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1. INTRODUCTION

1.1. Motivation and overview. Let G denote the identity component of the
special orthogonal group SO(n,1), n > 2, and V a finite-dimensional real vector
space on which G acts linearly from the right.

A discrete subgroup of a locally compact group with finite covolume is called a
lattice. For v € V and a subgroup H of G, let H, = {h € H : vh = v} denote the
stabilizer of v in H.

A subgroup H of G is called symmetric if there exists a non-trivial involutive
automorphism o of G such that the identity component of H is the same as the
identity component of G = {g € G : 0(g) = g}.

Theorem 1.1 (Duke-Rudnick-Sarnak [9]). Fizwo € V such that Gy, is symmetric.
Let T be a lattice in G such that Ty, is a lattice in Gy,,. Then for any norm |||
onV,

lim #{w € wel : ||w] < T} _ VOl(T o \Gwy)

T—00 vol(Br) vol(T\G) ~’
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where By = {w € woG : ||w|| < T} and the volumes on Gy, G and woG ~ Gy, \G
are computed with respect to the right invariant measures chosen compatibly.

Eskin and McMullen [10] gave a simpler proof of Theorem [[I] based on the
mixing property of the geodesic flow of a hyperbolic manifold with finite volume.
It may be noted that this approach for counting via mixing was used earlier by
Margulis in his 1970 thesis [20]. We also refer to [3] for a quantitative version of
Theorem [[T]

The group G can be considered as the group of orientation preserving isometries
of the n-dimensional hyperbolic space H". The main achievement of this paper
lies in extending Theorem [Tl to a suitable class of discrete subgroups I' of infinite
covolume in G; namely, the groups I with finite Bowen-Margulis-Sullivan measure
mBMS on I'\H". In particular, this class contains all geometrically finite subgroups
of G. The analogue of vol(I'y,\Gw,) turns out to be a very interesting quantity,
which we will call the ‘skinning size’ of wy relative to I and denote by skr(wp). In
fact, skr(wp) will be the total mass of a Patterson-Sullivan type measure on the
unit normal bundle of a closed immersed submanifold of T'\H" associated to G-
One of the important components of this work is to completely determine when
skp(wp) is finite (Theorem [[H). In particular, skr(wg) < oo for any geometrically
finite I whose critical exponent § is greater than the codimension of the associated
submanifold.

The main ergodic theoretic ingredient in the proof is the description for the lim-
iting distribution of the evolution of the smooth measure on the unit normal bundle
of a closed totally geodesically immersed submanifold of T\H" under the geodesic
flow. The corresponding equidistribution statement (Theorem [[8)) is applicable to
many other problems. For example, in [23] 24] it has been applied to the study of
the asymptotic distributions in circle packings in the Euclidean plane or a sphere,
invariant under a non-elementary group of Mdbius transformations.

1.2. Statement of main result. Our generalization of Theorem [[1] for discrete
subgroups which are not necessarily lattices involves terms which can be best ex-
plained in the language of hyperbolic geometry. Let I < G be a torsion-free discrete
subgroup which is non-elementary, that is, I' has no abelian subgroup of finite in-
dex. This is a standing assumption on I' throughout the whole paper. Now I’
acts properly discontinuously on H". Let 0 < § < n — 1 be the critical exponent
of T (see 8.I.T)). Let {v}rem» be a I-invariant conformal density of dimension
4 on the geometric boundary OH" (see (ZI1])) which exists by Patterson [26] and
Sullivan [36]. Let m®MS denote the Bowen-Margulis-Sullivan measure on the unit
tangent bundle T*(I'\H") associated to {v,} (see [B2)).

For u € T'(H"), we denote by u* € OH" the forward and the backward end-
points of the geodesic determined by u, respectively, and by 7(u) € H™ the base
point of u. Let p : T*(H") — T*(T'\H") be the canonical quotient map.

Let V be a finite-dimensional vector space on which G acts linearly. Let wg € V
be such that G, is a symmetric subgroup or the stabilizer Gy, of the line Rwq is
a parabolic subgroup. We define a subset £ C Tl(H") associated to the orbit woIl’
in each case.

When G, is a symmetric subgroup associated to an involution o, choose a
Cartan involution 6 of G which commutes with o, and let o € H™ be such that its
stabilizer G, is the fixed group of . Then S := G, -0 is an isometric imbedding
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of H* in H"™ for some 0 < k < n — 1, where the embeddings of H® and H' mean a
point and a complete geodesic, respectively. Let EcT! (H™) be the unit normal
bundle of S.

In the case when Gy, is parabolic, we fix any o € H". If N is the unipotent
radical of Gry,, then S := N.o is a horosphere. We set £ C T'(H") to be the
unstable horosphere over S.

Now in either case, we define the following Borel measure on E:

dugs(v) — 0B, + (2,7 (v)) dvy(vh)

for € H", and f¢(x1,x2) denotes the value of the Busemann function, that is,
the signed distance between the horospheres based at £, one passing through x;
and the other through x5 (see (Z2])). This definition of u%s is independent of the
choice of x € H". Due to the I'-invariance property of the conformal density {v,},
it induces a measure on E := p(F) which we denote by ukbS.

Fix any X, € F based at o, and let A = {a, : r € R} be a one-parameter
subgroup of G consisting of R-diagonalizable elements such that r — a,..Xg is a unit
speed geodesic. Note that A is contained in a copy of SO(2,1) = PSL(2,R) such
that a, corresponds to d, = diag(e’“/ 2 e/ 2). Any irreducible representation of
PSL(2,R) is given by the standard action of SL(2, R) on homogeneous polynomials
of degree k in two variables such that the action of —I is trivial, so k is even and
the largest eigenvalue of d,. is e(*/2)7. Therefore, if A denotes the log of the largest
eigenvalue of a; on R-span(woG), then A € N. We set

wy = lim e *wpa, #0, by [I3, Lemma 4.2].
T—>00
Theorem 1.2. Let ' < G be a non-elementary discrete subgroup with [mBMS| < oco.
Suppose that wol is discrete and that its skinning size skr(wo) = |uB?| is finite.
Then for any Go-invariant norm ||-|| on V', we have

. #Hwewl : |w|| <T} |V - skr(wo)
(1.1) A To/™ T3 [mBYS[ o

Remark 1.3. (1) If T is convex cocompact, skr(wp) < oo. In the case when Gry,
is parabolic, skr(wp) < oo as well. A finiteness criterion for skr(wg) is provided in
§1.4.

(2) Since woI is infinite, skp(wp) > 0 (Proposition[6.7), and hence the limit (L.1))
is strictly positive.

(3) The description of the limit changes if we do not assume the G,-invariance
of the norm ||-||; see Theorem [(.8 Remark [T9(3)-(5), and Theorem [7.I0l

(4) If G, is symmetric and T is Zariski dense in G, then the condition |ub°| < oo
implies that wel is discrete, for by Theorem 2.21] and Remark 222 woI" is closed
in wo@G, and by [13l Lemma 4.2], woG is closed in V. Therefore woI is closed and
hence discrete in V.

(5) If Gry, is parabolic, then the condition |uE3| < oo implies that wol is
discrete. To see this, note that if the horosphere S is based at &, then S = {&},
and by Theorem 221 T'S is closed in H” and wol is closed in woG = woG ~ {0}.
If wel' is not closed in V, wyy; — 0 for a sequence {y;} C I'. Then v,0 — ¢
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FIGURE 1. An externally I-parabolic vector

and ¢ is a horospherical limit point of I'. Since |mPM5| is finite, the geodesic flow
is mixing (Theorem B2)), and hence by [7, Thm. A and Prop. B], I'S is dense in
7({u : u= € A(I')}), a contradiction to I'S being closed. Therefore wol is closed
and hence discrete in V.

Thanks are due to the referee for the last two remarks.

A discrete group I' is called geometrically finite if the unit neighborhood of its
convex cord]] has finite Riemannian volume (see also Theorem [L@]). Any discrete
group admitting a finite sided polyhedron as a fundamental domain in H" is geo-
metrically finite.

Sullivan [36] showed that [mBMS| < co for all geometrically finite I'. However,
Theorem is not limited to those, as Peigné [27] constructed a large class of
geometrically infinite groups admitting a finite Bowen-Margulis-Sullivan measure.

We will provide a general criterion on the finiteness of skr(wp) in Theorem [[.T4
For the sake of concreteness, we first describe the results for the standard represen-
tation of G.

1.3. Standard representation of G. Let @) be a real quadratic form of signature
(n,1) for n > 2 and G the identity component of the special orthogonal group
SO(Q). Then G acts on R"™! by the matrix multiplication from the right, i.e.,
the standard representation. For any non-zero wg € R"*!, up to conjugation and
commensurability, G, is SO(n—1,1) (resp. SO(n)) if Q(wo) > 0 (resp. if Q(wp) <
0). If Q(wp) = 0, the stabilizer of the line Rwy is a parabolic subgroup. Therefore
Theorem is applicable for any non-zero wg € R™™!, provided skr(wp) < oo (in
this case, A = 1).

An element v € I is called parabolic if there exists a unique fixed point of v in
OH". For £ € OH", we denote by I'¢ the stabilizer of £ in I' and call £ a parabolic
fized point of T if £ is fixed by a parabolic element of T

Noting that G, is the isometry group of the codimension one totally geodesic

subspace, say, Sy,, when Q(wg) > 0, we give the following:

Definition 1.4. Let wol’ be discrete. Then wg € R™*! is said to be externally
T-parabolic if Q(wp) > 0 and there exists a parabolic fixed point £ € 95, for T
such that G, NT¢ is trivial, where 05, C OH" denotes the boundary of S, in
H~.

IThe convex core Cr C T'\H" of I" is the image of the minimal convex subset of H" which
contains all geodesics connecting any two points in the limit set of I".
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For n = 2, wy € R? with Q(wg) > 0 is externally I-parabolic if and only if the
projection of the geodesic Sy, in I'\H" is divergent in both directions, and at least
one end of S, goes into a cusp of a fundamental domain of T in H? (see Figure ).

Theorem 1.5 (On the finiteness of skr(wyg)). Let T' be geometrically finite and woT
be discrete.

(1) If 6 > 1, then skr(wp) < 0.
(2) If § <1, then skr(wp) = oo if and only if wo is externally T'-parabolic.

Corollary 1.6. Let I' be geometrically finite and wol' discrete. If either 6 > 1 or
wyg is not externally T'-parabolic, then ([ILII) holds.

Remark 1.7. (1) For geometrically finite I, if the Riemannian volume of F is finite,
then skp(wg) < oo (Corollary [LIH).

(2) It can be proved that if § < 1 and wy is externally I'-parabolic, the asymptotic
count is of the order T'logT if § = 1 and of the order T if § < 1, instead of T°
(cf. [29]).

(3) When Q(wg) < 0, the orbital counting with respect to the hyperbolic metric
balls was obtained by Lax and Phillips [19] for T" geometrically finite with § >
(n—1)/2, by Lalley [I8] for convex cocompact subgroups and by Roblin [31] for all
groups with finite Bowen-Margulis-Sullivan measure.

(4) When Q(wp) = 0 and T is geometrically finite with § > (n — 1)/2, a version
of Theorem [[2] was obtained in [I7].

1.4. Equidistribution of expanding submanifolds. In this section, we will
describe the main ergodic theoretic ingredients used in the proof of Theorem
Let E C T*(H"™) be one of the following:

(1) an unstable horosphere over a horosphere S in H";

(2) the unit normal bundle of a complete proper connected totally geodesic
subspace S of H"; that is, S is an isometric imbedding of H¥ in H" for
someOSkSn—l.

Let T’ be a discrete subgroup of G, and set F := p(E) for the projection p :
T'(H") — TY(T\H").

Recall that {v, : # € H"} denotes a Patterson-Sullivan density of dimension 4.
Let {m, : « € H"} denote a G-invariant conformal density of dimension (n — 1).
We consider the following locally finite Borel measures on E:

duLeb( ) _ e(n—1)67)+(o,ﬂ'(v))dmo(v+), du%s(v) _ e‘sﬁv*(‘)?”(“))duo(v*),

where o € H". Note that ,uLeb is the measure associated to the Riemannian volume

form on E.

The measures /,LP and ,uLCb

are invariant under I', = {vy € F v(E) = E} and

hence induce measures on I' E\E We denote by uLCb

and ,u S, respectively, the
projections of these measures on E via the projection map I' E\E — F induced by
p.

Let mB® denote the Burger-Roblin measure on T (I'\H") associated to the con-
formal densities {v,} in the backward direction and {m} in the forward direction
([6], [31], and see [B3))).

Let {G'} denote the geodesic flow on T*(H").
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Theorem 1.8. Suppose that [mPMS| < oo and |ub°| < co. Let F C E be a Borel
subset with yyS (OF) = 0. For any ¢ € Co.(T'(T\H")),
PS(F
(1.2) lim e 1m0t / Y(G'(v)) du™ (v) = %‘ EB(MS)| -m P (1)),
F m

t——+oo

In particular, this holds for F = E.

See Theorem for a version of Theorem [[.§ without the finiteness assumption
on |ug’l.

Remark 1.9. Theorem [[¥ applies to F with p%P(F) = oo as well, provided
|uES| < oo. The proof for this generality requires greater care since it cannot
be deduced from the cases of F' bounded. It is precisely this general nature of our
equidistribution theorem which enabled us to state Theorem for general groups

T, only assuming the finiteness of the skinning size skr(wo) = |u%°| for a suitable
E.

When FE is a horosphere and F' is bounded, Theorem [[.§ was obtained earlier by
Roblin [31) p. 52]. We were motivated to formulate and prove the result from an
independent view point; our attention was especially on the case of 7(E) being a
totally geodesic immersion. This case involves many new features, observations, and
applications (cf. [23], [24]). The main key to our proof is the transversality theorem,
Theorem B35, which was influenced by the work of Schapira [34]. The transversality
theorem provides a precise relation between the transversal intersections of geodesic
evolution of F' with a given piece, say T, of a weak stable leaf and the transversal
measure corresponding to the mPMS measure on 7.

For I Zariski dense, we generalize Theorem [[.8 to ¢ € C.(I'\G). To state the
generalization, we fix o € H” and X, € F based at o. Then, for K = G, and
M = Gx,, we may identify H” and T*(H") with G/K and G/M, respectively. Let
A = {a,} be the one-parameter subgroup such that the right translation action by
a, on G/M corresponds to G". Let mBR denote the measure on I'\G which is the
M-invariant extension of mB® via the natural projection map I'\G — I'\G/M =
THT\H"). Let H = G, and let dh denote the invariant measure on T'g\ H whose

projection to E coincides with pkeP.
Theorem 1.10. Let T be a Zariski dense discrete subgroup of G such that |mBMS| <

o and |ptP| < co. Then for any ¢ € C.(P\G),

r—00

1o o
fim 0" [ pCha,) dh = SR )
helu\H

When T is a lattice in G and F is of finite Riemannian volume, Theorem [[.10] is
due to Sarnak [33] for horocycles in H2, Randol [2§] for unit normal vectors based
at a point in the cocompact lattice case in H?, and Duke-Rudnick-Sarnak [9] and
Eskin-McMullen [I0] in general (also see [15, Appendix]).

In 71 we deduce Theorem from Theorem [[.Y] The standard techniques of
orbital counting via equidistribution results require significant modifications due to
the fact that mBR is not G-invariant.

1.5. On finiteness of ;£ for geometrically finite I'. An important condition
for the application of Theorem 1.8 is to determine when ubS is finite. In this
subsection we assume that I' is geometrically finite. Letting F and S = 7(E) be
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as in L4 suppose further that the natural imbedding I‘S.\g — T\H" is proper; in
particular, p(S5) is closed in I'\H", where I's = {y € ' : 7S = S}.
When S is a point or a horosphere, MES is compactly supported (Theorem 9.

Theorem 1.11 (Theorem [A.7]). If S is totally geodesic, then I's is geometrically
finite.

Definition 1.12 (Parabolic-corank). Let A,(I") denote the set of parabolic fixed
points of " in OH". For any £ € A,(I"), I'¢ is a virtually free abelian group of rank
at least one. Define
pb-corank(I's) =  max _ (rank(I'¢) —rank(I'e NI'g)).
£€A,(D)N(S)

If Ap(I') N O(S) = 0, we set pb-corank(I's) = 0. In particular, the parabolic
corank of I'g is always zero when I' is convex cocompact.

Lemma 1.13 (Lemma[6.2). If S is totally geodesic, then

pb-corank(I'g) < codim(S).
Theorem 1.14 (Theorems [63] and [6.4]). We have:

(1) supp(ut®) is compact if and only if pb-corank(I'g) = 0.
(2) |uE8| < oo if and only if pb-corank(I's) < 6.

Note that by [8 Prop. 2], § > %maxfeAp(r) rank(I'¢). As a consequence of
Theorem [[.14], we get:

Corollary 1.15 (Theorem B35). Suppose that dim(S) > (n +1)/2. If |ukeP| < oo,
then |ub5| < oco.

1.6. Finiteness of ;5 or ;5" and closedness of E. Let F and E be as in §I.4
In [29], it is shown that || < co implies that E is a closed subset of T'(I'\H"™).
We prove an analogous statement for ;%S

Theorem 1.16 (Theorem 22T)). Let I' be a discrete Zariski dense subgroup of G.
If |uES) < oo, then the natural embedding T'g\S — T\H" is proper.

1.7. Integrability of ¢, and a characterization of a lattice. Define ¢y €
C(T\H") by
do(x) :=|vz| for z € T\H".

The function ¢q is an eigenfunction of the hyperbolic Laplace operator with eigen-
value —§(n — 1 — 6) (see [36]). Sullivan [37] showed that if § > 251, then ¢y €
L*(T'\H", d Volgjem) if and only if [mBMS| < co. The following theorem, which is a
novel application of Ratner’s theorem [30], relates the integrability of ¢o with the
finiteness of Volgiem (I'\H™):

Theorem 1.17 (§3.6). For any discrete subgroup T, the following statements are
equivalent:
(1) ¢0 S L1 (F\Hna dVOlRicm):'
(2) [mPR| < oo;
(3) T is a lattice in G.
Although mB® depends on the choice of the base point o, its finiteness is inde-

pendent of the choice. If T" is a lattice, then § = n — 1, and hence ¢ is a constant
function by the uniqueness of the harmonic function [3§].
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2. TRANSVERSE MEASURES

2.1. Let (H",d) denote the hyperbolic n-space and OH™ its geometric boundary.
Let G denote the identity component of the isometry group of H". We denote
by Tl(H") the unit tangent bundle of H™ and by m« the natural projection from
T'(H™) — H". By abuse of notation, we use d to denote a left G-invariant metric
on T'(H") such that d(m(u), 7(v)) = min{d(uy,v1) : 7(uy) = 7(u), 7(v1) = 7 (v)}.
For a subset A of T*(H") or H” or 9H" and a subgroup H of G, we denote by H 4
the stabilizer subgroup {¢g € H : g(A) = A} of Ain H.

Denote by {G" : r € R} the geodesic flow on T*(H). For u € T*(H"), we set

+ . 1 T p— 1 r

(2.1) U’ = TILHSOQ (v) and u” := TEIPOOQ (u),
which are the endpoints in JH" of the geodesic defined by u. Note that (g(u))* =
g(u®) for g € G. The map Viz : T*(H") — 9H" given by Viz(u) = ut is called the
visual map.

2.2. The Busemann function 8 : OH™ x H" x H"™ — R is defined as follows: for
& € OH" and =,y € H”,

(22) ﬁg(,@, y) = lim d(.’L‘, 57‘) - d(y> gr)a

T—00

where &, is any geodesic ray tending to £ as r — oo, and the limiting value is
independent of the choice of the ray &,.
Note that g is differentiable and invariant under isometries; that is, for g € G

and z,y € H", Be(z,y) = By(e)(9(x), 9(y))-
For u € T'(H™), the unstable horosphere based at u~ is the set

Hi={veTH"): v =u", B, (7(u),7(v)) = 0},
and the stable horosphere based at u™ is the set
H, = {veTHH"):v" =ut, B+ (7(u), 7(v)) = 0}.
The weak stable manifold corresponding to wu is
W =Viz '(u) = {ve T'H") :vF =ut},
(2.3) vi,v2 € HE, 1 €R = d(G"(v1),G"(v2)) = e"d(v1,v2),
(2.4) v, 00 €WE, 1> 0= d(G"(v1),G" (v2)) < d(vy,v2).

The image under 7 of a stable or an unstable horosphere # in T*(H") based at
¢ is called a horosphere in H" based at §. Hence m(H) = {y € H" : B¢(z,y) = 0}
for x € w(H).

2.3. Let S be one of the following: a horosphere or a complete connected totally
geodesic submanifold of H™ of dimension k for 0 < k < n — 1. Let £ C T*(H")
denote the unstable horosphere with 7(E) = S if S is a horosphere, and the unit
normal bundle over S if S is totally geodesic.
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Lemma 2.1. The visual map Viz restricted to E is a diffeomorphism onto O(H"™) \

a(9).

Proof. The conclusion is obvious if S is a point or a horosphere.

Now suppose that Sis a totally geodesic subspace of dimension 1 < k <n — 1.
Consider the upper half space model for H":
(2.5) H*={z+jy: 2R y>07=(0,...,0,1)},
and OH" = R"~'U{oc}. Without loss of generality, we may assume that co € 9(S)
and hence 85 ~ {oco} is a (k — 1)-dimensional affine subspace, say F, of R"1.
For any 2 € R ! \_ L, let 21 be the orthogonal projection of x on L. Let xo =
x1+ ||z — 21| -5 € H". Let v € T'(H") be the unit vector based at x5 in the same
direction as z — z;. Then v € E and vt = z. Now the conclusion of the lemma is
straightforward to deduce. O

2.3.1. Maps between E, and H}. For v € TH(H"), —v is the vector with the same
b~ase point as v but in the opposite direction. For v € F, let &, : H." \Vizfl(aS) —
E ~ {—v} be the map given by
(2.6) &(u) = Viz H(ut)NE.
Then &, is a diffeomorphism. Its inverse, g, : E ~ {—v} — H ~ Viz~1(dS), is the
map given by
(2.7) ¢ (w) = Viz " (wh) NH .
Proposition 2.2. There exist C; > 0 and ¢g > 0 such that:
(1) if v,w € E and d(v,w) < €, then
|But (7 (gu(w)), w(w))| < d(go(w), w) < Crd(w, v);
(2) ifv e E and w € H with d(v,w) < o, then
Bt (7 (&0 (w)), m(w))] < d(&u(w), w) < Crd(v, w).

Proof. In each of the two statements, the first inequality follows directly from the
definition of the Busemann function, so we only need to prove the second inequality.

Consider the upper half space model of H" given by (2I). By applying an
isometry g € G, since qq(,)(9w) = g(go(w)), we may assume that v is the unit
vector based at j so that v = {oo}.

Since f(u) := d(gy(u),u) is a differentiable function of u € F, there exist €y > 0
and C] > 0 such that ||Df(u)| < C] for any u with d(v,u) < €. Therefore, since
f(v) =0, there exists C7 > 0 such that |f(u)| = |f(u) — f(v)] < Cy - d(v,u) for all
u € E with d(u, v) < €. This proves (), and () can be proved similarly. O

Remark 2.3. The following stronger form of statements in Proposition hold:
There exist g > 0 and C7 > 0 such that

1Bt (1(qu(w)), 7(w))] < Crd(v,w)?, for all w € E with d(w,v) < €y;

|But (m(Ep(w), m(w)))| < Crd(v, w)?, for all w € H with d(w,v) < €.

We omit a proof, as the stronger version will not be used in this article.

Notation 2.4. Let I' be a non-elementary torsion-free discrete subgroup of G and
set X := ['\H". Both the natural projection maps H” — X and T*(H") — T*(X)
will be denoted by p.
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2.4. Boxes, plaques and transversals. Let u € T 1(]HI"). Consider a relatively
compact open set P containing v in H.", and a relatively compact open neighbor-
hood T of u in Viz~!(ut). For each t € T and p € P, the horosphere H;" intersects
Viz~!(pt) at a unique vector: we define
tp:=H N Viz_l(p+) IS Tl(H”).

The map (t,p) — tp provides a local chart of a neighborhood of « in T*(H"). Since
u € P, in this notation tu = t. We call the set

B(u) = {tp e T'(H") : t € T, p € P}
a box around u if some neighborhood of B(u) injects into T*(X) under p. We write
B =B(u)=TP.

Note that P (resp. T) may be disconnected and of ‘large’ diameter, and then
the corresponding T' (resp. P) will be chosen to be of small diameter in order to
achieve the required injectivity of p on a neighborhood of B(u).

For any t € T, the set

tP:={tp:pe P} CH

is called a plaque at t, and for any p € P, the set

Tp:={tp:teT}C Viz ' (p")
is called a transversal at p. The holonomy map between the transversals Tp and
Ty is given by tp — tp’ for all t € T.
Remark 2.5. Ifv = tp € B, thentP C H}, Tp C Viz~ ' (vt) and B(v) = (Tp)(tP) is
a box about v and TP = (Tp)(tP). Also, B(u) and B(v) have the same collections
of plaques and transversals.

For small € > 0, let
T.y ={seViz '(u") : d(s,T) < ¢},
T ={teT:d(t,0T) > €}, and By =Ty P.

Note that for any v € G, yP C H¥,, 7T C Viz = ((yu) ), v(tp) = (vt)(vyp) for
any (t,p) € T'x P, v(TP) = y(B(u)) = B(yu) = (vI)(vP), 7(tP) is a plaque at
~t and (Tp) is a transversal at yp. Also, yBer = (YT)+ (v P).

For r € R, §"(B(u)) = B(G"(u)) = (G"(T))(9"(P)).

2.5. For the rest of this section, let B = TP C T'(H") denote a box such that
B, injects into T'(X) for some ¢y > 0. By choosing a smaller ¢, if necessary, let
C1 > 0 be such that Proposition holds. Let
(2.8) Cy = max{d(tp1,tps) : t € Tey+, P1,p2 € P}.

In this section we will develop auxiliary results to understand the intersection of
G"(E) with p(B) for r > 1. First we will show that for any v € I" if G"(vE) N B

is non-empty, there exists a unique t € T¢ 4 N g”"(vE) and the sets g”"(vE) and
G"(tP) are contained in C;Cye™"-tubular neighborhoods of each other.

Lemma 2.6. Let r € R and v € I'. Suppose that G"(vE) > tp for some t € T,
p€ P Letv= G "(yip) € E. Letpy € P,y =G (v 'tp1) € HS, and
w=2¢&(y) € E. Thenw™ =y,

d(v,y) < Cae™" and d(y,w) < C1C2e7".
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Proof. By 28], wt = y*. Since tp,tp; € H;, by @3) and ZJ),

d(v,y) = d(G™" (v 'tp), G (v tp1)) = d(G (tp), G " (tp1))

< d(tp,tp1)e”" < Cae™".
By Proposition 222 d(y, w) = d(y, & (y)) < Cid(v,y) < C1Ce™". O
Lemma 2.7. For anyr € R and v €T,
#(TNG (VE)) = #(G (v 'T)NE) < 1.

Proof. Since Viz(G~"(y'T)) = v~" Vizg(T) is a singleton set and Viz restricted to
FE is injective, the conclusion follows. O
Notation 2.8. For r € R and v € T, in view of Lemma 2.7] define
(29) B =lSremn@T0TP)C E ifTNnG (vE) = {t},

AR if TNG"(vE) = 0.
Proposition 2.9. For any 0 < € < ey, 7 > re := log(C1(C1 + 1)Ca/e€) and v € T,
we have
(2.10) G "y 'B.)NEC E,.,C G"(y'B4)NE.

Proof of first inclusion in [ZI0). Let v € T', t € T._ and p € P be such that
v:i=G (v tp) € E. Let y =G (v t) and w = &,(y) € E. By Lemma 2.6}

d(y,w) < C1Ce " < ¢/(C1 +1) <.

Let t; = G"(qyw). Since t = G"(yy) and wt = yT, t{ = t+. By [24),
d(t, t1) = d(G"(vy), G" (yw)) < d(yy,yw) = d(y, w) <e.

Therefore t; € T, for t € T._. Since (t;p)* = (tp)*, we have

Gy )T =g (v )t =0
Since w = G~"(y"'t1), G (v 't1p) € Hi. Also, w,v € E. Therefore by (20),

v="E6u(G7(v D)) € By
O

Proof of second inclusion in (Z10). By Lemmal[27 let {t} =1'N G"(yE) for some
yel. Letv=G (v t) e E,pec P,y=G"(y 'tp), and w = &,(y) € E,. By
Lemma [2.6]

d(v,w) < d(v,y) + d(y,w) < Coe™" + C1Cre™" < ¢/Cy.

Put v1 = ¢, (v) € H}. By @), v = v*, and by Proposition 22|,
d(v,v1) < Crd(v,w) < e.
Put t1 =G"(yv) € 7—[ . Since t = G"(y), tf =tT. By [24),
) G (30 G o) < o) <
Hence t; € Tey. Now G"(yw), tip € Hf . Since wt =y,
(G (yw))* (97"(73/))+ = (tp)* = (tip)™.

Since Viz is injective on 7—[751, G"(yw) = t1p. Hence w € G~ (v 1 Bey). O
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2.6. Measure on FE corresponding to a conformal density on OH". Let
{1z + x € H"} be a I'-invariant conformal density of dimension 6, > 0 on OH".
That is, for each z € H", u, is a positive finite Borel measure on 0H™ such that
forall y e H", £ € OH" and vy €T,

dity N
(211) Vb = /L'yac and dL(é‘) — 65u55(y’ ),
Hy
where Vi iz (F) := pz (v 1 (F)) for any Borel subset F' of OH".
Fix o € H". We consider the measure on E given by
(2.12) dpjy(v) = Pt T dpy (v,
By 2II), pp is independent of the choice of o € H" and Vel = oy for any
v eT. Let fr \E be the locally finite Borel measure on I';\ E induced by pj as
follows: For any f € C.(E), let f(I'zv) = > over f(yv), forall v € E. Then f s f
is a surjective map from C.(E) from to C.(T'\E), and

(2.13) /F-\EfdﬂrE\E 3:/EfdME

is well defined; see [29, Chapter 1] for a similar construction.
Now let pg be the measure on E = p(F) defined as the pushforward of fr \E
from T'z\ E to T'(I'\H") under the map T ;v + T'v. Thus for any set B ¢ T*(H")

such that p is injective on B and for any measurable non-negative function f on
ENp(B),

Jeow) F e = Xper/r, Jueysns F(PW) di p(w)
=Y per/r, Juesy-1 f(PW) dup(u),

where the integration over an empty set is defined to be 0. Therefore by Proposi-
tion 2.9] we obtain the following:

(2.14)

Proposition 2.10. Let 0 < € < ¢y and r > r.. Then for all Borel measurable
functions ¥ >0 on TH(X) with supp(\I!) C p(Be-) and f > 0 on E, we have

S V(G () F () dpip () = [y V(G (W) () dias(u)
= Spjeryr, fg e UG () () )
e T GG (b)) 7 (plw) ().

Remark 2.11. (1) For the counting application in §7 we will use the results of this
section only for the case when the map FE\E — TY(I'\H") is proper, in which case
1 is a locally finite Borel measure.
(2) In the general case, pg may not be o-finite, but it is an s-finite measure;
namely, a countable sum of finite measures (with possibly non-disjoint supports).
(3) If the dimension of S = 7(E) in H" is 0 or n— 1, the map I'z\ E to T*(I'\H")
is injective, and hence g is o-finite on T*(T'\H").

2.6.1. Measures on horospherical foliation and their semi-invariance under geo-
desic flow. The conformal density {u,} induces a I'-equivariant family of measures
{tgr 1 € T!'(H™)} on the unstable horospherical foliation on T*(H"):

(2.15) Qs (v) = €5Po @7 gy (u0).
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For any r € R, since G"(v)* =o' and
B+ (0,m(G"(v))) = Bu+ (0, 7(v)) = B+ (w(v), 7(G" (v))) =7,
by (ZI1), we get for all ¥ € T and r € R,

(2.16) Vebtagr = agt,  and Gy =€ g

2.7. On transversal intersections of, G"(I'E) with B. Let a box B, ¢ > 0,
C1 > 0 and Cy > 0 be as described in the beginning of 2.5 For any 0 < € < ¢,
we put

(217) Te = lOg((Cl + 1)0102/6).
Proposition 2.12. Let0<e< e, r >71, and {t} =T NG"(y ~2
Then for all measurable functions ¥ > 0 on Be,1 and f >0 on E,

(e, (_<_1“)/t W dpiys
<e / W(G" () f (w)dpi s (w)

ek,

for some vy €T.

< G ) [ W dny.

where f£ on E and VE on B, are defined as

fj(u) = SUPry ecBid(ur,u)<e} f(u),
(2.18) Jetw) = il epagu s f0)

\I]e (tp) = SUP{t;eT., :d(t1p,tp)<e} \I](tlp)7

‘I’; (tp) = inf{tleTE+:d(t1p,tp)§6} \I’(tlp)

Proof. Let v= G "(y"'t) € E. Let ¢ : tP C H,; — E,., C E be the map given by
B(tp) = w = &,(y), where p € P and y = G~ "(y~'tp). By Lemma 2.6

(219)  dly.w) < GG < d{v.w) < (Cy + 1)Cae " <,
and since wt =y,

d(G"(vy),G" (yw)) = d(G"(y), " (w)) < d(y,w) <,
and by Proposition [Z9] G"(yw) € T.1p. Therefore,

(2.20) fe ) £ flw) < fH (),

(2.21) V(G (vy) < WG (yw)) < TF(G" ().
For the map tp — y := G~ " (v~ 'tp), by (218),

(2:22) " dpigy+ (y) = dpsgy (ip).

For the map y — w = &,(y), by 2I2) and (ZI3), since wt = y™T,

(31 B yt (0.m(w))
(2.23) dp g (w) = Wdlm;(y) =

By @I9), |Buw+(7(y), m(w))| < d(n(y), m(w)) < €. Therefore,
(2.24) e <dpp(w)/dpys (y) < e

DBt F @) gy ().



524 HEE OH AND NIMISH A. SHAH

Combining (2:22) and [2.:24), for the map w = ¢(tp) we get

(2.25) e~ 0ne < eont M < eone.

g+ (tp)
By noting that G="(y~t) = v and tp = G"(yy), the conclusion of the proposition
follows from (Z20), (Z21)) and (Z23)). O
Notation 2.13. For r >0 and t € TN G"(I'E), in view of Lemma 2.7 let
(2.26) T,i={Y] €T/T;: {t} =TNG"(E)}.

Since p is injective on B, for notational convenience we identify ¢ € T¢,+ with
its image p(t) € p(T) C X. Therefore we have

(221)  {Wlelg: B, 20 = |J D= | L

teTNG ™ (T'E) teTNG"(E)

Combining Proposition [ZT0] and Proposition 212 in view of (Z21) we deduce
the following:

Corollary 2.14. Let 0 < € < €y and r > r.. For all measurable functions ¥ > 0
on Be,+ with supp(¥) C Be_ and f >0 on E, we have

) S #ONLETO) [ W dy

teTNgr (E)

< e [ W@ @)f ) duela)
E
<) ) LG [ W g

teTNG™ (E) tP
where f* on By and U on E are defined as in (ZI8).
2.8. Haar system and admissible boxes.

Lemma 2.15 ([31]). For a uniformly continuous ¥ € C(B), the map

t€T|—>/ U dpig,+
tP ¢

is uniformly continuous. In particular, the map t — Hhggt (tP) is uniformly contin-
UOUS.

Proof. Note that (tp)* = p™. Therefore by ([Z.I5)
[ Wi = [ i)t o g ),
tP P
Put ¢(tp) = \I/(t]o)eé“ﬁp+ (7)) " Since ¢ is uniformly continuous on B,
< 1o(Viz(P)) - sup|o(tip) — ¢(t2p)| — 0

/ \I/dufHJr — / \I/dﬂH+
t P 1 to P 2 peP

as d(tl, tg) — 0. O
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Definition 2.16. A box B = TP as defined in §2.4] is called admissible with
respect to the conformal density {u.} if every plaque of B has a positive measure
with respect to {uy+ }; that is, Mgt (tP) > 0 for all t € T or, equivalently,

pz(Viz(tP)) = py(PT) > 0 for some (and hence all) x € H".

Lemma 2.17. Fiz a conformal density {pz}zcun on OH"™. Then for any u €
TY(H"™), there exists an admissible box around u with respect to {ii, }.

Proof. Fix any x € H". Since I',,- is virtually abelian and since we assume that
I" is non-elementary, I' does not fix u~. Therefore by the I'-invariance and the
conformality of the density {u.}, we have supp(u.) # {u~}. Since Viz : H —
OH"™ \ {u~} is a diffeomorphism, there exists u; € H; such that u = Viz(u;) €
supp(piz). If yu = uy for any v € T', then by the conformality, u € supp(uﬂt) and
we replace u; by u. Since p is injective on {u, u; }, there exists a relatively compact
open subset P of H; containing {u,u;} such that p is injective on an open set
of T'(H™) containing P. Then j,(Viz(P)) > 0. By Lemma 25} we can choose
T a large enough ball in Vizfl(zﬁ) so that some neighborhood of the closure of
B = TP is contained in 2. Now B = T'P is an admissible box. ]

2.8.1. Let B = TP be an admissible box with respect to a conformal density { .}
such that p is injective on a neighborhood of the closure of B 1 for some ¢; > 0.
Let Cy, Cy be as described at the beginning of §2.5 For notational convenience,
we will identify T,, 4 and B, with their respective images in T*(X) under p.

Proposition 2.18. Let 0 < € < ¢y andr > r. (see (ZIT)). Then for all measurable
functions 1 >0 on T, with supp(y)) C T— and f >0 on E, we have

(e / W (G (w)) [ (w) dyugs ()
E
e S () G ()

teTNG™ (E)
(€5 [ WG @) (w)ds(w),
where the function ¥ on B+ is defined by

U(p(tp)) := ¥(t)/ g+ (tP), for all (t,p) € Teyy x P,
and WF on B, and fF on E are defined as in (ZI5).

Proof. Since [, ¥ d,qu = 9(t), the result is straightforward to deduce from Corol-
lary 2141 O

In §8] Proposition 21§ will enable us to describe the limiting distribution of
the transversal intersections T'N G"(E) using the mixing of the geodesic flow with
respect to mPMS (cf. Theorem B.5).

IN

IN

2.9. Some direct consequences. The results proved in this subsection are also
of independent interest. Let the notation be as in §Z.811

Corollary 2.19. Let 0 < € < ¢g and f be a measurable function on E such that
fr e LY(E,ug). Then for any r > r. and any measurable function v on T,

S # T OFGT ()] < oo
)

teTNG"(E



526 HEE OH AND NIMISH A. SHAH

In particular, if there exists a I'-invariant conformal density {p..} and |pg| < oo,

then B
> #(Th) < oo

teTNG™E

Proof. By Proposition 218 with T, in place of T' and declaring v to be zero outside
T, we obtain the first claim because

Yo #T)  WOFGT ) < 1+ Qe[ oo - pu (S5
)

teTNG™(E

To deduce the second claim from the first one, we choose f =1 on F and ¢ =1 on
T. O

Definition 2.20 (Radial limit points). The limit set A(T") of T' is the set of all
accumulation points of an orbit I'(z) in H" for z € H". As I acts properly discon-
tinuously on H", A(T) is contained in OH"™.

A point £ € A(T) is called a radial limit point if for some (and hence every)
geodesic ray f tending to & and some (and hence every) point 2z € H", there is a
sequence v; € I' with v,z — &, and d(~;z, §) is bounded.

We denote by A,(T") the set of radial limit points for T'.

If T is non-elementary, A,(T") is a non-empty I'-invariant subset of A(T"). Since
A(T') is a I-minimal closed subset of OH", we have that A,(I") = A(T).

Theorem 2.21. Let C denote the smallest subsphere of H" containing A(T). Sup-
pose that C = S or dim(C) > dim(dS). If there exists a T'-invariant conformal
density {p, : © € H"} such that |up| < oo, then the natural map p : Tz\E —
I\ TH(H") is proper.

Proof. Note that I' C G = {g € G : gC = C}, because if v € T', then yC N C D
A(T), hence by minimality yC = C.

Suppose C' = 9S. Then, since Gg=Gyg, I' =I'NGe =T'g =T, and hence
the properness of p is obvious.

Now suppose that dim(C) > dim(S) and that that p is not proper. Then there
exist sequences vy; € I' and e; € F such that 7;€; converges to a vector v € Tl(H")
as ¢ — 00, and

(2.28) vil'f # v, for all i # j.

Fix e € E. Since G £ acts transitively on E’, there exists h; € G such that
e; = h;eg. Then ~y;h;eqg converges to v. Therefore there exists g € G such that
vih; — g and v = geg.

Now Viz(gE) = dH" — 9(gS). Since dim(d(gS5)) = dim(S) < dim(C), we have
that A(I') ~ 8(gS) is a non-empty open subset of A(I'). Since A,(T) is dense in
A(T), it follows that

A(T) N Viz(gE) # 0.

Therefore there exists hg € Gz such that Viz(ghoeo) = (ghoeo)™ € Ay(T'). Hence
there exist 7; — oo such that p(G"(ghoeg)) converges to a point in T'(X). Then
there exists a sequence {7/} C I such that G (v/ghoeq) — u for some u € T*(H").

Let B = TP be an admissible box centered at u. Let ¢ > 0 be such that
u € Bs._. Fix k € N such that r;, > r, (see [2.17)) such that for ' = v, we have
G"(v'ghoeo) € Bac—.
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. Since y;h; — ¢, Qr(v"yihihgeo) € B._ for all i > iy for some iy. Since h;hgeq €
E, by ZI0) t; € TNG" (v E) for all i > ig. Therefore,
(2.29) (TT NG E) D {(y ) i =i > g}
We claim that for any i € N,
(2.30) Tzy () M #Uev; '(y")~1¢;, for all but finitely many j.

To see this, since p is injective on T, if ¢; # t;, then I't; # I't;, and hence ([2.30)
holds. If t; = t;, then it follows from [Z28)) as I' N G(4/)-14, is finite. Combining
E29) and 230), we get that

#(T\TTNGE)) = 0.
We observe that if t € TN G"(E), then T'z\(TtNG"E) = f‘;tlt. If |u58| < oo, then
by (219)) of Corollary 219

#T\ITNGE) < Y #([h) <o,

teTNGr(E)

which is a contradiction. O

Remark 2.22. (1) Theorem [Z2]] holds for I' Zariski dense: since I' C G¢ and G¢
is Zariski closed, we have C = JH™ for " Zariski dense.

(2) Theorem 2211 holds in the case A(I'g) = dS, since S C C in this case, and
hence we have that either $ = C or dim(C) > dim(S).

3. EQUIDISTRIBUTION OF G7 pleb

1. BMS-measure and BR-measure on T!(X). As before, let I' be a non-
elementary torsion-free discrete subgroup of G and set X := I'\H". Let {u,} and
{u,} be I'-invariant conformal densities on OH™ of dimension 6, and d,, respec-

tively. Following Roblin [31], we define a measure m# # on T1 (X)) associated to
{pz} and {u’} as follows. Fix o € H". Then the map

urs (ut u”, By (o, m(u)))
is a homeomorphism between T*(H") with
(OH™ x OH™ \ {(£,€) : £ € OH"}) x R.
Hence we can define a measure m/* on T*(H") by
(3.1) At (u) = dnbut @m(W) b By —(0m(w) g, () dp! (u™)ds,

where s = f,- (0, m(u)). Note that m/* is D-invariant. Hence it induces a locally
finite measure m™* on T*(X) such that if p is injective on Q C T*(H"), then

it (p(Q)) = i (9).

This definition is independent of the choice of 0o € H™.
Two important conformal densities on H" that we will consider are the Patterson-
Sullivan density and the G-invariant (Lebesgue) density.
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3.1.1. Critical exponent ér. We denote by dr the critical exponent of I' which is
defined as the abscissa of convergence of a Poincaré series > . esd07(0) for
some o € H™; that is, the series converges for s > dr and diverges for s < dr, and
the convergence property is independent of the choice of 0o € H".

As T is non-elementary, we have or > 0. Generalizing the work of Patterson [20]
for n = 2, Sullivan [36] constructed a I'-invariant conformal density {v, : = € H"}
of dimension dr supported on A(T"), which is unique up to homothety and is called
the Patterson-Sullivan density. From now on, we will simply write § instead of dp.

We denote by {m, : © € H"} a G-invariant conformal density on the boundary
OH" of dimension (n—1), which is unique up to homothety, and each m,, is invariant
under the maximal compact subgroup G,. It will be called the Lebesgue density.

The measure m”* on T'(X) is called the Bowen-Margulis-Sullivan measure
mBMS associated with {v,} ([5], [20], [37]):

(3.2) dmPMS (u) = 2Pur (0m(W) . 0B, — (0 (W) gy, () dwy (u™)ds.

BR

The measure m*”™ is called the Burger-Roblin measure m>" associated with

{va} and {m,} ([6], [31]):
(3.3) dmPBR(u) = e DB+ (0m(w) . 0B, (0 (W) iy (u ) duy(u )ds.

We note that the support of mPMS and mPBR are given respectively by {u €

THX) :ut,u™ € A(T)} and {u € T(X) :u™ € A(I')}.

3.2. Relation to classification of measures invariant under horocycles.
Burger [6] showed that for a convex cocompact hyperbolic surface T'\H? with § >
1/2, mPR is a unique ergodic horocycle invariant locally finite measure which is not
supported on closed horocycles. Roblin extended Burger’s result in much greater
generality. By identifying the space 03 of all unstable horospheres with OH™ x R
by H(u) = (u™, By (0,7(u))), one defines the measure dj(H) = dv,(&)e’*ds for
H = (&, 5). Then Roblin’s theorem [31, Thm. 6.6] says that if [mBMS| < oo, then
i is the unique Radon T-invariant measure on A, (T') x R C Q4. This important
classification result is not used in this article, but it suggests that the asymptotic
distribution of expanding horospheres should be described by mBR.

3.3. Patterson-Sullivan and Lebesgue measures on E, H} and E. Let S
and E be as in §231 The following measures are special cases of the measures

defined in §2.6 }
Fix o € H". Define the Borel measure u];;;eb on F such that
(3.4) du%eb(v) = e(”_lmﬁ(0’”(”))dmo(v+).

Since {m} is a G-invariant conformal density on OH", the measure M%Cb is G-
Leb Leb

invariant; that is, 9l = MRy In particular, it is a G invariant measure on
Define the Borel measure ugs on F such that
(3.5) d,u%s(v) = Pt (0T gy (v7).

We note that ,u%s is a I'-invariant measure.

As described in §2.6] we denote by uk® and pPS the measures on F = p(E)
induced by u%eb and ugs, respectively. Each of them is a pushforward of the
corresponding locally finite measure on I' E\E
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As in §2.6.0] we have families of measures 5 = {pF5 } and p® = {uLeP} on
the unstable horospherical foliation satisfying

WS iy (G7(F)) = € uBS.(F) and kb, (G (F)) = e ke ()
for any Borel subset F of p(H™).

3.4. Transverse measures for mPMS. For each measurable T' contained in a weak
stable leaf of the geodesic flow on T'(H"), called a transversal, define a measure
Ar on T by

(3.6) dAr(t) = 7% du,(t™ )ds,

where s = 8- (o,7(t)). If B = TP is any box and p € P, then (tp)~ =t~ and
H;, = H;", and hence Sy~ (0, 7(tp)) = B, (0, 7(t)). Hence

d/\Tp (tp) = d)\T (t) ;

that is, Ap is holonomy invariant, where the holonomy is given by ¢ — tp.
Now for any ¥ € C(B), by B2)-@8]), we have

(3.7) [ pamms =[] wn) g amareo),
(3.8) / fdmBR = / / (tp) dugff tp)dAr(t).

3.4.1. Backward admissible box.

Lemma 3.1. For any u € T'(H") and € > 0, there exists a box B = TP about u
such that

(1) |Ar| >0, or equivalently v,({t~ :t € T}) >0, and

(2) limsup,_,., d(G"(tp),G" (¢'p)) <€, for allt,t' € T and p € P.

Such a box B as above will be called a backward admissible box with asymptoti-
cally e-thin transversals.

Proof. As in the proof of Lemma [Z17] there exists a relatively compact open
neighborhood P~ of w in H, such that v,({t~ : t € P~}) > 0, and p is in-
jective on a neighborhood of the closure of P~. Let ry = —log(e/4 diam(P™)).
Then diam(G™(P~)) = ¢/4 and p is injective on a neighborhood of the closure
of G (P~). Let T1 be an open relatively compact neighborhood of G™(P~) in
Viz ' (ut) and P; be an open relatively compact neighborhood of G (u) in 7‘[}0 ()
such that T1P; is a box about G™ (u) contained in a ball of radius €/2 about w.
Let T =G " (Ty) and P = G~ "(P;). Then B = TP has the required properties.
Property (1) holds because

{t7T:teT}={t :teh}D{t :teG™(P)}={t":te P }.

For property (2), let ¢t = G™(¢) and t} = G™ (') in Ty and p; = G™(p) € P1. Since
(tip1)* = (tip1) ™, for any r > ro,

d(G"(tp),G"(t'p)) = d(G" " (t1p1), G (thp1)) < d(taipr, thp1) <
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3.5. Mixing of the geodesic flow. We assume that [mPMS| < oo for the rest of
this section. This implies that I is of divergent type; that is, Zwer e 9d(0:70) =
and the I'-invariant conformal density of dimension ¢ is unique up to homothety
(see [31] Coro. 1.8]).

Hence, up to homothety, v, is the weak-limit as s — §* of the family of measures

1 d
Vm’O(S) = —sd(o,yo Z 6_5 (1’70)5%”
ZWEF e (0,70) Ter

where d,, denotes the unit mass at yo for some o € H".

The most crucial ergodic theoretic result involved in this work is the mixing of
geodesic flow which was obtained by Rudolph [32] for a geometrically finite T', and
by Roblin[31], as well as Babillot [I], in a much greater generality:

Theorem 3.2 (Rudolph, Roblin, Babillot). For any ¥; € L*(T*(X),m®MS) and
Ty € L3(T'(X), mBMS),
1

: r BMS( .\ _ BMS ., BMS
Tlgl(r)lo - U (G"(2))Pa(x) dm®>(z) = S| mo (W) - mPY(T).

From this theorem, we derive the following result, which generalizes the corre-
sponding result for PS-measures on unstable horospheres due to Roblin [31], Corol-
lary 3.2].

Theorem 3.3. For any ¥ € C.(T'(X)) and f € L'(E, k%),

PS
(39) i [ WG @) @) i) = PEL  mS(w)

r—00 zcE

We will deduce the above statement from its following version.

Proposition 3.4. Let ¥ € LY(T'(X),mBPMS) and f € L'(E, %) both be non-
negative, bounded and vanish outside compact sets. Then for any € > 0,

PS

(3.10) limsup / VG @) @) ) < (“‘TfB&Q PV (0 ),
PS

(3.11) lim in / VG @) @) ) > (;fBifs) PV (D)),

where, for any u € T'(H"),

UH(p(u)) =sup{¥(p(v)):d(v,u) <e ve Viz (u)},
U (p(u)) =inf{¥(p(v)):d(v,u) <e, ve Viz *(ut)}.

€

(3.12)

Proof. By Lemma [31] there exists a finite open cover B of supp(f) € E ¢ T*(X)
consisting of backward admissible boxes B with asymptotically e-thin transversals;
we identify B  T*(H") with p(B). By considering a partition of unity subordinate
to this cover, f = > 5z ¢B, where ¢p € LY(E, ub%) is a non-negative function
whose support is contained in p(B). Therefore it is enough to prove ([B.I0) and
BI0) for ¢p in place of f for each B € B.
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Fix any B € B. For each [y] € /T, let ¢, (w) = ¢pp(w) for all w € yE. By
214,

G = Y arS(6,) and

(V€T /T3
"(x 2) dubS(z) = "(w w) dpFS (w).
[ @ @)@ e > [ G s ) )

Therefore to prove BI0) and BII)) for ¢p in place of f, it is enough to prove the
following: for any v € I and ¢ := ¢, € L' (yE, ,uszg) vanishing outside vyE N B, we

have
no(9)
319)  lmew [ (@ )ow) dulfw) < Ciiem™S ),
. P28 s
(3.14) lim inf U(G"(w))p(w) dusé(w) > |1;BMS‘mB (T0).

=0 wEVE‘ﬁB

Now we express B = TP. If YE N B = 0, then both sides of (3I3) are zero,
and hence the claim is true. Otherwise, there exists (¢1,p1) € T x P such that
v:=t1p1 € vE. We recall that as in §Z301 &, : H ~ (v-Viz 1(dS)) = vE~ {—v}
and g, : YE~ {—v} = H] ~ (y-Viz"1(dS)) are differentiable inverses of each other.

Letting

Py ={pe P:&(tp) € Tp},
we claim that
(3.15) YENB = {&(tp) :p € P1}.
To see this, if tp € vE for some (t,p) € T x P, then
¢ (tp) = H nViz L ((tp)h) = Hin Viz ! (pt) = t1p.

Hence &, (t1p) = tp, and so p € P;. The opposite inclusion is obvious.
We define a map p : TP — vFE as follows:

p(tp) = &, (t1p), for all (t,p) € T x P.

For any t € T, for the restricted map p : tP — ~E, by @I2) and ZI7), and
since (tp)* = p™ = p(tp)™, we have

(3.16) A3 (p(tp)) [y (tp) = ot (TUPLT PRI,

In view of this, we define ® € L*(T(X), uPM3) as follows: ®(z) =0if z € X \ B
and

(3.17) O(tp) = ¢(p(tp))elrt TEPVTCEPD) it 4 — 4 € B
‘We note that
(3.18) O(tp) #0= p(tp) e B=p € P.

Also, for t € T and p € Py, we have {p(tp),tp} C Tp. Since G"(B) has e-thin
transversals as r — oo (see Lemma [B11(2)),

(3.19) limsup d(G" (p(tp)),G" (tp)) < e for all p € P;.
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By Theorem [3.2]

(3.20) |mB71MS‘ mBPMS (U ) . mBMS (@)
(3.21) = lim [ U (G"(x))®(zx)dm"M5(2)
T—00 B
ez = [ [, v @) aul (1) ot
a2 = tim [ ([ @ el ditgio) ) o)
teT pEP;
G2 2Dl lmsw [ (O ) i),
r—oo JweyENB

where [3:22)) follows from B.7) and BI8), B23) follows from B.I3), B.I16) and
BI10), and to justify B24) we put w = p(tp) and use BI2) and EI9).
By putting ¥(z) =1 = U} (2) in B2I)-(B24) with equality in ([3.24), we get

(3.25) mPS(@) = |Ar - 1E(6) < oo

Now (BI3)) is deduced by comparing [B.20)), B24)) and (3:25), and noting that
|Ar| # 0 by the backward admissibility of B. Similarly we can deduce (314). O

Proof of Theorem B3 Since both the sides of [B3]) are linear in ¥, it is enough to
prove it for ¥ > 0. Since V¥ is uniformly continuous and |mPMS| < oo,

lim mPMS (U —w) =o0.

e—0
Therefore by Proposition 34 we have that ([3.9]) holds for all non-negative bounded
measurable f with compact support on E. Since the set of such f’s is dense in
LY(E, u%®) and both sides of (39) are linear and continuous in f € L'(E, ub9),
33) holds for all f € LY(E, ub?). O

The following result is one of the basic tools developed in this article.

Theorem 3.5 (Transversal equidistribution). Let f € L'(E,u%®) be such that
P (fr —f7) = 0ase— 0. Let ¢ € Co(T) for a transversal T of a box B (§2.4).

€

Then

PS
3200 lm et S #0060 FG70) = )
teTNG" (E)
where
+ — - — inf
[ (x) {yGE:Sdl(lyf),x)<e}f(y) and fZ (x) e E:iiI(ly,a:)<e}f(y)’

the transverse measure Ar is defined by B.8) and .., is defined by Z27).

Proof. Since both sides of ([B:26]) are linear in f and in ¢, without loss of generality
we may assume that f > 0 and ¢ > 0. By Lemma 217, supp(¢) can be covered
by finitely many admissible boxes. By a partition of unity argument, in view of
Remark 28] we may assume without loss of generality that T is a transversal of an
admissible box B.
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Let €p > 0 be such that p is injective on B, and that 1 vanishes outside T¢,_.
We extend ¢ to a continuous function on T¢ 4 by putting ¢¥» = 0 on T,y \T'. Since
B is admissible, due to Lemma [2.13], if we define

U(tp) = (t) /M;'ft; (tP), for all (t,p) € T,y x P,

then U is a bounded continuous function on B, vanishing outside B, . If UF €
C(Bey) are defined as in BI2]) for 0 < € < ¢, then

(3.27) lim [ U} — ¥ || = 0.
e—0
By Proposition [3.4]

pg (FH)mPME (v h)
[mBMS] )

limsup,. . [ O (G"(v)) [ (v) dpg® (v)

PS - mBMS —
it o [ U7 (G (0)) £ (0) dpbS(v) > MEUmE o),

IA

(3.28)

Since mBMS (B, 1) < oo, by (3:21), we have that mBMS(UF —¥-) — 0ase — 0.
By our assumption, u25(|f+ — f|) — 0 as € — 0. Therefore by Proposition 218

and (B28),

PS (), BMS
lim e %" Z #(Lr) () - (G (1) = e (|fn),lBMS W)

T—>00
teTNGr (E)

Also,
w50 = [ dur) ([ Wt} ) = e,
O

Now we state and prove the main equidistribution result of this article which is
more general than Theorem [L8

Theorem 3.6. Let f € LY (E, ubS) such that p23(f — f7) — 0 as e — 0. Let
U e C.(TY(X)). Then

li (n—1=98)r U(GT d Leb _ :U‘%S(f) BR N

im e . (G" () f (u) dpg™(u) = mBMS| ™ (©).

ue

T—00

In particular, the result applies to f = xr for a Borel measurable FF C E such
that uB3(F.,) < co for some e; > 0 and pLS(OF) = 0.

1

Proof. By Lemma [ZT7, the boxes admissible with respect to {s4 } form a basis
of open sets in TI(X ). By a partition of unity argument, without loss of generality
we may assume that supp(¥) C B for an admissible box B = TP. Let ¢y > 0 be
such that ¥ = 0 outside B,,_. For 0 < € < ¢, let UF be defined as in (ZI8). Then

(3.29) lim | — ¥ || = 0.
e—0

For t € T, and € > 0, define ¢F(t) = [, VF dpkeP. By Lemma 2I5, oF €
t
C.(T) for any 0 < € < €p/2.
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For the conformal density, {u,} = {m,}, we have 6,, = n—1, and by multiplying
all the terms in the conclusion of Corollary B4 by e =", for r > r, (see (1)), we
get,

(7)™ 3T T v (8) £ (G (1)

teTNgr (E)

<eln1-0)r / W(G" (u)) £ (1) dy® (u)
E
(Ve N (D) () - FHGTT().

teTNgr (E)
Define (t) = [, U(tp) d,uLCb for all t € T. Then Ar(¢) = mBR(¥) and
Ar(vE) = BR(\IIf). Since mBMS(BEOJr) < o0, by ([329),
Ar(@h) = Ap(v™) =mPRUF —T) =0, as e — 0.
Also, since ubS(f+ — f-) — 0, by Theorem

PS
lim e<"*1*“>’”/E\I'(QT(u))f(U) du(u) = %

r—00

Since Ar (1)) = mBR(¥), we prove the claim.
In the particular case of f = xr, we have

inf f = x5 and sup f = Xin(r), and
>0 e>0

if WES(f) = uBS(F.,) < oo, then lime o uBS(f — f) = 48 (OF). O

The idea of the above proof was influenced by the work of Schapira [34].
Our proof also yields the following variation of Theorem

Theorem 3.7. Let F C E be a Borel subset such that ,u%s (F.) < oo for some € > 0
and ,uPS(aF) = 0. Then for any 1 € C.(T"(T'\H")),

PS/ 1y
: n— e Mg (F)
i 07 [ 0G0 ) = Py 0)

3.6. Integrability of the base eigenfunction ¢g.

Proof of Theorem [LT1. We want to prove equivalence of the following:
(lID ¢0 € L1 (F\Hna dVOlRicm);
@) [mPH| < oo;
@) T is a lattice in G.

The pushforward of mP® from I'\ T (H") to I'\H" is the measure corresponding
to ¢o d Volgiem (see [I7, Lemma 6.7]). Therefore () and (@) are equivalent.

To prove that (2] implies (), suppose that [mBR| < co. Since the left G-action
on T'(H") is transitive, we may identify T'(I'\H") with T\G/M for a compact
subgroup M. We lift the measure mB® to a measure m on T'\G as follows: for
any f € C.(T'\G), we define m(f) = mBR(f), where f(lgM) = Jyens f(Dgz) da,
where dx is the probability Haar measure on M. Denote by U the horospherical
subgroup of G whose orbits in G project to the unstable horospheres in Tl(H”).
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Then M normalizes U and any unimodular proper closed subgroup of G containing
U is contained in the subgroup MU. As m is invariant under G4+ for any unstable
horosphere H™T, it follows that m is a U-invariant finite measure on I'\G. By
Ratner’s theorem [30], any ergodic component, say, A, of m is a homogeneous
measure in the sense that A is an H-invariant finite measure supported on a closed
orbit zoH for some zy € I'\G and a unimodular closed subgroup H of G containing
U. If H+# G, then HC MU and I'N H is cocompact in H. It follows by a theorem
of Bieberbach ([4, Theorem 2.25]) that ' N U is cocompact in U. Hence H = U.
Thus we can write m = m1 + ms, where my is G-invariant and ms is supported on
a union of compact U-orbits.

If m; = 0, then m = my, and hence the projection of the support of mBPR in
T'(H"™) is a union of compact unstable horospheres. It follows that the Patterson-
Sullivan density is concentrated on the set of parabolic fixed points of I'; which is
a contradiction.

If my # 0, then my is a finite G-invariant measure on I'\G; that is, I" is a lattice
in G. Hence () implies ([@).

If T is a lattice, then {1} = {m.} up to a constant multiple. Hence mP® is the
projection of a finite G-invariant measure of I'\G to T'(I'\H"). Hence (B) implies

@. O

4. GEOMETRIC FINITENESS OF CLOSED TOTALLY GEODESIC IMMERSIONS

4.1. Parabolic fixed points and minimal subspaces. Let I' be a torsion-free
discrete subgroup of G.

Definition 4.1. An element g € G is called parabolic if Fix(g) := {£ € OH"™ : g€ =
¢} is a singleton set. An element £ € OH" is called a parabolic fixed point of T if
there exists a parabolic element v € T" such that Fix(y) = {£}. Note that if £ is a
parabolic fixed point for I', then £ € A(T"). Let A,(T") denote the set of parabolic
fixed points of T'.

Let £ € Ap(T'). In order to analyze the action of I's on OH™ \ {{}, it is convenient
to use the upper half space model R = {(z,y) : # € R"~*,y > 0} for H", where £
corresponds to oo and H™ \ {¢} corresponds to OR” = {(,0) : z € R""'}. The
subgroup I' acts properly discontinuously via affine isometries on OH™ \ {o0} =
R™~1. At this stage we will treat R"~! only as an affine space, and we will choose its
origin 0 later. Moreover, the action of I', preserves every horosphere R"~1 x {y},
where y > 0, based at oo.

By a theorem of Bieberbach ([4, 2.2.5]), I contains a normal abelian subgroup
of finite index, say I, . By [4} 2.1.5], any (non-empty) I',_-invariant affine subspace
of R"~! contains a (non-empty) minimal I'"_-invariant affine subspace; we call such
an affine subspace a I',_-minimal subspace. By [ 2.2.6], T’ acts cocompactly
via translations on any I'\_-minimal subspace. Moreover, any two I, -minimal
subspaces are parallel, and if v; and vs belong to any two I',_-minimal subspaces,
then yv; — yve = v1 — vy for all v € I . Let rank(I's,) denote the rank of the
(torsion-free) Z-module T ; it is independent of the choice of T , and it equals
the dimension of a I',_-minimal subspace.

Definition 4.2. A parabolic fixed point ¢ € A,(I") is said to be bounded if
Te\(A(T) N {&}) is compact. Denote by Ap,(I') the set of all bounded parabolic
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fixed points for I'. Therefore co € A, (I') if and only if oo € Ap(T') and

(4.1) A() N {oo} € {z € R*" !t dpye(w, L) < 10},

for some rg > 0, where L is a I',_-minimal subspace.

4.2. On geometric finiteness of I'z. For the rest of this section, let S be a proper
connected totally geodesic subspace of H" such that the natural projection map
I's\S — X = I'\H" is proper or, equivalentlyi the map I's\Gg — I'\G is proper
or, equivalently, I'Gg is closed in G. Since S is totally geodesic, the geometric
boundary 0 is the intersection of JH™ with the closure of S in H".

Proposition 4.3. Let co € A,(I) NdS. Let L be a I -minimal subspace of
OH™ \ {oo} 2 R™"™! and choose the origin 0 € L. Then the intersection of L with
the (parallel) translate of the affine subspace S ~ {00} through 0 is a (I, NG g)-
minimal subspace.

Proof. Let I" =T, A =T"NGg, and the affine subspace F' = S ~ {o0}. Since
AF = F| let v belong to a A-minimal subspace of F'. Since v and 0 belong to two A-
minimal subspaces, yv—70 = v—0 = v. Since yv € F, we have 0 = yv—v € F—v.
Since 0 € F' — v, we have 70 € y(F —v) N (F —v). Now v(F —v) and vF = F
are parallel. Therefore F' — v and y(F — v) are parallel, and since they intersect,
Y(F —v) = F—wv. Thus A(F —v) = F — v. Therefore, A-action preserves
Lo := LN (F —wv). We want to prove that I'" N G5 acts cocompactly on L.

Since oo € A,(T'), by [, Lemma 3.2.1] I's, consists of parabolic elements of
Gs. That is, 'y € MN, where N is the maximal unipotent subgroup of G
which acts transitively on R?~! = 9H" \ {oo} via translations and M is a compact
subgroup of G normalizing N that acts on R"~! by Euclidean isometries fixing 0.
Let U = {g € N: gL = L}. Then U acts transitively on L by translations. Since
0 € L and T” acts cocompactly on L via translations, the connected component of
the Zariski closure of I in G is a connected abelian subgroup of the form MU,
where My C M and M, acts trivially on L.

Since TV\L is a compact Euclidean torus, the closure of the image of Ly in
I"\L equals the image of an affine subspace, say L;, of L. Thus "Ly = I"L;.
For i = 0,1, let U; = {u € U : ul; = L;}. Then U; acts transitively on L;, and
I"M;Uy = I" M U,. Therefore the identity component of I'"Uj, is of the form M; Uy,
where My C My, and (I'"'N MUy )\M;U; is compact. In particular, IV N M;U; acts
cocompactly on L.

By our assumption I'G is a closed subset of G. Therefore I'Uy C I'G 5. Since G
is the identity component in I'G g, we have M,U; C G 5. It follows that U; preserves
Lgy. Since U; acts transitively on L1, L1 C Lg; hence Ly = Lg. In particular,
I N MUy acts cocompactly on Lg. Therefore A = IV N G5 acts cocompactly on
Ly. |

Proposition 4.4. Let 0o € A,p(I) N39S and T := T NGg. Then

00 € App(I'g)  if Do NTg is infinite,
oo ¢ A(T'g) if T'oo NT'g is finite, hence trivial.

Proof. Let the notation be as in Proposition 3] Since oo € Ay, (I"), by @I,
A(T') \{oo} is contained in a bounded neighborhood of L, and hence in a bounded
neighborhood of L + v. Therefore (A(T') \ {oco}) N IS is contained in a bounded
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neighborhood of L 4 v intersected with F' = 95 \ {oc}, and hence in a bounded
neighborhood of Ly = L N (F — v) as well. By Proposition B3] Lo is a (I'g N IY)-
minimal subspace. Now if I'n, N I'g is infinite, or equivalently oo € A,(I'g), then
[CONS Abp (Fg)

Suppose that I'ooNI"g is finite. Then Ly is a singleton set. Therefore A(I'g)~\{oo}
is contained in a bounded subset of dS~ {c0}. Then co € 95 is isolated from A(T'g).
Since the limit set of a non-elementary hyperbolic group is perfect, it follows that
I'g is elementary, and hence I'g is either parabolic or loxodromic. Now suppose
that oo € A(T'g). In the parabolic case A(I'g) = {oo} = A,(I'g), contradicting the
assumption that I'c NT'g = {e}. In the loxodromic case, co € A,(T'g) C A.(T),
contradicting the assumption that co € A,(T). O

Lemma 4.5. We have }
A ()N 0SS = A (Tg).

Proof. Let £ € A(T") N dS. As S is totally geodesic, there exists a geodesic ray,
say, 3, lying in S pointing toward €. Since ¢ is a radial limit point, I'8 accumulates
on a compact subset of H™. By the assumption that the natural projection map
Fg\g — X is proper, I'g3 accumulates on a compact subset of S. This implies
£ € A(I'g). The other direction for the inclusion is clear. O

In [4], Bowditch proved the equivalence of several definitions of geometrically
finite hyperbolic groups. In particular, we have:

Theorem 4.6 ([2], [], [21]). T is geometrically finite if and only if A(T') = A,(T)U
Ay (T).

Hence, for geometrically finite ', we have Ap(T') = App(T).
Theorem 4.7. IfI' is geometrically finite, then I'z is geometrically finite.

Proof. Since A(T') = A, (T')UA,(T), it follows from Proposition d.4] and Lemma 4.5
that A(T'g) = App(I'g) U AL(I'g), proving the claim by Theorem O

4.3. Compactness of supp(uL°) for horospherical E.

Theorem 4.8 (Dal’bo [7]). Let T' be geometrically finite. For a horosphere H in
T (H") based at € € OH", E := p(H) is closed in T*(X) if and only if either
§ ¢ A(I) or £ € Ap(I).

Theorem 4.9. Let T’ be geometrically finite. If E := p(H) is a closed horosphere
in TH(X), then supp(u5?) is compact.

Proof. Let € € OH" be the base point for . The restriction of the visual map
Vis : v = v induces a homeomorphism 1 : H — OH" \ {£}. As E is closed, by
Theorem either £ ¢ A(T") or £ is a bounded parabolic fixed point. If £ ¢ A(T),
then A(T) is a compact subset of JH" \ {¢}. Since supp(ut®) = p(y~1(A(T))), it
follows that supp(u%®) is compact.

Suppose now that £ is a bounded parabolic fixed point. By Definition E.2]
L A\(AT) N {¢€}) is compact. Since T'¢ is discrete, it preserves the horosphere H
based at £, and I'¢ = I'yy. Therefore ¢ induces a homeomorphism between 'y \'H
and 'y \(OH" \ {£}). Tt follows that Ty \v~1(A(T) \ {¢}) is compact and is equal
to supp(uhd). O
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5. ON THE CUSPIDAL NEIGHBORHOODS OF Ay, (T') NS

5.1. Throughout this section, let ' be a torsion-free discrete subgroup of G and S a
connected complete totally geodesic subspace of H" such that the natural projection
Fg\g — I'\H" is a proper map.

The Dirichlet domain for I' g attached to some a € S is defined by

(5.1) D(a,Tg) :={s € S :d(s,a) < d(s,va) for all y € T5}.
Proposition 5.1. A,(I') N9D(a,T'g) = 0.
Proof. Let £ € A,.(I')N0D(a,T'g). As

D(a,I'g) = D(a,I'g) U (9D(a,I'g) N OH")
is convex in H", there exists a geodesic {&} C D(a,I'g) such that § = a and
foo =& As £ € A (T'g) by Lemma [T there exist sequences ¢; — co and 7; € I'g
such that d(v;&:,, a) is uniformly bounded for all ¢. Since d(&;,,a) — oo, it follows
that for all large 1, d(fti,'yfla) < d(&,,a), yielding the fact that &, ¢ D(a,I'g), a
contradiction. ]

Let £ C T'(H") denote the set of all normal vectors to S. Given U C 9H", we
define

(5.2) v ={ve E:n(v) € D(a,Tg), vV € UNAT)}.

Remark 5.2. If ¢ € A.(I') N S, then there exists a neighborhood U of & in OH"
such that &y = 0. To see this, note that if there exists a sequence {v;} C E such
that v;" — &, then m(v;) — &, and hence by Proposition 5l 7(v;) & D(a,T'g) for all
large 1.

In view of Theorem and Remark £.2] the main goal of this section is to
describe the structure of & for a neighborhood U of a point in Ay, (T') NS and
to compute the measure M%S(EU)~

In this section, we will use the upper half space model H® = R”! x Ry, and
first we assume that

00 € DS N A, (D).

Here R’i’l is to be treated as an affine space until we make a choice of the origin.
Hence S is a vertical plane over the affine subspace 95 \ {oc} of R"~!. For any
affine subspace F' of R"! let Pr : R"~! — F denote the orthogonal projection.
Let

(5.3) b:R" ! xRyg— R and h:R" ! xRy — Ryg

denote the natural projections.

Let I =T, be a normal abelian subgroup of I's, with finite index, as in §4.1]
and fix a I'-minimal subspace L of R"~!. Noting that b(a) € S~ {c0}, we choose
0 := Pr(b(a)), the origin of R*~!. This choice of 0 makes L a linear subspace. Set
W = {v—b(a) : v € IS\ {o0}}, a linear subspace of R"~!, and A := 'z NT". By
Proposition &3] Lo := LN W is a A-minimal (linear) subspace.

Let V be the largest affine subspace of R”~! such that A acts by translations
onV. Then 0 € L C V and V is the union of all (parallel) A-minimal subspaces of
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R™~1. There exist group homomorphisms 7 : A — Lo C R* tand 6 : A — O(n—1)
such that for any v € A,

(5.4) y(z) = 0(y)(x) + 7(7), for all x € R™ L.

We note that V = {x € R"~!: §(A)x = z}, and V= is the sum of all non-trivial
(two-dimensional) §(A)-irreducible subspaces of R"~1.

Lemma 5.3. (1) W=WnV)+(WnVt);
(2 Wt=W+nvV)+Wtnv).

Proof. Put F = dS ~ {c0}. Then AF = F, and there exists a A-minimal affine
subspace Lg C F. Choose 0' € Lg C FNV. Since W is a parallel translate of F
through 0, we have W = F — (/. As in the proof of Proposition 43, A(W) = W.
Since 0 € W, we have (A)(W) = W, and hence §(A)(W=) = W+, Thus W NV
is the set of fixed points of §(A) in W, and its orthocomplement in W is the sum
of all non-trivial §(A)-irreducible subspaces of W and it is the same as W N VL.
Therefore (1) follows, and (2) is proved similarly. O

For any v € E, 7(v) € S. By abuse of notation, we write b(v) := b(w(v)) €
95 ~\ {oo} and h(v) := h(w(v)) € Rsg. We denote by o(v) € W the unique
element in W+ of norm one satisfying

(5.5) vt = Viz(v) = b(v) + h(v)o(v).
Bounded parabolic assumption. For the rest of this section we will further assume
that oo € 9(S)NApp(I'). Hence there exists By > 0 such that for all z € A(I)NR" 1,
(5.6) |1Pro ()| < Ro,
where ||-|| denotes the Euclidean norm.
Lemma 5.4. For any v € E with vt € A(T),

[Py (b(v))[| < Ro.

Proof. Let 0' € V be as in the proof of Lemma[5.3l Since b(v)—0" € Wand 0’ € V,
we have Py 1 (0') =0, and by Lemma (3]

Py i (b(v)) = Pyi(b(v) —0') € W and Py (o(v)) € W.

Therefore by (B3], ||Py 1 (b(v))| < ||Py.(vh)|. Since L C V, we have V- C Lt,
and hence by (58], ||Py . (v")|| < ||Pre(vh)| < Ro. O

Proposition 5.5. There exists Ry > 0 such that for all v € Egpn,
| Pr,(v7)|| < Ry
Proof. Let v € Egn. Then for all y € A C I',
(5.7)  duyp(m(v),a) < dnyp(Y7(v), @) = deuat(b(v),b(a)) < deuei (¥ b(v), b(a)).
Now b(v) —b(a) € W, Lo C W NV, and Pr,(b(a)) =0. As
W=VtaW)+Lo+(WnVnLy),
which is a sum of §(A)-invariant orthogonal subspaces of W, we get
vb(v) —b(a) = [0(7) Py (b(v)) — Py (b(a))]
+ [Py (b(v)) + 7(7)] + Prawnrg (b(v) — b(a)).
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Comparing this with (57]), for any v € A we get
(5.8) 1Py (b)II* < [0(7) Py (b(v)) = Py (b(a))|* + || Pr, (b(v)) + (1)
Since 7(A) is a lattice in Lo, the radius of the smallest ball containing a fundamental

domain of 7(A) in Lg is finite, which we denote by Rs. Then by (54) and (5],
we conclude that

1P, (v)II* = [ Pry (b(0) > < (Ro + [[ba)[))* + Rs.
By setting Ry = ((Ro + ||b(a)|)? + R%)'/2, we finish the proof. O
5.2. Corank at oo and the structure of &y. Set
Too 1= rank(I'sc) — rank(I'sc N T'g).
More precisely, 7o, = rank(I"”) — rank(A) = dim(L) — dim(Ly).

Proposition 5.6. Ifro, = 0, then there exists a neighborhood U of oo in OH™ such
that Ey = 0, where Ey is defined in (L.2).

Proof. As 7o, = 0, we have L = Lg. Therefore, for all z € A(T) NR" 1,
|Pos (@) < Ro.
Hence for any v € Egyn, by Proposition (.01
[v )1 = ([ Pre ()P + || Pre (vF)II* < RE + Rg.
Let U={z e R" ! :|z||> > R + R3} U {oo}. Then &y = 0. O
In the rest of this section, we now consider the case when

Ti=Try > 1.

Notation 5.7. For any s = (s1,...,$,) € R"” and an ordered r-tuple (w1, ..., w,) of
vectors in R" ™!, we set s-w = sywy + -+ s,w, € R R'w :={s-w:s€R"}
and |s| = max(|s1],...,|sr|). For k € Z" and an ordered r-tuple v = (v1,...,7)

of elements of G, we write v* = 'yfl ek e @

Fix an ordered r-tuple v = (y1,...,7:) of elements of I’ = I'_ such that the
subgroup generated by vyUA is of finite index in I'". For each +;, there exists w; € L
and o; € O(n — 1) such that for all z € R*!,

vi(x) = o4(x) + w;.

Moreover, ¢; and the translation by w; commutes, and hence for any k € Z, vf (x) =
ol (z) + kw;.

Setting w = (wy,...,w,) and ¢ = (01, ...,0,), we have that for any x = y+2 €
R* ! with y € L+ and 2 € L and k = (ky,..., k) € Z",
(5.9) ~E(x) = oF(y) + 2+ k- w.

Let Ry and Ry be as in (5.8) and in Proposition 5.5 respectively. Set
Bo:={zxc L :|z| <Ry} and B;:={zxcLy:|z| <R}

Let My := LN Lg. Then Z" - Py, (w) is a lattice in M; = R” Py, (w), which
admits a relatively compact fundamental domain, say F;. Let F5 be a relatively
compact fundamental domain for the lattice 7(A) in Ly. We define the following
relatively compact subset of R™"1:

(5.10) F:=Bo+(Bi+F)+F CL"+ Lo+ (LNLy).
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By G.9),
YF=F+k w.

For related variable quantities x > 0 and y > 0, the symbol x > y means that
there exists a constant C' > 0 such that for all related x and y, x > Cy, and the
symbol x < y means that z > y and y > x.

Proposition 5.8. There exists cg > 1 such that for all sufficiently large N > 1,

(5.11) Viz(€u,,x) € |J AY*(F),
k>N

where Ugyny = {z € R"™1 1 ||z]| > 9N}
Proof. Since R"~! = Lt + Ly + M; for My = Lg N L, we have for any v € R*~!,
(5.12) vt =Ppi(vh) + Pr,(vT) + Par, (v1).
Let v € Egpn. By (B.6) and Proposition [B.5
(5.13) Ppi(vh) € By and P, (v') € By.

In order to control Py, (v"), let k = k(v™) € Z" be such that Py, (v") €
k- Py, (w) + Fy, where k is uniquely determined. Let A\ € A be such that

P, (k- w) € T(\) + Fo.
Since k - Py, (w) — k- w = P, (k- w),
Py, (vh) € (k- Py, (w) —k-w)+ (FL +k-w) € T(\g) + Fo + (F1 + k- w).
Therefore by (5.12), for k = k(v™), we have
(5.14) v EF4k-w+7(\) = MeYR(F).

Since Py, : R"w — M is a linear isomorphism, there exists Ny > 1 such that
for all k € Z" with |k| > Ny,

(5.15) [ Par, (k- w)| < |K].

By (6.12) and B.I3), || Pa, (vF) —v™ || < Ro+ Ry and Py, (vF) — Py, (k- w) € Fy
for k = k(v"). Tt follows that there exists a constant B > 0 such that for all
v € Egmn,

1Par, (- w) | = B < [lo™|| < || Par, (k- w)l| + B,
where k = k(vT). Hence by (G.I5), there exists Ny > 1 such that for all v € Eggn
with |k(vT)| > Na,
[o ™ =< [k(v™)]-
In view of (5I4)), this finishes the proof. O

Lemma 5.9. There exists Nog > 1 such that for all k € Z" with |k| > Ny, the
following hold:

(1) For & €~*(F), [l&ll < |k|.

(2) Forv € E with vt € v*(F), h(v) < |k|.
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Proof. If £ € v*F, then || — k - w|| < diameye (F). Hence ||€]| < ||k - w]| =< |k,
proving (1).
For v € E such that v+ € v*(F), by (5.3),
h(v) < ||Py . (v)]| < Pyo (k- w).

Since W NL = Ly and L = Ly @ R"w, the map Py,. : R"w — W is injective.
Therefore
[Py (k- w)|| < [[k - wl]| < [k,
from which (2) follows. O

Let 0o = (0,1) € R""! x Ryg. For T > 1, put
(5.16) Br ={v € E: fol(o,m(v)) > log T};

that is, Br is the intersection with E of a horoball based at oc. We note that for
v € F, Boo(0,m(v)) = log h(v). Hence in the vertical plane model of S, By consists
of vectors v € E whose base points have the Euclidean height at least T

Proposition 5.10. Let Fy := By + F> + Fy. Then v,(Fo) > 0, and for all suffi-
ciently large T, there exists N < T such that

(5.17) Viz(Br) > | +*(Fo).

k| >N
Proof. Since AF; = Ly and %" F, = M;,
A(J 7*(Fo)) = Bo + Lo + My = By + L > A(T) ~ {oc}.
kezr

Therefore, if v,(Fp) = 0, then by the conformality, it follows that v,(A(I')\{oco}) =
0. Since I' does not fix oo, by the I'-invariance of {v,} we get v,(A(T")) = 0, which
is a contradiction, proving the first claim.

If v € E and vt € 4*(F), then by Lemma 59, h(v) < |k|. If h(v) > T, then
v € Bp. Therefore (5I7) holds for suitable N < T O

5.3. Estimation of ,u%s(é'U). Let V7! : R*~1 \ 0S — E be the inverse of the
restriction of the visual map Viz : E — dH" ~ 95 = R"~1 < 98S.

Lemma 5.11. There exists N1 > 1 such that for all k € Z" with |k| > Ny,
/ (380 VIO gy () =[] .
sevhF

Proof. We have || Py . (k - w)| < |k|. Hence for sufficiently large |k|, we have that
~kF N dS = (. Note that the Euclidean diameter of the horosphere based at &
and passing through o = (0,1) € R*~! x Ryg is 1 + [|£]|?, and the diameter of the
horosphere based at ¢ and passing through 7(V™(€)) is h(x(V~*(€))). Therefore
the signed hyperbolic distance of the segment cut by these two horospheres on the
vertical geodesic ending in £ is

Be(o,m(V7(€))) = log(1 + [[€]|*) — log(h(m (V™ (€))))-
Hence by Lemma [5.9]

(5.18) o3Be(om (V) _ (h( 1(4{/||§|(|;))>5 = kP
'/T
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By conformality and I'-invariance of Patterson-Sullivan density {v,},
W F) = () F) = v ) = [ (€) dvi(©)

dV,Y—k,o

eF dv,
(5.19) - /5 e e (6)

We note that the horosphere based at & passing through v %0 = (—k - w, 1) €
R"! x R has diameter 1+ || + k - w]||?. Therefore

Be(y~%0,0) = log(1 + [|€ + k - wl|*) —log(1 + [I€]1?),
and hence, since ||k - w|| < |k| for all large |k|, we have, for any £ € F,
67555(’7160,0) — (1 + ||k ‘W — fHQ)_(s - |k‘725.
1+ [€]1?
Since v,(F) > 0 by Proposition 510, we deduce from (EI9) that
vo(VFF) = |k 7200, (F) = k|77

Together with (518), this proves the claim. O
Let p: E — FE\E be the natural quotient map. We note that I'; = I's. From
§2.6] we recall that the measure u S, which is T’ p-invariant, naturally induces a
measure on I E\E The pushforward of this measure from I' E\E to E = p(E) is
PS
HE -
Recall the definition of ¢y > 0 and U,y from Proposition (.8

Proposition 5.12. (1) For all sufficiently large N > 1, we have
P (pEu, )< > kT
keZr~{0}
(2) For all sufficiently large T > 1, we have

BoBr)> Y k.

kezZr~{0}
Proof. By Proposition (.8 and Lemmam for all large N > 1,
PP (p(Eu, ) < D B (VTHARF)

|k|=N

-y / 50V IO gy, (¢)
[k|>N " EETEF

<> |k
k>N

proving (1).

Consider the natural quotient map
(5.20) Poo : (T NT)\E = T\E.

Since 0o € App(I'), there exists Ty > 0 such that po restricted to (I'; NI'oo )\ Br
is proper and injective for all T' > Tj.

Now since F% is a fundamental domain for A action on Lg and I} is a funda-
mental domain for the action of {v* : k € Z"} on My, the quotient map £ — A\E



544 HEE OH AND NIMISH A. SHAH

is injective on x> x V= (4*(Fy)). Since [ NTo : A] < 0o and po is injective
on (I's NT')\Br, for all sufficiently large T' > 1,

pE(P(Br)) = u®> 5 (Po(Br));  see @I3)
> Y ks He (V™ H~*(Fy))); by Proposition 510
> ZkZN‘kl_é; by Lemma (G.1T]).
This proves (2). O

6. PARABOLIC CORANK AND CRITERION FOR FINITENESS OF ,U,%S

Let I' be non-elementary torsion-free discrete subgroup of G. Let S, FE and E be
as in §ol In particular, S is totally geodesic and the map I's\S — I'\H" is proper.

Definition 6.1 (Parabolic corank). Define

pb-corank(I'g) = max _ (rank(I'¢) —rank(I'e NT'g)).
§eAp(T)NA(S)
When A, (I') N9(S) = 0, we set pb-corank(T'z) = 0.

Lemma 6.2 (Corank Lemma). pb-corank(I's) < codim(S).

Proof. Suppose co € A,(T') NdS. Let L be a I',_-minimal subspace of H" \ oo
and let W be the intersection of a translate of S ~ {oc} through a point in
L. Then by Proposition @3} rank(I',|) — rank(I's N T,) = dim(L) — dim(W) <
(n—1) — dim(dS) =n — dim S. O

6.1. Finiteness criterion for geometrically finite I". For the rest of this section
we further assume that I' is geometrically finite.

Theorem 6.3. pb-corank(I's) = 0 < supp(ub®) is compact.

Proof. Suppose that supp(u%®) is not compact. Fix a Dirichlet domain D(a, T’ 3)
for the T'g action on S. Since the projection of I'z\FE into I'\ T*(H") is proper,
there exists an unbounded sequence v,, € E with 7(v,,) € D(a, I'g) and v, € A(T).
Since A(T) is compact, by passing to a subsequence, we assume that v — & for
some ¢ € A(T"). Thus for any neighborhood U of £ in OH", we have v,, € &y for all
large m.

Consider the upper half space model H® = R*~! x Ry, with ¢ identified with
oo as in §8l As v — € = oo, by ([B3) we have ||b(v,,)|| = oo or h(v,) — oo
(see (B.3) for notation), and hence 7(v,,) — co = £. Therefore £ € 9(D(a,I'g)).
By Proposition 511 & ¢ A (T"). Since T' is geometrically finite, by Theorem [.6]
£ € Ap(I')NOD(a,T'g). Now by Proposition [5.6] pb-corank(I's) # 0.

To prove the converse, suppose that there exists & € Ap,(I') N dS such that
r = rank(I'¢) — rank(I'e NT'g) > 1. Without loss of generality, we may assume
§ = o00. Fix Ty > 1. The map ps as in ([B20) restricted to (I'y N T')\Br, is
proper (see (5I6) for notation). Therefore for any compact subset Q of I'z\E, we
have poo (Br) NQ = ( for all sufficiently large T > Ty. By Proposition (B.12(2),

P (p(Br)) > > k70 >0.
kezZr~{0}

Therefore supp(u%®) intersects p(Br) for all large T' > 1. Since the projection of
[';\E into T'\ T'(H") is proper, supp(u}®) is non-compact. O
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Theorem 6.4. pb-corank(I's) < § < |uES| < cc.

Proof. Suppose that pb-corank(I'g) > § > 0. Then there exists & € App(I) N S
such that 7 := rank(I'¢) — rank(I's N I'g) > max{d, 1}. Without loss of generality,
we may assume £ = oo. By the second part of the proof of Theorem [6.3] for all
sufficiently large T > 1, since r > 6,

| > pi (p(Br)) > > k[T = o0
keZ~ {0}

Now suppose that pb-corank(I'g) < 0. By the compactness of A(I')N9(D(a,I'g)),
where D(a,I'g) is a fixed Dirichlet domain for I'g, to prove finiteness of b it suf-
fices to show that for every £ € A(T')NI(D(a,I'g)), there exists a neighborhood U of
¢ in OH" such that ub°(p(Ey)) < oo with &y defined as in (5.2). By Proposition 511
and Theorem 1.7 & € App(I'). Let r := rank(I'¢) —rank(I's NI'g). If r = 0, then by
Proposition (.6] there exists a neighborhood U of £ such that & = (). Therefore
we assume that 6 > r > 1. By Proposition BI2(1), there exists a neighborhood U
of & such that

P (pEr) < Y |k’ <.
kezZr~{0}

6.2. Finiteness of ’M;fb‘ and |u§s .

Theorem 6.5. Let S be any totally geodesic immersion in H™. Suppose that
dim(S) > (n +1)/2 and |p¥P"| < 0o. Then [phd] < co.

Proof. Since I'g is a lattice in Gg, A(I') = 0S. Hence by Theorem 2T} the
natural map p : I'g\S — I'\H" is proper.

Let k := dim(S) > [(n+ 1)/2] > 2. By a property of a lattice in rank one Lie
group Gg, rank('g NT¢) =k — 1 (cf. [29] §13.8]). Therefore by Lemma [6.2]

r:=pb-corank(I'g) <n—-k<n—-(n+1)/2<(n—-1)/2.
Let & € 9(S)NApp(T'g) be such that rank(I'gNT¢) = . Then rank(T'¢) > (k—1)+r.
By a result of Dalbo, Otal and Peign [8 Proposition 2],
0 >rank(T'e)/2> ((k—1)+r)/2>(k—1+(n—k))/2=(n—-1)/2>r.
Hence by Theorem [6.4] 155 is finite. O
As an immediate corollary, we state:
Corollary 6.6. Let n = 2,3. Then |ulP| < oo implies that |ub?| < oco.

To deduce that skr(wg) > 0, when wol' is infinite in Theorem we need the
following. Here I' need not be geometrically finite.

Proposition 6.7. If [[': 's] = oo, then A(T) ¢ 9x(S), and |ub?] > 0.

Proof. Suppose on the contrary that A(T') C 0,,(S5). Let L be a geodesic joining
two distinet points, say &1,& € A(T). Then L C S. For any v € I', we have yL
as the geodesic joining v¢; and 7€, and hence vL C S. Now fix 29 € L. Then
I'zg € S. Since Fg\S" — I'\H" is a proper map, we get that I'g\I' is finite, a
contradiction to our assumption. ([l
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7. ORBITAL COUNTING FOR DISCRETE HYPERBOLIC GROUPS

As before, let G = SO(n,1)° for n > 2 and I' a torsion-free, non-elementary,
discrete subgroup of G.

7.1. Computation with mBPR. Let K be a maximal compact subgroup of G. Let
o € H" be such that K = G,. Then G/K = H". Let X, € T:(H") and M = Gx,.
Then G/M = T'(H"), where g[M] = gX,. Let A = {a, : 7 € R} C Zg(M)
be a one-parameter subgroup of GG consisting of diagonalizable elements such that
G"(Xo) = a,[M]. Via the map k — kX, we have K/M = OH".

Let N < G be the expanding horospherical subgroup with respect to the right
ar-action; that is,
(7.1) N:={g€G:a,ga," —e asr— oo}
The N-leaves gNM /M correspond to unstable horospheres H;FXO in T'(G/K) =

G/M based at gX, . The map N > z — zX, € OH" \ {X, } is a diffeomorphism.

As before, let m,, denote the G-invariant (Lebesgue) conformal density {m, }zemn
on OH™. We normalize it so that m, (and hence every m,) is a probability measure.
Here m, is K-invariant.

Lemma 7.1. For any g € G, consider the measure Ay on N given by

(n=1)8,. 1 (0.92(0))

d\g(z) =€ dm,(gzX{), where z € N.

Then Ay = Ao. In particular, A is a Haar measure on N which we shall denote by
the integral dn = dA.(n) on N

Proof. Since {m} is a G-invariant conformal density,

(n=1)8_t (097 (0))

dmo(92 Xy ) = dmg-1()(2Xg ) =€ dm,(2X]").

Since ,Bnggr(o, gz(0)) = B.x+ (g7 %(0), 2(0)),
(7.2) drg(z) = P OF g XY = dhe(2).
For any g € N, d\c(gz) = d\g(2) = dAc(2). Therefore A, is N-invariant. O

Notation 7.2. Note that GXg =ANM and KN GX(; =M. For ¢ € C(K) and a
measure A on OH" = KX = K/M, we define

(7.3) (k) dA(kX]) ;:/ (/ b (km) dm)dA(kM).
keK K/M JmeM

We also fix a Patterson-Sullivan density {v,} on 9H" and consider mPR defined
as in §3.0] with respect to {m,} and {v,}.

Proposition 7.3. For any ¢ € C.(T'(H")) = C.(G)M,
P (¢) = / / p(karn)e™" dndr dvy(kX;).
keK JreR JneN
Proof. By definition,

BR () — / () =D B (0.7 38, (0.7 g () (™ Yt
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where ¢ = §,-(0,m(u)). Let u = ka,nXo. Then, since GXO_ = MAN, we have
u~ = ka,nX, =kX, and

t = 671* (07 71'(’1,6)) = ﬁkXJ (Oa ka/TnO) = /BXJ (Oa G/TTLO)
= limy—, 00 d(0, a_:0) — d(a,no, a_+0)
= hmt_wo t— d(at+,«na_t_r(at+r0), 0)
= lim; 00 t — d(a¢4r0,0) = —1.

Therefore €®Pu— (07 (W)dy,(u™) = e~ "dv,(kX, ). Also, by Lemma [T] for a fixed
g = ka, and a variable z =n € N,

T Pra i Ok TO) g XY = dApa, (n) = de(n) = dn.

Putting all of this together proves the claim. O

Notation 7.4. (1) Let dk denote the probability Haar measure on K. Since m, is
a K-invariant probability measure on O0H™ = K/M, we have that dk = dm, (kX )
(and similarly dk = dm, (kX ™)). We fix the Haar measure dg on G given as follows:
for g = ka,n € KAN, dg = e~ "~V dndr dk. Since G is unimodular, dg = dg~!.
Therefore if we express g = na,k, then dg = e" "V dn dr dk, and if we express
g = a,nk, then dg = dr dn dk.

(2) For € > 0, let U, denote the e-neighborhood of e in G. By an approzimate
identity on G, we mean a family of non-negative continuous functions {t}c>o on
G with supp(¢)e) C U and [, 1e(g)dg = 1.

(3) For £ € C(M\K) and 9 € C.(G) and a measurable Q) C K with MQ = Q,
we define a function ¢ xq ¢ € C.(G/M) by

(7.4) ExaP(g) = §(k)v(gk) dk.
ke
For ¢ € C.(T'\G), we define £ xq ¢ € C.(I'\G/M) similarly.

Proposition 7.5. Let {1 }c>0 be an approzimate identity on G. Let f € C(M\K)
and Q C K be such that MQ = Q and v,(0(Q~1)X;) =0. Then

(7.5) m PR g 1) = / FOY) du (kX5 ).
keQ—1

li
e—0

Proof. Note that for some uniform constants #1, ¢ > 0, we have for all £k € K and
for all small € > 0,

(7.6) kU C Up k™ C (AN Up) (NN Uk (K N Ug,e).
Set K¢ := (K NUse), Qet = QK and Qe = (e e, QK.
In view of the decomposition G = ANK, for a function ¢ on K, we define a

function Ry on G by Rg(g) = ¢(k) for g = ank € ANK. For any n > 0, there
exists € > 0 such that for all k € K and g € U,

Rf'xne, (k_l) =1 < Rixq (k_lg) < fR’f'XQEJr (k_l) +n.
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Now by Proposition [7.3]
PR (f *q 1e)
- ngG fk/eﬂ e (gk/)f(k/) dk/deR( )
= J(k,ar,n)EKXAXN fk’EQ Ve(karnk') f(K)e o dk/ dndrdv,(kX,)
= Jrex f(ar k) EAX N X I Ve (kank") f(K)xa (k" )e™°" drdndk'dv,(kX])
= fkeK ngG Ve(kg)Rfxalg)e 0T dgdve(kXy ), if g = ay,nk’
< e Jrex fgeG Ye(9)Ryxq (k™" g) dgdv,(kXy ), by (Z0)
< "2 [k Jyea V(@) (Rixa,, (k71) +m) dgdve (kX))
Mzﬁ(fkeK Ry. X9y (k1) dve(kXy ) + 77‘”0|)7 as fG Ye(g9)dg =1
= et (J gt P ) du(kX5) + o).

Since (5o Qey = Q and 7 > 0 was arbitrarily chosen,

lim sup PR f 50 ) < / P (kX))
k

e—0 cO-1
Similarly, liminf. o mBR(f *xq ¥¢) > fkeim q-1 f(k71) dv, (kX ). Since we assume
that v,(0(Q71)X; ) = 0, we obtain (). O

7.2. Setup for counting results. Until the end of this section, let V' be a finite-
dimensional vector space on which G acts linearly from the right and let wy € V.
We set H := Gy, .

7.2.1. When H is a symmetric subgroup of G. Let H < G = SO(n, 1)° be a sym-
metric subgroup, i.e., there is a non-trivial involution o of G such that H® = (G7)°
where G7 = {g € G : 0(g) = g}. There exists a Cartan involution € of G such that
foo=000. Let K = GY. It turns out that H° is a subgroup of finite index in its
normalizer Ng(H®), and up to a conjugation of G, H° = (SO(k,1) x SO(n — k))°
for some 0 < k <n —1and K = SO(n). Choose o € H" such that G, = K. Then
S = H -0 is an isometric imbedding of H* in H”. Let E be the unit normal bundle
over S.

7.2.2. When Gry, s a parabolic subgroup of G. Suppose that Gry, is a parabolic
subgroup of G. Let 6 be any Cartan involution of G and let K = G?. Then
G = Gruw, K. Let N be the unipotent radical of Ggry,. Let o € H" be such that
G, = K. Then S := N -0 is a horosphere. Let E c T'(H") be the unstable
horosphere such that 7(E) = S and let H = (Ggy, N K)N.

7.2.3. Common structure in both cases. Let the notation be as in any of the above
§q7.2.1] or Let Xo € T:(H") N E and let E* = H-X,. If H is symmetric
and codim(S) > 1, or if it is the parabolic case, then E is connected and E* = E.
If H is symmetric and codim(S) = 1, then E has two connected components, E+
containing X, and E~ containing — X, and then either E* = E or E* = E*. There
exists a one-parameter subgroup A = {a,.} C G consisting of R-diagonalizable
elements such that G"(Xo) = a,Xp for all » € R. Let M = Gx,, which coincides
with Zx (A), i.e., the centralizer of A in K, and A* = {ax, : 7 > 0}. Let N be the
expanding horospherical subgroup with respect to {a,}.

When Gy, is parabolic, then G, = MN = H where M = Gry, N K. Hence
N is the unipotent radical of Gry,, so there is no conflict of notation. In the case
when H is symmetric, E* = E if and only if G = HATK. In all cases, we have
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G =HAK. Put E = p(E~)l E* = p(E*), and in the special cases when E is not
connected, we set E+ = p(E¥).

7.2.4. HAK decomposition of Haar measure on G. Note that E*=H X2 H/(MNH)
and recall that
du%eb(v) — e(”_l)ﬂzﬂf(O’”(”))dmo(vﬂ.

There is a Haar measure dh on H such that for any ¢ € C.(H), if we put ¢(h) =
fmeMﬂH ¥(hm) dm, where dm denotes the probability Haar integral on M N H,

then ¢ € C.(H)M"H = C,(E), and
(7.7) / Y dh = / P dpe®.

In view of the decompositions G = HATK or G = HAK, there exists a function
p: R — (0,00) such that we get the following Haar measure dg on G: For any
Y € C.(G), by [35, Theorem 8.1.1]

(7.8) /1/1dg—/ / / Y(hayk) dhdrdk and
keK JreR heH

{ em=DIrlif p 5 +00 and H is symmetric,
p(r

(7.9) )

el if r = 00 and Gry, is parabolic,

where R = {r > 0} if G = HAT K, otherwise R = R. In fact, the Haar measure dg
described in Notation[[4[1) and the Haar measure dg defined in (.8]) are identical;

see gl

7.3. Extension of Theorem [I.8 to I'\G for Zariski dense I'. The result in
this subsection will enable us to state our counting theorems for general norms,
provided T' is Zariski dense.

Let mB® be the measure on I'\G which is the M-invariant extension of m

That is, for ¢ € C.(I'\G),

BR

MR () = mPR (),
where 1 (p(9Xo)) = Jinear ¥(Cgm) dm and dm denotes the Haar probability mea-
sure on M.
As M normalizes N, m
MNG.

BR ig invariant for the right-translation action of N on

Theorem 7.6 (Flaminio-Spatzier [11 Cor. 1.6]). Suppose that T is Zariski dense
and |mBMS| < co. Then mBR is N-ergodic.

Let H and E be as in §7.2.1 or .22 so that H = Gf. Let dh be the Haar
measure on H defined as in (7). By abuse of notation, we also denote by dh the
measure on '\ H induced by dh.

We recall that for T' Zariski dense, |u5°| < oo implies that the canonical map
I'y\H — T'\G is proper by Theorem 2211

Theorem 7.7. Let ' be a Zariski dense discrete subgroup of G such that |mBPMS| <

oo and |phP| < co. Then for any ¢ € C.(T\G),

r—00

PS
lim e(n—l—é)r/ w(rha/r) dh = |1U’BEMS mBR(w)
hel g \H Im |
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Proof. Define a measure A, on I'\G as follows: for any ¢ € C.(I'\G),

A () = e(P1=0r / ¢(Cha,) dh.

hel g \H

Let q : I\G — THT\H") = ['\G/M be the natural quotient map. Then for

any ¢ € C.(THT\H")), we have ¥(q(zma,)) = ¥(q(za,)) for any m € M and
x € T\G, as M and A commute with each other, and hence

@) () = Mo = e [ o) dus o).

Therefore by Theorem [[8 q.()\,) — C - mPR where C = ‘,rlrtLBEM‘S‘

In order to show that A, weakly converges to CmPBR, it suffices to show that
every sequence \,, has a subsequence converging to CmBR

For any sequence 1, — 00, since q is a proper map, after passing to a subsequence
of {ry} there exists a measure A on I'\G such that A, (¢) = A(¢) for every ¢ €
C.(T\G). Therefore

q.(\) = CmBR,

For any g € G, define a measure g\ on I'\G by g\(A) = A\(Ag) for any measurable
A C T'\G. Now for any ¥ € C.(T'\G),

Jners(MA) (@) dm

Jom

(xm) dX\(x) dm

(7.10) BR(j) = CmPR(y).

GM[ c¥
«(A )(%0):

Il
,.Q\

Claim 1. X\ is N-invariant.

Proof of Claim 1. Due to Lemma 21l the map h — hXO+ is a submersion, and
hence there exists a neighborhood 2 of e in N and a continuous injective map
o :Q — H such that o(e) = e and 0(2) X, = 2X for all z € Q.
Fix z € Q, let z := a,,za_,,, and let hy = o(z;) for all large k. Then by =
z;lhk € GXO+ = M AN~ . Therefore by, —+ e and a_,, bya,, — e as k — oo.
Let ¢ € C.(I'\G). Given € > 0 and =z € I'\G, set
Yer(w) = sup lag) and g = inf d(ag)

geUe

Since ¢ is uniformly continuous and a,,z = hiby 'ar, = hpar, (a_., by tarn,), we
have for all large k and for all z € T'\G,

e (l'hhkam) < 1/)(:1:arkz) < 77Z15+ ({Ehktl,«k).

Since the measure dh is H-invariant,

/ Y(Thay, z) dh g/ Vet (Thhgay, ) dh :/ Vet (Thay,) dh.
hel y\H Lu\H Tu\H

Similarly, we get a lower bound in terms of ¥._. Since A,, — A as k — oo,
Atpe-) < P(x2) dA(7) < A(Pes)-
r\G

Since ¢ € C.(I'\G), we have that A(¢ex) — A(¢)) as € — 0. Therefore the z-action
preserves A. This proves Claim 1. (Il
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Claim 2. A = CmBR.

Proof of Claim 2. By (I0), it is enough to show that A is M-invariant. For any
€ > 0, define a measure 7, on I'\G by
1

Ne 1= —— mAdm,
‘M€| meM.

where |Mc| = [,, dm. Then since M normalizes N, 7 is N-invariant. By (ZI0)

ne < mBR,

Therefore, since mPR is N-ergodic by Theorem [7.8], there exists ¢, > 0 such that
ne = cemBR. Thus 7. is M-invariant, as mPR is M-invariant.

If A is not M-invariant, there exist » € C.(I'\G), mo € M and S > 0 such that
A(mo - ) > M) + 8. There exists € > 0 such that for all m € M., A((mmg)y) >
A(m - 1) + B/2. This implies that n.(mov) > () + 5/2, which is a contradiction
to the M-invariance of 7.. Hence Claim 2 is proved. |

As noted before, this completes the proof of Theorem [Z.7 O

7.4. Statements of counting theorems. Now we describe the main counting
results of this section. In the next two theorems, Theorems [.8 and [0, we
suppose that the following conditions hold for wy € V and I' a non-elementary
discrete torsion-free subgroup of G:

(1) wol is discrete.
(2) H is a symmetric subgroup of G, or Gry, is a parabolic subgroup of G.
(3) ImBM3| < 00 and |pB?| < occ.

Let A € N be the log of the largest eigenvalue of a; on R-span(woG), and set

A._ 1. WoQr At Wol—p
(7.11) wy = Tlgnolo o and wy " = Tlirgo o
Theorem 7.8 (Counting in sectors). Let ||| be a norm on V satisfying
(7.12) |wirmk|| = [|wE k|, for allm € M and k € K,

and set By :={v eV :|v| <T}.
(1) For any Borel measurable Q C K such that MQ = Q and v,(0(Q71 X)) =
0,

_ #(wel' N By N (woATQ)) P (E*) Ap—1(—6/A _
i P T = ] I X

(2) For the full count in a ball, we get

. #(wol' N Br)
(T13) - fim ==

PS ~
—Jﬁﬁléﬁ%\ fkeKllwék*lll*‘” dvo(kXy) > 0, if B = Gy - Xo,
PO |mBMs| fkeKHwo e duy (kX F) > 0, otherwise.

Remark 7.9. (1) By [13, Lemma 4.2], we have wy # 0. Also, if H is symmetric,
then wy * # 0.
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(2) Since wol is discrete, HT is closed in G, and hence I'H is closed in G. It
follows that the canonical imbedding (I'N H)\H — I'\G is a proper injective map.
This properness follows from a suitable open mapping theorem in the category of
locally compact Hausdorff second countable topological group actions. Therefore
the map (I'N Gg)\g — I'\H" is a proper map. In particular, £ and E* are closed
subsets of T*(T'\H").

(3) The condition (ZI2) holds if ||-|| is K-invariant as inTheorem There
exists a Weyl group element ky € K such that ko_ arko = a_, for all »r € R. Then
wy ™ = w)ko. Therefore if ||-|| is K-invariant, then ||wi k|| = |jwy| for all k € K.
Then the limit [CI3]) becomes (II)). Thus Theorem [7.8 implies Theorem

(4) When T is Zariski dense in G, Theorem [.§ holds for any norm on V' without
the condition (ZI2) and for the Q without the M-invariance condition. See §7.7
for details.

(5) Since wi™ is fixed by H N Zk (A), if M = Zx (A) C H, then condition (ZI2)
holds for any norm on V. We have M C H in the parabolic case. In the case when
H is symmetric, if Sisa single point or S is of codimension one, then M C H.

Theorem 7.10 (Counting in cones). Suppose further that T' is Zariski dense in G.
Let © be a measurable subset of V' and let

Qs ={ke K :wi*k e RTO}.
If v,(0(QL X)) = 0, then for any norm ||-|| on 'V,
. #(wOFﬁBTﬂR+@) . 1
(14 Jim, o 5 [
E) [ieq-Ilwdk™ 70> dvo (kX)) if B = HXo,

PS Ei fkeQ 1w +Ap— 1|| 5/X d, (kXO) otherwise.

Note that if I" is Zariski dense in G and if 9(24+) is contained in a countable
union of proper real algebraic subvarieties of 9H", then v,(0(24)) = 0 (see [11]
Corollary 1.4] and [23, Remark 1.7(2)]).

7.5. Proof of the counting statements. We follow the counting technique of [9]
and [I0]. For a Borel subset 2 C K satisfying the condition of Theorem [[.8] we set

Br(Q) = Br NweATQ
and define the following counting function on I'\G:
Fp,(9) Z X B (@) (Woy9)-
A€ \T
We note that
(7.15) Frr@)(e) = #(wol N Br(Q)) = #(wol' N Br N (wo AT Q).

For 41,13 € Co(T\G), we set (1h1,42) := [p o ¥1(9)v2(g) dg
Let ¢ € C.(I'\G). Then by (79),

Py, ) = / oo (wog)(g) dg

wo

(7.16) - / / ( / w(haTk;)dh)p(r)drdk.
ke J {r20:lwoa k)| <T} J(hIET o \H
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For any k € K and T > 0, define
(7.17) r(k,T) = sup{r > 0 : |lwoa, k| < T}.

Let \; be the log of the largest eigenvalue of a; on V strictly less than e*. Then
by (CIT)) there exist C; > 1 and r1 > 0 such that

(7.18) |woark — eXwik| < Cre”, for all k € K and r > ry.

Put ¢ = (A — A1)/A > 0 and Cy = ZCl/infkeKHwé\k;H. Let Ty > 1 be such
that CoT, © < 1/2 and (1/2)(Ty/ supgex||wok|)/* > €. For T > Ty, we define
functions ri(k T) via

(7.19) e+ ET) — (T /||w) k|)) Y2 (1 £ CoT ).

Then by elementary calculation using (T.I8),

(7.20) r—(k,T) <rk,T)<ry(kT), forall T >T; and k € K.
By (12),
(7.21) re(mk,T)=ry(k,T), forallm e M and k € K.

We note that by (Z19), given e > 0, for T (¢) sufficiently large,
(7.22) =BT — (1 4+ O(e))(T/ |wdk||)%/* for all T > Ty (e).
Proposition 7.11. For any non-negative 1 € C.(T'\G),

Sea dy ™" ) (. ¥0(G7 () dial® () drdk < (Fi, ), )
< fkeQ fr+ kT) (T) (fE* wk(gr(v)) ch( )) drdk,

where ¢y, € Co(T\G)M = C.(TH(T'\H")) is given by
wite) = [ dlgmkym
me

Proof. By (1), (78), (14), (720), (7.21) and Lemma [T}, we get
(FBT(Q) V)
vea Jprsowoarkl <1 Unier o, i ¥ (hark) dh) p(r) drdk
< Jrea Jy " gers, i Vhagk) di)p(r) drd
= fkeg fu (0 (f[h €T \H fmeM Y(ha,mk) dmdh)p(r) dk, as MQ =Q
- fkeﬂ fu 0 (f[h €T wo \H Y (har) dh) (r) drdk
Lo ST p0) ([ (G (0)) i (0))

The other inequality is proved similarly. ([l

Proposition 7.12. For any ¢ € C.(I'\G), we have

E*
lim T7%(Fp, (), ) = W mPR (&, % ¥),

T—o0

where &y (k) = ||w8‘l<;||’5/)‘.
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Proof. Without loss of generality, we may assume that 1 is non-negative. For any
e >0 and k € K, by Theorem and (T3)), there exists 7o > 0 such that for any
r > 1o,

PS( [+ .y BR
w2 0 [ gt - EEELE ) o),

(7.24) p(r) = (1 4+ O(e))em=1r.

Since ¢ € C.(T'\G), the map K > k — 1 is continuous with respect to the
sup-norm on C,(T!(H")). Therefore, since K is compact, we can choose rg > 0
independent of k € K. Now for sufficiently large T' > 1,

Ti
ST o) [ (G (0))dpdlg® (0)dr
sy e e O (IO o (670 di ) dr
_ (#ES(E*)w;AmSBR(wk) +O(€))(1—|—O(e)) J:;i(k,T) o7 dr

[mBMS]

S(E*Yemn /N > ol 5/
_ pE(E) mPR(yy) TR gkﬂ * +O(€)T6//\+O(65TO),

‘mBl\/IS ‘

where the last equation follows from (.22]) for sufficiently large 7.
Since E ¢ TY(I'\H") is a closed subset, ¢ € C.(I'\G) and K is compact, it
follows that for fixed ro > 1, we have

sup /E@[Jk(va,«) dulP (v) = 0(1).

[r|<ro,k€K

Hence

(7.26) / o(r) / (G (0)) Al (0)dr = O Do),
{r:|lwoa,k||<T,|r|<ro} FE

By Proposition [T11] (C25]) and (Z.24]),

. <FBT(Q)’ V) H%S(E*) AL||—8/A, BR
Jim LR = R R ) dk +0(0),
Since € > 0 is arbitrary, we finish the proof. O

Lemma 7.13 (Strong wavefront lemma). There exist £ > 1 and ¢y > 0 such that
for any 0 < € < ¢g and g = hak € HATK with ||a| > 2,

gUe - h(H n Uée)a(A N Ufe)k(K N Ufe)v
where ||g|| denotes the distance of g from e in G which is K -invariant.

Proof. If H is symmetric, the result follows from [I4] Theorem 4.1].

Now suppose that H = N is horospherical. We may assume that the distance
from e in G is invariant under conjugation by elements of K. Let u € U,. Then
kuk™' € U.. Write kuk™! = hia1k;, where hy € HN Uy, a1 € AN Uy and
k1 € KN Uy for some ¢ > 1 independent of e. Now

gu = haku = ha(kuk™ ")k = (h(ahia™))(aa)) k(K™ ki k).

Sincea € AT and hy € H = N, by (1), |lahia™ || < ||h1]|. Also, [k~ kik| = || k1]
Hence gu has the required form. (Il
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Proof of Theorem [L8(1). By the assumption that v,(d(Q271)) = 0, for all suffi-
ciently small € > 0, there exists an e-neighborhood K. of e in K such that for
Qer = QK. and Q. = ﬂkeKe Ok,

(7.27) lim V(2 —Q7Y) =0.
Let £ > 1 as in Lemma [Z.T3l Then for T > 1,

Br()U,-1, C Bapar(Qey) and Ba_ogr(Q)C (] Br(Qu.

uelU,—1,

Let 9. € C.(G) be a non-negative function supported on Up-1. and [ pedg = 1,
and let U, € C.(T'\G) be the I-average of 1).:

(728) \Ile(g) = Z ¢5('}’g)~

yel

Then FB(FE)T(QS_)(Q) < Fpa(e) < FB(1+€)T(516+)(9) for all g € Up-1.. Therefore,
by integrating against ¥., we have

<FB(1—5)T(st)’ \Il€> < FBT(Q)(G) < <FB(1+E)T(Q€+)’ \IIE>'

Let &, be as defined in Proposition [[LT2l By Proposition [[.5] for any n > 0,
there exists € > 0 such that

PR (6 0 ) = PR (€0, +0 1) = / Eun (k) dvo(kX5 ) + O(n).
keQ—1

Therefore by Proposition [T.12],

(7 29) fim7 oo Tﬁé/A ' <FB(1ie)T(Qei)a \I’e>
M PS ® B
- % ’ fkesz;il Ewo (K1) dvo (kX5 ) + O(n).

In view of ([Z27), we get

. Frroe)  ppP(EY) » B
Tlggo T/A 5. |mBMS| '/keﬂl Swo (K77) dvo(kXy) + O(n).

Since 1 > 0 is arbitrarily chosen, we finish the proof of (1). a

Proposition 7.14. Suppose that H = G, is symmetric and that G # HATK.
Let Q C M\K such that Vo(ﬁ(QleS')) =0. Then

. #(woFﬁBTﬁwoA’Q)
lim7_; o0 TSN

(7.30) b5 ) . S N
= gjlamBMS\ Joea- lwg k70 dvg (KX ).

Proof. For k € K and T > 0, let s(k,T) = sup{r > 0 : ||woa—.k|| < T}. Then
there exist Ag > 0 and Ty > 0 such that if we define sy (k,T) via

=) = (1 AT ) (T g k)
then for all T > Tj, we have s_(k,T) < s(k,T) < sy (k,T).
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By Theorem L8] for any ¢ € C.(I'\ T!(H")), we have

limy o0 1707 [ (G (0)) dug® (v)

- PS/m— -
= lim, o0 eln=1=or IE* ¢(gr(v)) dM%eb(U) = gfm(BEl‘\/IS)‘ : mBR(¢)7

where ¢(v) = ¢(—v).
Let B; (Q) = Br NwoA~Q and

FB;(Q)(Q) = Z XB;(Q)(U)OVQ)-
’YGFwO\F

In view of these observations, by arguing as in the proof of Proposition [[.12] we
get that for any ¢ € C.(I'\G),

lim7_, Tﬁé/)‘<F37—,(Q), ¢>
=700 T [ firsoipuna_, mi<ry Uipter, v ¥ (ha—rk) dh] p(r) drdk

FS(E— B _
= L B0 [, collwg Kl A mPR () d,

where ky € K represents an element of the Weyl group such that koa,k, 1=
a_, and koX; = X, . Now (Z30) follows from the arguments as in the proof of
Theorem [T.8(1). O

Remark 7.15. If Gy, is parabolic, then woa, — 0 as r — —oo. Since wol' is
discrete,

(7.31) #(wel' NweA™K) < 0.

Proof of Theorem [[8(2). If G = HATK, then (2) follows from (1) by putting
Q=K.

If H is symmetric and G # HATK, then G = HATK LU HA™ K, and then (2)
follows by combining (1) and Proposition [.T4] and putting Q = K.

If Gru, is parabolic, (T13) follows from Theorem [7.8 and (731). O

7.6. Counting in bisectors of HA"K coordinates. We state a counting result
for bisectors in HATK coordinates. For any g € HATK, we set a(g) to be the
AT-component of g, which is unique. Consider bounded Borel subsets ; C H and
Qo C K with Ql(Hﬁ M) =0 and MQy = Qs. Set

Nr (1, Q2) = #(0 N QAT Q),

where AL = {a, € A* : " < T}. For the sake of simplicity, we assume that the
projection map ; — I'\G is injective.

Theorem 7.16. If u25(9(21(X0))) = v(3(Q51(X5))) = 0, then

. Np(Q4,99) 1 PS 1 -
R T 5 [mBVs|HE (21(Xo0)) - (25 (Xg))-

This result for H = K was also obtained by Roblin [3I] by a different approach.
When T is a lattice in a semisimple Lie group G and H = K, the analogue of
Theorem was obtained in [12].
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Proof. We define the following function on I'\G:

Fro, 0,(9) = Z X0, A%, (79)-
~el’

For ¢ € C.(T'\G), given € > 0, by Theorem for sufficiently large T > 1,

<FT,Q1,92 ) ¢> = fgeﬂlA¥QQ ¢(9)d9

— fkeﬁz f1§6T<T fhem ¥(ha,k)p(a,)dhdrdk

= kaﬂz fToger<T p(ar)(fheﬂl.xo Yr(ha,)dh)drdk + Or, (1)
~ (st HES QU XT) feq, M (W0)dk + O(9))

(5T D)) + Oy (1)

(7.32)

= MmT—QMs‘uES(mXo) -mPR(xgx0,¥) + O(€)T? + O, (1),

where x i *q, ¥(g) = kaQZ P(gk)dk.

By the assumptions on 7 and 29, for every € > 0 there exist e-neighborhoods
H, and K, of e in H and K, respectively, such that for ; .- := ﬂheHe(HmM) Q4 h,
Qe+ = UH(HNM), Qg - = peg, Q2k and Qo+ 1= DK, as € — 0,

(e (Xo) N Q- (Xo)) = 0, wo(Q5 1 (X)) N Q5L (X)) = 0.

By Lemma [T.13] for £ > 1 as therein, there exists an e-neighborhood U, of G

such that for all 7' > 1,

91A¥QQUE—1€ C QLEJrA?_l_i_E)TQZ,e*v

Q- Al P2 CNyew, . NAFDag.

Let ¢ € C.(G) be a non-negative function supported on Uy-1. and [tpedg = 1,
and let ¥, € C.(I'\G) be the I'-average of ).:

Ve(g) =Y te(vg).

~el
It follows that

(7.33) (Fa-ore, .-,
On the other hand, by Proposition [7.5]
lim PR (e xa, L W) = vo(, 1 (X)),

Therefore by ([7.32]),

o, .+ Ve) < Fro,a.(e) < (Futore, .0, 4+ Vo)

:‘L%S(Ql,ei (XO))VO(Q;ii (XO_))

. iy _
T11—>H;<>T <F(1:|:5)T,£21’Ei70215i Vo) = 5 - [mBMS|
By (33) we get
. Fro,0.(e) 1 PS -1 -
A s = s P (e (X0 o (Ko )-
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7.7. Counting theorems for I' Zariski dense. In the case when I' is Zariski
dense, Theorem [7.§ holds for any norm on V and for any € without the M-
invariance condition. Similarly, Theorem [Z.16] holds without the M-invariance as-
sumption on €y and 5.

The reason that this generalization is possible is because for I Zariski dense, we
use Theorem [.7] instead of Theorem [[L8 In proving Theorem [L.8 the place where
we needed the M-invariance of € is in Proposition [ 11l For general 2, we replace
this proposition by

Jeea Jo ™ = p(r (fr \H ka(har)dh) drdk
< Fpiayt) < focey S0 plr) (S, o (hay)dh) drd,

where ¥ (g) := ¥ (gk) € C.(T'\G) is simply the translation of ¢ by k.
Applying Theorem [Z.7] to the inner integral in the above, we deduce in the same
way as in the proof of Proposition that for any ¢ € C.(I'\G), we have

734 lim T/ MF _ NE‘S(E*) - BR

(7.34) Am (Fr),¥) = m - (Gwo *Q V),

where mPR is defined as in 73] and &, (k) = [Jwyk|~%/*. Now for a general
norm ||-|| on V, note that the function &, (k) is not necessarily M-invariant. How-

ever, for an approximate identity {tc}c~o on G and any f € C(K), the proof of
Proposition can be easily modified to prove

(7.35) hm mBR(f xq ¥e) = / fE™h) dvo(kXy).

keQ—1

Hence applying (34) to ¢ = . and (I38) to f = &, and by sending ¢ — 0,
we obtain
PS *
) _ wp (E*) 1 _
(7.36)  lim T "X Fp,a(e) = #mvls‘ : /keﬂlﬂwé\k IO A (kX ).

This explains the generalization of Theorem [Z.8(1). The generalization for Theo-
rem [(8(2) and Theorem can be done similarly.

Proof of Theorem [[ 10 In view of the above explanation, the result can be deduced
from Theorem [T (or its combination with Proposition [[.I4] or Remark [[15) via
elementary arguments; see [13]. a

8. APPENDIX: EQUALITY OF TWO HAAR MEASURES

Let H be a symmetric group as in §7.2.I1 As in Notation [4(1), consider the
Haar measure on G corresponding to the Iwasawa decomposition G = NAK given
by

dg = e Vtdndtdg, for g =naq, n € N, a; € A, g € K.
Corresponding to the generalized Cartan decomposition G = HAK, by (8) the
Haar measure on G can be expressed as

dg = co - p(r)dhdrdk, for g = hak € HAK,

where ¢y > 0 is a constant. We note that dn is defined by Lemma [Tl and dh is
determined by (T7).
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Theorem 8.1. ¢y = 1.

Proof. Let the notation be as in §7.11 Let N~ ={g € G :a_,ga, — e as r — o0}.
Then for y € Lie(N~) we have a_, exp(y)a, = exp(e~"y). In view of an NAN~ M
decomposition of a small neighborhood of e in G, for & in such a neighborhood we
write

h = n(z(h))ayn)v(y(h))m(h),

where z(h) € Lie(N) 2 R"! and n(z(h)) = exp(z(g)), y(h) € Lie(NT) = R*~1
and v(y(h)) = exp(y(h)), b(h) € R and m(h) € M In particular,

(8.1) hXy = n(a(h))aymv(y(h)m(h) X = n(z(h) Xy

In view of the decompositions G = HAK and G = NAK, for h € H, r > 0 and
k € K, we express

ha,k = n(z(h,r,k))ayp,rxyq(h, v, k), where q(h,r k) € K.
Now for A in a small neighborhood of e in H, we have
hark = n(x(h))aynyo(y(h))m(h)ark = n(z(h))ariomyvie " y(h))(m(h)k).
In view of a G = NAK decomposition,
v(ie "y(h)) = n(xl(h,r))abl(h)T)kl(h,r), with
max(|[z1(h, )|, [[br(h, )], 1K1 (R, 7)) = Ole™"[lz(R)]))-
Therefore,

ha,k = n(xz(h))arpmyn(zi(h, r))ay, () (k1 (h, r)m(h)k)
= n(z(h) + 22(h, 7)) @rtb(n)+by (h,r) (k1 (R, T)m(R)K),

where z5(h,r) = e~ "M g (h, 7). So

(8.2) 22 (R, r)|| = e~2 O([lx(h)])).

Therefore

(8.3) z(h,r, k) = n(x(h) + z2(h,r)), t(h,r, k) =71+ b(h)+ bi(h,1),
' q(h,T,k): ( ,7‘) ( )

Since z(h,r, k) = z(hm,r,e) and t(h,r, k) = t(hm,r,e) for any k € K and m €
MNH = Gy NH, we can write z(h,r k) = z([h],r) and t([h],r, k) = t([h],r),
where [h] = h(M N H) = hX;. Moreover, for any fixed h and r, since dk is
K-invariant, we have that dq(h,r, k) = dk.

For h in a small neighborhood of e in H, r > 0 and k € K,

e =Dtk qan (2(h,rk)) dt(h,rk) dg(h,r,k)

¢ = o(r) dh dr dk
_ e dn(z((h],r) di([h],r) | da(h.rk)
- p(r)dhdr dk

e~V dn(z([h],r)) di([h].r)
p(r) dhdr )
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because z and ¢t do not depend on k and for fixed (h,r) we have d(q(h,r,k)) = dk.

Now the numerator depends only on [h] = hM and fm crna Ldm = 1. Therefore,

e=D([Rr) DB aug, ey (0T RD0)

(84) Co —

p(r)e(n_l)ﬁ[h](oa[h]o)
o dmo(n(z([h],r) Xq) di([h], )
dmy([h]) dr

To compute ¢y, we evaluate the Radon-Nikodym derivative at the point ([h],r) =
([e], s) = (X, s) for any fixed s > 0. Then we consider the upper half space model
R"~! x Ry for H® with o = (0,1) and X; = oo. Then X;j = 0 € R*! =
OH™ \ {oc}. Since m, is equivalent to the Lebesgue measure, let
dm(x)

X =0

We define a map ® from a small neighborhood of (0, s) in R* 7! xR to R"~! xR
by

(8.5) 0<C:= ; also n(z) X = o for all x € R*L.

O([n),r) = (n(z(h,r, k) Xq , t([A],7)))-
To compute the Jacobian of ® at the point (X, s) = (0, s), we write & = (&1, &)
and ([h],7) = (21, 22).
Fixing [h] = [e], we get z([e], ) = 0, t([e], ) = r. Therefore 0, (®1, P2) = (0,1).
Hence the Jacobian of ® at ([h],r) = (0, s) is

J(®)(0,s) =10, 21(0,s)|
_ dmy(n(@a([hl,s)+e(h) X ) _
= 2dmo([ ) at [h] = 0, by (B3]

dmo (n(wa([h],5)+((h]) X)
e xd) 0 Py @D

AR at )] =0 = (), by €3)

= 1+ 952D at [h] = 0 = 2([A))

= 14 0(e"2(0D), by B2).

Note that for a fixed s, due to BI) and &), x2([h],s) is a smooth function of
z([h]). By ([84), the Radon-Nikodym derivative at ([h],r) = ([e],s) is

e(n—l)t([e],s)e(n_l)ﬁn(z([e],s))xar (0,n(z([e],s))o0)

€= p(5)en DB (o.[elo) +J(®)(0,5)
= ("D /p(s)) (1 + O(e= "7 1)).
Since p(s)/e(" 1S — 1 as s — oo, we have ¢y = 1. O
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