))) dνo(ξ) � |k|−δ.

Proof. We have ‖PW⊥(k ·w)‖ � |k|. Hence for sufficiently large |k|, we have that

γkF ∩ ∂S̃ = ∅. Note that the Euclidean diameter of the horosphere based at ξ
and passing through o = (0, 1) ∈ R

n−1 × R>0 is 1 + ‖ξ‖2, and the diameter of the
horosphere based at ξ and passing through π(V−1(ξ)) is h(π(V−1(ξ))). Therefore
the signed hyperbolic distance of the segment cut by these two horospheres on the
vertical geodesic ending in ξ is

βξ(o, π(V
−1(ξ))) = log(1 + ‖ξ‖2)− log(h(π(V−1(ξ)))).

Hence by Lemma 5.9,

(5.18) eδβξ(o,π(V
−1(ξ))) =

( 1 + ‖ξ‖2

h(π(V−1(ξ)))

)δ

� |k|δ.
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By conformality and Γ-invariance of Patterson-Sullivan density {νx},

νo(γ
kF) = (γ−kνo)(F) = νγ−k·o(F) =

∫
ξ∈F

dνγ−k·o
dνo

(ξ) dνo(ξ)

=

∫
ξ∈F

e−δβξ(γ
−ko,o)dνo(ξ).(5.19)

We note that the horosphere based at ξ passing through γ−ko = (−k ·w, 1) ∈
R

n−1 × R>0 has diameter 1 + ‖ξ + k ·w‖2. Therefore
βξ(γ

−ko, o) = log(1 + ‖ξ + k ·w‖2)− log(1 + ‖ξ‖2),
and hence, since ‖k ·w‖ � |k| for all large |k|, we have, for any ξ ∈ F ,

e−δβξ(γ
ko,o) =

(1 + ‖k ·w − ξ‖2
1 + ‖ξ‖2

)−δ

� |k|−2δ.

Since νo(F) > 0 by Proposition 5.10, we deduce from (5.19) that

νo(γ
kF) � |k|−2δνo(F) � |k|−2δ.

Together with (5.18), this proves the claim. �

Let p : Ẽ → ΓẼ\Ẽ be the natural quotient map. We note that ΓẼ = ΓS̃ . From
§2.6, we recall that the measure μPS

Ẽ
, which is ΓẼ-invariant, naturally induces a

measure on ΓẼ\Ẽ. The pushforward of this measure from ΓẼ\Ẽ to E = p(Ẽ) is
μPS
E .
Recall the definition of c0 > 0 and Uc0N from Proposition 5.8.

Proposition 5.12. (1) For all sufficiently large N ≥ 1, we have

μPS
E (p(EUc0N

)) �
∑

k∈Zr�{0}
|k|−δ.

(2) For all sufficiently large T ≥ 1, we have

μPS
E (p(BT )) �

∑
k∈Zr�{0}

|k|−δ.

Proof. By Proposition 5.8 and Lemma 5.11, for all large N ≥ 1,

μPS
E (p(EUc0N

)) ≤
∑

|k|≥N

μPS
Ẽ

(V−1(γk(F)))

=
∑

|k|≥N

∫
ξ∈γkF

eδβξ(o,π(V
−1(ξ))) dνo(ξ)

�
∑
k≥N

|k|−δ,

proving (1).
Consider the natural quotient map

(5.20) p∞ : (ΓẼ ∩ Γ∞)\Ẽ → ΓẼ\Ẽ.

Since ∞ ∈ Λbp(Γ), there exists T0 > 0 such that p∞ restricted to (ΓẼ ∩Γ∞)\BT

is proper and injective for all T ≥ T0.
Now since F2 is a fundamental domain for Δ action on LS̃ and F1 is a funda-

mental domain for the action of {γk : k ∈ Z
r} on M1, the quotient map Ẽ → Δ\Ẽ
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is injective on
⋃

|k|≥N V−1(γk(F0)). Since [ΓS̃ ∩ Γ∞ : Δ] < ∞ and p∞ is injective

on (ΓS̃ ∩ Γ∞)\BT , for all sufficiently large T � 1,

μPS
E (p(BT )) = μPS

ΓẼ\Ẽ(p∞(BT )); see (2.13)

�
∑

|k|≥N μPS
Ẽ

(V−1(γk(F0))); by Proposition 5.10

�
∑

k≥N |k|−δ; by Lemma (5.11).

This proves (2). �

6. Parabolic corank and criterion for finiteness of μPS
E

Let Γ be non-elementary torsion-free discrete subgroup of G. Let S̃, Ẽ and E be
as in §5. In particular, S̃ is totally geodesic and the map ΓS̃\S̃ → Γ\Hn is proper.

Definition 6.1 (Parabolic corank). Define

pb-corank(ΓS̃) = max
ξ∈Λp(Γ)∩∂(S̃)

(rank(Γξ)− rank(Γξ ∩ ΓS̃)) .

When Λp(Γ) ∩ ∂(S̃) = ∅, we set pb-corank(ΓS̃) = 0.

Lemma 6.2 (Corank Lemma). pb-corank(ΓS̃) ≤ codim(S̃).

Proof. Suppose ∞ ∈ Λp(Γ) ∩ ∂S̃. Let L be a Γ′
∞-minimal subspace of ∂Hn

� ∞
and let W be the intersection of a translate of ∂S̃ � {∞} through a point in
L. Then by Proposition 4.3, rank(Γ′

∞) − rank(ΓS̃ ∩ Γ′
∞) = dim(L) − dim(W ) ≤

(n− 1)− dim(∂S̃) = n− dim S̃. �
6.1. Finiteness criterion for geometrically finite Γ. For the rest of this section
we further assume that Γ is geometrically finite.

Theorem 6.3. pb-corank(ΓS̃) = 0 ⇔ supp(μPS
E ) is compact.

Proof. Suppose that supp(μPS
E ) is not compact. Fix a Dirichlet domain D(a,ΓS̃)

for the ΓS̃ action on S̃. Since the projection of ΓẼ\Ẽ into Γ\T1(Hn) is proper,

there exists an unbounded sequence vm ∈ Ẽ with π(vm) ∈ D(a,ΓS̃) and v+m ∈ Λ(Γ).
Since Λ(Γ) is compact, by passing to a subsequence, we assume that v+m → ξ for
some ξ ∈ Λ(Γ). Thus for any neighborhood U of ξ in ∂Hn, we have vm ∈ EU for all
large m.

Consider the upper half space model Hn = R
n−1 × R>0 with ξ identified with

∞ as in §5. As v+m → ξ = ∞, by (5.5) we have ‖b(vm)‖ → ∞ or h(vm) → ∞
(see (5.3) for notation), and hence π(vm) → ∞ = ξ. Therefore ξ ∈ ∂(D(a,ΓS̃)).
By Proposition 5.1, ξ 
∈ Λr(Γ). Since Γ is geometrically finite, by Theorem 4.6,
ξ ∈ Λbp(Γ) ∩ ∂D(a,ΓS̃). Now by Proposition 5.6, pb-corank(ΓS̃) 
= 0.

To prove the converse, suppose that there exists ξ ∈ Λbp(Γ) ∩ ∂S̃ such that
r = rank(Γξ) − rank(Γξ ∩ ΓS̃) ≥ 1. Without loss of generality, we may assume
ξ = ∞. Fix T0 > 1. The map p∞ as in (5.20) restricted to (ΓẼ ∩ Γ∞)\BT0

is

proper (see (5.16) for notation). Therefore for any compact subset Ω of ΓẼ\Ẽ, we
have p∞(BT ) ∩ Ω = ∅ for all sufficiently large T > T0. By Proposition 5.12(2),

μPS
E (p(BT )) �

∑
k∈Zr�{0}

|k|−δ > 0.

Therefore supp(μPS
E ) intersects p(BT ) for all large T � 1. Since the projection of

ΓẼ\Ẽ into Γ\T1(Hn) is proper, supp(μPS
E ) is non-compact. �
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Theorem 6.4. pb-corank(ΓS̃) < δ ⇔ |μPS
E | < ∞.

Proof. Suppose that pb-corank(ΓS̃) ≥ δ > 0. Then there exists ξ ∈ Λbp(Γ) ∩ S̃
such that r := rank(Γξ) − rank(Γξ ∩ ΓS̃) ≥ max{δ, 1}. Without loss of generality,
we may assume ξ = ∞. By the second part of the proof of Theorem 6.3, for all
sufficiently large T � 1, since r ≥ δ,

|μPS
E | ≥ μPS

E (p(BT )) �
∑

k∈Zr�{0}
|k|−δ = ∞.

Now suppose that pb-corank(ΓS̃) < δ. By the compactness of Λ(Γ)∩∂(D(a,ΓS̃)),
where D(a,ΓS̃) is a fixed Dirichlet domain for ΓS̃ , to prove finiteness of μPS

E it suf-
fices to show that for every ξ ∈ Λ(Γ)∩∂(D(a,ΓS̃)), there exists a neighborhood U of
ξ in ∂Hn such that μPS

E (p(EU )) < ∞ with EU defined as in (5.2). By Proposition 5.1
and Theorem 4.7, ξ ∈ Λbp(Γ). Let r := rank(Γξ)− rank(Γξ ∩ΓS̃). If r = 0, then by
Proposition 5.6, there exists a neighborhood U of ξ such that EU = ∅. Therefore
we assume that δ > r ≥ 1. By Proposition 5.12(1), there exists a neighborhood U
of ξ such that

μPS
E (p(EU )) �

∑
k∈Zr�{0}

|k|−δ < ∞.

�

6.2. Finiteness of
∣∣μLeb

E

∣∣ and ∣∣μPS
E

∣∣.
Theorem 6.5. Let S̃ be any totally geodesic immersion in H

n. Suppose that
dim(S̃) ≥ (n+ 1)/2 and |μLeb

E | < ∞. Then |μPS
E | < ∞.

Proof. Since ΓS̃ is a lattice in GS̃ , Λ(ΓS̃) = ∂S̃. Hence by Theorem 2.21, the

natural map p : ΓS̃\S̃ → Γ\Hn is proper.

Let k := dim(S̃) ≥ �(n + 1)/2� ≥ 2. By a property of a lattice in rank one Lie
group GS̃ , rank(ΓS̃ ∩ Γξ) = k − 1 (cf. [29, §13.8]). Therefore by Lemma 6.2,

r := pb-corank(ΓS̃) ≤ n− k ≤ n− (n+ 1)/2 ≤ (n− 1)/2.

Let ξ ∈ ∂(S̃)∩Λbp(ΓS̃) be such that rank(ΓS̃∩Γξ) = r. Then rank(Γξ) ≥ (k−1)+r.
By a result of Dalbo, Otal and Peign [8, Proposition 2],

δ > rank(Γξ)/2 ≥ ((k − 1) + r)/2 ≥ (k − 1 + (n− k))/2 = (n− 1)/2 ≥ r.

Hence by Theorem 6.4, |μPS
E | is finite. �

As an immediate corollary, we state:

Corollary 6.6. Let n = 2, 3. Then |μLeb
E | < ∞ implies that |μPS

E | < ∞.

To deduce that skΓ(w0) > 0, when w0Γ is infinite in Theorem 1.2 we need the
following. Here Γ need not be geometrically finite.

Proposition 6.7. If [Γ : ΓS̃ ] = ∞, then Λ(Γ) 
⊂ ∂∞(S̃), and |μPS
E | > 0.

Proof. Suppose on the contrary that Λ(Γ) ⊂ ∂∞(S̃). Let L be a geodesic joining

two distinct points, say ξ1, ξ2 ∈ Λ(Γ). Then L ⊂ S̃. For any γ ∈ Γ, we have γL

as the geodesic joining γξ1 and γξ2, and hence γL ⊂ S̃. Now fix x0 ∈ L. Then
Γx0 ⊂ S̃. Since ΓS̃\S̃ → Γ\Hn is a proper map, we get that ΓS̃\Γ is finite, a
contradiction to our assumption. �
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7. Orbital counting for discrete hyperbolic groups

As before, let G = SO(n, 1)◦ for n ≥ 2 and Γ a torsion-free, non-elementary,
discrete subgroup of G.

7.1. Computation with m̃BR. Let K be a maximal compact subgroup of G. Let
o ∈ H

n be such that K = Go. Then G/K ∼= H
n. Let X0 ∈ T1

o(H
n) and M = GX0

.
Then G/M ∼= T1(Hn), where g[M ] = gX0. Let A = {ar : r ∈ R} ⊂ ZG(M)
be a one-parameter subgroup of G consisting of diagonalizable elements such that
Gr(X0) = ar[M ]. Via the map k �→ kX+

0 , we have K/M ∼= ∂Hn.
Let N < G be the expanding horospherical subgroup with respect to the right

ar-action; that is,

(7.1) N := {g ∈ G : arga
−1
r → e as r → ∞}.

The N -leaves gNM/M correspond to unstable horospheres H+
gX0

in T1(G/K) =

G/M based at gX−
0 . The map N � z �→ zX+

0 ∈ ∂Hn
� {X−

0 } is a diffeomorphism.
As before, letmo denote theG-invariant (Lebesgue) conformal density {mx}x∈Hn

on ∂Hn. We normalize it so that mo (and hence every mx) is a probability measure.
Here mo is K-invariant.

Lemma 7.1. For any g ∈ G, consider the measure λg on N given by

dλg(z) = e
(n−1)β

gzX
+
0
(o,gz(o))

dmo(gzX
+
0 ), where z ∈ N.

Then λg = λe. In particular, λe is a Haar measure on N which we shall denote by
the integral dn = dλe(n) on N

Proof. Since {mx} is a G-invariant conformal density,

dmo(gzX
+
0 ) = dmg−1(o)(zX

+
0 ) = e

(n−1)β
zX

+
0
(o,g−1(o))

dmo(zX
+
0 ).

Since βgzX+
0
(o, gz(o)) = βzX+

0
(g−1(o), z(o)),

(7.2) dλg(z) = e
(n−1)β

zX
+
0
(o,z(o))

dmo(zX
+
0 ) = dλe(z).

For any g ∈ N , dλe(gz) = dλg(z) = dλe(z). Therefore λe is N -invariant. �

Notation 7.2. Note that GX−
0
= ANM and K ∩GX−

0
= M . For ψ ∈ C(K) and a

measure λ on ∂Hn = KX−
0

∼= K/M , we define

(7.3)

∫
k∈K

ψ(k) dλ(kX−
0 ) :=

∫
K/M

(∫
m∈M

ψ(km) dm
)
dλ(kM).

We also fix a Patterson-Sullivan density {νx} on ∂Hn and consider m̃BR defined
as in §3.1 with respect to {mx} and {νx}.

Proposition 7.3. For any φ ∈ Cc(T
1(Hn)) = Cc(G)M ,

m̃BR(φ) =

∫
k∈K

∫
r∈R

∫
n∈N

φ(karn)e
−δr dn dr dνo(kX

−
0 ).

Proof. By definition,

m̃BR(φ) =

∫
φ(u)e(n−1)βu+ (o,π(u))eδβu− (o,π(u))dmo(u

+)dνo(u
−)dt,
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where t = βu−(o, π(u)). Let u = karnX0. Then, since GX−
0

= MAN , we have

u− = karnX
−
0 = kX−

0 and

t = βu−(o, π(u)) = βkX−
0
(o, karno) = βX−

0
(o, arno)

= limt→∞ d(o, a−to)− d(arno, a−to)
= limt→∞ t− d(at+rna−t−r(at+ro), o)
= limt→∞ t− d(at+ro, o) = −r.

Therefore eδβu− (o,π(u))dνo(u
−) = e−δrdνo(kX

−
0 ). Also, by Lemma 7.1 for a fixed

g = kar and a variable z = n ∈ N ,

e
(n−1)β

karnX
+
0
(o,karnπ(o))

dmo(karnX
+
0 ) = dλkar

(n) = dλe(n) = dn.

Putting all of this together proves the claim. �

Notation 7.4. (1) Let dk denote the probability Haar measure on K. Since mo is
a K-invariant probability measure on ∂Hn = K/M , we have that dk = dmo(kX

−
0 )

(and similarly dk = dmo(kX
+)). We fix the Haar measure dg on G given as follows:

for g = karn ∈ KAN , dg = e−(n−1)r dn dr dk. Since G is unimodular, dg = dg−1.
Therefore if we express g = nark, then dg = e(n−1)rdn dr dk, and if we express
g = arnk, then dg = dr dn dk.

(2) For ε > 0, let Uε denote the ε-neighborhood of e in G. By an approximate
identity on G, we mean a family of non-negative continuous functions {ψε}ε>0 on
G with supp(ψε) ⊂ Uε and

∫
G
ψε(g)dg = 1.

(3) For ξ ∈ C(M\K) and ψ ∈ Cc(G) and a measurable Ω ⊂ K with MΩ = Ω,
we define a function ξ ∗Ω ψ ∈ Cc(G/M) by

(7.4) ξ ∗Ω ψ(g) :=

∫
k∈Ω

ξ(k)ψ(gk) dk.

For ψ ∈ Cc(Γ\G), we define ξ ∗Ω ψ ∈ Cc(Γ\G/M) similarly.

Proposition 7.5. Let {ψε}ε>0 be an approximate identity on G. Let f ∈ C(M\K)
and Ω ⊂ K be such that MΩ = Ω and νo(∂(Ω

−1)X−
0 ) = 0. Then

(7.5) lim
ε→0

m̃BR(f ∗Ω ψε) =

∫
k∈Ω−1

f(k−1) dνo(kX
−
0 ).

Proof. Note that for some uniform constants �1, �2 > 0, we have for all k ∈ K and
for all small ε > 0,

(7.6) k−1Uε ⊂ U
1εk
−1 ⊂ (A ∩ U
2ε)(N ∩ U
2ε)k

−1(K ∩ U
2ε).

Set Kε := (K ∩ U
2ε), Ωε+ = ΩKε and Ωε− =
⋂

k∈Kε
Ωk.

In view of the decomposition G = ANK, for a function φ on K, we define a
function Rφ on G by Rφ(g) = φ(k) for g = ank ∈ ANK. For any η > 0, there
exists ε > 0 such that for all k ∈ K and g ∈ Uε,

Rf ·χΩε−
(k−1)− η ≤ Rf ·χΩ

(k−1g) ≤ Rf ·χΩε+
(k−1) + η.
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Now by Proposition 7.3,

m̃BR(f ∗Ω ψε)
=

∫
g∈G

∫
k′∈Ω

ψε(gk
′)f(k′) dk′dm̃BR(g)

=
∫
(k,ar,n)∈K×A×N

∫
k′∈Ω

ψε(karnk
′)f(k′)e−δr dk′dndrdνo(kX

−
0 )

=
∫
k∈K

∫
(ar,n,k′)∈A×N×K

ψε(karnk
′)f(k′)χΩ(k

′)e−δr drdndk′dνo(kX
−
0 )

=
∫
k∈K

∫
g∈G

ψε(kg)Rf ·χΩ
(g)e−δrg dgdνo(kX

−
0 ), if g = argnk

′

≤ eδ
2ε
∫
k∈K

∫
g∈G

ψε(g)Rf ·χΩ
(k−1g) dgdνo(kX

−
0 ), by (7.6)

≤ eδ
2ε
∫
k∈K

∫
g∈G

ψε(g)(Rf ·χΩε+
(k−1) + η) dgdνo(kX

−
0 )

= eδ
2ε
(∫

k∈K
Rf ·χΩε+

(k−1) dνo(kX
−
0 ) + η|νo|

)
, as

∫
G
ψε(g) dg = 1

= eδ
2ε
(∫

k∈Ω−1
ε+

f(k−1) dνo(kX
−
0 ) + η|νo|

)
.

Since
⋂

ε>0 Ωε+ = Ω and η > 0 was arbitrarily chosen,

lim sup
ε→0

m̃BR(f ∗Ω ψε) ≤
∫
k∈Ω−1

f(k−1) dνo(kX
−
0 ).

Similarly, lim infε→0 m̃
BR(f ∗Ω ψε) ≥

∫
k∈int Ω−1 f(k

−1) dνo(kX
−
0 ). Since we assume

that νo(∂(Ω
−1)X−

0 ) = 0, we obtain (7.5). �

7.2. Setup for counting results. Until the end of this section, let V be a finite-
dimensional vector space on which G acts linearly from the right and let w0 ∈ V .
We set H := Gw0

.

7.2.1. When H is a symmetric subgroup of G. Let H < G = SO(n, 1)◦ be a sym-
metric subgroup, i.e., there is a non-trivial involution σ of G such that H◦ = (Gσ)◦

where Gσ = {g ∈ G : σ(g) = g}. There exists a Cartan involution θ of G such that
θ ◦ σ = σ ◦ θ. Let K = Gθ. It turns out that H◦ is a subgroup of finite index in its
normalizer NG(H

◦), and up to a conjugation of G, H◦ = (SO(k, 1)× SO(n− k))◦

for some 0 ≤ k ≤ n− 1 and K = SO(n). Choose o ∈ H
n such that Go = K. Then

S̃ = H · o is an isometric imbedding of Hk in H
n. Let Ẽ be the unit normal bundle

over S̃.

7.2.2. When GRw0
is a parabolic subgroup of G. Suppose that GRw0

is a parabolic
subgroup of G. Let θ be any Cartan involution of G and let K = Gθ. Then
G = GRw0

K. Let N be the unipotent radical of GRw0
. Let o ∈ H

n be such that

Go = K. Then S̃ := N · o is a horosphere. Let Ẽ ⊂ T1(Hn) be the unstable

horosphere such that π(Ẽ) = S̃ and let H = (GRw0
∩K)N .

7.2.3. Common structure in both cases. Let the notation be as in any of the above
§§7.2.1 or 7.2.2. Let X0 ∈ T1

o(H
n) ∩ Ẽ and let Ẽ∗ = H · X0. If H is symmetric

and codim(S̃) > 1, or if it is the parabolic case, then Ẽ is connected and Ẽ∗ = Ẽ.

If H is symmetric and codim(S̃) = 1, then Ẽ has two connected components, Ẽ+

containingX0 and Ẽ− containing −X0, and then either Ẽ∗ = Ẽ or Ẽ∗ = Ẽ+. There
exists a one-parameter subgroup A = {ar} ⊂ G consisting of R-diagonalizable
elements such that Gr(X0) = arX0 for all r ∈ R. Let M = GX0

, which coincides
with ZK(A), i.e., the centralizer of A in K, and A± = {a±r : r ≥ 0}. Let N be the
expanding horospherical subgroup with respect to {ar}.

When GRw0
is parabolic, then Gw0

= MN = H where M = GRw0
∩K. Hence

N is the unipotent radical of GRw0
, so there is no conflict of notation. In the case

when H is symmetric, Ẽ∗ = Ẽ if and only if G = HA+K. In all cases, we have



EQUIDISTRIBUTION AND COUNTING 549

G = HAK. Put E = p(Ẽ), E∗ = p(Ẽ∗), and in the special cases when Ẽ is not

connected, we set E± = p(Ẽ±).

7.2.4. HAK decomposition of Haar measure on G. Note that Ẽ∗=HX0
∼=H/(M∩H)

and recall that

dμLeb
Ẽ

(v) = e(n−1)βv+ (o,π(v))dmo(v
+).

There is a Haar measure dh on H such that for any ψ ∈ Cc(H), if we put ψ̄(h) =∫
m∈M∩H

ψ(hm) dm, where dm denotes the probability Haar integral on M ∩ H,

then ψ̄ ∈ Cc(H)M∩H = Cc(Ẽ), and

(7.7)

∫
H

ψ dh =

∫
Ẽ

ψ̄ dμLeb
Ẽ

.

In view of the decompositions G = HA+K or G = HAK, there exists a function
ρ : R → (0,∞) such that we get the following Haar measure dg on G: For any
ψ ∈ Cc(G), by [35, Theorem 8.1.1]∫

G

ψ dg =

∫
k∈K

∫
r∈R

∫
h∈H

ρ(r)ψ(hark) dhdrdk and(7.8)

ρ(r) ∼
{
e(n−1)|r| if r → ±∞ and H is symmetric,

e(n−1)r if r → ±∞ and GRw0
is parabolic,

(7.9)

where R = {r ≥ 0} if G = HA+K, otherwise R = R. In fact, the Haar measure dg
described in Notation 7.4(1) and the Haar measure dg defined in (7.8) are identical;
see §8.

7.3. Extension of Theorem 1.8 to Γ\G for Zariski dense Γ. The result in
this subsection will enable us to state our counting theorems for general norms,
provided Γ is Zariski dense.

Let m̄BR be the measure on Γ\G which is the M -invariant extension of mBR.
That is, for ψ ∈ Cc(Γ\G),

m̄BR(ψ) := mBR(ψ̄),

where ψ̄(p(gX0)) =
∫
m∈M

ψ(Γgm) dm and dm denotes the Haar probability mea-
sure on M .

As M normalizes N , m̄BR is invariant for the right-translation action of N on
Γ\G.

Theorem 7.6 (Flaminio-Spatzier [11, Cor. 1.6]). Suppose that Γ is Zariski dense
and |mBMS| < ∞. Then m̄BR is N-ergodic.

Let H and Ẽ be as in §7.2.1 or 7.2.2 so that H = GẼ. Let dh be the Haar
measure on H defined as in (7.7). By abuse of notation, we also denote by dh the
measure on ΓH\H induced by dh.

We recall that for Γ Zariski dense, |μPS
E | < ∞ implies that the canonical map

ΓH\H → Γ\G is proper by Theorem 2.21.

Theorem 7.7. Let Γ be a Zariski dense discrete subgroup of G such that |mBMS| <
∞ and |μPS

E | < ∞. Then for any ψ ∈ Cc(Γ\G),

lim
r→∞

e(n−1−δ)r

∫
h∈ΓH\H

ψ(Γhar) dh =
|μPS

E |
|mBMS|m̄

BR(ψ).
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Proof. Define a measure λr on Γ\G as follows: for any ψ ∈ Cc(Γ\G),

λr(ψ) = e(n−1−δ)r

∫
h∈ΓH\H

ψ(Γhar) dh.

Let q : Γ\G → T1(Γ\Hn) ∼= Γ\G/M be the natural quotient map. Then for
any ψ̄ ∈ Cc(T

1(Γ\Hn)), we have ψ̄(q(xmar)) = ψ̄(q(xar)) for any m ∈ M and
x ∈ Γ\G, as M and A commute with each other, and hence

q∗(λr)(ψ) = λr(ψ̄ ◦ q) = e(n−1−δ)r

∫
E

ψ̄(var) dμ
Leb
E (v).

Therefore by Theorem 1.8, q∗(λr) → C ·mBR, where C =
|μPS

E |
|mBMS| .

In order to show that λr weakly converges to Cm̄BR, it suffices to show that
every sequence λrk has a subsequence converging to Cm̄BR.

For any sequence rk → ∞, since q is a proper map, after passing to a subsequence
of {rk} there exists a measure λ on Γ\G such that λrk(φ) → λ(φ) for every φ ∈
Cc(Γ\G). Therefore

q∗(λ) = CmBR.

For any g ∈ G, define a measure gλ on Γ\G by gλ(A) = λ(Ag) for any measurable
A ⊂ Γ\G. Now for any ψ ∈ Cc(Γ\G),

(7.10)

∫
m∈M

(mλ)(ψ) dm =
∫
m∈M

∫
Γ\G ψ(xm) dλ(x) dm

= q̄∗(λ)(ψ̄) = CmBR(ψ̄) = Cm̄BR(ψ).

Claim 1. λ is N -invariant.

Proof of Claim 1. Due to Lemma 2.1, the map h �→ hX+
0 is a submersion, and

hence there exists a neighborhood Ω of e in N and a continuous injective map
σ : Ω → H such that σ(e) = e and σ(z)X+

0 = zX+
0 for all z ∈ Ω.

Fix z ∈ Ω, let zk := arkza−rk , and let hk = σ(zk) for all large k. Then bk =
z−1
k hk ∈ GX+

0
= MAN−. Therefore bk → e and a−rkbkark → e as k → ∞.

Let ψ ∈ Cc(Γ\G). Given ε > 0 and x ∈ Γ\G, set

ψε+(x) = sup
g∈Uε

ψ(xg) and ψε− = inf
g∈Uε

ψ(xg).

Since ψ is uniformly continuous and arkz = hkb
−1
k ark = hkark(a−rkb

−1
k ark), we

have for all large k and for all x ∈ Γ\G,

ψε−(xhhkark) ≤ ψ(xarkz) ≤ ψε+(xhkark).

Since the measure dh is H-invariant,∫
h∈ΓH\H

ψ(Γharkz) dh ≤
∫
ΓH\H

ψε+(Γhhkark) dh =

∫
ΓH\H

ψε+(Γhark) dh.

Similarly, we get a lower bound in terms of ψε−. Since λrk → λ as k → ∞,

λ(ψε−) ≤
∫
Γ\G

ψ(xz) dλ(x) ≤ λ(ψε+).

Since ψ ∈ Cc(Γ\G), we have that λ(ψε±) → λ(ψ) as ε → 0. Therefore the z-action
preserves λ. This proves Claim 1. �
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Claim 2. λ = Cm̄BR.

Proof of Claim 2. By (7.10), it is enough to show that λ is M -invariant. For any
ε > 0, define a measure ηε on Γ\G by

ηε :=
1

|Mε|

∫
m∈Mε

mλdm,

where |Mε| =
∫
Mε

dm. Then since M normalizes N , ηε is N -invariant. By (7.10)

ηε � m̄BR.

Therefore, since m̄BR is N -ergodic by Theorem 7.6, there exists cε > 0 such that
ηε = cεm̄

BR. Thus ηε is M -invariant, as m̄BR is M -invariant.
If λ is not M -invariant, there exist ψ ∈ Cc(Γ\G), m0 ∈ M and β > 0 such that

λ(m0 · ψ) ≥ λ(ψ) + β. There exists ε > 0 such that for all m ∈ Mε, λ((mm0)ψ) ≥
λ(m ·ψ) + β/2. This implies that ηε(m0ψ) ≥ ηε(ψ) + β/2, which is a contradiction
to the M -invariance of ηε. Hence Claim 2 is proved. �

As noted before, this completes the proof of Theorem 7.7. �

7.4. Statements of counting theorems. Now we describe the main counting
results of this section. In the next two theorems, Theorems 7.8, and 7.10, we
suppose that the following conditions hold for w0 ∈ V and Γ a non-elementary
discrete torsion-free subgroup of G:

(1) w0Γ is discrete.
(2) H is a symmetric subgroup of G, or GRw0

is a parabolic subgroup of G.
(3) |mBMS| < ∞ and |μPS

E | < ∞.

Let λ ∈ N be the log of the largest eigenvalue of a1 on R-span(w0G), and set

(7.11) wλ
0 := lim

r→∞

w0ar
eλr

and w−λ
0 := lim

r→∞

w0a−r

eλr
.

Theorem 7.8 (Counting in sectors). Let ‖·‖ be a norm on V satisfying

(7.12) ‖w±λ
0 mk‖ = ‖w±λ

0 k‖, for all m ∈ M and k ∈ K,

and set BT := {v ∈ V : ‖v‖ < T}.
(1) For any Borel measurable Ω ⊂ K such that MΩ = Ω and νo(∂(Ω

−1X−
0 )) =

0,

lim
T→∞

#(w0Γ ∩BT ∩ (w0A
+Ω))

T δ/λ
=

μPS
E (E∗)

δ · |mBMS|

∫
k∈Ω−1

‖wλ
0k

−1‖−δ/λ dνo(kX
−
0 ).

(2) For the full count in a ball, we get

lim
T→∞

#(w0Γ ∩BT )

T δ/λ
(7.13)

=

⎧⎨
⎩

μPS
E (E)

δ·|mBMS|
∫
k∈K

‖wλ
0k

−1‖−δ/λ dνo(kX
−
0 ) > 0, if Ẽ = Gw0

·X0,∑
±

μPS
E (E±)

δ·|mBMS|
∫
k∈K

‖w±λ
0 k−1‖−δ/λ dνo(kX

∓
0 ) > 0, otherwise.

Remark 7.9. (1) By [13, Lemma 4.2], we have wλ
0 
= 0. Also, if H is symmetric,

then w−λ
0 
= 0.
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(2) Since w0Γ is discrete, HΓ is closed in G, and hence ΓH is closed in G. It
follows that the canonical imbedding (Γ∩H)\H → Γ\G is a proper injective map.
This properness follows from a suitable open mapping theorem in the category of
locally compact Hausdorff second countable topological group actions. Therefore
the map (Γ∩GS̃)\S̃ → Γ\Hn is a proper map. In particular, E and E± are closed

subsets of T1(Γ\Hn).
(3) The condition (7.12) holds if ‖·‖ is K-invariant as inTheorem 1.2. There

exists a Weyl group element k0 ∈ K such that k−1
0 ark0 = a−r for all r ∈ R. Then

w−λ
0 = wλ

0k0. Therefore if ‖·‖ is K-invariant, then ‖w±λ
0 k‖ = ‖wλ

0‖ for all k ∈ K.
Then the limit (7.13) becomes (1.1). Thus Theorem 7.8 implies Theorem 1.2.

(4) When Γ is Zariski dense in G, Theorem 7.8 holds for any norm on V without
the condition (7.12) and for the Ω without the M -invariance condition. See §7.7
for details.

(5) Since w±λ
0 is fixed by H ∩ZK(A), if M = ZK(A) ⊂ H, then condition (7.12)

holds for any norm on V . We have M ⊂ H in the parabolic case. In the case when
H is symmetric, if S̃ is a single point or S̃ is of codimension one, then M ⊂ H.

Theorem 7.10 (Counting in cones). Suppose further that Γ is Zariski dense in G.
Let Θ be a measurable subset of V and let

Ω± = {k ∈ K : w±λ
0 k ∈ R

+Θ}.
If νo(∂(Ω

−1
± X∓

0 )) = 0, then for any norm ‖·‖ on V ,

(7.14) lim
T→∞

#(w0Γ ∩BT ∩ R
+Θ)

T δ/λ
=

1

δ · |mBMS|

×

⎧⎨
⎩
μPS
E (E)

∫
k∈Ω−1

+
‖wλ

0k
−1‖−δ/λ dνo(kX

−
0 ), if Ẽ = HX0,∑

μPS
E (E±)

∫
k∈Ω−1

±
‖w±λ

0 k−1‖−δ/λ dν̄o(kX
∓
0 ), otherwise.

Note that if Γ is Zariski dense in G and if ∂(Ω±) is contained in a countable
union of proper real algebraic subvarieties of ∂Hn, then νo(∂(Ω±)) = 0 (see [11,
Corollary 1.4] and [23, Remark 1.7(2)]).

7.5. Proof of the counting statements. We follow the counting technique of [9]
and [10]. For a Borel subset Ω ⊂ K satisfying the condition of Theorem 7.8, we set

BT (Ω) = BT ∩ w0A
+Ω

and define the following counting function on Γ\G:

FBT (Ω)(g) :=
∑

γ∈Γw0
\Γ

χBT (Ω)(w0γg).

We note that

(7.15) FBT (Ω)(e) = #(w0Γ ∩BT (Ω)) = #(w0Γ ∩BT ∩ (w0A
+Ω)).

For ψ1, ψ2 ∈ Cc(Γ\G), we set 〈ψ1, ψ2〉 :=
∫
Γ\G ψ1(g)ψ2(g) dg.

Let ψ ∈ Cc(Γ\G). Then by (7.8),

〈FBT (Ω), ψ〉 =
∫
Γw0

\G
χBT (Ω)(w0g)ψ(g) dg

=

∫
k∈Ω

∫
{r≥0:‖w0ark‖<T}

(∫
[h]∈Γw0

\H
ψ(hark) dh

)
ρ(r) drdk.(7.16)
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For any k ∈ K and T > 0, define

(7.17) r(k, T ) = sup{r > 0 : ‖w0ark‖ < T}.

Let λ1 be the log of the largest eigenvalue of a1 on V strictly less than eλ. Then
by (7.11) there exist C1 ≥ 1 and r1 ≥ 0 such that

(7.18) ‖w0ark − eλrwλ
0k‖ ≤ C1e

λ1r, for all k ∈ K and r ≥ r1.

Put ε0 = (λ − λ1)/λ > 0 and C2 = 2C1/ infk∈K‖wλ
0k‖. Let T1 ≥ 1 be such

that C2T
−ε0
1 ≤ 1/2 and (1/2)(T1/ supk∈K‖wλ

0k‖)1/λ ≥ er1 . For T ≥ T1, we define
functions r±(k, T ) via

(7.19) er±(k,T ) = (T/‖wλ
0k‖)1/λ(1± C2T

−ε0).

Then by elementary calculation using (7.18),

(7.20) r−(k, T ) ≤ r(k, T ) ≤ r+(k, T ), for all T ≥ T1 and k ∈ K.

By (7.12),

(7.21) r±(mk, T ) = r±(k, T ), for all m ∈ M and k ∈ K.

We note that by (7.19), given ε > 0, for T1(ε) sufficiently large,

(7.22) eδr±(k,T ) = (1 +O(ε))(T/‖wλ
0k‖)δ/λ for all T ≥ T1(ε).

Proposition 7.11. For any non-negative ψ ∈ Cc(Γ\G),∫
k∈Ω

∫ r−(k,T )

0
ρ(r)

(∫
E∗ ψk(Gr(v))dμLeb

E (v)
)
drdk ≤ 〈FBT (Ω), ψ〉

≤
∫
k∈Ω

∫ r+(k,T )

0
ρ(r)

(∫
E∗ ψk(Gr(v))dμLeb

E (v)
)
drdk,

where ψk ∈ Cc(Γ\G)M ∼= Cc(T
1(Γ\Hn)) is given by

ψk(g) =

∫
m∈M

ψ(gmk)dm.

Proof. By (7.7), (7.8), (7.16), (7.20), (7.21) and Lemma 7.1, we get

〈FBT (Ω), ψ〉
=

∫
k∈Ω

∫
{r≥0:‖w0ark‖<T}

(∫
[h]∈Γw0

\H ψ(hark) dh
)
ρ(r) drdk

≤
∫
k∈Ω

∫ r+(k,T )

0

(∫
[h]∈Γw0

\H ψ(hark) dh
)
ρ(r) drdk

=
∫
k∈Ω

∫ r+(k,T )

0

(∫
[h]∈Γw0

\H
∫
m∈M

ψ(harmk) dmdh
)
ρ(r) dk, as MΩ = Ω

=
∫
k∈Ω

∫ r+(k,T )

0

(∫
[h]∈Γw0

\H ψk(har) dh
)
ρ(r) drdk

=
∫
k∈Ω

∫ r+(k,T )

0
ρ(r)

(∫
E∗ ψk(Gr(v))dμLeb

E (v)
)
drdk.

The other inequality is proved similarly. �

Proposition 7.12. For any ψ ∈ Cc(Γ\G), we have

lim
T→∞

T−δ/λ〈FBT (Ω), ψ〉 =
μPS
E (E∗)

δ · |mBMS| ·m
BR(ξw0

∗Ω ψ),

where ξw0
(k) = ‖wλ

0k‖−δ/λ.
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Proof. Without loss of generality, we may assume that ψ is non-negative. For any
ε > 0 and k ∈ K, by Theorem 1.8 and (7.9), there exists r0 > 0 such that for any
r > r0,

e(n−1−δ)r

∫
v∈E∗

ψk(Gr(v)) dμLeb
E (v) =

μPS
E (E∗) ·mBR(ψk)

|mBMS| +O(ε),(7.23)

ρ(r) = (1 +O(ε))e(n−1)r.(7.24)

Since ψ ∈ Cc(Γ\G), the map K � k �→ ψk is continuous with respect to the
sup-norm on Cc(T

1(Hn)). Therefore, since K is compact, we can choose r0 > 0
independent of k ∈ K. Now for sufficiently large T > 1,

(7.25)

∫ r±(k,T )

r0
ρ(r)

∫
E∗ ψk(Gr(v))dμLeb

E (v)dr

=
∫ r±(k,T )

r0
ρ(r)e(−n+1+δ)r

(
e(n−1−δ)r

∫
E∗ ψk(Gr(v)) dμLeb

E (v)
)
dr

=
(μPS

E (E∗)·mBR(ψk)
|mBMS| +O(ε)

)
(1 +O(ε))

∫ r±(k,T )

r0
eδr dr

=
μPS
E (E∗)·mBR(ψk)

|mBMS| · T δ/λ‖wλ
0 k‖

−δ/λ

δ +O(ε)T δ/λ +O(eδr0),

where the last equation follows from (7.22) for sufficiently large T .
Since E ⊂ T1(Γ\Hn) is a closed subset, ψ ∈ Cc(Γ\G) and K is compact, it

follows that for fixed r0 > 1, we have

sup
|r|≤r0,k∈K

∫
E

ψk(var) dμ
Leb
E (v) = O(1).

Hence

(7.26)

∫
{r:‖w0ark‖<T,|r|≤r0}

ρ(r)

∫
E

ψk(Gr(v))dμLeb
E (v)dr = O(e(n−1)r0).

By Proposition 7.11, (7.25) and (7.26),

lim
T→∞

〈FBT (Ω), ψ〉
T δ/λ

=
μPS
E (E∗)

δ · |mBMS| ·
∫
k∈Ω

‖wλ
0k‖−δ/λmBR(ψk) dk +O(ε).

Since ε > 0 is arbitrary, we finish the proof. �

Lemma 7.13 (Strong wavefront lemma). There exist � > 1 and ε0 > 0 such that
for any 0 < ε < ε0 and g = hak ∈ HA+K with ‖a‖ ≥ 2,

gUε ⊂ h(H ∩ U
ε)a(A ∩ U
ε)k(K ∩ U
ε),

where ‖g‖ denotes the distance of g from e in G which is K-invariant.

Proof. If H is symmetric, the result follows from [14, Theorem 4.1].
Now suppose that H = N is horospherical. We may assume that the distance

from e in G is invariant under conjugation by elements of K. Let u ∈ Uε. Then
kuk−1 ∈ Uε. Write kuk−1 = h1a1k1, where h1 ∈ H ∩ U
ε, a1 ∈ A ∩ U
ε and
k1 ∈ K ∩ U
ε for some � ≥ 1 independent of ε. Now

gu = haku = ha(kuk−1)k = (h(ah1a
−1))(aa1)k(k

−1k1k).

Since a ∈ A+ and h1 ∈ H = N , by (7.1), ‖ah1a
−1‖ ≤ ‖h1‖. Also, ‖k−1k1k‖ = ‖k1‖.

Hence gu has the required form. �
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Proof of Theorem 7.8(1). By the assumption that νo(∂(Ω
−1)) = 0, for all suffi-

ciently small ε > 0, there exists an ε-neighborhood Kε of e in K such that for
Ωε+ = ΩKε and Ωε− =

⋂
k∈Kε

Ωk,

(7.27) lim
ε→0

νo(Ω
−1
ε+ − Ω−1

ε−) = 0.

Let � > 1 as in Lemma 7.13. Then for T � 1,

BT (Ω)U
−1ε ⊂ B(1+ε)T (Ωε+) and B(1−ε)T (Ωε−) ⊂
⋂

u∈U�−1ε

BT (Ω)u.

Let ψε ∈ Cc(G) be a non-negative function supported on U
−1ε and
∫
ψεdg = 1,

and let Ψε ∈ Cc(Γ\G) be the Γ-average of ψε:

(7.28) Ψε(g) :=
∑
γ∈Γ

ψε(γg).

Then FB(1−ε)T (Ωε−)(g) ≤ FBT (Ω)(e) ≤ FB(1+ε)T (Ωε+)(g) for all g ∈ U
−1ε. Therefore,
by integrating against Ψε, we have

〈FB(1−ε)T (Ωε−),Ψε〉 ≤ FBT (Ω)(e) ≤ 〈FB(1+ε)T (Ωε+),Ψε〉.

Let ξw0
be as defined in Proposition 7.12. By Proposition 7.5, for any η > 0,

there exists ε > 0 such that

mBR(ξw0
∗Ω Ψε) = m̃BR(ξw0

∗Ω ψε) =

∫
k∈Ω−1

ξw0
(k−1) dνo(kX

−
0 ) +O(η).

Therefore by Proposition 7.12,

(7.29)
limT→∞ T−δ/λ · 〈FB(1±ε)T (Ωε±),Ψε〉
=

μPS
E (E∗)

δ·|mBMS| ·
∫
k∈Ω−1

ε±
ξw0

(k−1) dνo(kX
−
0 ) +O(η).

In view of (7.27), we get

lim
T→∞

FBT (Ω)(e)

T δ/λ
=

μPS
E (E∗)

δ · |mBMS| ·
∫
k∈Ω−1

ξw0
(k−1) dνo(kX

−
0 ) +O(η).

Since η > 0 is arbitrarily chosen, we finish the proof of (1). �

Proposition 7.14. Suppose that H = Gw0
is symmetric and that G 
= HA+K.

Let Ω ⊂ M\K such that νo(∂(Ω
−1

X+
0 )) = 0. Then

(7.30)
limT→∞

#(w0Γ∩BT∩w0A
−Ω)

T δ/λ

=
μPS
E (E−)

δ·|mBMS|
∫
k∈Ω−1‖w−λ

0 k−1‖−δ/λ dνo(kX
+
0 ).

Proof. For k ∈ K and T > 0, let s(k, T ) = sup{r > 0 : ‖w0a−rk‖ < T}. Then
there exist A0 > 0 and T0 > 0 such that if we define s±(k, T ) via

es±(k,T ) = (1±A0T
−ε0)(T/‖w−λ

0 k‖)1/λ,

then for all T ≥ T0, we have s−(k, T ) ≤ s(k, T ) ≤ s+(k, T ).
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By Theorem 1.8, for any φ ∈ Cc(Γ\T1(Hn)), we have

limr→∞ e(n−1−δ)r
∫
E+ φ(G−r(v)) dμLeb

E (v)

= limr→∞ e(n−1−δ)r
∫
E− φ̃(Gr(v)) dμLeb

E (v) =
μPS
E (E−)

δ·|mBMS| ·mBR(φ̃),

where φ̃(v) = φ(−v).
Let B−

T (Ω) = BT ∩ w0A
−Ω and

FB−
T (Ω)(g) :=

∑
γ∈Γw0

\Γ
χB−

T (Ω)(w0γg).

In view of these observations, by arguing as in the proof of Proposition 7.12, we
get that for any ψ ∈ Cc(Γ\G),

limT→∞ T−δ/λ〈FB−
T (Ω), ψ〉

= limT→∞ T−δ/λ
∫
k∈Ω

∫
{r>0:‖w0a−rk‖<T}

[∫
[h]∈Γw0

\H ψ(ha−rk) dh
]
ρ(r) drdk

=
μPS
E (E−)

δ·|mBMS| ·
∫
k∈Ω

‖w−λ
0 k‖−δ/λmBR(ψk0k) dk,

where k0 ∈ K represents an element of the Weyl group such that k0ark
−1
0 =

a−r and k0X
−
0 = X+

0 . Now (7.30) follows from the arguments as in the proof of
Theorem 7.8(1). �

Remark 7.15. If GRw0
is parabolic, then w0ar → 0 as r → −∞. Since w0Γ is

discrete,

(7.31) #(w0Γ ∩ w0A
−K) < ∞.

Proof of Theorem 7.8(2). If G = HA+K, then (2) follows from (1) by putting
Ω = K.

If H is symmetric and G 
= HA+K, then G = HA+K �HA−K, and then (2)
follows by combining (1) and Proposition 7.14 and putting Ω = K.

If GRw0
is parabolic, (7.13) follows from Theorem 7.8 and (7.31). �

7.6. Counting in bisectors of HA+K coordinates. We state a counting result
for bisectors in HA+K coordinates. For any g ∈ HA+K, we set a(g) to be the
A+-component of g, which is unique. Consider bounded Borel subsets Ω1 ⊂ H and
Ω2 ⊂ K with Ω1(H ∩M) = Ω1 and MΩ2 = Ω2. Set

NT (Ω1,Ω2) = #(Γ ∩ Ω1A
+
TΩ2),

where A+
T = {ar ∈ A+ : er < T}. For the sake of simplicity, we assume that the

projection map Ω1 → Γ\G is injective.

Theorem 7.16. If μPS
E (∂(Ω1(X0))) = νo(∂(Ω

−1
2 (X−

0 ))) = 0, then

lim
T→∞

NT (Ω1,Ω2)

T δ
=

1

δ · |mBMS|μ
PS
E (Ω1(X0)) · νo(Ω−1

2 (X−
0 )).

This result for H = K was also obtained by Roblin [31] by a different approach.
When Γ is a lattice in a semisimple Lie group G and H = K, the analogue of
Theorem 7.16 was obtained in [12].
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Proof. We define the following function on Γ\G:

FT,Ω1,Ω2
(g) :=

∑
γ∈Γ

χΩ1A
+
TΩ2

(γg).

For ψ ∈ Cc(Γ\G), given ε > 0, by Theorem 3.6 for sufficiently large T > 1,

(7.32)

〈FT,Ω1,Ω2
, ψ〉 =

∫
g∈Ω1A

+
TΩ2

ψ(g)dg

=
∫
k∈Ω2

∫
1≤er<T

∫
h∈Ω1

ψ(hark)ρ(ar)dhdrdk

=
∫
k∈Ω2

∫
T0≤er<T

ρ(ar)
(∫

h∈Ω1.X0
ψk(har)dh

)
drdk +OT0

(1)

=
(

1
δ·|mBMS|μ

PS
E (Ω1X

+
0 )

∫
k∈Ω2

mBR(ψk)dk +O(ε)
)

×
(∫ log T

0
e(r−n−1)δρ(r)dr

)
+OT0

(1)

= T δ

δ·|mBMS|μ
PS
E (Ω1X0) ·mBR(χK∗Ω2

ψ) +O(ε)T δ +OT0
(1),

where χK ∗Ω2
ψ(g) =

∫
k∈Ω2

ψ(gk)dk.
By the assumptions on Ω1 and Ω2, for every ε > 0 there exist ε-neighborhoods

Hε and Kε of e in H and K, respectively, such that for Ω1,ε− :=
⋂

h∈Hε(H∩M) Ω1h,

Ω1,ε+ := Ω1Hε(H ∩M), Ω2,ε− :=
⋂

k∈Kε
Ω2k and Ω2,ε+ := Ω2Kε, as ε → 0,

μPS
E (Ω1,ε+(X0)� Ω1,ε−(X0)) → 0, νo(Ω

−1
2,ε+(X

−
0 )� Ω−1

2,ε−(X
−
0 )) → 0.

By Lemma 7.13, for � > 1 as therein, there exists an ε-neighborhood Uε of G
such that for all T � 1,

Ω1A
+
TΩ2U
−1ε ⊂ Ω1,ε+A

+
(1+ε)TΩ2,ε+ ,

Ω1,ε−A
+
(1−ε)TΩ2,ε− ⊂

⋂
g∈U�−1ε

Ω1A
+
TΩ2g.

Let ψε ∈ Cc(G) be a non-negative function supported on U
−1ε and
∫
ψεdg = 1,

and let Ψε ∈ Cc(Γ\G) be the Γ-average of ψε:

Ψε(g) =
∑
γ∈Γ

ψε(γg).

It follows that

(7.33) 〈F(1−ε)T,Ω1,ε− ,Ω2,ε−
,Ψε〉 ≤ FT,Ω1,Ω2

(e) ≤ 〈F(1+ε)T,Ω1,ε+ ,Ω2,ε+
,Ψε〉.

On the other hand, by Proposition 7.5,

lim
ε→0

mBR(χK ∗Ω2,ε±
Ψε) = νo(Ω

−1
2,ε±(X

−
0 )).

Therefore by (7.32),

lim
T→∞

T−δ〈F(1±ε)T,Ω1,ε± ,Ω2,ε±
,Ψε〉 =

μPS
E (Ω1,ε±(X0))νo(Ω

−1
2,ε±(X

−
0 ))

δ · |mBMS| .

By (7.33) we get

lim
T→∞

FT,Ω1,Ω2
(e)

T δ
=

1

δ · |mBMS|μ
PS
E (Ω1,ε+(X0))νo(Ω

−1
2,ε+(X

−
0 )).

�
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7.7. Counting theorems for Γ Zariski dense. In the case when Γ is Zariski
dense, Theorem 7.8 holds for any norm on V and for any Ω without the M -
invariance condition. Similarly, Theorem 7.16 holds without the M -invariance as-
sumption on Ω1 and Ω2.

The reason that this generalization is possible is because for Γ Zariski dense, we
use Theorem 7.7 instead of Theorem 1.8. In proving Theorem 7.8, the place where
we needed the M -invariance of Ω is in Proposition 7.11. For general Ω, we replace
this proposition by∫

k∈Ω

∫ r−(k,T )

0
ρ(r)

(∫
Γw0

\H ψk(har)dh
)
drdk

≤ 〈FBT (Ω), ψ〉 ≤
∫
k∈Ω

∫ r+(k,T )

0
ρ(r)

(∫
Γw0

\H ψk(har)dh
)
drdk,

where ψk(g) := ψ(gk) ∈ Cc(Γ\G) is simply the translation of ψ by k.
Applying Theorem 7.7 to the inner integral in the above, we deduce in the same

way as in the proof of Proposition 7.12 that for any ψ ∈ Cc(Γ\G), we have

(7.34) lim
T→∞

T−δ/λ〈FBT (Ω), ψ〉 =
μPS
E (E∗)

δ · |mBMS| · m̄
BR(ξw0

∗Ω ψ),

where m̄BR is defined as in §7.3 and ξw0
(k) := ‖wλ

0k‖−δ/λ. Now for a general
norm ‖·‖ on V , note that the function ξw0

(k) is not necessarily M -invariant. How-
ever, for an approximate identity {ψε}ε>0 on G and any f ∈ C(K), the proof of
Proposition 7.5 can be easily modified to prove

(7.35) lim
ε→0

m̄BR(f ∗Ω ψε) =

∫
k∈Ω−1

f(k−1) dνo(kX
−
0 ).

Hence applying (7.34) to ψ = ψε and (7.35) to f = ξw0
and by sending ε → 0,

we obtain

(7.36) lim
T→∞

T−δ/λ · FBT (Ω)(e) =
μPS
E (E∗)

δ · |mBMS| ·
∫
k∈Ω−1

‖wλ
0k

−1‖−δ/λdνo(kX
−
0 ).

This explains the generalization of Theorem 7.8(1). The generalization for Theo-
rem 7.8(2) and Theorem 7.16 can be done similarly.

Proof of Theorem 7.10. In view of the above explanation, the result can be deduced
from Theorem 7.8 (or its combination with Proposition 7.14 or Remark 7.15) via
elementary arguments; see [13]. �

8. Appendix: Equality of two Haar measures

Let H be a symmetric group as in §7.2.1. As in Notation 7.4(1), consider the
Haar measure on G corresponding to the Iwasawa decomposition G = NAK given
by

dg = e(n−1)t dn dt dq, for g = natq, n ∈ N , at ∈ A, q ∈ K.

Corresponding to the generalized Cartan decomposition G = HAK, by (7.8) the
Haar measure on G can be expressed as

dg = c0 · ρ(r) dh dr dk, for g = hark ∈ HAK,

where c0 > 0 is a constant. We note that dn is defined by Lemma 7.1 and dh is
determined by (7.7).
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Theorem 8.1. c0 = 1.

Proof. Let the notation be as in §7.1. Let N− = {g ∈ G : a−rgar → e as r → ∞}.
Then for y ∈ Lie(N−) we have a−r exp(y)ar = exp(e−ry). In view of an NAN−M
decomposition of a small neighborhood of e in G, for h in such a neighborhood we
write

h = n(x(h))ab(h)v(y(h))m(h),

where x(h) ∈ Lie(N) ∼= R
n−1 and n(x(h)) = exp(x(g)), y(h) ∈ Lie(N+) ∼= R

n−1

and v(y(h)) = exp(y(h)), b(h) ∈ R and m(h) ∈ M . In particular,

(8.1) hX+
0 = n(x(h))ab(h)v(y(h))m(h)X+

0 = n(x(h))X+
0

In view of the decompositions G = HAK and G = NAK, for h ∈ H, r > 0 and
k ∈ K, we express

hark = n(z(h, r, k))at(h,r,k)q(h, r, k), where q(h, r, k) ∈ K.

Now for h in a small neighborhood of e in H, we have

hark = n(x(h))ab(h)v(y(h))m(h)ark = n(x(h))ar+b(h)v(e
−ry(h))(m(h)k).

In view of a G = NAK decomposition,

v(e−ry(h)) = n(x1(h, r))ab1(h,r)k1(h, r), with

max(‖x1(h, r)‖, ‖b1(h, r)‖, ‖k1(h, r)‖) = O(e−r‖x(h)‖).

Therefore,

hark = n(x(h))ar+b(h)n(x1(h, r))ab1(h,r)(k1(h, r)m(h)k)

= n(x(h) + x2(h, r))ar+b(h)+b1(h,r)(k1(h, r)m(h)k),

where x2(h, r) = e−r−b(h)x1(h, r). So

(8.2) ‖x2(h, r)‖ = e−2rO(‖x(h)‖).

Therefore

(8.3)
z(h, r, k) = n(x(h) + x2(h, r)), t(h, r, k) = r + b(h) + b1(h, r),
q(h, r, k) = k1(h, r)m(h)k.

Since z(h, r, k) = z(hm, r, e) and t(h, r, k) = t(hm, r, e) for any k ∈ K and m ∈
M ∩ H = GX+

0
∩ H, we can write z(h, r, k) = z([h], r) and t([h], r, k) = t([h], r),

where [h] = h(M ∩ H) = hX+
0 . Moreover, for any fixed h and r, since dk is

K-invariant, we have that dq(h, r, k) = dk.
For h in a small neighborhood of e in H, r > 0 and k ∈ K,

c0 = e(n−1)t(h,r,k) dn(z(h,r,k)) dt(h,r,k) dq(h,r,k)
ρ(r) dh dr dk

= e(n−1)t([h],r) dn(z([h],r)) dt([h],r)
ρ(r) dh dr · dq(h,r,k)

dk

= e(n−1)t([h],r) dn(z([h],r)) dt([h],r)
ρ(r) dh dr ,
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because z and t do not depend on k and for fixed (h, r) we have d(q(h, r, k)) = dk.
Now the numerator depends only on [h] = hM and

∫
m∈H∩M

1 dm = 1. Therefore,

(8.4) c0 =
e(n−1)t([h],r)e

(n−1)β
n(z([h],r))X

+
0
(o,n(z(h,r,k))o)

ρ(r)e(n−1)β[h](o,[h]o)

× dmo(n(z([h], r))X
+
0 ) dt([h], r)

dmo([h]) dr
.

To compute c0, we evaluate the Radon-Nikodym derivative at the point ([h], r) =
([e], s) = (X+

0 , s) for any fixed s > 0. Then we consider the upper half space model
R

n−1 × R>0 for H
n with o = (0, 1) and X−

0 = ∞. Then X+
0 = 0 ∈ R

n−1 =
∂Hn

� {∞}. Since mo is equivalent to the Lebesgue measure, let

(8.5) 0 < C :=
dmo(x)

dx

∣∣∣
x=0

; also n(x)X+
0 = x for all x ∈ R

n−1.

We define a map Φ from a small neighborhood of (0, s) in R
n−1×R to R

n−1×R

by

Φ([h], r) = (n(z(h, r, k)X+
0 , t([h], r))).

To compute the Jacobian of Φ at the point (X+
0 , s) = (0, s), we write Φ = (Φ1,Φ2)

and ([h], r) = (z1, z2).
Fixing [h] = [e], we get z([e], r) = 0, t([e], r) = r. Therefore ∂z2(Φ1,Φ2) = (0, 1).

Hence the Jacobian of Φ at ([h], r) = (0, s) is

J(Φ)(0, s) = |∂z1Φ1(0, s)|

=
dmo(n(x2([h],s)+x(h))X+

0 )
dmo([h])

at [h] = 0, by (8.3)

=
dmo(n(x2([h],s)+x([h]))X+

0 )

dmo(n(x([h]))X
+
0 )

, by (8.1)

= d(x2([h],s)+x([h]))
d(x([h])) at [h] = 0 = x([h]), by (8.5)

= 1 + d(x2([h],s))
d(x([h])) at [h] = 0 = x([h])

= 1 +O(e−2s(n−1)), by (8.2).

Note that for a fixed s, due to (8.1) and (8.5), x2([h], s) is a smooth function of
x([h]). By (8.4), the Radon-Nikodym derivative at ([h], r) = ([e], s) is

c0 =
e(n−1)t([e],s)e

(n−1)β
n(z([e],s))X

+
0
(o,n(z([e],s))o)

ρ(s)e(n−1)β[e](o,[e]o)
· J(Φ)(0, s)

= (e(n−1)s/ρ(s))(1 +O(e−2s(n−1))).

Since ρ(s)/e(n−1)s → 1 as s → ∞, we have c0 = 1. �
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