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1. Introduction

In this paper we revisit the extension problem for Killing vector-fields in smooth
Ricci flat Lorentzian manifolds and its relevance to the black hole rigidity problem.
In the most general situation the problem can be stated as follows:

Assume (M,g) is a given smooth pseudo-riemannian manifold, O ⊆ M is an
open subset, and Z is a smooth Killing vector-field in O. Under what assumptions
does Z extend (uniquely) as a Killing vector-field in M?

A classical result1 of Nomizu establishes such a unique extension provided that
the metric is real analytic, M and O are connected and M is simply connected. The
result has been used (see [5] and [4]) to reduce the black hole rigidity problem, for
real analytic stationary solutions of the Einstein field equations, to the simpler case
of axial symmetry treated by the Carter-Robinson theorem. This reduction has
been often regarded as decisive, especially in the physics literature, without a clear
understanding of the sweeping simplification power of the analyticity assumption.
Indeed, the remarkable thing about Nomizu’s theorem, to start with, is the fact
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that the metric is not assumed to satisfy any specific equation. Moreover, no
assumptions are needed about the boundary of O in M and the result is global
with only minimal assumptions on the topology of M and O. All of these are
clearly wrong in the case of smooth manifolds (M,g) which are not real analytic.
To be able to say anything meaningful we need to both restrict the metric g by
realistic equations and make specific assumptions about the boundary of O. Local
and global assumptions also need to be carefully separated.

In this paper we limit our attention to a purely local description of the extension
problem in the smooth case. Throughout the paper we assume that (M,g) is a
non-degenerate Ricci flat, pseudo-riemannian metric, i.e.,

(1.1) Ric(g) = 0.

We recall the following crucial concept.

Definition 1.1. A domain O ⊂ M is said to be strongly pseudo-convex at a
boundary point p ∈ ∂O if it admits a strongly pseudo-convex defining function f
at p, in the sense that there is an open neighborhood U of p in M and a smooth
function f : U → R, ∇f(p) �= 0, such that O ∩ U = {x ∈ U : f(x) < 0} and

(1.2) D2f(X,X)(p) < 0

for any X �= 0 ∈ Tp(M) for which X(f)(p) = 0 and gp(X,X) = 0.

It is easy to see that this definition, in particular (1.2), does not depend on the
choice of the defining function f . The strong pseudo-convexity condition is auto-
matically satisfied if the metric g is Riemannian. It is also satisfied for Lorentzian
metrics g if ∂O is space-like at p, but it imposes serious restrictions for time-like
hypersurfaces. It clearly fails if ∂O is null in a neighborhood of p. Indeed in that
case we can choose the defining function f to be optical, i.e.,

(1.3) DαfDαf = 0

at all points of ∂O in a neighborhood of p, and thus, choosing Xα = Dαf , we have

XαXβDαDβf =
1

2
X(DαfDαf) = 0.

Besides a new extension result (see Theorem 1.2 below) this paper contains two
local counterexamples. In our main such result (see Theorem 1.3) we show that
at any point p in the complement of the bifurcation sphere of the horizon of a
Kerr spacetime K(m, a), 0 < a < m, with T, Z denoting the usual stationary and
axially symmetric Killing vector-fields of K(m, a), one can find local extensions of
the Kerr metric, which coincide with K(m, a) inside the black hole, and such that
only T extends as a Killing vector-field to a full neighborhood of p. The condition
a > 0 is important in our proof, since our construction only works in the region
where T is timelike, i.e., the ergo-region. It remains open whether or not a similar
counterexample can be constructed for the Schwarzschild spacetimes K(m, 0).

We first state the following extension theorem:

Theorem 1.2. Assume that (M,g) is a smooth d-dimensional Ricci flat, pseudo-
riemannian manifold and O ⊆ M is a strongly pseudo-convex domain at a point
p ∈ ∂O. We assume that the metric g admits a smooth Killing vector-field Z in
O. Then Z extends as a Killing vector-field for g to a neighborhood of the point p
in M.



LOCAL EXTENSION OF KILLING VECTOR-FIELDS IN RICCI FLAT MANIFOLDS 565

Under more restrictive assumptions, a similar result was proved in [1] as a key
component of a theorem on the uniqueness of the Kerr solution in [2]. In this paper
we present a different, more geometric proof, which is valid in all dimensions and for
all pseudo-riemannian metrics. More importantly, the proof we present here does
not require that the vector-field Z be tangent to the boundary ∂O in a neighborhood
of p, or the existence of a geodesic vector-field L, defined in a neighborhood of p,
and commuting with Z in O.

In applications, one would like to use Theorem 1.2 repeatedly and extend the
Killing vector-field Z to larger and larger open sets. For this it is important to
understand the “size” of the implied neighborhood in the conclusion of the theorem,
where the vector-field Z extends. The proof shows that this neighborhood depends
only on smoothness parameters of g and f in a neighborhood of p (see (2.21)),
and a quantitative form of strong pseudo-convexity described in Lemma 2.12. The
neighborhood does not depend in any way on the vector-field Z itself.

In view of Theorem 1.2, Killing vector-fields extend locally across strongly
pseudo-convex hypersurfaces in Ricci flat manifolds. A natural question is whether
the strong pseudo-convexity condition is needed. We give a partial answer in The-
orem 4.3: in general one cannot expect to extend a Killing vector-field across a null
hypersurface in a 4-dimensional Lorentz manifold.2

Our second main theorem provides a counterexample to extendibility, in the
setting of the black hole rigidity problem. Let (K(m, a),g) denote the (maxi-
mally extended) Kerr space-time of mass m and angular momentum ma, 0 ≤
a < m (see [5] for definitions). Let M(end) denote an asymptotic region, E =
I−(M(end))∩I+(M(end)) the corresponding domain of outer communications, and
H− = δ(I+(M(end)) the boundary (event horizon) of the corresponding white hole3.
Let T denote the stationary (timelike in M(end)) Killing vector-field of (K(m, a),g),
and let Z denote its rotational (with closed orbits) Killing vector-field.

Theorem 1.3. Assume that 0 < a < m and U0 ⊆ K(m, a) is an open set such that

U0 ∩H− ∩E �= ∅.

Then there is an open set U ⊆ U0 diffeomorphic to the open unit ball B1 ⊆ R4,
U ∩H− �= ∅, and a smooth Lorentz metric g̃ in U with the following properties:

(i)

(1.4) g̃Ric = 0 in U, LTg̃ = 0 in U, g̃ = g in U \E;

(ii) the vector-field Z does not extend to a Killing vector-field for g̃ in U .

In other words, one can modify the Kerr space-time smoothly, on one side of
the horizon H−, in such a way that the resulting metric still satisfies the Einstein
vacuum equations, has T as a Killing vector-field, but does not admit an extension
of the Killing vector-field Z. This result illustrates one of the major difficulties one
faces in trying to extend Hawking’s rigidity result to the more realistic setting of
smooth stationary solutions of the Einstein vacuum equations: unlike in the ana-
lytic situation, one cannot hope to construct an additional symmetry of stationary

2Such a hypersurface is not strongly pseudo-convex; see the discussion before Theorem 1.2.
3A similar statement can be made on the future event horizon H+.
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solutions of the Einstein vacuum equations (as in Hawking’s Rigidity Theorem) by
relying only on the local information provided by the equations.4

We remark that the conclusion of Theorem 1.3 holds also when a = m > 0, with
the same proof.

The rest of the paper is organized as follows: in section 2 we prove Theorem
1.2 and in section 3 we prove Theorem 1.3. In section 4 we consider extensions
across null hypersurfaces in 4-dimensional Lorentz manifolds and prove two more
theorems: Theorem 4.1, which provides a criterion for the extension of Killing
vector-fields, and Theorem 4.3, which provides a general framework when extension
is not possible.

2. Proof of Theorem 1.2

In [1] and [2] the extension of the Killing vector-field Z was done according to
the transport equation,

[L,Z] = c0L,(2.1)

where DLL = 0 and c0 is constant. Consequently, we had to assume, in O, that
Z is not only Killing but that it also satisfies the additional assumption (2.1) with
respect to a geodesic non-vanishing vector-field L. This could be arranged in the
particular cases studied in [1] and [2], but imposes serious restrictions on Z in the
general case, particularly if Z vanishes in a neighborhood of the point p. To avoid
this restriction, in this paper we extend Z according to the weaker condition

(2.2) DLDLZ = R(L,Z)L,

which would follow easily from (2.1), and is automatically satisfied if Z is Killing.
More precisely, we construct first a smooth vector-field L in a neighborhood of

p such that

DLL = 0, L(f)(p) = 1,

and extend Z to a neighborhood of p by solving the second order differential system
(2.2). Therefore, after restricting to a small neighborhood of p, we may assume that
Z,L are smooth vector-fields in M with the properties
(2.3)
DLL = 0 in M, LαLβ(DαDβZμ − ZρRραβμ) = 0 in M, LZg = 0 in O.

It remains to prove that the deformation tensor π = LZg vanishes in a neighborhood
of p. We cannot do this, however, without establishing at the same time that the
tensor LZR also vanishes identically inM. Our strategy is to derive a wave equation
for LZR, or rather a suitable modification of it, coupled with a number of transport
equations along the integral curves of L for various tensorial quantities including
π itself. These equations will be used to prove that π and LZR have to vanish in
a full neighborhood of p, provided that the strong pseudo-convexity assumption,
which guarantees the unique continuation property, is satisfied.

4As mentioned earlier a local version of Hawking’s Rigidity Theorem was proved in [1]. The
key additional information used in that paper is the existence of a regular bifurcation sphere,
which is the smooth transversal intersection of two non-expanding horizons.
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2.1. Tensorial equations. We first consider the properties of LZR. Observe that
LZR verifies all the algebraic symmetries of R except the fact that, for an Einstein
vacuum metric g, R is traceless. We have instead,

gαγLZRαβγδ = παγRαβγδ.

To re-establish this property we can introduce (see also Chapter 7 in [3]) modifica-
tions5 of LZR of the form

L̂ZR := LZR−B �R,

where, for any given 2-tensor B, we write

(B �R)αβγδ := Bα
λRλβγδ +Bβ

λRαλγδ +Bγ
λRαβλδ +Bδ

λRαβγλ.

It is easy to check that, for any 2-tensor B, B �R verifies all the algebraic sym-
metries of the general Riemann curvature tensor, i.e.,

(B �R)αβγδ = −(B �R)βαγδ = −(B �R)αβδγ = (B �R)γδαβ ,

(B �R)αβγδ + (B �R)αγδβ + (B �R)αδβγ = 0.

Moreover, using the Einstein vacuum equations, we get

gαγ(B �R)αβγδ = Bμλ
(
Rλβμδ +Rμβλδ

)
.

In particular, for any antisymmetric B, B � R is traceless, i.e., a Weyl field. We
have proved the following:

Proposition 2.1. Assume ω is an antisymmetric 2-form in M and let

(2.4) W := LZR− 1

2
(π + ω)�R.

Then W is a Weyl field in M, i.e.,

Wαβγδ = −Wβαγδ = −Wαβδγ = Wγδαβ ,

Wαβγδ +Wαγδβ +Wαδβγ = 0,

gαγWαβγδ = 0.

We shall next establish a divergence equation for W . We do this by commuting
the divergence equation for R with LZ . We rely on the following (see Lemma 7.1.3
in [3]):

Lemma 2.2. For arbitrary k-covariant tensor-field V and vector-field X we have

(2.5) Dβ(LXVα1...αk
)− LX(DβVα1...αk

) =

k∑
j=1

(X)ΓαjβρV
ρ

α1... ...αk
,

where (X)π = LXg is the deformation tensor of X and

(X)Γαβμ =
1

2
(Dα

(X)πβμ +Dβ
(X)παμ −Dμ

(X)παβ).

Definition 2.3. We denote π = (Z)π and Γ = (Z)Γ the corresponding tensors
associated to the vector-field Z. We also introduce the tensors

Pαβμ = (1/2)(Dαπβμ −Dβπαμ −Dμωαβ),

Bαβ = (1/2)(παβ + ωαβ),

Wαβγδ = (LZR)αβγδ − (B �R)αβγδ.

5Note, however, that, unlike [3], our B here is not symmetric.



568 ALEXANDRU D. IONESCU AND SERGIU KLAINERMAN

All of these tensors depend on the 2-form ω, which will be defined later (see (2.9))
to achieve a key cancellation in the proof of the transport equation (2.13) (see the
identity LμPαβμ = 0 in (2.10)).

Using Lemma 2.2 we can now prove the following:

Lemma 2.4. The Weyl field W verifies the divergence equation

DαWαβγδ = BμνDνRμβγδ + gμνPμρνR
ρ
βγδ

+ PβνμR
μν

γδ + PγνμR
μ
β

ν
δ + PδνμR

μ
βγ

ν .
(2.6)

Proof of Lemma 2.4. Using Lemma 2.2 and the identity DαRαβγδ = 0 (which is a
consequence of the Einstein vacuum equations), we easily deduce

DαLZRαβγδ = gαμDμLZRαβγδ

= gαμ
(
LZDμRαβγδ + ΓαμρR

ρ
βγδ + ΓβμρRα

ρ
γδ + ΓγμρRαβ

ρ
δ + ΓδμρRαβγ

ρ
)

= παμDμRαβγδ + Γμ
μρR

ρ
βγδ + ΓβμρR

μρ
γδ + ΓγμρR

μ
β
ρ
δ + ΓδμρR

μ
βγ

ρ.

Using the definition and the Einstein vacuum equations, we derive

Dα(B �R)αβγδ = BαλDαRλβγδ +DαBαλR
λ
βγδ +DαBβλR

αλ
γδ

+DαBγλR
α
β
λ
δ +DαBδλR

α
βγ

λ,

for any 2-tensor B. Thus, if B = (1/2)(π + ω),

DαWαβγδ = (πμν −Bμν)DμRνβγδ + gμν(Γμνρ −DνBμρ)R
ρ
βγδ

+ (Γβμν −DμBβν)R
μν

γδ + (Γγμν −DμBγν)R
μ
β
ν
δ

+ (Γδμν −DμBδν)R
μ
βγ

ν .

We observe now that

Γbac −DaBbc = Pbca,

which completes the proof of the lemma. �

We now look for transport equations for the tensor-fields B,P appearing in (2.6),
of the form

DL(B,P ) = M(W,B, P ),

with the notation M(W,B, P ) explained below.

Definition 2.5. By convention, we letM((1)B, . . . , (k)B) denote any smooth “mul-
tiple” of the tensors (1)B, . . . , (k)B, i.e., any tensor of the form

M((1)B, . . . , (k)B)α1...αr

= (1)Bβ1...βm1

(1)Cα1...αr

β1...βm1 + . . .+ (k)Bβ1...βmk

(k)Cα1...αr

β1...βmk ,
(2.7)

for some smooth tensors (1)C, . . . , (k)C in M.

We start with a lemma.

Lemma 2.6. Given the vector-field Z, extended to M by (2.3), we have

(2.8) Lβπαβ = 0 in M.

Moreover, if we define ω in M as the solution of the transport equation

(2.9) DLωαβ = παρDβL
ρ − πβρDαL

ρ,
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with ω = 0 in O, then

(2.10) LμPαβμ = 0, Lβωαβ = 0 in M.

Proof of Lemma 2.6. We first remark that LαLβDαZβ = 0 in M. Indeed, using
(2.3), we get

LρDρ(L
αLβDαZβ) = LρLαLβDρDαZβ = LβLαLρZνRναρβ = 0.

Since LαLβDαZβ = 0 in O we deduce that

(2.11) LαLβDαZβ = 0 in M.

We now prove (2.8). Using (2.3) and (2.11) we compute

LρDρ(L
βπαβ) = LρLβ(DρDβZα +DρDαZβ)

= LρLβZμRμρβα + LρLβDαDρZβ + LρLβZμRραβμ

= Dα(L
ρLβDρZβ)− LβDρZβDαL

ρ − LρDρZβDαL
β

= −LβπμβDαL
μ.

Since Lβπαβ vanishes in O, it follows that Lβπαβ vanishes in M, as desired.
The first identity in (2.10) follows from the definitions of ω and P and the identity

(2.8):

2LμPαβμ = LμDαπβμ − LμDβπαμ − LμDμωαβ

= −πβμDαL
μ + παμDβL

μ − LμDμωαβ = 0.

To prove the second identity, we compute, using the definition (2.9) and the iden-
tities Lβπβρ = 0 and DLL = 0,

DL(L
βωαβ) = LρLβDρωαβ = Lβ(παρDβL

ρ − πβρDαL
ρ) = 0.

Since Lβωαβ vanishes in O, it follows that Lβωαβ vanishes in M, as desired. �

We derive now our main transport equations for the tensors B and P .

Proposition 2.7. In M we have

(2.12) DLBαβ = LρPρβα −DαL
ρBρβ

and

(2.13) DLPαβμ = LνWαβμν + LνBμ
ρRαβρν −DμL

ρPαβρ.

Proof of Proposition 2.7. Using (2.8)–(2.10), we calculate

2LρDρBαβ = LρDρπβα + LρDρωαβ

= Lρ(2Pρβα +Dαωρβ +Dβπρα) + παρDβL
ρ − πβρDαL

ρ

= 2LρPρβα − 2BρβDαL
ρ,

and the desired identity (2.12) follows.
To prove (2.13), we rely on the following identity:

Dν P̃αβμ −DμP̃αβν = (LZR)αβμν − (1/2)π ρ
α Rρβμν − (1/2)π ρ

β Rαρμν ,(2.14)

P̃αβμ := (1/2)(Dαπβμ −Dβπαμ) = Pαβμ + (1/2)Dμωαβ .
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Assuming (2.14) we easily prove now (2.13). Indeed, relying on (2.14), (2.8), and
the definitions we calculate

Lν(DνPαβμ −DμPαβν) = Lν
[1
2
DμDνωαβ − 1

2
DνDμωαβ +Wαβμν + (B ·R)αβμν

− 1

2
π ρ
α Rρβμν − 1

2
π ρ
β Rαρμν

]
= LνWαβμν + LνB ρ

μ Rαβρν .

The identity (2.13) is now an immediate consequence of (2.10). �

It remains to prove the identity (2.14). We have, in fact, the following more
general version of it.

Lemma 2.8. Let X be a vector-field with deformation tensor (X)π and define

(X)P = (1/2)(Dα
(X)πβμ −Dβ

(X)παμ).

Then,

Dν
(X)Pαβμ −Dμ

(X)Pαβν = (LXR)αβμν − (1/2) (X)π ρ
α Rρβμν

− (1/2) (X)π ρ
β Rαρμν .

(2.15)

Proof of Lemma 2.8. Using the definition of (X)P ,

2Dν
(X)Pαβμ − 2Dμ

(X)Pαβν

= DνDα
(X)πβμ −DνDβ

(X)παμ −DμDα
(X)πβν +DμDβ

(X)παν

= (DνDαDβXμ −DνDβDαXμ) + (DνDαDμXβ −DμDαDνXβ)

+ (DμDβDαXν −DμDαDβXν) + (DμDβDνXα −DνDβDμXα)

= I + II + III + IV.

We calculate

I = XρDνRαβμρ +RαβμρDνX
ρ

and

II = (DνDαDμXβ −DαDνDμXβ)

+ (DαDνDμXβ −DαDμDνXβ) + (DαDμDνXβ −DμDαDνXβ)

= (RναμρD
ρXβ +RναβρDμX

ρ) + (XρDαRνμβρ +RνμβρDαX
ρ)

+ (RαμνρD
ρXβ +RαμβρDνX

ρ).

Therefore, replacing α ↔ β and μ ↔ ν,

III = XρDμRβανρ +RβανρDμX
ρ

and

IV = (RμβνρD
ρXα +RμβαρDνX

ρ) + (ZρDβRμναρ +RμναρDβX
ρ)

+ (RβνμρD
ρXα +RβναρDμX

ρ).
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Therefore,

I + II+III + IV = Xρ(DνRαβμρ +DμRβανρ +DαRνμβρ +DβRμναρ)

+DαX
ρRνμβρ +DβX

ρRμναρ

+DρXα(Rμβνρ +Rβνμρ) +DρXβ(Rναμρ +Rαμνρ)

+DμX
ρ(Rναβρ +Rβανρ +Rβναρ)

+DνZ
ρ(Rαβμρ +Rαμβρ +Rμβαρ)

= 2XρDρRαβμν + 2DμX
ρRαβρν + 2DνX

ρRαβμρ

+ 2DαX
ρRρβμν + 2DβX

ρRαρμν − (X)π ρ
α Rρβμν − (X)π ρ

β Rαρμν .

The desired identity (2.15) follows.
Alternatively, one could also prove (2.15) by choosing a system of coordinates

x1, . . . , xd such that X = ∂d and calculating explicitly (X)π, (X)P , and LXR. �

Finally, we derive a wave equation for the tensor W .

Lemma 2.9. With the notation in (2.7),

DρDρWαβμν = M(B,DB,P,DP,W )αβμν .

Proof of Lemma 2.9. We use the identity

DσDσRα1α2α3α4
= Rσρα3α4

Rσ
α1α2

ρ +Rσα2ρα4
Rσ

α1α3

ρ +Rσα2α3ρR
σ
α1α4

ρ

−Rσρα3α4
Rσ

α2α1

ρ −Rσα1ρα4
Rσ

α2α3

ρ −Rσα1α3ρR
σ
α2α4

ρ,

(2.16)

which is a well-known consequence of the Einstein vacuum equations. Using Lemma
2.2, we get

Dσ(LZR)α1α2α3α4
= LZ(DσRα1α2α3α4

) +
4∑

j=1

ΓαjσρR
ρ

α1... ...α4
,

and then

�g(LZR)α1α2α3α4
= DσLZ(DσRα1α2α3α4

)

+
4∑

j=1

[(DσΓαjσρ)R
ρ

α1... ...α4
+ ΓαjσρD

σR ρ
α1... ...α4

].

Therefore, after using Lemma 2.2 to commute derivatives again and (2.16), the
equation for �g(LZR) above can be written, in schematic notation:

�g(LZR)α1...α4
=

4∑
j=1

[(DσΓαjσρ)R
ρ

α1... ...α4
] +M(π,Dπ, (LZR))α1...α4

.

In view of the definition,

�g(B �R)α1,...,α4
=

4∑
j=1

DσDσBαjρR
ρ

α1... ...α4
+M(B,DB)α1...α4

.
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Also using π = M(B), Dπ = M(DB), and LZR = M(B,W ), it follows that

�gWα1...α4
=

4∑
j=1

[Dσ(Γαjσρ −DσBαjρ)R
ρ

α1... ...α4
] +M(B,DB,W )α1...α4

.

The lemma follows using the identity Γαβμ −DβBαμ = Pαμβ. �

We summarize some of the main results in this subsection in the following propo-
sition:

Proposition 2.10. We assume that O ⊆ M, L, Z are as defined at the beginning
of this section, and satisfy (2.3). In M we define

παβ = DαZβ +DβZα.

We define the smooth antisymmetric tensor ωαβ in M as the solution of the equation

DLωαβ = παρDβL
ρ − πβρDαL

ρ, ω = 0 in O.

We also define the smooth tensors

Pαβμ = (1/2)(Dαπβμ −Dβπαμ −Dμωαβ),

Bαβ = (1/2)(παβ + ωαβ),

Wαβγδ = (LZR)αβγδ − (B �R)αβγδ.

Then the following equations hold in M:

DαWαβγδ = M(B,P,W )βγδ,

DLB = M(B,P,W ), DLP = M(B,P,W ),

�W = M(B,DB,P,DP,W,DW ),

(2.17)

where M((1)B, . . . , (k)B) is defined as in (2.7).

2.2. Carleman inequalities and the local extension theorem. Motivated by
the identities summarized in Proposition 2.10, we consider solutions of systems of
equations of the form{

�gS = M((1)B, . . . , (k)B,S,DS),

DL
(i)B = M((1)B, . . . , (k)B,S,DS), i = 1, . . . , k.

We would like to prove that a solution S, (1)B, . . . , (k)B of such a system which
vanishes on one side of a suitable hypersurface has to vanish in a neighborhood of the
hypersurface. Such a result depends, of course, on convexity and non-degeneracy
properties of the hypersurface. We recall (see Definition 1.1) that a domain O is
strongly pseudo-convex at a boundary point p if there exists a defining function f
at p, df(p) �= 0 which verifies that

(2.18) D2f(X,X)(p) < 0 if X �= 0 ∈ Tp(M) satisfies gp(X,X) = X(f)(p) = 0.

We are now ready to prove Theorem 1.2. We use the covariant equations derived
in Proposition 2.10 (see (2.17)) and Carleman inequalities. We introduce a smooth
system of coordinates Φp = (x1, . . . , xd) : B1 → B1(p), Φ

p(0) = p, where Br = {x ∈
Rd : |x| < r}, r > 0, and B1(p) is an open neighborhood of p in M. Let ∂1, . . . , ∂d
denote the induced coordinate vector-fields in B1(p) and let Br(p) = Φp(Br), r ∈
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(0, 1]. For any smooth function φ : B → C, where B ⊆ B1(p) is an open set, and
j = 0, 1, . . ., we define

(2.19) |∂jφ(x)| =
d∑

α1,...,αj=1

|∂α1
. . . ∂αj

φ(x)|, x ∈ B.

We assume that

(2.20) gαβ(p) = diag(−1, . . . ,−1, 1, . . . , 1).

We assume also that, for some constant A ≥ 1,

(2.21) sup
x∈B1(p)

6∑
j=1

d∑
α,β=1

|∂jgαβ(x)|+ sup
x∈B1(p)

4∑
j=1

|∂jf(x)| ≤ A.

We use the system of coordinates Φp in the neighborhood of the point p, and
evaluate all the tensor-fields in the frame of coordinate vector-fields ∂1, . . . , ∂d. In
view of equations (2.17), for Theorem 1.2 it suffices to prove the following:

Lemma 2.11. Assume that δ0 > 0 and Gi, Hj : Bδ0(p) → C are smooth functions,
i = 1, . . . , I, j = 1, . . . , J , that satisfy the differential inequalities

(2.22)

{
|�gGi| ≤ M

∑I
l=1(|Gl|+ |∂1Gl|) +M

∑J
m=1 |Hm|,

|L(Hj)| ≤ M
∑I

l=1(|Gl|+ |∂1Gl|) +M
∑J

m=1 |Hm|,

for any i = 1, . . . , I, j = 1, . . . , J , where M ≥ 1 is a constant. Assume that
Gi = 0 and Hj = 0 in Bδ0(p) ∩ O−, i = 1, . . . , I, j = 1, . . . , J . Assume also that
f is strongly pseudo-convex at p, in the sense of Definition 1.1, and L(f)(p) �= 0.
Then Gi = 0 and Hj = 0 in Bδ1(p), i = 1, . . . , I, j = 1, . . . , J , for some constant
δ1 ∈ (0, δ0) sufficiently small.

Lemma 2.11 is proved in [1, Lemma 3.4], using two Carleman inequalities: Propo-
sition 3.3 in [7] and Lemma A.3 in [1]. The implicit constant δ1 > 0 depends only
on constants A in (2.21), δ0, and the constant A1 in the following quantitative form
of strong pseudo-convexity:

Lemma 2.12. (a) Assume that f is strongly pseudo-convex at p. Then there are
constants A1 ≥ A and μ ∈ [−A1, A1] such that, for any vector X = Xα∂α at p,

|∂1f(p)| ≥ A−1
1 ,

XαXβ(μgαβ(p)−DαDβf(p)) +A1|X(f)(p)|2 ≥ A−1
1 |X|2,

(2.23)

where |X|2 = (X1)2 + . . .+ (Xd)2.
(b) Moreover, the inequalities (2.23) persist in a small neighborhood of p, in the

sense that there is ε1 = ε(A1) > 0 such that for any vector-field X = Xα∂α in
Bε1(p), the inequalities

|∂1f | ≥ (2A1)
−1,

XαXβ(μgαβ −DαDβf) +A1|X(f)|2 ≥ (2A1)
−1|X|2,

(2.24)

hold in Bε1(p), where |X|2 = (X1)2 + . . .+ (Xd)2 and μ is as in (2.23).
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Proof of Lemma 2.23. (a) The first inequality in (2.23) is just a quantitative form
of the assumption that p is not a critical point of f . To derive the second inequality,
let hαβ = −DαDβf(p) and

δ0 = inf
|X|=1,XαXα=XαDαf=0

XαXβhαβ.

By compactness, this infimum is attained, and it follows from (2.18) that δ0 > 0.
By homogeneity, it follows that

(2.25) XαXβhαβ ≥ δ0|X|2 if XαXα = XαDαf = 0.

We would like to prove now that there is n0 ∈ {1, 2, . . .} such that

(2.26) XαXβhαβ + n0(X
αDαf(p))

2 ≥ (δ0/2)|X|2 if XαXα = 0.

Indeed, otherwise for any n = 1, 2, . . . there would exist a vector Xn = Xα
n∂α such

that |Xn| = 1, gp(Xn, Xn) = 0, and

Xα
nX

β
nhαβ + n(Xα

nDαf(p))
2 ≤ δ0/2.

After passing to a subsequence, we may assume that Xn converges to a vector
X, with |X|2 = 1, XαXα = 0, XαDαf(p) = 0, and XαXβhαβ ≤ δ0/2, which
contradicts (2.25). Therefore (2.26) holds for some constant n0.

Let C+ = {X ∈ TpM : |X| = 1 and XαXα > 0}, C− = {X ∈ TpM : |X| =
1 and XαXα < 0} and, for δ ∈ [0, 1], Cδ = {X ∈ TpM : |X| = 1 and |XαXα| ≤ δ}.
Since the metric g is non-degenerate, we may assume that C+ �= ∅ (if C+ = ∅,
then C− �= ∅ and the proof proceeds in a similar way). For ρ ∈ R, we consider the
function

Kρ : TpM → R, Kρ(X) = XαXβhαβ + n0(X
αDαf(p))

2 + ρXαXα,

where n0 is as in (2.26). Using a simple compactness argument as before, it follows
from (2.26), that

(2.27) there is δ′ > 0 such that K0(X) ≥ δ0/4 for any X ∈ Cδ′ .
Then it follows that there is ρ1 ≥ 0 sufficiently large such that

Kρ1
(X) ≥ 0 if X ∈ C+ and there is X ∈ C+ such that K−ρ1

(X) < 0.

Let
ρ0 = inf{ρ ∈ [−ρ1, ρ1] : Kρ(X) ≥ 0 for any X ∈ C+}.

We analyze the function Kρ0
(X) = XαXβkαβ , where

kαβ := hαβ + n0Dαf(p)Dβf(p) + ρ0gαβ .

In view of the definition of ρ0, Kρ0
(X) ≥ 0 in C+. Moreover, using also (2.27),

there exists X0 ∈ C+ such that Kρ0
(X0) = 0. Since Kρ0

is homogeneous of degree
2, it follows that the point X0 is a local minimum for Kρ0

in TpM. Therefore,

(2.28) V αXβ
0 kαβ = 0 and V αV βkαβ ≥ 0 for any V ∈ TpO.

We show now that

(2.29) Kρ0
(X) �= 0 for any X ∈ C−.

Indeed, assuming Kρ0
(X1) = 0 for some X1 ∈ C−, it follows from (2.28) that

Kρ0
(tX0 + (1− t)X1) = 0 for any t ∈ [0, 1]. However, this contradicts (2.27) since

there is t0 ∈ [0, 1] such that gp(t0X0 + (1 − t0)X1, t0X0 + (1 − t0)X1) = 0 and
t0X0 + (1− t0)X1 �= 0.
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Using (2.27), (2.28), and (2.29) it follows that Kρ0
(X) > 0 for any x ∈ C− ∪Cδ′′ ,

for some δ′′ > 0. A simple compactness argument then shows that there is n1 large
enough such that Kρ0+1/n1

> 0 in {X ∈ TpM : |X| = 1}. The second inequality in
(2.23) follows by setting μ = ρ0 + 1/n1 and A1 sufficiently large.

Part (b) of the lemma follows from part (a) and the assumption (2.21). �

3. Proof of Theorem 1.3

The plan of the proof is the following: we fix a point p ∈ U0 ∩ H− ∩ E, outside
both the bifurcation sphere S0 = H− ∩H+ and the axis of symmetry A = {p ∈ E :
Z(p) = 0}. Then we consider the Kerr metric g and the induced metric

hαβ = Xgαβ −TαTβ, where X = g(T,T),

on a hypersurface Π passing through the point p and transversal to T. The metric
h is non-degenerate (Lorentzian) as long as X > 0 in Π, which explains our as-
sumption 0 < a < m. It is well known (see for example [12, Section 3]) that the
Einstein vacuum equations together with stationarity LTg = 0 are equivalent to
the system of equations

hRicab =
1

2X2
(∇aX∇bX +∇aY∇bY ),

h�(X + iY ) =
1

X
hab∂a(X + iY )∂b(X + iY ),

(3.1)

in Π, where Y is the Ernst potential associated to T. We rederive these equations
in Proposition 3.1 below, together with other explicit equations and identities that
are needed for the proof of the theorem.

We then modify the metric h and the functions X and Y in a neighborhood of
the point p in such a way that the identities (3.1) are still satisfied. The point is

to prove the existence of a large family of smooth triplets (h̃, X̃, Ỹ ) satisfying (3.1)
and agreeing with the Kerr triplet in Π \E. This follows by solving a characteristic
initial-value problem, using a generalization of the main theorem in [11].

Finally, in Proposition 3.5 we construct the space-time metric g̃,

g̃ab = X̃−1h̃ab + X̃ÃaÃb, g̃a4 = X̃Ãa, g̃44 = X̃, a, b = 1, 2, 3,

associated to the triplet (h̃, X̃, Ỹ ), the vector-field T = ∂4, and a suitable 1-form

Ã which is defined in Π. By construction and [12, Theorem 1], this metric verifies
the identities g̃Ric = 0 and LTg̃ = 0, in a suitable open set U . Then we show

that we have enough flexibility to choose initial conditions for X̃, Ỹ such that the
vector-field Z cannot be extended as a Killing vector-field for g̃ in the open set U .

3.1. Explicit calculations. We consider the Kerr space-time K(m, a) in standard
Boyer–Lindquist coordinates,

(3.2) g = −q2Δ

Σ2
(dt)2 +

Σ2(sin θ)2

q2

(
dφ− 2amr

Σ2
dt
)2

+
q2

Δ
(dr)2 + q2(dθ)2,

where

(3.3)

⎧⎪⎨⎪⎩
Δ = r2 + a2 − 2mr,

q2 = r2 + a2(cos θ)2,

Σ2 = (r2 + a2)q2 + 2mra2(sin θ)2 = (r2 + a2)2 − a2(sin θ)2Δ.
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We make the change of variables:

du− = dt− (r2 + a2)Δ−1dr, dφ− = dφ− aΔ−1dr.

In the new coordinates (θ, r, φ−, u−) the space-time metric becomes

g = q2dθ2 − (du− ⊗ dr + dr ⊗ du−) + a(sin θ)2(dφ− ⊗ dr + dr ⊗ dφ−)

− 2amr(sin θ)2

q2
(dφ− ⊗ du− + du− ⊗ dφ−) +

Σ2(sin θ)2

q2
dφ2

− +
2mr − q2

q2
du2

−,

(3.4)

and the vector-field T = d/dt becomes T = d/du−. The metric g and the vector-
field T are smooth in the region

R = {(θ, r, φ−, u−) ∈ (0, π)× (0,∞)× (−π, π)× R : 2mr − q2 > 0}.
Let

X = g(T,T) =
2mr − q2

q2
, hαβ = Xgαβ −TαTβ,

and
Π = {(θ, r, φ−, u−) ∈ R : u− = 0}.

Let

(3.5) ∂1 =
d

dθ
, ∂2 =

d

dr
, ∂3 =

d

dφ−

denote the vector-fields in Π induced by coordinates (θ, r, φ−). We calculate the
components of the metric h along the surface Π,

h11 = 2mr − q2, h12 = 0, h13 = 0, h22 = −1,

h23 = −a(sin θ)2, h33 = −Δ(sin θ)2.
(3.6)

Therefore,

h11 =
1

2mr − q2
, h12 = 0, h13 = 0, h22 =

Δ

2mr − q2
,

h23 =
−a

2mr − q2
, h33 =

1

(sin θ)2(2mr − q2)
.

(3.7)

Let

(3.8) Γcab = h(∇∂b
∂a, ∂c) = (1/2)(∂ahbc + ∂bhac − ∂chab), Γd

ab = hcdΓcab.

Using (3.6) and (3.7) we calculate the following:

Γ1
11 =

a2 sin θ cos θ

2mr − q2
, Γ2

11 =
Δ(r −m)

2mr − q2
, Γ3

11 =
a(m− r)

2mr − q2
,

Γ1
12 =

m− r

2mr − q2
, Γ2

12 =
a2 sin θ cos θ

2mr − q2
, Γ3

12 =
−a cot θ

2mr − q2
,

Γ1
13 = 0, Γ2

13 = 0, Γ3
13 = cot θ,

Γ1
22 = 0, Γ2

22 = 0, Γ3
22 = 0,

Γ1
23 =

a sin θ cos θ

2mr − q2
, Γ2

23 =
a(r −m)(sin θ)2

2mr − q2
, Γ3

23 =
m− r

2mr − q2
,

Γ1
33 =

Δsin θ cos θ

2mr − q2
, Γ2

33 =
Δ(r −m)(sin θ)2

2mr − q2
, Γ3

33 =
a(m− r)(sin θ)2

2mr − q2
.

(3.9)
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We have
hR(∂a, ∂c)∂b = ∇∂a

(∇∂c
∂b)−∇∂c

(∇∂a
∂b)

= ∇∂a
(Γd

bc∂d)−∇∂c
(Γd

ba∂d)

= ∂a(Γ
d
bc)∂d + Γd

bcΓ
e
da∂e − ∂c(Γ

d
ba)∂d + Γd

baΓ
e
dc∂e

= [∂a(Γ
d
bc)− ∂c(Γ

d
ba) + Γe

bcΓ
d
ea − Γe

baΓ
d
ec]∂d.

Therefore,

(3.10) hRicba = ∂c(Γ
c
ba)− ∂a(Γ

c
bc) + Γd

baΓ
c
dc − Γd

cbΓ
c
da.

Using (3.8) we calculate

(3.11) Γc
bc = (1/2)hca(∂bhca) = (1/2)∂b(log |h|) = ∂b(log(sin θ(2mr − q2))).

Thus,

hRic11 =
2m2a2(sin θ)2

(2mr − q2)2
, hRic12 = 0, hRic13 = 0,

hRic22 =
2m2

(2mr − q2)2
, hRic23 = 0, hRic33 = 0.

(3.12)

Let

X =
2mr − q2

q2
, Y = −2ma cos θ

q2
,

Tab =
1

2X2
(∇aX∇bX +∇aY∇bY ).

(3.13)

We calculate

∂1X =
4a2mr sin θ cos θ

q4
, ∂2X =

2mq2 − 4mr2

q4
, ∂3X = 0,

∂1Y =
2ma sin θq2 − 4ma3 sin θ(cos θ)2

q4
, ∂2Y =

4mra cos θ

q4
, ∂3Y = 0.

(3.14)

Therefore,

T11 =
2m2a2(sin θ)2

(2mr − q2)2
, T12 = 0, T13 = 0,

T22 =
2m2

(2mr − q2)2
, T23 = 0, T33 = 0.

Also using (3.12) it follows that

hRic = T.

Using (3.7), (3.14), and |h| = (sin θ)2(2mr − q2)2 we calculate

|h|1/2h1j∂j(X + iY ) = i
2am(sin θ)2

q4
(r − ia cos θ)2,

|h|1/2h2j∂j(X + iY ) =
−2mΔsin θ

q4
(r − ia cos θ)2,

|h|1/2h3j∂j(X + iY ) =
2ma sin θ

q4
(r − ia cos θ)2.

(3.15)
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Therefore

h�X =
24m2r2a2(cos θ)2 − 4m2r4 − 4m2a4(cos θ)4

q6(2mr − q2)
,

h�Y =
16m2ra cos θ(r2 − a2(cos θ)2)

q6(2mr − q2)
.

(3.16)

We also calculate

X−1hij(∂iX∂jX − ∂iY ∂jY ) =
24m2r2a2(cos θ)2 − 4m2r4 − 4m2a4(cos θ)4

q6(2mr − q2)
,

2X−1hij∂iX∂jY =
16m2ra cos θ(r2 − a2(cos θ)2)

q6(2mr − q2)
.

Therefore,

hRicab =
1

2X2
(∇aX∇bX +∇aY∇bY ),

h�(X + iY ) =
1

X
hab∂a(X + iY )∂b(X + iY ).

(3.17)

The components of the spacetime metric g in the coordinates (θ, r, φ−, u−) (see
(3.4)) have the form

gab = X−1hab +XAaAb, ga4 = XAa, g44 = X, a, b = 1, 2, 3.

or, with x = (θ, r, φ),

g = (Xdu− +Aadx
a)2 +X−1habdx

adxb,

where

(3.18) A1 = 0, A2 = − q2

2mr − q2
, A3 = −2amr(sin θ)2

2mr − q2
.

We compute

∂1A2 − ∂2A1 =
4a2mr sin θ cos θ

(2mr − q2)2
,

∂2A3 − ∂3A2 =
−2ma(sin θ)2(r2 − a2(cos θ)2)

(2mr − q2)2
,

∂3A1 − ∂1A3 =
−4mraΔsin θ cos θ

(2mr − q2)2
.

Therefore, also using (3.15), with h∈123= −|h|1/2, gives us
(3.19) X2(∇aAb −∇bAa) =

h∈abc ∇cY.

To summarize, we verified the following:

Proposition 3.1. With the notation above, the metric h, the functions X,Y , and
the 1-form A satisfy the identities (in Π)

hRicab =
1

2X2
(∇aX∇bX +∇aY∇bY ),

h�(X + iY ) =
1

X
hab∂a(X + iY )∂b(X + iY ),

X2(∇aAb −∇bAa) =
h∈abc ∇cY.
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Remark 3.2. Under a change of coordinates of the form u′
− = u− − f(x1, x2, x3)

the 1-form A = Aadx
a changes according to the formula A′ = A− df . The change

of coordinates amounts to a choice of the hypersurface Π, i.e., instead of u− = 0
we would choose u− = f(θ, r, φ).

3.2. The metric h̃. We would like to construct now a large family of triplets

(h̃, X̃, Ỹ ) and 1-forms Ã, such that the identities in Proposition 3.1 are still satisfied
in a neighborhood in Π of a fixed point p ∈ (U0 ∩H− ∩E) \ (A ∪ S0). Let

N0 = {x ∈ Π : r(x) = r+ := m+
√
m2 − a2}.

This is a 2-dimensional hypersurface in Π; the vector-fields ∂1 and ∂3 are tangent
to N0 and, using (3.6) and (3.9),

h(∂3, ∂3) = h(∂3, ∂1) = 0, ∇∂3
∂3 = −[(m/a)2 − 1]1/2∂3, along N0.

Therefore, N0 is a null hypersurface in Π. Along N0 ⊂ Π we define the smooth,
transversal, null vector-field,

(3.20) L = (2a2(sin θ)2 −Δ)−1 · [2a∂2 − (sin θ)−2∂3].

Using (3.6), it follows that

(3.21) h(L,L) = h(L, ∂1) = 0, [L, ∂3] = 0, h(L, ∂3) = −1, along N0.

Let

P = {x ∈ N0 : φ−(x) = 0}, p = {x ∈ P : θ(x) = θ0 ∈ (0, π)}.
Thus P is a 1-dimensional smooth curve in N0 and p ∈ P is a point. We extend the
vector-field L to a small open neighborhood D of p in Π, by solving the geodesic
equation

∇LL = 0 in D.

Then we construct the null hypersurface N1 in D as the congruence of geodesic
curves tangent to L and passing through the curve P . We also fix a time-orientation
in D such that ∂3 and L are future-directed null vector-fields along P ∩D, and we
let J+(N1) denote the causal future of N1 in D. Let

D− = {x ∈ D : Δ(x) < 0}, D+ = {x ∈ D : Δ(x) > 0}.
The following proposition is a consequence of a more general version6 of the main
theorem in [11].

Proposition 3.3. Assume X̃, Ỹ : N1 → R are smooth functions satisfying

X̃ = X and Ỹ = Y in N1 ∩D−.

Then there is a small neighborhood D′ of p in Π, a smooth metric h̃ in J+(N1)∩D′,

and smooth extensions X̃, Ỹ : J+(N1) ∩D′ → R such that, in J+(N1) ∩D′,

˜hRicab =
1

2X̃2
(∇aX̃∇bX̃ +∇aỸ∇bỸ ),

˜h�(X̃ + iỸ ) =
1

X̃
h̃ab∂a(X̃ + iỸ )∂b(X̃ + iỸ ).

(3.22)

6The result in [11] is stated only for the Einstein vacuum equations. It is clear, nevertheless,
that a straightforward generalization of it applies to the coupled Einstein Wave Map equations in
any dimension. Note that in our special case of 2+1 dimensions the only dynamical variables are
X and Y , corresponding to the wave map. We note also the more recent work of Luk [9], which
is closer to our setting; in particular, it justifies the second identity in (3.24).
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In addition,

(3.23) X̃ = X, Ỹ = Y, h̃ = h in J+(N1) ∩D′ ∩D−,

and, for any vector-field V tangent to N1 ∩D′,

(3.24) h̃(L, V ) = 0 and ∇̃LL = 0 along N1 ∩D′.

To be able to construct the desired space-time metric g̃ we also need to extend
the 1-form A (compare with the formula (3.30)). More precisely:

Proposition 3.4. There is a smooth 1-form Ãa in a neighborhood D of p in J+(N1)
satisfying (compare with (3.19))

X̃2(∇̃aÃb − ∇̃bÃa) = ∈̃abc∇̃cỸ ,

Ã = A in D ∩D−.
(3.25)

Proof of Proposition 3.4. Let L̃ denote the geodesic vector-field (i.e., ∇̃
˜LL̃ = 0)

generated in a neighborhood of the point p in the vector-field L defined on N0 in
(3.20), so

L̃ = L in [(J+(N1) ∩D−) ∪ N1] ∩D′.

Let g = LaAa, defined using the unperturbed L and A. We then define the form

Ã as the solution of the transport equation, in a neighborhood of the point p in
J+(N1),

L̃a∇̃aÃb + Ãa∇̃bL̃
a = ∈̃abcX̃

−2L̃a∇̃cỸ + ∇̃bg,

Ã = A along N0.
(3.26)

It follows easily from (3.19) that the form A verifies this transport equation in D−,

thus Ã is a well-defined smooth form in a neighborhood D of p in J+(N1) and

Ã = A in D−. It remains to prove the identity in the first line of (3.25). We

observe first that ÃaL̃
a = g in a neighborhood of p in J+(N1). Indeed, using the

definition (3.26) we compute

L̃a∇̃a(L̃
bÃb − g) = L̃bL̃a∇̃aÃb − L̃a∇̃ag = 0,

therefore,

(3.27) L̃bÃb = g in a neighborhood of p in J+(N1).

Letting

(3.28) Q̃ab = (∇̃aÃb − ∇̃bÃa)− X̃−2∈̃abc∇̃cỸ ,

it follows from (3.26) and (3.27) that

(3.29) L̃aQ̃ab = 0, Q̃ab + Q̃ba = 0.

To show that Q̃ vanish identically we derive a transport equation for it. Using

Lemma 2.2 and the identity (3.26) in the form L
˜LÃc = ∈̃mcnX̃

−2L̃m∇̃nỸ + ∇̃cg,
we calculate

X̃2L
˜LQ̃ab = Ẽab,
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where

Ẽab = X̃2(∇̃aL˜LÃb − ∇̃bL˜LÃa) + 2X̃−1L̃(X̃)∈̃abm∇̃mỸ

− ∈̃abm∇̃mỸ ∇̃nL̃n − ∈̃abmL
˜L(∇̃

mỸ )

= ∈̃mbn∇̃aL̃
m∇̃nỸ + ∈̃mbnL̃

m∇̃a∇̃nỸ − 2X̃−1∇̃a(X̃)∈̃mbnL̃
m∇̃nỸ

− ∈̃man∇̃bL̃
m∇̃nỸ − ∈̃manL̃

m∇̃b∇̃nỸ + 2X̃−1∇̃b(X̃)∈̃manL̃
m∇̃nỸ

+ 2X̃−1L̃(X̃)∈̃abm∇̃mỸ −∈̃abm∇̃mỸ ∇̃nL̃n − ∈̃abm(L̃n∇̃n∇̃mỸ − ∇̃nỸ ∇̃nL̃
m).

Now we calculate

∈̃abc
Ẽab = 2∇̃cỸ ∇̃nL̃n − 2∇̃nỸ ∇̃nL̃

c + 2L̃m∇̃m∇̃cỸ − 2L̃c∇̃n∇̃nỸ

− 4X̃−1∇̃m(X̃)L̃m∇̃cỸ + 4X̃−1∇̃n(X̃)L̃c∇̃nỸ

+ 4X̃−1L̃(X̃)∇̃cỸ − 2∇̃cỸ ∇̃nL̃n − 2L̃n∇̃n∇̃cỸ + 2∇̃nỸ ∇̃nL̃
c

= −2L̃c∇̃n∇̃nỸ + 4L̃cX̃−1∇̃n(X̃)∇̃nỸ .

Since ∇̃n∇̃nỸ = 2X̃−1∇̃n(X̃)∇̃nỸ (see (3.22)), it follows that ∈̃abc
Ẽab = 0. There-

fore, Ẽab = 0. Since Q̃ = 0 in D ∩D− it follows that Q̃ = 0 in D as desired. �

3.3. The space-time metric. Let X̃, Ỹ , h̃, D, and Ã be as before. In D × I,
where I ⊂ R is an open interval, we define the Lorentz metric g̃ by

(3.30) g̃ab = X̃−1h̃ab + X̃ÃaÃb, g̃a4 = X̃Ãa, g̃44 = X̃, a, b = 1, 2, 3.

The functions X̃, Ỹ , Ãa, h̃ab, originally defined in D are extended to D × I by

(3.31) ∂4(X̃) = ∂4(Ỹ ) = ∂4(Ãa) = ∂4(h̃ab) = 0, a, b = 1, 2, 3.

Using (3.30), it follows that, with Ãa = h̃abÃb, a = 1, 2, 3,
(3.32)

g̃ab = X̃h̃ab, g̃a4 = −X̃Ãa, g̃44 = X̃−1 + X̃ÃaÃa, |g̃| = X̃−2|h̃|.

Proposition 3.5. (a) The metric g̃ agrees with the Kerr metric g in (D∩D−)× I
and satisfies

L∂4
g̃ = 0, g̃Ric = 0 in D × R.

(b) If Z = Z4∂4 + Za∂a is a Killing vector-field for g̃ in D × I and if [Z, ∂4] = 0

in D × I, then Z ′ = Za∂a is a Killing vector-field for h̃ in D satisfying Z ′(X̃) =

Z ′(Ỹ ) = 0, i.e.,

(3.33) Z ′(X̃) = Z ′(Ỹ ) = 0, (LZ′ h̃)ab = 0.

Proof of Proposition 3.5. (a) The claims follow easily from definitions, except for

g̃Ric = 0 in D × R.

On the other hand, this is a well-known consequence of the identities (3.22) and

(3.25) satisfied by h̃, X̃, Ỹ and Ã, and the definitions (3.30) and (3.31). See, for
example, [12, Section 3] for the proof.
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(b) The identities ∂4Z
4 = 0, ∂4Z

a = 0, (LZ g̃)44 = 0, (LZ g̃)a4 = 0, and
(LZ g̃)ab = 0 give

Z(X̃) = 0, Z(X̃Ãa) + ∂aZ
cX̃Ãc + ∂aZ

4X̃ = 0,

Z(X̃−1h̃ab + X̃ÃaÃb) + ∂aZ
c(X̃−1h̃cb + X̃ÃcÃb) + ∂aZ

4X̃Ãb

+ ∂bZ
c(X̃−1h̃ac + X̃ÃaÃc) + ∂bZ

4X̃Ãa = 0.

Also using (3.31), it follows that

Z ′(X̃) = 0, Z ′(Ãa) + ∂aZ
cÃc + ∂aZ

4 = 0,

Z ′(h̃ab) + ∂aZ
ch̃cb + ∂bZ

ch̃ac = 0.

Therefore, along D,

Z ′(X̃) = 0, (LZ′ h̃)ab = 0, (LZ′Ã)a = −∂aZ
4.

The last identity in (3.33), Z ′(Ỹ ) = 0, follows from (3.25), rewritten in the form

∇̃mỸ = −X̃2∈̃abm∇̃aÃb. �

We can now complete the proof of the theorem.

Proof of Theorem 1.3. We fix a point p ∈ (U0∩H−∩E)\ (A∪S0); we may assume
that

u−(p) = 0, φ−(p) = 0, θ(p) ∈ (0, π), r(p) = m+
√
m2 − a2.

Then we define the surface N1 as in Proposition 3.3. For any smooth functions

X̃, Ỹ : N1 → R agreeing with X,Y in N1 ∩ D−, we construct the corresponding
neighborhood D of p in J+(N1) (which we may assume to be diffeomorphic to the
unit ball in R3 and sufficiently small relative to U0), the smooth Lorentzian metric

h̃ in D, the scalars X̃, Ỹ : D → R, and the 1-form Ã, verifying (see (3.22) and
(3.25))

˜hRicab =
1

2X̃2
(∇aX̃∇bX̃ +∇aỸ∇bỸ ),

˜h�(X̃ + iỸ ) =
1

X̃
h̃ab∂a(X̃ + iỸ )∂b(X̃ + iỸ ),

X̃2(∇̃aÃb − ∇̃bÃa) = ∈̃abc∇̃cỸ ,

(3.34)

in D. Then we construct the space-time metric g̃ in D × I as in (3.30)–(3.31).
In view of Proposition 3.5(a), it remains to show that we can arrange our con-

struction in such a way that the vector-field Z cannot be extended as a Killing
vector-field for the modified metric g̃. We show first that if Z can be extended as
a Killing vector-field for g̃, then

(3.35) [Z, ∂4] = 0 in D × I.

Indeed, letting V = [∂4, Z], we calculate, using Lemma 2.2,

DαDβVμ = DαDβ(L∂4
Z)μ = V ρRραβμ.

Since V vanishes in (D ∩D−)× I, it follows that V vanishes in D × I as desired.
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The identity (3.35) allows us to apply Proposition 3.5(b). It suffices to prove
that we can arrange the construction in subsection 3.2 such that the vector-field ∂3
cannot be extended to a vector-field Z ′ in D such that

(3.36) LZ′ h̃ = 0 and Z ′(X̃) = Z ′(Ỹ ) = 0 in D.

More precisely, we assume that (3.36) holds and show that there is a choice of X̃, Ỹ
along N1 such that (3.34) is violated.

Assuming that (3.36) holds, we define the geodesic vector-field L̃ in D as in
subsection 3.2 and notice that

∇̃
˜Lh̃(L̃, Z

′) = 0.

Recall that (see (3.21))

h̃(L̃, L̃) = 0, [L̃, Z ′] = 0, h̃(L̃, Z ′) = −1, along N0.

Since h̃(L̃, Z ′) = −1 along N0, it follows that

h̃(L̃, Z ′) = −1 in D.

We let e(2) := L̃, e(3) := Z ′, and fix an additional smooth vector-field e(1) in D such

that h̃(e(1), e(2)) = h̃(e(1), e(3)) = h̃(e(1), e(1))− 1 = 0, i.e.,

ea(1) = ∈̃abc
L̃bZ

′
c.

To summarize, assuming (3.36), we have constructed a frame e(1), e(2), e(3) in D
such that

h̃(e(1), e(1))− 1 = h̃(e(1), e(2)) = h̃(e(1), e(3))

= h̃(e(2), e(2)) = h̃(e(2), e(3)) + 1 = 0.
(3.37)

We define the connection coefficients

Γ(a)(b)(c) = h̃(e(a), ∇̃e(c)e(b)).

Using the identities ∇̃
˜LL̃ = 0 and LZ′ h̃ = 0, it follows that

Γ(a)(2)(2) = 0 for any a ∈ {1, 2, 3},
Γ(a)(3)(c) + Γ(c)(3)(a) = 0 for any (a, c) ∈ {1, 2, 3}2.

Since [L̃, Z ′] = 0 along N0 and

0 = LZ′(L̃a∇̃aL̃b) = L̃a∇̃a(LZ′L̃b) + h̃ac∇̃aL̃b(LZ′L̃c),

it follows that LZ′L̃ = 0 in D. Then, using the definition of e(1), it follows that
LZ′e(1) = 0 in D, therefore

Γ(a)(3)(c) = Γ(a)(c)(3) for any (a, c) ∈ {1, 2, 3}2.

To summarize, letting F = h̃(Z ′, Z ′) = h̃(3)(3), we have

h̃(1)(1) − 1 = h̃(1)(2) = h̃(1)(3) = h̃(2)(2) = h̃(2)(3) + 1 = 0, h̃(3)(3) = F,

h̃(1)(1) − 1 = h̃(1)(2) = h̃(1)(3) = h̃(3)(3) = h̃(2)(3) + 1 = 0, h̃(2)(2) = −F,
(3.38)
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and

(3.39)

Γ(1)(1)(1) = Γ(2)(2)(2) = Γ(3)(3)(3) = Γ(1)(1)(2) = Γ(1)(2)(2) = Γ(2)(1)(2)

= Γ(2)(2)(1) = 0,

Γ(3)(2)(2) = Γ(2)(3)(2) = Γ(2)(2)(3) = Γ(3)(1)(1) = Γ(1)(3)(1) = Γ(1)(1)(3) = 0,

− Γ(1)(2)(1) = Γ(2)(1)(1),

− Γ(3)(3)(a) = −Γ(3)(a)(3) = Γ(a)(3)(3) = −1

2
e(a)(F ), a ∈ {1, 2},

− Γ(3)(1)(2) = Γ(1)(3)(2) = −Γ(2)(3)(1) = Γ(3)(2)(1) = −Γ(2)(1)(3) = Γ(1)(2)(3),

e(3)(F ) = e(3)(Γ(a)(b)(c)) = 0, [e(3), e(a)] = 0, a, b, c ∈ {1, 2, 3}.
We derive now several identities for the connection coefficients Γ and the curva-

ture
˜hR. Clearly,

˜hR(a)(b)(c)(d) = h̃(e(a), [∇̃e(c)(∇̃e(d)e(b))− ∇̃e(d)(∇̃e(c)e(b))− ∇̃[e(c),e(d)]e(b)])

= h̃(e(a), [∇̃e(c)(Γ
(m)

(b)(d)e(m))− ∇̃e(d)(Γ
(m)

(b)(c)e(m))

− (Γ(m)
(d)(c) − Γ(m)

(c)(d))∇̃e(m)
e(b)])

= e(c)(Γ(a)(b)(d))− e(d)(Γ(a)(b)(c))

+ Γ(m)
(b)(d)Γ(a)(m)(c) − Γ(m)

(b)(c)Γ(a)(m)(d) + (Γ(m)
(c)(d) − Γ(m)

(d)(c))Γ(a)(b)(m)

for any a ∈ {1, 2} and b, c, d ∈ {1, 2, 3}. Also using the identities (3.38) and (3.39),
it follows that

˜hR(a)(3)(2)(3) = e(2)(Γ(a)(3)(3))− Γ(2)(3)(3)Γ(a)(3)(2)

− Γ(1)(3)(2)Γ(a)(1)(3) + Γ(3)(3)(2)Γ(a)(2)(3),

˜hR(1)(2)(2)(3) = e(2)(Γ(1)(2)(3)),

˜hR(2)(1)(2)(1) = e(2)(Γ(2)(1)(1)) + Γ(2)(1)(1)Γ(1)(2)(1).

(3.40)

We can now obtain our desired contradiction by constructing a pair of smooth

functions X̃, Ỹ along N1 such that not all the identities above (starting with (3.34))
can be simultaneously verified along N1. For this we fix a smooth system of coor-
dinates y = (y1, y2, y3) in a neighborhood of the point p in Π such that

N1 = {q : y3(q) = 0}, N0 = {q : y2(q) = 0}, L = L̃ =
d

dy2
along N1.

More precisely, we fix the L, as in the unperturbed Kerr, in a neighborhood of p
and define first y2 such that y2 vanishes on N0 and L(y2) = 1. Then we complete
the coordinate system on N0 and extend it by solving L(y1) = L(y3) = 0.

Assume ψ : R3 → [0, 1] is a smooth function equal to 1 in the unit ball and

vanishing outside the ball of radius 2. We are looking for functions X̃, Ỹ of the
form

(3.41) X̃(q) = X(q), Ỹ (q) = Y (q) + εψ((y(q)− y(p′))/ε), q ∈ N1,

where p′ is a fixed point in N1 ∩ D+ sufficiently close to p, and (X,Y ) are as in
(3.13). We show below that such a choice leads to a contradiction, for ε sufficiently
small.
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Let

V1 =
d

dy1
, V2 =

d

dy2
, V3 =

d

dy3
, e(a) = Ki

(a)Vi.

In view of the definitions,

K1
(2) = K3

(2) = K3
(1) = K2

(2) − 1 = 0 along N1.

We now use the last identity in (3.40) and the first identity in (3.34), along N1.

Since
˜hR(2)(1)(2)(1) =

˜hRic(2)(2), and recalling (3.38) and (3.39), we derive

V2(Γ(2)(1)(1))− (Γ(2)(1)(1))
2 =

1

2X̃2
[V2(X̃)2 + V2(Ỹ )2],(3.42)

along N1. In addition, since

(3.43) [e(2), e(1)] = [V2,K
1
(1)V1 +K2

(1)V2] = V2(K
1
(1))V1 + V2(K

2
(1))V2

along N1, it follows that

V2(K
1
(1)) = K1

(1) · h̃([e(2), e(1)], e(1)) = K1
(1)Γ(2)(1)(1),(3.44)

along N1. Using the ansatz (3.41) together with (3.42), and (3.44), it follows that

(3.45) |G|+ |V2(G)| � 1 for any G ∈ {Γ(2)(1)(1),K
1
(1), 1/K

1
(1)},

along N1, uniformly for all p′ ∈ N1 sufficiently close to p and ε ≤ ε(p′) sufficiently
small.

Next we use the identity on the second line of (3.40) and the Ricci identity in

(3.34), along N1. Since
˜hR(1)(2)(2)(3) = −˜hRic(1)(2), and recalling (3.38), (3.39) we

infer that
(3.46)

V2(Γ(1)(2)(3)) =
−1

2X̃2
[V2(X̃) · (K1

(1)V1+K2
(1)V2)(X̃)+V2(Ỹ ) · (K1

(1)V1+K2
(1)V2)(Ỹ )],

along N1. In addition, using again (3.43), it follows that

V2(K
2
(1)) = −h̃([e(2), e(1)], e(3)) + V2(K

1
(1))h̃(V1, e(3))

= 2Γ(1)(2)(3) +K2
(1)V2(K

1
(1))/K

1
(1)

(3.47)

along N1. Using once more the ansatz (3.41) together with (3.46), and (3.47) as
well the previously established bounds (3.45), it follows that

(3.48) |G|+ |V2(G)| � 1 for any G ∈ {Γ(2)(1)(1),K
1
(1), 1/K

1
(1),Γ(1)(2)(3),K

2
(1)},

along N1, uniformly for all p′ ∈ N1 sufficiently close to p and ε ≤ ε(p′) sufficiently
small.

Using the Ricci identity in (3.34), the identities e(3)(X̃) = e(3)(Ỹ ) = 0, and the
bounds (3.48), it follows that∑

a,b∈{1,2,3}
|˜hRic(a)(b)| � 1 along N1.

Using the first identity in (3.40) with a = 2, the identity

˜hR(2)(3)(2)(3) =
˜hRic(2)(3) + (1/2)(

˜hRic(1)(1) + F
˜hRic(2)(2)),
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and (3.39), it follows that

V2(F ) = −2Γ(2)(3)(3),

V2(Γ(2)(3)(3)) = −(Γ(1)(2)(3))
2 +

˜hRic(2)(3) + (1/2)(
˜hRic(1)(1) + F · ˜hRic(2)(2)).

Using again (3.48), it follows that

(3.49) |F |+ |V2(F )|+ |V2(V2(F ))| � 1 along N1,

uniformly for all p′ ∈ N1 sufficiently close to p and ε ≤ ε(p′) sufficiently small.
We can now derive a contradiction by examining the second equation in (3.34):

h̃(a)(b)∇̃(a)∇̃(b)(Ỹ ) = 2X̃−1h̃(a)(b)e(a)(X̃)e(b)(Ỹ ).

Using (3.45) and (3.49), it follows that

|e(1)(e(1)(Ỹ ))− Fe(2)(e(2)(Ỹ ))| � 1 along N1,

uniformly for all p′ ∈ N1 sufficiently close to p and ε ≤ ε(p′) sufficiently small. This
cannot happen, as can easily be seen by first letting ε → 0 and then p′ → p, taking
into account that F and K2

(1) vanish along N0 ∩ N1. �

4. Extension across null hypersurfaces

Assume in this section that (M,g) is a 4-dimensional Lorentzian manifold sat-
isfying the Einstein vacuum equations Ric(g) = 0, p ∈ M is a fixed point along
a smooth null hypersurface N ⊆ M (given by the level hypersurface of a smooth
function u : M → R) with fixed null vector-field L at p. Assume that u : M → R

is a smooth optical function transversal to N , more precisely,

(4.1) DαuDαu = 0 in M, u(p) = 0, (DαuDαu)(p) = −1.

Let N be the null hypersurface passing through p generated by the zero level set of
u, i.e., N = {x ∈ M : u(x) = 0} and L = −gαβ∂αu∂β its null geodesic generator.
Let

O− := {x ∈ M : u(x) < 0}
and assume that Z is a smooth Killing vector-field in O−.

4.1. An extendibility criterion. We extend Z to the neighborhood of p as in
(2.3), such that

LαLβ(DαDβZμ − ZρRραβμ) = 0.

Theorem 4.1. Recall the assumptions at the beginning of the section. In addition,
assume that we have, along the null hypersurface N ,

(4.2) (LZR)(L,X,L, Y ) = 0

for any vector-fields X,Y ∈ T (M) tangent to N . Then there is a neighborhood U
of p such that LZg = 0 in U .

Remark 4.2. The sufficient condition (4.2) may be replaced by a sufficient condition
at the level of the deformation tensor π, namely

(4.3) (LZg)(X,Y ) = 0 along N ,

for any vector-fields X,Y ∈ T (M) tangent to N . Both (4.2) and (4.3) lead to the
conclusion (4.9), using the identities (4.5)–(4.8).
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Proof of Theorem 4.1. According to the results proved in section 2.1 we introduce
the tensors W , π, ω, B, and P as in Definition 2.3. Recall that (see Lemma 2.6)

(4.4) παμL
μ = 0, ωαμL

μ = 0, PαβμL
μ = 0.

Since B = (1/2)(π+ω) we also have BαμL
μ = 0. We fix a function y : N → R such

that y vanishes on N ∩N and L(y) = 1 along N . Then we fix a frame (e1, e2, e3, e4)
along N such that

e1, e2, e4 are tangent to N , e4 = L, e1(y) = e2(y) = 0,

g(e1, e2) = g(ea, ea)− 1 = g(e4, e3) + 1 = g(ea, e3) = g(e3, e3) = 0, a ∈ {1, 2}.
Our main goal is to show that the tensors W,B, P vanish along N . For any

tensor M = Mα1....αk
and any s ∈ Z we define M≥s any component of the tensor

M in the basis (e1, e2, e3, e4) of signature ≥ s, where the signature of the component
Mα1...αk

is equal to the difference between the number of 4’s and the number of 3’s
in (α1, . . . , αk). Thus, for example,

B≥0 ∈ {B44, B4a, Ba4, B43, B34, Bab : a, b ∈ {1, 2}}.
Recall our main transport equations (see Lemma 2.7),

(4.5) DLBαβ = LρPρβα −DαL
ρBρβ

and

(4.6) DLPαβμ = LνWαβμν + LνBμ
ρRαβρν −DμL

ρPαβρ,

and our main divergence equation (see Lemma 2.4),

DαWαβγδ =BμνDνRμβγδ + gμνPμρνR
ρ
βγδ

+ PβνμR
μν

γδ + PγνμR
μ

β
ν
δ + PδνμR

μ
βγ

ν .
(4.7)

In view of the definitions we also have

(4.8) DαL4 = 0, D4Lα = 0, α ∈ {1, 2, 3, 4}.
We use equations (4.5) and (4.8), together with the assumption LZR4ab4 = 0,

a, b ∈ {1, 2} to write, schematically,

(DLB)≥0 = M(P≥1)+M(B≥0), (DLP )≥1 = M(W≥2)+M(P≥1)+M(B≥0).

Therefore, also using (4.4),

(4.9) B≥0 = 0, P≥1 = 0, W≥2 = 0 along N .

Using (4.9) and the general symmetries of Weyl fields, equation (4.7) with
(βγδ) = (4a4), a ∈ {1, 2}, gives, schematically,

(DLW )≥1 = M(B≥−1) +M(P≥0) +M(W≥1).

Using the transport equations (4.5) and (4.6), together with the identities (4.8) and
(4.9) we derive, schematically,

(DLB)≥−1 = M(P≥0) +M(B≥−1),

(DLP )≥0 = M(W≥1) +M(B≥−1) +M(P≥0).

Therefore, (4.9) can be upgraded to

(4.10) B≥−1 = 0, P≥0 = 0, W≥1 = 0 along N .
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We can now continue this procedure. Using (4.10) and the general symmetries
of Weyl fields, equation (4.7) with (βγδ) = (434) and (βγδ) = (412) gives, schemat-
ically,

(DLW )≥0 = M(B≥−2) +M(P≥−1) +M(W≥0).

The transport equations (4.5) and (4.6), together with the identities (4.8) and (4.10)
give, schematically,

(DLB)≥−2 = M(P≥−1) +M(B≥−2),

(DLP )≥−1 = M(W≥0) +M(B≥−2) +M(P≥−1).

Therefore, (4.10) can be upgraded to

(4.11) B = 0, P≥−1 = 0, W≥0 = 0 along N .

Using (4.11) and the general symmetries of Weyl fields, equation (4.7) with
(βγδ) = (4a3), a ∈ {1, 2}, gives, schematically,

(DLW )≥−1 = M(P≥−2) +M(W≥−1).

The transport equation (4.6) and the identities (4.8) and (4.11) give, schematically,

(DLP )≥−2 = M(W≥−1) +M(P≥−2).

Therefore, (4.11) can be upgraded to

(4.12) B = 0, P≥−2 = 0, W≥−1 = 0 along N .

Using (4.12), (4.7) and the general symmetries of Weyl fields, it follows that
D3W4343 = 0 and D3W4312 = 0 along N . Thus, D3W4a3b = 0 along N , a, b ∈
{1, 2}. Therefore, the divergence equation (4.7) with (βγδ) = (a3b), a, b ∈ {1, 2},
and the transport equation (4.6) give, schematically,

(DLW )≥−2 = M(P≥−3) +M(W≥−2), (DLP )≥−3 = M(P≥−3).

Therefore, we have proved that

(4.13) B = 0, P = 0, W = 0 along N .

To prove now that B,P,W vanish in a full neighborhood of the point p we use
Proposition 2.10, Lemma 2.11 and the observation that, for ε0 sufficiently small,
the functions

f± = (u+ ε0)(±u+ ε0)

are strongly pseudo-convex in a sufficiently small neighborhood of the point p. See
[1, Appendix A] for more details. �

4.2. A non-extendible example. In this subsection we provide examples show-
ing that Killing vector-fields do not extend, in general, across null hypersurfaces in
space-times satisfying the Einstein vacuum equations.

Theorem 4.3. With the notation at the beginning of the section, we further assume
that Z(u) = 0 in O− and that Z does not vanish identically in a neighborhood of p
in O−. Then there is a neighborhood U of p diffeomorphic to the open ball B1 ⊆ R

4

and a smooth Lorentz metric h in U such that Ric(h) = 0 in U , h = g in O−, but
Z does not admit an extension as a smooth Killing vector-field for h in U .
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In other words, the space-time (M,g) can be modified in a neighborhood U of p,
on one side of the null hypersurface ∂O, in such a way that the resulting space-time
is still smooth and satisfies the Einstein vacuum equations, but the symmetry Z
fails to extend to U .

Proof of Theorem 4.3. We fix a smooth system of coordinates Φp : B1 → B1(p),
Φp(0) = p, where Br = {x ∈ R4 : |x| < r}, r > 0, and B1(p) is an open neighbor-
hood of p in O. Let ∂1, . . . , ∂4 denote the induced coordinate vector-fields in B1(p)
and let Br(p) = Φp(Br), r ∈ (0, 1]. For any smooth function φ : B → C, where
B ⊆ B1(p) is an open set, and j = 0, 1, . . ., we define

|∂jφ(x)| =
4∑

α1,...,αj=1

|∂α1
. . . ∂αj

φ(x)|, x ∈ B.

We assume that

gαβ(p) = diag(−1, 1, 1, 1)

and, for some constant A ≥ 1,

sup
x∈B1(p)

6∑
j=1

[
|∂ju|+ |∂ju|+

4∑
α,β=1

|∂jgαβ(x)|
]
≤ A.(4.14)

We will construct the neighborhood

Up = {x ∈ Bε0(p) : u(x) > −ε20}

for some constant ε0 sufficiently small (depending only on the constant A in (4.14)).
We define first the hypersurface

N0 = {x ∈ B
ε
1/2
0

(p) : u(x) = −ε20}.

Recall that L = −gαβ∂αu∂β and notice that L is tangent to N0. We introduce
smooth coordinates (y1, y2, y4) along the hypersurface N0 in such a way that y4 = 0
on N ∩ N0 and L = ∂4, where ∂1, ∂2, ∂4 are the induced coordinate vector-fields
along N0.

We consider smooth symmetric tensors h along N0, such that it coincides with
g on N0 ∩O− and, on both sides of N0,

(4.15) h(∂4, ∂α) = 0, in N0, α ∈ {1, 2, 4}.

Thus, the only non-vanishing components of h are

hab = h(∂a, ∂b), in N0, a, b ∈ {1, 2}.

We would like to apply Rendall’s theorem [11, Theorem 3] to construct the metric
h in the domain of dependence of N ∪ N0, such that h = g along N and g = h
along N0. The only restriction is that the symmetric tensor h is arranged such that
the resulting metric satisfies the Einstein equation

(4.16) hαβR(L, ∂α, L, ∂β) = 0 along N0,

with R the Riemann curvature tensor of h. Recalling the definition of R and
noting that for a space-time metric h which coincides with h on N0 we must have
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h3a = h33 = 0 and hab = hab, (i.e., hachcb = δab), we deduce

hαβR(L, ∂α, L, ∂β) = −I + II,(4.17)

I =
∑

a,b∈{1,2}
habh(D∂a

D∂4
(∂4), ∂b),

II =
∑

a,b∈{1,2}
habh(D∂4

(D∂a
∂4), ∂b).

Thus, imposing the auxiliary condition7,

(4.18) I ≡ 0 along N0,

equation (4.16) is equivalent to

(4.19)
∑

a,b∈{1,2}
habh(D∂4

(D∂a
∂4), ∂b) = 0,

which can be viewed as a constraint equation for the metric h on N0. Indeed,
we can introduce a covariant differentiation8 along N0 compatible with h by the
formula

h(∇XY, Z) =
1

2

[
− Zh(X,Y ) + Y h(X,Z) +Xh(Y, Z)

]
(4.20)

for X,Y, Z ∈ {∂1.∂2, ∂4}. With this definition we observe that (4.19) is equivalent
to

(4.21)
∑

a,b∈{1,2}
habh(∇∂4

(∇∂a
∂4), ∂b) = 0.

In view of the definition (4.20), for a ∈ {1, 2},
∇∂a

∂4 = (1/2)hcd(∂4had)∂c +multiple(∂4),

∇∂4
∂a = (1/2)hcd(∂4had)∂c +multiple(∂4).

Therefore, the identity (4.21) is equivalent to

(4.22) ∂4(h
ad∂4had) + (1/2)habhcd∂4had∂4hbc = 0.

Letting

hab = φ2ĥab, det(ĥ) = ĥ11ĥ22 − ĥ2
12 = 1,

and making the observation ĥad∂̃4ĥad = 0, the identity (4.22) is equivalent to

(4.23) ∂2
4φ+ (1/8)φ · ĥabĥcd∂4ĥad∂4ĥbc = 0.

In other words, we may define ĥab, a, b ∈ {1, 2}, as an arbitrary smooth positive

definite symmetric tensor along N0, with ĥ11ĥ22 − ĥ2
12 = 1 and ĥab = (g11g22 −

g2
12)

−1/2g(∂a, ∂b) in N0 ∩O−. We then define φ according to equation (4.23), and

the full tensor h = φ2ĥ along N0. Finally, we apply Rendall’s theorem [11, Theorem

3] (or Theorem 2 in [9]) to construct a smooth space-time metric h in Ũp = {x ∈
Bε0(p) : u(x) ≥ −ε20} satisfying the Einstein vacuum equations and agreeing with
g in Up ∩O− and with h along N0 ∩Bε0 .

7Writing D∂4
∂4 = ω∂4, the condition reduces to ω = 0 along N0.

8Since the metric h is degenerate on N0, this formula only defines the covariant derivatives
∇XY up to a multiple of L = e4.
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It remains to prove that we can arrange ĥab on N0 such that Z does not admit
an extension to Up as a Killing vector-field for h. We extend the smooth vector-field
L from Up ∩O− to all of Up such that

DLL = 0 in Up

with D the covariant differentiation associated to the metric h.
Since Z(u) = 0 in O− it follows that [Z,L] = 0 in O−. Assume, for contradiction,

that Z admits an extension to Up as a Killing vector-field for h. Then, letting
V = LZL, we compute in Up

LρDρVα = LρLZDρLα = −V ρDρLα.

Since V vanishes in Up ∩O−, it must vanish in all of Up, i.e.,

[L,Z] = 0 in Up.

In addition, since
Lh(Z,L) = 0,

we infer that Z must remain tangent to the hypersurface N−ε20
. To summarize, by

contradiction, we have constructed a vector-field Z in Up tangent to the hypersur-
face N0 such that, on N0 ∩ Up,

(4.24) LZh = 0, [L,Z] = 0.

On the other hand, writing Z = Z1∂1+Z2∂2+Z4∂4 in the system of coordinates
along N0 introduced before, the identity LZh = 0 in (4.24) gives

0 = Z(hab) + ∂aZ
ρhρb + ∂bZ

ρhaρ, a, b ∈ {1, 2}.
Therefore,

Z(det(h)) = Z(h11h22 − h2
12) = −2(∂1Z

1 + ∂2Z
2)det(h).

Since h = (deth)1/2ĥ, the identity LZh = 0 shows that

(4.25) LZ ĥ = (∂1Z
1 + ∂2Z

2)ĥ.

Notice also that Z does not depend on the choice of the tensor ĥ; indeed, Z is defined
simply by the relation [L,Z] = 0 in (4.24). Therefore, we obtain a contradiction

by choosing ĥ such that (4.25) fails at some point in N0 \ O−. This completes the
proof. �
Remark. We can interpret condition (4.18) using the null second fundamental form
of N0 with respect to the h metric,

χ(X,Y ) := h(DXL, Y ), ∀X,Y tangent to N0.(4.26)

Clearly, DLL = ωL along N0 for some smooth function ω. Thus,

I =
∑

a,b∈{1,2}
habh(D∂a

D∂4
(∂4), ∂b)

=
∑

a,b∈{1,2}
ωhabh(D∂a

∂4, ∂b) = ωhabχab = ωtr χ.

Thus (4.18) takes the form

ω · tr χ = 0,(4.27)

from which we infer that ω must vanish in Up ∩N0 (i.e., DLL = 0) if tr χ vanishes
at most on a set with empty interior in (Up ∩ N0) \O−.
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On the other hand,

χab =
1

2
∂4hab =

1

2
∂4(φ

2ĥab) = φ∂4φ ĥab +
1

2
φ2∂4ĥab,

from which

tr χ = φ−2ĥab
(
φ∂4φ ĥab +

1

2
φ2∂4ĥab

)
= 2φ−1∂4φ.

Also, the traceless part of χ satisfies the identity

χ̂ab = χab −
1

2
tr χhab =

1

2
φ2∂4ĥab.

Thus, equation (4.23) takes the well-known form

∂4tr χ+
1

2
(tr χ)2 = −|χ̂|2h,(4.28)

from which we infer that tr χ can only vanish in a set with empty interior in
(Up ∩N0) \O− if the same holds true for χ̂. Thus, we can easily choose non-trivial
data on N0 such that, for our original choice of L = ∂4, we have

DLL = 0 in N0 ∩ Up.(4.29)
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