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1. INTRODUCTION

In this paper we revisit the extension problem for Killing vector-fields in smooth
Ricci flat Lorentzian manifolds and its relevance to the black hole rigidity problem.
In the most general situation the problem can be stated as follows:

Assume (M, g) is a given smooth pseudo-riemannian manifold, O C M is an
open subset, and Z is a smooth Killing vector-field in O. Under what assumptions
does Z extend (uniquely) as a Killing vector-field in M?¢

A classical resultl!] of Nomizu establishes such a unique extension provided that
the metric is real analytic, M and O are connected and M is simply connected. The
result has been used (see [5] and [4]) to reduce the black hole rigidity problem, for
real analytic stationary solutions of the Einstein field equations, to the simpler case
of axial symmetry treated by the Carter-Robinson theorem. This reduction has
been often regarded as decisive, especially in the physics literature, without a clear
understanding of the sweeping simplification power of the analyticity assumption.
Indeed, the remarkable thing about Nomizu’s theorem, to start with, is the fact
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that the metric is not assumed to satisfy any specific equation. Moreover, no
assumptions are needed about the boundary of O in M and the result is global
with only minimal assumptions on the topology of M and O. All of these are
clearly wrong in the case of smooth manifolds (M, g) which are not real analytic.
To be able to say anything meaningful we need to both restrict the metric g by
realistic equations and make specific assumptions about the boundary of O. Local
and global assumptions also need to be carefully separated.

In this paper we limit our attention to a purely local description of the extension
problem in the smooth case. Throughout the paper we assume that (M, g) is a
non-degenerate Ricci flat, pseudo-riemannian metric, i.e.,

(1.1) Ric(g) = 0.
We recall the following crucial concept.

Definition 1.1. A domain O C M is said to be strongly pseudo-convex at a
boundary point p € 00 if it admits a strongly pseudo-convex defining function f
at p, in the sense that there is an open neighborhood U of p in M and a smooth
function f: U — R, Vf(p) # 0, such that ONU ={z € U : f(z) < 0} and

(1.2) D*f(X,X)(p) <0
for any X # 0 € T,(M) for which X (f)(p) =0 and g,(X, X) =0.

It is easy to see that this definition, in particular (I2]), does not depend on the
choice of the defining function f. The strong pseudo-convexity condition is auto-
matically satisfied if the metric g is Riemannian. It is also satisfied for Lorentzian
metrics g if 0O is space-like at p, but it imposes serious restrictions for time-like
hypersurfaces. It clearly fails if O is null in a neighborhood of p. Indeed in that
case we can choose the defining function f to be optical, i.e.,

(1.3) DYfD,f=0
at all points of O in a neighborhood of p, and thus, choosing X = D f, we have

1
X*XPD,Dsf = §X(D“fD(,f) =0.

Besides a new extension result (see Theorem below) this paper contains two
local counterexamples. In our main such result (see Theorem [[3]) we show that
at any point p in the complement of the bifurcation sphere of the horizon of a
Kerr spacetime K(m,a),0 < a < m, with T, Z denoting the usual stationary and
axially symmetric Killing vector-fields of K(m,a), one can find local extensions of
the Kerr metric, which coincide with K(m, a) inside the black hole, and such that
only T extends as a Killing vector-field to a full neighborhood of p. The condition
a > 0 is important in our proof, since our construction only works in the region
where T is timelike, i.e., the ergo-region. It remains open whether or not a similar
counterexample can be constructed for the Schwarzschild spacetimes KC(m, 0).

We first state the following extension theorem:

Theorem 1.2. Assume that (M, g) is a smooth d-dimensional Ricci flat, pseudo-
riemannian manifold and O C M is a strongly pseudo-convex domain at a point
p € 00. We assume that the metric g admits a smooth Killing vector-field Z in
O. Then Z extends as a Killing vector-field for g to a neighborhood of the point p
in M.
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Under more restrictive assumptions, a similar result was proved in [I] as a key
component of a theorem on the uniqueness of the Kerr solution in [2]. In this paper
we present a different, more geometric proof, which is valid in all dimensions and for
all pseudo-riemannian metrics. More importantly, the proof we present here does
not require that the vector-field Z be tangent to the boundary 0O in a neighborhood
of p, or the existence of a geodesic vector-field L, defined in a neighborhood of p,
and commuting with Z in O.

In applications, one would like to use Theorem repeatedly and extend the
Killing vector-field Z to larger and larger open sets. For this it is important to
understand the “size” of the implied neighborhood in the conclusion of the theorem,
where the vector-field Z extends. The proof shows that this neighborhood depends
only on smoothness parameters of g and f in a neighborhood of p (see [221])),
and a quantitative form of strong pseudo-convexity described in Lemma The
neighborhood does not depend in any way on the vector-field Z itself.

In view of Theorem [[2] Killing vector-fields extend locally across strongly
pseudo-convex hypersurfaces in Ricci flat manifolds. A natural question is whether
the strong pseudo-convexity condition is needed. We give a partial answer in The-
orem[£3} in general one cannot expect to extend a Killing vector-field across a null
hypersurface in a 4-dimensional Lorentz manifold

Our second main theorem provides a counterexample to extendibility, in the
setting of the black hole rigidity problem. Let (K(m,a),g) denote the (maxi-
mally extended) Kerr space-time of mass m and angular momentum ma, 0 <
a < m (see [5] for definitions). Let M("¥) denote an asymptotic region, E =
- (M) N7+ (M(en4)) the corresponding domain of outer communications, and
H~ = 6(Z1 (M) the boundary (event horizon) of the corresponding white hold3.
Let T denote the stationary (timelike in M(¢"4)) Killing vector-field of (K(m, a), g),
and let Z denote its rotational (with closed orbits) Killing vector-field.

Theorem 1.3. Assume that 0 < a < m and Uy C K(m, a) is an open set such that
UNH NE#Q.

Then there is an open set U C Uy diffeomorphic to the open unit ball B; C R?,
UNH™ #0, and a smooth Lorentz metric g in U with the following properties:

(i)
(1.4) 8Ric=0 in U, Lrg=0 inU, g=g imU\E;
(ii) the vector-field Z does not extend to a Killing vector-field for g in U.

In other words, one can modify the Kerr space-time smoothly, on one side of
the horizon H ™, in such a way that the resulting metric still satisfies the Einstein
vacuum equations, has T as a Killing vector-field, but does not admit an extension
of the Killing vector-field Z. This result illustrates one of the major difficulties one
faces in trying to extend Hawking’s rigidity result to the more realistic setting of
smooth stationary solutions of the Einstein vacuum equations: unlike in the ana-
lytic situation, one cannot hope to construct an additional symmetry of stationary

2Such a hypersurface is not strongly pseudo-convex; see the discussion before Theorem
3A similar statement can be made on the future event horizon Ht.



566 ALEXANDRU D. IONESCU AND SERGIU KLAINERMAN

solutions of the Einstein vacuum equations (as in Hawking’s Rigidity Theorem) by
relying only on the local information provided by the equations

We remark that the conclusion of Theorem [[.3]holds also when a = m > 0, with
the same proof.

The rest of the paper is organized as follows: in section [2] we prove Theorem
and in section [B] we prove Theorem [[L3 In section Ml we consider extensions
across null hypersurfaces in 4-dimensional Lorentz manifolds and prove two more
theorems: Theorem [£.1] which provides a criterion for the extension of Killing
vector-fields, and Theorem [4.3] which provides a general framework when extension
is not possible.

2. PROOF OoF THEOREM

In [I] and [2] the extension of the Killing vector-field Z was done according to
the transport equation,

(2.1) (L, Z] = coL,

where Dy L = 0 and ¢y is constant. Consequently, we had to assume, in O, that
Z is not only Killing but that it also satisfies the additional assumption (2] with
respect to a geodesic non-vanishing vector-field L. This could be arranged in the
particular cases studied in [I] and [2], but imposes serious restrictions on Z in the
general case, particularly if Z vanishes in a neighborhood of the point p. To avoid
this restriction, in this paper we extend Z according to the weaker condition

(2.2) D,D.Z =R(L,Z)L,

which would follow easily from (2J), and is automatically satisfied if Z is Killing.
More precisely, we construct first a smooth vector-field L in a neighborhood of
p such that

and extend Z to a neighborhood of p by solving the second order differential system
[22). Therefore, after restricting to a small neighborhood of p, we may assume that
Z, L are smooth vector-fields in M with the properties

(2.3)

D,L=0 inM, L°LP(D,DsZ, —~ Z’Rpap,) =0 in M,  Lzg=0 inO.

It remains to prove that the deformation tensor m# = L zg vanishes in a neighborhood
of p. We cannot do this, however, without establishing at the same time that the
tensor Lz R also vanishes identically in M. Our strategy is to derive a wave equation
for LzR, or rather a suitable modification of it, coupled with a number of transport
equations along the integral curves of L for various tensorial quantities including
7 itself. These equations will be used to prove that = and LzR have to vanish in
a full neighborhood of p, provided that the strong pseudo-convexity assumption,
which guarantees the unique continuation property, is satisfied.

4As mentioned earlier a local version of Hawking’s Rigidity Theorem was proved in [I]. The
key additional information used in that paper is the existence of a regular bifurcation sphere,
which is the smooth transversal intersection of two non-expanding horizons.
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2.1. Tensorial equations. We first consider the properties of LzR. Observe that
LzR verifies all the algebraic symmetries of R except the fact that, for an Einstein
vacuum metric g, R is traceless. We have instead,

ga’YACZRaB’yé = WavRaﬁfy&

To re-establish this property we can introduce (see also Chapter 7 in [3]) modifica-
tionfE‘ of LzR of the form

L;R:=L;R—-BOR,
where, for any given 2-tensor B, we write
(B © R)a,@'yé = B, /\R)\,B'yé + Bﬁ ARa)«yS + B'y )\Raﬁ)\ﬁ + Bs /\Raﬁ'y)\'

It is easy to check that, for any 2-tensor B, B ® R verifies all the algebraic sym-
metries of the general Riemann curvature tensor, i.e.,

(BOR)apys = =(BOR)gays = =(B O R)agsy = (B O R)ysas,
(B® R)ag»ﬂs +(Bo R)a,y(sﬁ +(Bo R)a(;g»y =0.
Moreover, using the Einstein vacuum equations, we get
g (BOR)agys = B"*(Rigus +Ryuprs)-

In particular, for any antisymmetric B, B ® R is traceless, i.e., a Weyl field. We
have proved the following;:

Proposition 2.1. Assume w is an antisymmetric 2-form in M and let
1
(2.4) W = EZR—i(W—Fw)@R.

Then W is a Weyl field in M, i.e.,
W(yB'yé = _Wﬁa'yé = _Wa,ﬁé'y = nyéocﬁv
WozB'y& + Wa'y&,@ + Wa&,@'y = 0;
ga’yWaﬁ'y§ =0.
We shall next establish a divergence equation for W. We do this by commuting

the divergence equation for R with £z. We rely on the following (see Lemma 7.1.3
in [3]):

Lemma 2.2. For arbitrary k-covariant tensor-field V' and vector-field X we have

(2‘5) Dﬁ(‘CXVquOék) - ‘CX(DﬁValuﬂk) = Z (X)Fajﬂpval ’ g

where (X = Lxg is the deformation tensor of X and
1
R 5(Da g +Dp g =Dy Frag).

Definition 2.3. We denote 7 = (D7 and T' = (Y)T the corresponding tensors
associated to the vector-field Z. We also introduce the tensors

Paﬁu = (1/2)(Da7r,3u - DBTrau - Duwa6>7
Bag = (1/2)(7Ta5 +wa5),
Wapys = (LzR)aprs — (B © R)agys.

5Note, however, that, unlike [3], our B here is not symmetric.
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All of these tensors depend on the 2-form w, which will be defined later (see (2.9))
to achieve a key cancellation in the proof of the transport equation (ZI3) (see the
identity L' P,g, = 0 in ([210)).

Using Lemma we can now prove the following:
Lemma 2.4. The Weyl field W wverifies the divergence equation
(2.6) D*Wagys = B DuRyugys + 8" PupR” gys
. + PBWRW vé + P’YVHR# B Y5+ PévuR# By Y.

Proof of Lemma 24l Using Lemma and the identity D*Rgg+6 = 0 (which is a
consequence of the Einstein vacuum equations), we easily deduce

D*LzRapys = 8**DuLzRagsys
=g (‘CZDHR@/B’Y‘S + LaupR7 45 + FﬁupRapr + F'yupRaﬁpzs + FéupRanp)
= WQHDMRaﬁWF + F“upRpﬂvﬁ + FBM)RW% + prR“Bpé + FMPRHMP'
Using the definition and the Einstein vacuum equations, we derive
D*(B®R)agrs = BDaRygys + D*BaaR g15 + Do BsaR* 5
+ Do B R + Do BsyR%s, %,
for any 2-tensor B. Thus, if B = (1/2)(7 + w),
D*Wapqs = (7" — B")D,Rugys + 8" (Lpwp — DuBpup)R? g5
+ (Fﬁw - DMBBV)RW% + (FWV - Dqu) “ﬂyé
+ (Fsp — DL Bsy)RM 54"

We observe now that
Fbac - DaBbc = Pbcaa

which completes the proof of the lemma. |

We now look for transport equations for the tensor-fields B, P appearing in (2:6)),
of the form

D.(B,P)= M(W,B,P),
with the notation M(W, B, P) explained below.

Definition 2.5. By convention, we let M((VB, ..., ) B) denote any smooth “mul-
tiple” of the tensors (W B, ..., (*) B i.e., any tensor of the form

2 MOB, ..., ®B)y
’ _ (1)361.“5m1 (1)0061.“%[31...67” 4.+ (k)B,B1~~~ﬂmk (k)cal.“arﬂbnﬁ’"bk’
for some smooth tensors (NC, ..., (¥)C in M.
We start with a lemma.
Lemma 2.6. Given the vector-field Z, extended to M by [23), we have
(2.8) LPr,5 =0 in M.
Moreover, if we define w in M as the solution of the transport equation

(2.9) DLwag = WangLp — WﬂpDaLP,
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with w =0 in O, then
2.10 LFP,g, =0, LPwas =0 in M.
( Bu B

Proof of Lemma 6. We first remark that L*L°’D,Zs = 0 in M. Indeed, using
B, we get

LPD,(L*L’D,Zs) = L’ L°L’D,D,Zs = L’ L*LF Z' Ry 05 = 0.
Since LO‘LBDQZ/B =0 in O we deduce that
(2.11) L*LPD,Zs =0  in M.
We now prove (2.8)). Using ([2.3]) and (Z.I1]) we compute
LD, (LPr.5) = L’LP(D,DgZ, + D,D,Z5)

= LPLPZ' R, pp0 + LPLPDyD,Zs + LPLP Z'R g,
=D, (L’L’D,Zs) — L’D,ZsD,L° — L’D,ZzD,L"
= —LPr,sD,L".

Since Lﬁﬂ'a,@ vanishes in O, it follows that L? T Vvanishes in M, as desired.
The first identity in (2I0) follows from the definitions of w and P and the identity
23):
2LMPQ5H = L”Daﬂﬁu — L“Dgﬂ'au — L“Dﬂwag
= —mg, Do LV + 7o, DgL* — LMD wap = 0.

To prove the second identity, we compute, using the definition (Z9) and the iden-
tities Lﬁ’ﬂ'gp =0and DL =0,

D;(LPwag) = LPLPD ywap = LP (10,DpL? — 75,Do L") = 0.
Since Lﬁwaﬁ vanishes in O, it follows that Lﬁw(yg vanishes in M, as desired. O
We derive now our main transport equations for the tensors B and P.

Proposition 2.7. In M we have

(2.12) DyBag = L’ P,go — Do L”Bg
and
(2.13) Dy Pu.sy, = L"Wapuw + LB, Ragpy — D, LP Pog,.

Proof of Proposition 27 Using ([28)—(2I0), we calculate
2L°D,Bap = LD, ms0 + LD s
= LP(2P,8a + Dawps + Dgmpa) + mapDpLf — mg,Do LP
= 2LPP,50 — 2B,5D, L”,
and the desired identity (212]) follows.
To prove (213), we rely on the following identity:

(2.14) D, Pup, — Dy Pagy = (L2R)apw — (1/2)70 Rpsun — (1/2)7 5 Rapyuv,

Pogp = (1/2)(Dampu — Dpmap) = Papu + (1/2)Dywag.
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Assuming (2.I4]) we easily prove now ([2I3). Indeed, relying on (2I4]), (2.8), and
the definitions we calculate

» 1 1
L"(Dy Papp — DpPapy) = L gDuDuwaﬁ - §DvDﬂwaﬁ + Wapuw + (B - R)aguw

1 1
- EWQPRPﬁ#V - _WﬁpRamw

2
= L'Waguw + L' B,"Ragp-

The identity ([2I3]) is now an immediate consequence of (Z.I0). O

It remains to prove the identity (ZI4]). We have, in fact, the following more
general version of it.

Lemma 2.8. Let X be a vector-field with deformation tensor (X)7 and define
P = (1/2)Da Pmg, —Dp Oma).
Then,

D, (X)Paﬁu -D, (X)Paﬁv = (LXR)aﬁlw - (1/2) (X)WapRpﬁ/w

(2.15)
- (1/2) (X)ﬂ—ﬁpRapulh

Proof of Lemma 8 Using the definition of (X) P,

2D, X P,g, — 2D, X P4,
=D,D, ¥7g, - D,Ds V7, - D,D, X7, + D,Ds Or,,
- (D,D,DsX, — D,DsD,X,) + (D,D,D,Xs — D,D,D, X5)
+(D,DgD,X, - D,D,DsX,) + (D,DgD, X, — D,DsD,X,)
=I+II+IIT+1V.

We calculate
I =X"D,Rappup + RapupDy X7”
and
I1=(D,D,D,X; -D,D,D,Xp)
+(D,D,D,Xs - D,D,D, X;) + (D,D,D, X3 — D, DD, Xp)
= (RyappD? X5 + Ryap,DuX?) + (XPDoRyyus, + RupspDaX?)
(RauwyD? X5 + Rapups, Dy X7).

_|_

Therefore, replacing a <+ 5 and p < v,
111 = XPDHRBOWIJ + RﬁanDMXp
and

IV = (RpusupD? Xo + RyusapDu XP) + (Z°DsRyvap + RuvapDsX?)
+ (RpuupD" Xo + Rpvap D X?).
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Therefore,
I+ II+IIT+1V = X?(D,Ragup + DuRsavy + DaRuysy, + DsRyvap)
+ DaXpRVqu + DgXpRH,,ap
+D?Xo(Ryprp + Rpupp) + D Xg(Ruapup + Raywp)
+ D, X?(Ruasp + Rgavp + Rpvap)
+ DVZP(Raﬁup + Rauﬁp + Ruﬁap)
=2X’D,Raguw + 2D, X Rasp + 2D, X Ragpp
+ 2D X Rypun + 2D X Rapun — (X)WapRpﬁW - (X)WBPRMW‘
The desired identity (2.15) follows.

Alternatively, one could also prove (210 by choosing a system of coordinates
x', ..., 2% such that X = 9y and calculating explicitly (X7, )P, and LxR. O

Finally, we derive a wave equation for the tensor W.
Lemma 2.9. With the notation in ([27),
DD, Waguw = M(B,DB,P,DP,W).s,.-
Proof of Lemma 291 We use the identity

(2.16)
DUDUROL1QQOL;30(4 - Rapa3a4Raa1a2p + Ro‘agpa4Rga1a3p + Rgagangga1a4p

o P o 14 o 14
_Ropa3a4R [e2Xe 51 _Roalpa4R Qo3 _Raalang oty

which is a well-known consequence of the Einstein vacuum equations. Using Lemma
22 we get
4

j=1
and then

Dg (EZR)mazagou; =DLy (DoRawzasw)

Therefore, after using Lemma to commute derivatives again and (2I0), the
equation for Og(LzR) above can be written, in schematic notation:
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Also using m = M(B), Dr = M(DB), and LzR = M(B,W), it follows that

=1

The lemma follows using the identity I'a5,, — DgBay = Paug- O

We summarize some of the main results in this subsection in the following propo-
sition:

Proposition 2.10. We assume that O C M, L, Z are as defined at the beginning
of this section, and satisfy (Z3)). In M we define
Tag = DaZg +DgZ,.
We define the smooth antisymmetric tensor wag in M as the solution of the equation
Dirwag = TapDgL’ — w3,Do L7, w=01in 0.
We also define the smooth tensors
Popu = (1/2)(Dampy — Dpmau — Duwap),
Bag = (1/2)(Tap + wap),
Wagys = (L2R)apys — (B © R)agys-
Then the following equations hold in M.:
D*Wagys = M(B, P,W)gys,
(2.17) D.B=M(B,P,W), DpP=M(B,PW),
OwW = M(B,DB, P,DP,W,DW),

where M(WB, ..., (¥)B) is defined as in Z1).

2.2. Carleman inequalities and the local extension theorem. Motivated by
the identities summarized in Proposition 2.10] we consider solutions of systems of
equations of the form

OgS = M(WB,...,"WB S DS),
D, YB=M(MB,...,B, S DS), i=1,... k.

We would like to prove that a solution S, VB, ..., *)B of such a system which
vanishes on one side of a suitable hypersurface has to vanish in a neighborhood of the
hypersurface. Such a result depends, of course, on convexity and non-degeneracy
properties of the hypersurface. We recall (see Definition [[LT]) that a domain O is
strongly pseudo-convex at a boundary point p if there exists a defining function f
at p, df (p) # 0 which verifies that

(2.18) D2f(X,X)(p)<OifX7é0€Tp(M) satisfies g,(X,X) = X(f)(p) =0.

We are now ready to prove Theorem We use the covariant equations derived
in Proposition ZT0l (see (ZI7)) and Carleman inequalities. We introduce a smooth
system of coordinates ®° = (x1,...,2%) : By — Bi(p), ®7(0) = p, where B, = {x €
R?: || < r}, 7 > 0, and Bi(p) is an open neighborhood of p in M. Let d1,...,04

denote the induced coordinate vector-fields in B;(p) and let B,.(p) = ®P(B,), r €
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(0,1]. For any smooth function ¢ : B — C, where B C Bj(p) is an open set, and
j=0,1,..., we define

(2.19) 7 é@) = D 10a - 0a,6(z)], zEB
al,‘..,ajzl

We assume that

(2.20) gas(p) = diag(—1,...,-1,1,...,1).

We assume also that, for some constant A > 1,

6 d
(2.21) sup Y Y |07 gap(@)| + sup ZW z)| < A.
IeBl(p)j:la,B 1 zeB 1p j=1

We use the system of coordinates ®P in the neighborhood of the point p, and
evaluate all the tensor-fields in the frame of coordinate vector-fields 0y,...,0y. In
view of equations ([Z.I7), for Theorem it suffices to prove the following:

Lemma 2.11. Assume that 6o > 0 and G;, H; : Bs,(p) — C are smooth functions,
i=1,...,1,j=1,...,J, that satisfy the differential inequalities

(2.22) { 0gGil < MY (|G| + [0"Gi)) + M S0 | Hol,

\L(H;)| < MY (1G] + 10 Gil) + M S22y | Hinl,

foranyi=1,...,1, 5 = 1,...,J, where M > 1 is a constant. Assume that
Gi=0and Hi =0 in Bs,(p)NO_, i =1,...,1, 5 =1,...,J. Assume also that
f is strongly pseudo-convex at p, in the sense of Definition [LI], and L(f)(p) # 0.
Then G; =0 and H; =0 in Bs,(p), i =1,...,1, 5 =1,...,J, for some constant
01 € (0,00) sufficiently small.

Lemmal[2TTlis proved in [I, Lemma 3.4], using two Carleman inequalities: Propo-
sition 3.3 in [7] and Lemma A.3 in [I]. The implicit constant d; > 0 depends only
on constants A in ([Z.21]), §p, and the constant A; in the following quantitative form
of strong pseudo-convexity:

Lemma 2.12. (a) Assume that f is strongly pseudo-convex at p. Then there are
constants Ay > A and p € [— Az, A1] such that, for any vector X = X*0, at p,

01 f ()l = AT,

(2.23) s o
X*XP(ugap(p) — DaDsf(p)) + Al X (f)(p)|° = A; | X7,

where | X|> = (X1)? + ... 4+ (X9)%

(b) Moreover, the inequalities [223)) persist in a small neighborhood of p, in the
sense that there is e = €(A1) > 0 such that for any vector-field X = X%04 in
Be, (p), the inequalities

' fl = (241) 7Y,

2.24
224 XX (4gas — DaDpf) + AX (NP = (241) X2,

hold in B, (p), where | X|? = (X124 ...+ (X9? and p is as in [Z23).
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Proof of Lemma 223l (a) The first inequality in ([223]) is just a quantitative form
of the assumption that p is not a critical point of f. To derive the second inequality,
let hop = —DoDgf(p) and

8o = inf XX Phag.
|X|=1,X*Xo=XD, f=0
By compactness, this infimum is attained, and it follows from ([ZI8) that 9 > 0.

By homogeneity, it follows that

(2.25) XXPhos > 0| X > if XOX, = XD, f =0.
We would like to prove now that there is ng € {1,2,...} such that
(2.26) XXPhag +no(XDuf(p))? > (60/2)|X|?  if X*X, =0.
Indeed, otherwise for any n = 1,2, ... there would exist a vector X,, = X%, such

that | X,,| =1, gp(X,, X,) =0, and
X3 X hag +n(X Do f(p)? < 6o/2.

After passing to a subsequence, we may assume that X, converges to a vector
X, with |X|?2 = 1, XX, = 0, XD, f(p) = 0, and X*XPh,s < /2, which
contradicts (Z20]). Therefore ([Z26]) holds for some constant ng.

Let C ={X €e I,M: |X| =1land X°X, >0}, C_. ={X e T,M : |X| =
1 and X*X, <0} and, for 6 € [0,1],Cs ={X € T,M : | X| =1 and | X“X,| < d}.
Since the metric g is non-degenerate, we may assume that Cy # 0 (if C; = 0,
then C_ # () and the proof proceeds in a similar way). For p € R, we consider the
function

K,:T,M =R, K, (X)=X*X"hos+no(X*Daf(p))?+ pX*Xa,

where ng is as in (Z26]). Using a simple compactness argument as before, it follows

from (2220, that
(2.27) there is 0’ > 0 such that Ky(X) > /4 for any X € Cy.
Then it follows that there is p; > 0 sufficiently large such that
K, (X)>0if X € C; and there is X € C; such that K_,, (X) < 0.
Let
po =1inf{p € [—p1,p1] : K,(X) >0 for any X € Cy}.
We analyze the function K,,(X) = X*Xk,s, where
kap = hap +10Daf(p)Dsf(p) + pogas-

In view of the definition of pg, K,,(X) > 0 in C;. Moreover, using also ([2.27),
there exists Xo € C4 such that K, (Xo) = 0. Since K, is homogeneous of degree
2, it follows that the point Xy is a local minimum for K,, in 7, M. Therefore,

(2.28) VX kop =0 and VEVPkys > 0 for any V € T,0.
We show now that
(2.29) K, (X)#0 for any X € C_.

Indeed, assuming K,,(X1) = 0 for some X; € C_, it follows from (Z28) that
K,,(tXo+ (1 —t)X;1) =0 for any ¢ € [0,1]. However, this contradicts ([2.27]) since
there is ¢y € [0, 1] such that g,(toXo + (1 — o) X1,t0Xo + (1 — t9)X1) = 0 and
toXo + (1 — t())Xl #0.
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Using (2.27)), 2.28), and (2.29)) it follows that K, (X) > 0 for any « € C_ UCs»,
for some ¢"” > 0. A simple compactness argument then shows that there is ny large
enough such that K, 1/,, > 0in {X € T,M: |X| = 1}. The second inequality in
[223) follows by setting 11 = pg + 1/n1 and A; sufficiently large.

Part (b) of the lemma follows from part (a) and the assumption (22T]). O

3. PrROOF OoF THEOREM [I.J]

The plan of the proof is the following: we fix a point p € Uy "'H™ NE, outside
both the bifurcation sphere Sy = H~ NH T and the axis of symmetry A= {p € E :
Z(p) = 0}. Then we consider the Kerr metric g and the induced metric

hap = Xgap — ToTp, where X = g(T,T),

on a hypersurface II passing through the point p and transversal to T. The metric
h is non-degenerate (Lorentzian) as long as X > 0 in II, which explains our as-
sumption 0 < a < m. It is well known (see for example [I2) Section 3]) that the
Einstein vacuum equations together with stationarity L1g = 0 are equivalent to
the system of equations

, 1
"Ricy, = W(vavax + V. YV,Y),

(3.1)
"O(X +iY) = %h“b(‘?a(X +4Y)9p(X +14Y),

in II, where Y is the Ernst potential associated to T. We rederive these equations
in Proposition [3.1] below, together with other explicit equations and identities that
are needed for the proof of the theorem.

We then modify the metric h and the functions X and Y in a neighborhood of
the point p in such a way that the identities ([BI]) are still satisfied. The point is
to prove the existence of a large family of smooth triplets (E, X , }7) satisfying (3.1))
and agreeing with the Kerr triplet in IT\ E. This follows by solving a characteristic
initial-value problem, using a generalization of the main theorem in [I1].

Finally, in Proposition we construct the space-time metric g,

gab :Xilﬁab_kj‘(igagh §a4 :XA;H §44 :5(:; a7b: 1a2537

associated to the triplet (E,)Z’ ,}N/), the vector-field T = 94, and a suitable 1-form
A which is defined in II. By construction and [12, Theorem 1], this metric verifies
the identities Ric = 0 and L£rg = 0, in a suitable open set U. Then we show
that we have enough flexibility to choose initial conditions for X , Y such that the
vector-field Z cannot be extended as a Killing vector-field for g in the open set U.

3.1. Explicit calculations. We consider the Kerr space-time KC(m, a) in standard
Boyer—Lindquist coordinates,
A

(3.2) g=———(dt)? +

2(a; 2 2
= ¥2(sin ) ( 2amr t) n (dr)2—|—q2(d9)2,

e
g\ )ty
where

A =r%+a® —2mr,
(3.3) q® =%+ a?*(cos0)?,
Y2 = (r? +a?)¢® + 2mra®(sinf)? = (r? + a?)? — a?(sin 6)2A.
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We make the change of variables:
du_ = dt — (r* + a*) A~ Ydr, dé_ = dop — aA"dr.
In the new coordinates (6,7, ¢_,u_) the space-time metric becomes
(3.4)
g =q¢*d0* — (du_ ®@dr+dr @ du_) + a(sin0)*(dé_ @ dr +dr @ do_)
2 in6)2 Y2 (sin 0)?

- %ﬁm)(m ®du_ +du_ ®dp_) + %d& +
and the vector-field T = d/dt becomes T = d/du_. The metric g and the vector-
field T are smooth in the region

R={(,r,¢_,u_) € (0,7) x (0,00) x (—m,7) x R:2mr — ¢*> > 0}.
Let

2mr — q2
22 g2

2mr — ¢?
X =g(T,T) = q—2q7 hag = Xgap — TaTp,
and
II={,r,¢_,u_) € R:u_=0}.
Let
d d d
(35) 81 - @7 a2 = 5, 83 = CMT

denote the vector-fields in II induced by coordinates (6,7, ¢_). We calculate the
components of the metric h along the surface 1I,

hll =2mr — (]27 h12 = O, hlg = 0, h22 = —].,

3.6
( ) h23 = —a(sin9)2, h33 = —A(sin@)z.
Therefore,
hll — 1 h12 =0 h13 =0 h22 — A

(3.7) 2mr — ¢2’ ’ ’ 2mr — q?’

. p2 — 4 B33 — 1

2mr — q2’ (sin0)2(2mr — ¢2)°
Let

(38) 1_‘cab = h(Vabaa, 80) = (1/2)(aahbc + abhlw - 8chab); Fdab = thFcab-
Using (3.0) and [B.7) we calculate the following:

(3.9)
Iy, = a®sin 6 cos 9 2, = A(r —m) s, — a(m —r)
! QmT — q2 ’ 1 2mrr- — q2 ? 1 2mr _ q2 9
m-—r a?sin 6 cos 0 —acotf
Fl - F? _ 2> eh F3 __actovy
12 2m7‘ — q2 ) 12 QmT — q2 ) 12 2m7" — q2 )
Iy =0, I'?5 =0, %15 = cot#,
Iy =0, 259 =0, [P =0,
. a sin 0 cos 0 2. — a(r —m)(sin )2 s, _m-r
23 = S — 23 = o — g 23_2mr—q2’
I, — Asinfcosf 2, — A(r —m)(sin6)? I8, — a(m — r)(sin6)?
2mr —q? 2mr — 2 ’ 2mr — ¢
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We have
"R(8as 0e)0y = Vo,(Vo,0) = Vo.(Vo,0)
= Vo, (T%c0a) — Vo, (I q0a)
= 0a(T%c) 04 + T%pel 400e — 0c(Da)a + T%hal ac0e
= [0a(T%¢) = 0e(T%a) + DT %ea — ThaT%ec]0u.
Therefore,
(3.10) "Ricsa = 9c(Ta) = Ja(T%e) + T%al“ae = T da-
Using [3.8) we calculate
(811) T = (1/2)h°(Bhea) = (1/2)y(log |h]) = Dy (log(sin 6(2mr — ¢2)).
Thus,
hRicyy = W, hRicyy = 0, hRicy3 = 0,
(3.12) @mTEQQQ
hRm”ZEE%%FF’ "Ricgs =0,  "Ricss = 0.
Let
X:2mr—q2, Y:_chggose

(3.13) ¢
VaXVbX + VavaY)'

)

1
Top = =
b 2X2(

We calculate

(3.14)

da?mr Sif 0 cos , X = 2mq? _4 dmer? |
q q

2masin 0¢? — 4ma? sin §(cos 6)? 5y 4dmra cos 6
) 2 = -1
P P

X = X =0,

Y =

Therefore,

2m?2a?(sin )2
(2mr —¢2)2’

2

Ty, = T2 =0, Ti3=0,

2m
(2mr — ¢2)2’
Also using (BI2) it follows that

Ty = T3 =0, T33=0.

"Ric="T.
Using (3.7), (3I4), and |h| = (sin§)2(2mr — ¢*)? we calculate

. 2 in6)?
|h[Y2hY0;(X +iY) = i%(r —iacosf)?,
—2mAsin 0
7
2ma sin 6
¢t

(3.15) |h[Y2h20;(X +iY) = (r —iacos0)?,

|h|1/2h3j5j(X+iY): (r —iacosf)?.

Y =0.

577
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Therefore
hOX — 24m?2r2a?(cos 0)? — 4m?2r* — 4m2a*(cos )4
(3.16) ¢°(2mr =) 7
hOy — 16m2ra cos0(r? — a?(cos 09)2).
¢°(2mr — ¢?)

We also calculate
24m?2r2a®(cos 0)? — 4m?r* — 4m2a*(cos §)4

X 'h (9, X0;X — 0;,Y0;Y) =

¢ (2mr — ¢2) ’
OX 1119 X0V — 16m?racos0(r? — a®(cos 6)?)
B q°(2mr — q*) '
Therefore,
1
"Ricay = 5375 (VaX Vo X + VoY V,Y),
(3.17)

"X 44Y) = %h“baa(x +4Y)9p(X +4Y).
The components of the spacetime metric g in the coordinates (8,7, ¢_,u_) (see
B4)) have the form
gab = X Thay + XA Ay, gas = XA, gu =X, a,b=1,2,3.
or, with z = (0,r, ¢),
g = (Xdu_ + Audz®)? + X " hapdz®da?®,

where
2 )2
q 2amr(sin 6)
3.18 A0 AT, 2amr(sm0)”
( ) ! ’ 2 2mr — 2’ 3 2mr — g2
We compute
4a®mrsin ) cos 6
Ay — Ay = ———————
1 A2 — 024, Qmr— g2
—2ma(sin 0)%(r? — a®(cos 6)?)
O Az — 0345 =
—4mraA sin 0 cos 6
03A1 — 01 A3 =
A1 — 0143 @mr — P)2
Therefore, also using ([B15), with * €193= —|h|*/?, gives us
(3.19) X2(V,Ap — VyAy) = "egpe VEY.

To summarize, we verified the following:
Proposition 3.1. With the notation above, the metric h, the functions X,Y, and
the 1-form A satisfy the identities (in I1)

1
hp: _
RlCab = ﬁ(vaXVbX + VaYVbY),

"X 44Y) = %h“baa(x +4Y)9p(X +14Y),
X2(VaAy — VpAy) = "Egpe VY.
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Remark 3.2. Under a change of coordinates of the form v’ = u_ — f(x',22 23)
the 1-form A = A,dx® changes according to the formula A’ = A — df. The change
of coordinates amounts to a choice of the hypersurface II, i.e., instead of u_ = 0
we would choose u_ = f(0,r, ).

3.2. The metric h. We would like to construct now a large family of triplets
(h, X,Y) and 1-forms A, such that the identities in Proposition Bl are still satisfied
in a neighborhood in II of a fixed point p € (Uy N H™ NE)\ (AU Sy). Let

No={zell:r(x)=ry :=m+Vm2—a2}.
This is a 2-dimensional hypersurface in II; the vector-fields 9; and 03 are tangent
to Ny and, using ([B.6) and (3.3),
h(ag, 83) = h(83, 81) = O7 V3363 = —[(m/a)2 — 1]1/283, along NQ.

Therefore, Ny is a null hypersurface in II. Along Ny C II we define the smooth,
transversal, null vector-field,

(3.20) L = (2a*(sinf)? — A) ™! - [2a0, — (sin ) ~203).

Using (3.6)), it follows that

(3.21) h(L,L) = h(L,0;) =0, [L,05] =0, h(L,03) = —1, along Np.
Let

P={zeNy:¢_(x)=0}, p={xeP:0(x)="0c (0,m)}.
Thus P is a 1-dimensional smooth curve in Ay and p € P is a point. We extend the
vector-field L to a small open neighborhood D of p in II, by solving the geodesic
equation
ViL=0 in D.

Then we construct the null hypersurface N7 in D as the congruence of geodesic
curves tangent to L and passing through the curve P. We also fix a time-orientation
in D such that 05 and L are future-directed null vector-fields along P N D, and we
let J*(N7) denote the causal future of A7 in D. Let

D_={zeD:A(z) <0}, Dy ={zeD:A(zx) > 0}.
The following proposition is a consequence of a more general versiord of the main
theorem in [11].
Proposition 3.3. Assume )?,57 : N1 — R are smooth functions satisfying
X=XandY =Y inNiND_.

Then there is a small neighborhood D' of p in I, a smooth metric h in J*+ (M)ND’,
and smooth extensions X,Y : J*(N1) N D" — R such that, in J*(N1)N D/,

~ 1 ~ —~ —~ —~

"Ricy, = —, (VaX VX + V.YV,Y),
(3.22) o
"O(X +iY) = Ehabaa(x +iY)0p(X +1iY).

6The result in [I1] is stated only for the Einstein vacuum equations. It is clear, nevertheless,
that a straightforward generalization of it applies to the coupled Einstein Wave Map equations in
any dimension. Note that in our special case of 2+ 1 dimensions the only dynamical variables are
X and Y, corresponding to the wave map. We note also the more recent work of Luk [9], which
is closer to our setting; in particular, it justifies the second identity in (3:24]).
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In addition,

(3.23) X=X, Y=Y, h=h in JE(N)ND' ND_,
and, for any vector-field V tangent to N1 N D',

(3.24) h(L,V)=0 and VL =0 along Ny D'

To be able to construct the desired space-time metric g we also need to extend
the 1-form A (compare with the formula (30)). More precisely:

Proposition 3.4. There is a smooth 1-form A, ina neighborhood D of p in J*(N7)
satisfying (compare with (319 )

X2(VoAy — VipAy) = €04 VOY,

(3.25) _
A=A mDND_.

Proof of Proposition B4l Let L denote the geodesic vector-field (i.e., %ZZ = 0)
generated in a neighborhood of the point p in the vector-field L defined on Ny in

[B.20), so

L=Lin[(J*WN)ND_)UM]ND"
_ Let g = L*A,, defined using the unperturbed L and A. We then define the form
A as the solution of the transport equation, in a neighborhood of the point p in

J+(N1)>
Za%a;(b + Zaﬁbza = Aéabcj\(:72ia6ci} + ebg,

(3.26) N
A=A along Nj.

It follows easily from (BI9) that the form A verifies this transport equation in D_,
thus A is a well-defined smooth form in a neighborhood D of p in J*(A;) and
A = Ain D_. Tt remains to prove the identity in the first line of B2H). We
observe first that A,L% = g in a neighborhood of p in J*(N7). Indeed, using the
definition (B20) we compute

Zaﬁa(zbgb - g) = sza%a;{b - zaeag = Oa

therefore,
(3.27) LA, =g in a neighborhood of p in J*(N}).
Letting
(3.28) Qav = (VoA — Vi A,) — X2€,,, VY,
it follows from (3.26]) and ([B.27) that
(3.29) L'Qu =0,  Qab+ Qua =0.
To show that Q vanish identically we derive a transport equation for it. Using
Lemma and the identity (3.26) in the form L£;A. = = EmenX X2[myny + ch,

we calculate
Xzﬁanb = Eabu
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where
Eapy = X2(VoL; Ay — VL3 Ay) + 2X T L(X)Eapm VY
— VYV "Ly, — o L7 (V™Y)
= Crn Vo L™ VY + € LV VY — 2X 1V, (X)Eppn L™V"Y
= Cman Vo L™ VY = Epan L™V V™Y 42X 'V, (X)Epman L"V"Y
+2X ' L(X)Eapm V™Y —€apm V™Y V" Ly, — Eapm (L"V, VY — V'YV, L™).

Now we calculate

E By = 2VYV"L, — 2V"YV, L + 20"V, VY — 2LV, VY
—4X WV (X)LVEY +4X 'V, (X)LEVY
+4X'L(X)VEY — 2VY V"L, — 20"V, V°Y 4+ 2V"YV, L
= 2LV, V"Y +4L°X 'V, (X)V"Y.
Since ?nﬁnff = 2)2':16"(5()6"37 (see (B:22)), it follows that € By = 0. There-
fore, Eu,, = 0. Since Q = 0 in DN D_ it follows that Q =0 in D as desired. O

3.3. The space-time metric. Let )~(, 17, E, D, and A be as before. In D x 1,
where I C R is an open interval, we define the Lorentz metric g by

(3.30) 8ap = X hap + XAgAp,  Bas=XA,, gu=X, ab=123.

The functions X , SN/, ga,ﬁab, originally defined in D are extended to D x I by

(3.31) 04(X) = 04(Y) = 04(As) = 04(hap) =0,  a,b=1,2,3.

Using 330), it follows that, with Ae = %“bgb, a=1,23,

(3.32) B ~
gab _ Xhab, §a4 _ —XAa, g44 _ X—l —I—XAaAa, |g| _ X_Q‘h|.

Proposition 3.5. (a) The metric g agrees with the Kerr metric g in (DND_) x I
and satisfies

L5,€=0, BRic=0 in D x R.

(b) If Z = Z*0, + Z%0, is a Killing vector-field for g in D x I and if [Z, 34] =
in D x I, then Z' = 20, is a Killing vector-field for h in D satisfying Z'(X )
Z(Y) =0, ie.,

(333) Z/(X) = Z/(i;) = 07 (‘CZ’E)ab =0.
Proof of Proposition 33l (a) The claims follow easily from definitions, except for
ERic=0 inDxR

On the other hand, this is a well-known consequence of the identities ([B:22]) and

([B25) satisfied by h, X,Y and A, and the definitions (3.30) and B3I). See, for
example, [12] Section 3] for the proof.
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(b) The identities 9,24 = 0, 042% = 0, (Lz8)as = 0, (Lz8)as = 0, and
(Lz8)ap = 0 give
Z(X)=0,  Z(XA,)+0.2°X A, + 8,2°X =0,
Z(X Y hay + XA Ay) + 0, 2°(X Ve + X AA) + 0,2 X A,
+ 0 Z(X M hge + XAgAL) + 8, Z* X Ay = 0.
Also using [B31)), it follows that
Z'(X)=0,  Z'(Ad)+0,Z°Ac+ 0,2 =0,
Z'(hay) 4 00 Z hep + 0pZhae = 0.

Therefore, along D,

Z'(X)=0, (Lzh)w=0, (LzA),=-0,2"
The last identity in &33), Z’(Y) = 0, follows from (B25), rewritten in the form
VY = —X?E""V, A 0
We can now complete the proof of the theorem.

Proof of Theorem [L3. We fix a point p € (UyNH~NE)\ (AU Sp); we may assume
that

u-(p)=0, ¢-(p)=0, O(p)€(O,7), r(p)=m+vVm?>—a’

Then we define the surface N7 as in Proposition For any smooth functions
X,Y : N7 — R agreeing with X,Y in N, N D_, we construct the corresponding
neighborhood D of p in J* (A7) (which we may assume to be diffeomorphic to the
unit ball in R? and sufficiently small relative to Up), the smooth Lorentzian metric
h in D, the scalars X,Y : D — R, and the 1-form A, verifying (see (822) and

B.23))

1 ~ o~ ~ o~
"Ricyy = —= (Vo XV X + V,YV,Y),
2X2
(3.34) AO(X +iV) = %Eabaa(f( + V)0 (X +iY),
X2(VaAy — VyAy) = €Eanc VY,

in D. Then we construct the space-time metric g in D x I as in (330)-B31).

In view of Proposition B5(a), it remains to show that we can arrange our con-
struction in such a way that the vector-field Z cannot be extended as a Killing
vector-field for the modified metric g. We show first that if Z can be extended as
a Killing vector-field for g, then

(3.35) [2,0]=0 inDxI.
Indeed, letting V' = [04, Z], we calculate, using Lemma [Z2]
D.DgsV, =DaDg(Ls,Z) = V' Rpapy-

Since V vanishes in (DN D_) x I, it follows that V vanishes in D x I as desired.
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The identity (335) allows us to apply Proposition B0I(b). It suffices to prove
that we can arrange the construction in subsection such that the vector-field 03
cannot be extended to a vector-field Z’ in D such that

(3.36) Lzh=0 and Z'(X)=2Z'(Y)=0 in D.

More precisely, we assume that ([3.36]) holds and show that there is a choice of X,Y
along N such that (3:34) is violated.

Assuming that (Z36) holds, we define the geodesic vector-field L in D as in
subsection [3:2 and notice that

V:h(L,Z') =0.
Recall that (see (B:21]))
m(L,L)=0, [L,Z]=0, h(L,Z)=-1, along Np.
Since h(L, Z') = —1 along N, it follows that
WML, Z'y=-1  inD.
We let e(g) := E, e(3) := Z', and fix an additional smooth vector-field e(; in D such

that E(e(l), 6(2)) = h(e(l), 6(3)) = ?L(e(l), 6(1)) —1= 0, i.e.,

L,Z.

a __ ~abc
€y =

To summarize, assuming (B.36), we have constructed a frame ey, ee),e(3) in D
such that

(3.37) hleqseq) 1= ﬁ(e(n’ e(2)) = §(6<1>, e(3))
= h(€(2)7 6(2)) = h(6(2)7 6(3)) + 1=0.

We define the connection coefficients
L@ e = hleq): Ve, e)-
Using the identities %Z =0and Lz h= 0, it follows that
La)@2)2) = 0 for any a € {1,2,3},
L@ + L@@ =0 for any (a,c) € {1,2,3}%.
Since [L, Z'] = 0 along N, and
0= Lz (LVuLy) = LV a(Lz Ly) + h*VoLy(Lz Le),

it follows that £ Z/E = 0 in D. Then, using the definition of e(y), it follows that
Lzeny =0 in D, therefore

L@ = Dia) e ) for any (a,¢) € {1,2,3}%.
To summarize, letting F' = %(Z’, zZ" = E(3)(3)7 we have

hayay =1 =haye) = ha)e) = heye) = heye) +1=0, hee) =F

3.38) ~ ~ - - ~
(3:38) RO _ 1 Z{0@ Z {506 Z {66 2506 1120, @@ - _p
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and

(3.39)
Foymm =Teee =Teyee =Tooe =Toee =Teowe
=Te@w =0,
oy =Teoee =Teee =Teoonon =Toeo =Toae =0,

“Toeo =Tewa:

1
Lo =Teowe =Twee = —geF), ae{l2}

“Teome =Toee = Teeo =Teeo = Towe =Tuee)
6(3) (F) = 6(3) (F(a)(b)(c)) = 0, [6(3),6((1)} = 0, a, b, S {1, 2, 3}

We derive now several identities for the connection coefficients I' and the curva-
ture "R. Clearly,

ER(a)(b)(c)(d) = %(e(a)a [ee(u) (66(4)6(17)) - %e(d) (ee(c) 6(b)) - 6[e(c),e(d)]e(b)])
= he(ays Veq, ™ gy @y em)) = Very 0™ 1y 0y €m))
— (™ @ye) = T (0)(@) Ve (1))
= e T@w@) ~ €@ T@e)ie)
" 4y L@ omy@ + ™ @ = T @)@ o) m)

for any a € {1,2} and b,¢,d € {1,2,3}. Also using the identities (3.38) and (3.39),
it follows that

+T 4y @) T (@) my() — T

W _
Ruye@e) =e2CTwe)e) —~Toeelwe) e

hR

R _
Reyme@o = e Tonn) +Toooloeo)-
We can now obtain our desired contradiction by constructing a pair of smooth
functions X, Y along N7 such that not all the identities above (starting with ([3.34)))

can be simultaneously verified along N7. For this we fix a smooth system of coor-
dinates y = (y!, 9%, ¥3) in a neighborhood of the point p in II such that

; - d
M={q:9°(@) =0}, No={q:9°(¢)=0}, L=L= 3 Mons M.

More precisely, we fix the L, as in the unperturbed Kerr, in a neighborhood of p
and define first y? such that y? vanishes on Ny and L(y?) = 1. Then we complete
the coordinate system on Ny and extend it by solving L(y') = L(y*) = 0.

Assume 9 : R3 — [0,1] is a smooth function equal to 1 in the unit ball and
vanishing outside the ball of radius 2. We are looking for functions X ,)N/ of the
form

(341)  X(¢9)=X(q), Y(9)=Y(q) +eb((y(a) —y®))/e),  q€MN,

where p’ is a fixed point in N7 N D, sufficiently close to p, and (X,Y) are as in
B13). We show below that such a choice leads to a contradiction, for e sufficiently
small.



LOCAL EXTENSION OF KILLING VECTOR-FIELDS IN RICCI FLAT MANIFOLDS 585

Let

d d
V = — V = —
Lo 2

In view of the definitions,

Vs=——= e(a) = Ko Vi-

We now use the last identity in (.40) and the first identity in (3.34), along N.
Since hR(g)(l)(g)(l) = hRic(g)(Q), and recalling (338) and (B39), we derive

1 ~ ~
(3.42) Va(Cyymy) = Coma)? = E[VQ(XF +15(Y)?,

along Ai. In addition, since

(3.43) le), ey = [Va, Ky Vi + K2y Val = Va(K () )Vi + Va(K () Ve

along N1, it follows that

(3.44) Va(K(y) = Kl - hlle) el ey) = KTy,

along N;. Using the ansatz (341) together with (3.42), and [B.44), it follows that
(3.45) |G| +[Va2(G)| £ 1 for any G € {Lezyyy, Ky, 1/ Ky}

along A7, uniformly for all p’ € A; sufficiently close to p and € < €(p') sufficiently
small.
Next we use the identity on the second line of ([B40) and the Ricci identity in

334), along N;. Since ER(l)(g)(Q)(:;) = —ERiC(1)(2)7 and recalling (3.38)), (3.39) we
infer that
(3.46)

1

Va(T1y2)3)) = %[‘@()}) (KinyW +K(21)V2)()~() +Va(Y)- (KiyVa +K(21)V2)(57)]7

along N;. In addition, using again (3.43)), it follows that
Va(K(y) = —h(le@) eyl es)) + Va(K ) h(Vi, egs))
= ()3 + Ky Va (B () /Ky

along Nj. Using once more the ansatz ([B.41]) together with (3.46]), and (B41) as
well the previously established bounds ([B:45]), it follows that

(348) |G|+ [Va(G)| S 1 for any G € {T'(2)1)(1), K1y, 1/ K1y, Typs), Koy b

(3.47)

along N7, uniformly for all p’ € N; sufficiently close to p and € < e(p’) sufficiently
small.

Using the Ricci identity in (834]), the identities 6(3)()?) = e(3) (Y) = 0, and the
bounds ([B4])), it follows that

Z |HRic(a)(b)| <1 along V.
a,be{1,2,3}

Using the first identity in (340) with ¢ = 2, the identity

"R2)(3)2)(3) = "Ricez)s) + (1/2)("Ricqya) + F'Ricg)a)),
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and ([B.39), it follows that
Va(F) = =2 (2)(3)(3),
Va(Cy@@) = —(Cay@)e)? + "Rice)e) + (1/2)("Rieq)q) + F - "Ricg) ).
Using again ([3.48)), it follows that
(3.49) [F|+ [Va(F)[ + [Va(V2(F))| S 1 along N7,
uniformly for all p’ € N7 sufficiently close to p and € < €(p’) sufficiently small.
We can now derive a contradiction by examining the second equation in (B.34)):
E(“)(b)ﬁ(a)ﬁ(b) (}7) = 25(:_1%(&)@)6(&)()?)e(b)(?).
Using (343) and 349), it follows that
leqy (ey(Y)) — Fey (e (Y))| S 1 along MV,

uniformly for all p’ € A sufficiently close to p and € < ¢(p’) sufficiently small. This
cannot happen, as can easily be seen by first letting € — 0 and then p’ — p, taking

into account that F' and K (21) vanish along Ny NN7. O

4. EXTENSION ACROSS NULL HYPERSURFACES

Assume in this section that (M, g) is a 4-dimensional Lorentzian manifold sat-
isfying the Einstein vacuum equations Ric(g) = 0, p € M is a fixed point along
a smooth null hypersurface N C M (given by the level hypersurface of a smooth
function u : M — R) with fixed null vector-field L at p. Assume that v : M — R
is a smooth optical function transversal to A, more precisely,

(4.1) DuD,u =0in M, u(p) =0, (D“uD,u)(p) = —1.

Let NV be the null hypersurface passing through p generated by the zero level set of
u, ie., N ={r € M: u(xr) =0} and L = —g*#9,udp its null geodesic generator.
Let

O_ :={reM:u(zx) <0}
and assume that Z is a smooth Killing vector-field in O_.

4.1. An extendibility criterion. We extend Z to the neighborhood of p as in

23), such that
L*LP(DoDsZ, — Z’Rpap,) = 0.

Theorem 4.1. Recall the assumptions at the beginning of the section. In addition,
assume that we have, along the null hypersurface N,
(4.2) (LzR)(L,X,L,Y)=0

for any vector-fields X, Y € T(M) tangent to N'. Then there is a neighborhood U
of p such that Lzg =0 in U.

Remark 4.2. The sufficient condition (£.2)) may be replaced by a sufficient condition
at the level of the deformation tensor 7, namely

(4.3) (Lzg)(X,Y)=0 along NV,

for any vector-fields X,Y € T(M) tangent to N'. Both (£2]) and ([3) lead to the
conclusion (@9)), using the identities ([@I)-ES).
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Proof of Theorem [l According to the results proved in section 2.1] we introduce
the tensors W, 7, w, B, and P as in Definition 2:3] Recall that (see Lemma [2.0])

(4.4) Toplh =0, wauL =0, Pag,L' = 0.
Since B = (1/2)(m +w) we also have B, L* = 0. We fix a function y : N' — R such

that y vanishes on N'NA and L(y) = 1 along N. Then we fix a frame (ey, e, e3,€4)
along A such that

e1, e, e4 are tangent to N, eq =1L, e1(y) = ea(y) =0,
gler,ea) = glea,eq) — 1 =gleg,e3) + 1 =g(eq, e3) = gles,e3) =0, a € {1,2}.

Our main goal is to show that the tensors W, B, P vanish along A. For any
tensor M = M,,.. o, and any s € Z we define MZ* any component of the tensor
M in the basis (e, es, €3, e4) of signature > s, where the signature of the component
Mo, ...« is equal to the difference between the number of 4’s and the number of 3’s
in (aq,...,ax). Thus, for example,

BZ° € {Bu4, Baa, Baa, Bus, Bsa, Bay - a,b € {1,2}}.

Recall our main transport equations (see Lemma [2Z7]),

(4.5) Dy Bos = LPPpse — Dol’B,g
and
(46) DLPa,Bu = LVW(XﬁMI/ + LVBHPRO(QI)V - DMLpPagp,

and our main divergence equation (see Lemma 2.4]),
(4.7) D*Wagys =B""DyRyupys + 8" PupR” pys
+ Pg, ,R" 5+ Py, ,R" 3" s + Ps,,R" g1 V.
In view of the definitions we also have

(4.8) D.L, =0, D,L, =0, a€{1,2,3,4}.

We use equations ([@H) and (@), together with the assumption £zRyqpa = 0,
a,b € {1,2} to write, schematically,

(DLB)Z? = M(PZH)+M(B=°),  (DLP)>' = M(W=?)+M(P>")+M(B>°).
Therefore, also using (@4,
(4.9) B=°=0, P2'=0, W=22=0 along .

Using ([{9) and the general symmetries of Weyl fields, equation (7)) with
(879) = (4ad), a € {1, 2}, gives, schematically,

(DLW)=! = M(B=71) + M(PZ%) + M(W=1).

Using the transport equations (@H) and (@6, together with the identities (L&) and
[#39) we derive, schematically,

(DB)="! = M(P=") + M(B=71),

(DL P)=0 = M(W=Y) + M(B=71) + M(P=9).
Therefore, ([{3]) can be upgraded to
(4.10) Bzl =0, pP=0 =, w2l =0 along V.
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We can now continue this procedure. Using ([{I0) and the general symmetries
of Weyl fields, equation (A7) with (8vd) = (434) and (8v0) = (412) gives, schemat-
ically,

(DLW)=0 = M(B=7%) + M(P=7") + M(W=?).

The transport equations (5] and ([6]), together with the identities ([{L8]) and (ZI0)
give, schematically,

(DLB)” ™% = M(P>") + M(B=7?),
(DLP)> 7! = M(W=0) + M(BZ72) + M(P=71).
Therefore, [@I0) can be upgraded to
(4.11) B=0, P='=0, W=2"=0 along .
Using ([@II)) and the general symmetries of Weyl fields, equation (7)) with
= (4a3), a € ives, schematically,
(870) = (4a3), a € {1,2}, gi hematically.
(DLW)Z" = M(PZ72) + M(W=71).
The transport equation (4.0) and the identities (£8]) and [@IT]) give, schematically,
(DLP)= 72 = M(W="1) + M(P=72).
Therefore, ([{I1]) can be upgraded to
(4.12) B =0, PZ=%2 =, w="l=90 along N.

Using (@12), [@7) and the general symmetries of Weyl fields, it follows that
D3W4343 = 0 and D3W4312 =0 along N ThU.S7 D3W4a35 =0 along N, a,b S
{1,2}. Therefore, the divergence equation (1) with (8vd) = (a3b), a,b € {1,2},
and the transport equation (48] give, schematically,

(DLW)Z"2 = M(P="2) + M(W=72),  (DLP)=~° = M(P=77).
Therefore, we have proved that
(4.13) B =0, P=0, W=0 along NV.

To prove now that B, P, W vanish in a full neighborhood of the point p we use
Proposition ZI0, Lemma 2.TT] and the observation that, for ¢y sufficiently small,
the functions

fr = (u+eo)(Fu+ €)

are strongly pseudo-convex in a sufficiently small neighborhood of the point p. See
[T, Appendix A] for more details. O

4.2. A non-extendible example. In this subsection we provide examples show-
ing that Killing vector-fields do not extend, in general, across null hypersurfaces in
space-times satisfying the Einstein vacuum equations.

Theorem 4.3. With the notation at the beginning of the section, we further assume
that Z(u) =0 in O_ and that Z does not vanish identically in a neighborhood of p
in O_. Then there is a neighborhood U of p diffeomorphic to the open ball B; C R*
and a smooth Lorentz metric h in U such that Ric(h) =0 in U, h=g in O_, but
Z does not admit an extension as a smooth Killing vector-field for h in U.
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In other words, the space-time (M, g) can be modified in a neighborhood U of p,
on one side of the null hypersurface 0O, in such a way that the resulting space-time
is still smooth and satisfies the Einstein vacuum equations, but the symmetry Z
fails to extend to U.

Proof of Theorem 3. We fix a smooth system of coordinates ®? : By — Bi(p),
®P(0) = p, where B, = {z € R*: |z| < r}, r > 0, and B;(p) is an open neighbor-
hood of p in O. Let 01, ..., 04 denote the induced coordinate vector-fields in By (p)
and let B,(p) = ®P(B,), r € (0,1]. For any smooth function ¢ : B — C, where
B C Bj(p) is an open set, and j =0,1,..., we define

4

107 p(z)| = Z 100, - - O, d()], x € B.

‘We assume that
ga,@(p) = dlag(_17 17 1a 1)

and, for some constant A > 1,

6 4
(4.14) sup |07l + 07ul + > |9 gas(@)l] < A
1631(]7) j=1 a,B=1

We will construct the neighborhood
Up = {0 € By (p) : u(a) > —3)

for some constant ¢, sufficiently small (depending only on the constant A in ([@I4])).
We define first the hypersurface

No={z e Beé/z (p) : u(z) = —€2}.

Recall that L = —gaﬁaauag and notice that L is tangent to Ny. We introduce
smooth coordinates (y!,4?,y*) along the hypersurface Aj in such a way that y* = 0
on N NNy and L = 4, where d;,0s,04 are the induced coordinate vector-fields
along Np.

We consider smooth symmetric tensors h along Ny, such that it coincides with
g on Ny N O_ and, on both sides of Ny,

(4.15) h(64,6a) =0, in No, [eAS {1,2,4}.
Thus, the only non-vanishing components of h are
hap :h(aa,ﬁb), in N(), a,be {1,2}

We would like to apply Rendall’s theorem [I1l Theorem 3] to construct the metric
h in the domain of dependence of AU N, such that h = g along N and g = h
along Ny. The only restriction is that the symmetric tensor A is arranged such that
the resulting metric satisfies the Einstein equation

(4.16) h*’R(L, 8y, L,03) = 0 along N,

with R the Riemann curvature tensor of h. Recalling the definition of R and
noting that for a space-time metric h which coincides with h on Ay we must have
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h3¢ = h?3 = 0 and h® = h | (i.e., h%hy = 64p), we deduce

(4.17) P R(L, 00, L,05) = —I+11,
I = Z h“bh(DaaDa4(a4)7ab)a

a,be{1,2}
II = Y h®h(Dy,(Do,0s),0).

a,be{1,2}

Thus, imposing the auxiliary conditiorEl7

(4.18) I=0 along Ny,

equation ([@T6) is equivalent to

(4.19) > h*h(Dy,(Da,0s),8) = 0,
a,be{1,2}

which can be viewed as a constraint equation for the metric h on Ny. Indeed,
we can introduce a covariant differentiation along Ny compatible with h by the
formula

(4200  W(VxY,Z) = %[ _ ZW(X,Y) + Yh(X,Z) + Xh(Y, Z)]

for X,Y,Z € {01.02,04}. With this definition we observe that (£I9) is equivalent
to

(4.21) > hh(Vo,(Vo,0),0,) = 0.
a,be{1,2}
In view of the definition [@20), for a € {1, 2},
Vo, 01 = (1/2)h(84haq)0. + multiple(dy),
V0,00 = (1/2)h(0shaa)0e + multiple(dy).
Therefore, the identity ([@21]) is equivalent to
(4.22) 04(h*shaq) + (1/2)h*hO4haadshpe = 0.
Letting R R N
hab = ¢ hab, det(h) = hi1hgy — hiy =1,
and making the observation /ﬁ“di/ﬂad = 0, the identity [@22) is equivalent to
(4.23) 820 + (1/8)6 - h¥h s haadsTpe = 0.

In other words, we may define ﬁab, a,b € {1,2}, as an arbitrary smooth positive
definite symmetric tensor along ANy, with /Hll/ﬁgg — E%Q =1 and /f;ab = (811822 —
g2,)"12g(84,0) in Ny N O_. We then define ¢ according to equation [@23), and
the full tensor h = ngQE along Nj. Finally, we apply Rendall’s theorem [I1, Theorem
3] (or Theorem 2 in [9]) to construct a smooth space-time metric h in U, = {z €
Be,(p) : u(x) > —€2} satisfying the Einstein vacuum equations and agreeing with

g in U, N O_ and with h along Ny N Be,.

TWriting Dy, 04 = wdy, the condition reduces to w = 0 along Np.
8Since the metric h is degenerate on Np, this formula only defines the covariant derivatives
VxY up to a multiple of L = e4.
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It remains to prove that we can arrange ﬁab on Ny such that Z does not admit
an extension to U, as a Killing vector-field for h. We extend the smooth vector-field
L from U, N O_ to all of U, such that

D,L=0inU,

with D the covariant differentiation associated to the metric h.

Since Z(u) = 0 in O_ it follows that [Z, L] = 0in O_. Assume, for contradiction,
that Z admits an extension to U, as a Killing vector-field for h. Then, letting
V = LzL, we compute in U,

L*D,V,=LL;D,L, =-V*D,L,.
Since V' vanishes in U, N O_, it must vanish in all of U,, i.e.,
[L,Z] =0 in Up.
In addition, since
Lh(Z,L) =0,
we infer that Z must remain tangent to the hypersurface N,Eg. To summarize, by

contradiction, we have constructed a vector-field Z in U, tangent to the hypersur-
face Ny such that, on N N U,,

(4.24) Lzh=0, [L,Z]=0.

On the other hand, writing Z = Z'0; + Z20,+ Z40, in the system of coordinates
along N introduced before, the identity £Lzh = 0 in ([E24) gives

0= Z(ha) + 0aZ’hpp + OpZ  hap, a,b e {1,2}.
Therefore,
Z(det(h)) = Z(hi1hoy — h3y) = —2(0,Z* + 0, Z2)det(h).
Since h = (det h)'/2h, the identity £zh = 0 shows that
(4.25) Lzh= (12" + 0, Z2)h.
Notice also that Z does not depend on the choice of the tensor 71\; indeed, Z is defined

simply by the relation [L, Z] = 0 in (£24)). Therefore, we obtain a contradiction

by choosing h such that [#23)) fails at some point in My \ O_. This completes the
proof. O

Remark. We can interpret condition (@I8) using the null second fundamental form
of Ny with respect to the h metric,

(4.26) x(X,Y):=h(DxL,Y), VX,Y tangent to Np.

Clearly, Dy, L = wL along Ny for some smooth function w. Thus,

I= Y h®h(Dy,Do,(0s),0)

a,be{1,2}
= Y wh®™h(Dy,04,0;) = whxap = whr .
a,be{1,2}
Thus ([@I8) takes the form
(4.27) w-trx =0,

from which we infer that w must vanish in U, NNy (i.e., Dy L = 0) if tr x vanishes
at most on a set with empty interior in (U, N Np) \ O_.
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On the other hand,

1 1 ~ ~ 1 ~
Xab = §a4hab = 564(¢2hab) = @04¢ hap + §¢284haba

from which

~ ~ 1 ~
trx = ¢ *h™ (¢0sdhap + 56 0shar) = 207 Da

Also, the traceless part of x satisfies the identity

. 1 1 ~
Xab = Xab— ?W Xhap = §¢264hab-

Thus, equation ([£23) takes the well-known form

1 -
(4.28) Oatr X + 5 (tr x)* = =%},

from which we infer that try can only vanish in a set with empty interior in

(Up

NANp) \ O_ if the same holds true for . Thus, we can easily choose non-trivial

data on Ay such that, for our original choice of L = 0y, we have

(4.29) D,L=0 in NyNU,.

(1]

[9]
[10]

(11]

(12]
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