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Part 0. Introduction and statement of results

1.1. Results. Let M be a compact C*° Riemannian manifold of dimension two,
and let f : M — M be a C'*# diffeomorphism (0 < 8 < 1) with positive topological
entropy hiop(f). Set Po(f) == {x € M : f(z) = z}|.
Anatole Katok showed in [K1], [K2] that limsup < log P,,(f) > hyop(f) and con-
n—oo

jectured that if f is C>°, then limsup e~ ™*»(/) P, (f) > 0 (see [K3]). We show:

n—o0

Theorem 1.1. Suppose f is a C' TP diffeomorphism of a compact smooth surface,
and assume hiop(f) > 0. If f has a measure of mazimal entropy, then Ip € N s.t.
liminf e~""ter(H P, (f) > 0.

n—o0,p|n

This proves Katok’s conjecture, because C'*° diffeomorphisms on compact manifolds
have measures of maximal entropy (Newhouse [N]).

Jérome Buzzi has conjectured in [Bud] that f admits at most countably many
different ergodic measures of maximal entropy. We prove this:
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Theorem 1.2. Suppose f is a C'T8 diffeomorphism of a compact smooth surface.
If hiop(f) > 0, then f possesses at most countably many ergodic invariant probability
measures with maximal entropy.

Buzzi also conjectured that if f is C°°, then the number of different ergodic
invariant measures of maximal entropy is finite. This conjecture remains open.

Katok’s conjecture and Buzzi’s conjectures were previously known to hold in the
following cases: Hyperbolic automorphisms of the torus [AW], Anosov diffeomor-
phisms [Sil], [Si2], [M], Axiom A diffeomorphisms [B4], [PP], continuous piecewise
affine homeomorphisms of affine surfaces [Bud]. There are also results on non—
invertible maps; see [Hofll, [Hof2] and [Bull, [Bud]. A wealth of diffeomorphisms
such that limsup e="te»(/) P, (f) = oo can be found in [Kall.

n—oo

1.2. Symbolic dynamics. The proof of Theorems[I.Tland [I.2]is based on a change
of coordinates which simplifies the iteration of f. The idea, which goes back to the
work of Hadamard, Birkhoff, and Artin on geodesic flows, is to semi-conjugate f on
a large set to the left shift on a topological Markov shift. We recall the definition.

Let ¢ be a directed graph with a countable collection of vertices ¥ s.t. every
vertex has at least one edge coming in and at least one edge coming out. The
topological Markov shift associated to ¢ is the set

Y =%(9) = {(vi)icz € V" : v; — vy, for all i}.

We equip ¥ with the natural metric: d(u,v) := exp[—min{|i| : u; # v;}], thus
turning it into a complete separable metric space. X is compact iff ¢ is finite. X is
locally compact iff every vertex of ¢ has finite degree.

The left shift map o : ¥ — ¥ is defined by o[(v;)icz] = (vit1)icz-

Let % = {(vi)iez € ¥ : Ju,v € ¥Ing,my T 00 8.t v_p, = U,v,, = v}
Y% contains all the periodic points of o, and by the Poincaré Recurrence Theorem,
every o-invariant probability measure gives ©# full measure.

We say that a set Q C M is x—large if u(2) = 1 for every ergodic invariant
probability measure p whose entropy is greater than y. We prove:

Theorem 1.3. For every 0 < x < hiop(f) there exists a locally compact topological
Markov shift 3, and a Holder continuous map my : 3y = M s.t. Ty o0 = fom;
Ty [Ef] is x—large; and s.t. every point in [Ef] has finitely many pre-images.

Theorem 1.4. Denote the set of states of Xy by ¥,. There exists a function
Oyt W x VY = Nosito if o = m[(vs)iez] and v; = u for infinitely many negative
and v; = v for infinitely many positive i, then |w " (x)| < oy (u,v).

Theorem 1.5. FEvery ergodic f—invariant probability measure p on M such that
hu(f) > x equals fi o w;l for some ergodic o—invariant probability measure [i on
Yy with the same entropy.

The other direction is trivial: If i is an ergodic o—invariant probability measure on
Yy, then p:=lio L. ! is an ergodic f-invariant probability measure on M, and p
has the same entropy as it because 7, is finite-to-one.

A remark on the regularity of my,. Our bound for the Holder exponent of m, decays
to zero as x — 0; see the proofs of Proposition 415 and Theorem [4.16
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A remark on x—largeness. Call a set Q C M y—very-large if Q has full measure with
respect to every ergodic invariant probability measure with at least one Lyapunov
exponent larger than y.

In dimension two, the positive Lyapunov exponent of an ergodic invariant prob-
ability measure is greater than or equal to its metric entropy (“Ruelle’s entropy
inequality” |[Ru]). Therefore, every x—very-large set is x—large.

As pointed out to the author by Professor L.-S. Young, Professor S. Newhouse,
and the referee, the proofs given in this paper actually show that [Ef] in Theorem
is x—very-large, not just x—large. Similarly in Theorem one can replace the
condition h,(f) > x by the assumption that ;4 has a Lyapunov exponent x(u) > x.

We explain how to use these results to prove Theorems [[.1] and This reduc-
tion was already known to Katok and Buzzi [K3], [Bud]. Write £, = 3(¥¢). By
Theorem [[L0] every ergodic measure of maximal entropy u for f lifts to an ergodic
measure of maximal entropy 1 for 0. By ergodicity, i is carried by a set (%)
where (1) ¢’ is a subgraph of & and (2) ¢’ is irreducible: for any two vertices vg, v1
there exists a path in ¢’ from vy to v1. Since [ is a measure of maximal entropy for
o :%(¥9) = X(¥9), it is also a measure of maximal entropy for o : X(¥4') — X(¥4').

The irreducibility of ¢’ means that o : X(¥4') — 3(¥¢’) is topologically transi-
tive. Gurevich proved in [Gul], [Gu2] that a topologically transitive topological
Markov shift ¥(%") admits at most one measure of maximal entropy, and that such
a measure exists iff Ip € N s.t. for every vertex vy in ¢,

Hv € X(9') : 0™(v) = v,v0 = v}| < exp[nhmax(X(¥"))] as n — oo in pN.
Here and throughout
hiax(E(9")) = sup{h, (o) : p a o—invariant Borel probability measure on X(¥¢’)}

and hy, (o) denotes the metric entropy of p w.r.t. o. By“a, < b, as n — oo in pN”
we mean that for some C' > 1, C~! < an /by, < C for all n € pN large enough.

Since m, 0 0 = f om,, the collection {v € £(¥¢’) : 0™ (v) = v,vo = v} is mapped
by , to a collection of points x € M s.t. f"(x) = z. By Theorem[L4] the mapping
is bounded-to-one, with the number of pre-images bounded by ¢, (vo,vo). Thus
liminf, o pn e~ Mmax(BE@N) P, (f) > 0. By construction, Ayax(2(4')) = hu(o) =
hu(f) = max{h,(f) : v f-invariant}. The last quantity is equal to hop(f) by the
variational principle [G]. Theorem [[1] follows.

This argument also shows that the cardinality of the collection of measures of
maximal entropy for f is bounded by the cardinality of the collection of subgraphs
Y C 9 s.t. (1) ¢ is irreducible, (2) X(¥’) carries a unique measure of maximal
entropy, and (3) hmax(E(4’)) = hmax(X(9)).

Any two such subgraphs are equal or their sets of vertices are disjoint: Otherwise
the shift defined by their union carries at least two measures of maximal entropy,
and this contradicts Gurevich’s theorem. It follows that the collection of subgraphs
satisfying (1), (2), and (3) is finite or countable. Theorem follows.

1.3. Markov partitions. As in [AW], [Sil], [B1], the symbolic description of f
relies on the existence of a countable Markov partition. This is a pairwise disjoint
collection Z of Borel sets with the following properties:
(1) Covering property: The union of Z is x—large.
(2) Product structure: There are W*(z, R), W*(z,R) C R (x € R € %) s.t.
(a) W¥(x, R)NW?*(z, R) = {z}.
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(b) Va,y € R, 3z € R s.t. W¥(z, R)NW?(y, R) = {z}.
(c) Vz,y € R, W5(x,R) and W*(y, R) are equal or they are disjoint.
Similarly for W*(z, R), W"(y, R).
(3) Hyperbolicity: If y,z € W*(z, R), then d(f"(y), f"(z)) —— 0. If

y,z € WH(x, R), then d(f~"(y), f~"(2)) — 0. B

(4) Markov property: Suppose Ry, Ry € #Z and © € Ry, f(z) € Ry. Then
Ve (@, Ry)] © Wo(f(2), Re) and fHW"(f(x), R2)] € W" (2, Ry).

We do not ask for the sets R to be the closure of their interiors.

1.4. Comparison to other results in the literature.

Markov partitions for diffeomorphisms. These were previously constructed in
the following cases: Hyperbolic toral automorphisms [Be], [AW], Anosov diffeomor-
phisms [Sil], pseudo—Anosov diffeomorphisms [FS], and Axiom A diffeomorphisms
[B1], [B2]. This paper treats the general case, in dimension two.

Katok horseshoes [K1], [K2], [KM]. Katok showed that if a C1*# surface diffeo-
morphism f has positive entropy, then for every £ > 0 there is a compact invari-
ant subset A. s.t. f : A, — A, has a finite Markov partition, and hep(f|a,) >
hiop(f) — €.

Typically, A will have zero measure w.r.t. any ergodic invariant measure with
large entropy. This paper constructs a “horseshoe” , (X,) with full measure for
all ergodic invariant measures with large entropy.

Some differences should be noted: (a) our horseshoe is not compact, (b) its
Markov partition is infinite, and (c¢) the semi-conjugacy 7, is not one-to-one as in
[KM]. (a) and (b) are unavoidable. I do not know if it is possible to get a semi-
conjugacy which is one-to-one on a set of full measure for “nice” measures: the
boundaries of the partition elements constructed here could be very large.

Katok’s work also includes the higher—dimensional case, with the condition of
positive topological entropy replaced by the stronger assumption that there exist
ergodic measures without zero Lyapunov exponents with metric entropy arbitrarily
close to the topological entropy. We expect a similar generalization of our results.

Tower extensions [Ta], [Hofl], [Y]: These are representations of certain maps
as infinite-to-one factors of other maps (“towers”) which possess obvious infinite
Markov partitions. Such extensions have been used in the study of one-dimensional
systems with great success; see e.g. [Hof2|, [Bull, [Brul, [Ke2|, [PSZ], [IT], [Z]. For
higher dimension, see [Bud], [Bu2], [Buj], [BT], [BY], [Y].

Unlike tower extensions, our coding is finite-to-one. This ensures that any er-
godic invariant measure with high entropy can be lifted to the symbolic space
(Theorem [T see also (I3])). For tower extensions, proving the existence of a lift
is highly non—-trivial, and there are very few results in dimension higher than one,
see [Kell], [Bud], [BT], [PSZ], and references therein.

Symbolic extensions [BD|, [DN], [BEF]. These are representations of a diffeo-
morphism as a topological factor of o : A — A where A C {1,..., N}? is closed and
shift invariant and o is the left shift (“subshift”). Burguet has shown that every
C? surface diffeomorphism has a symbolic extension [Bur]. In the C* case there
are symbolic extensions whose factor maps preserve entropy [Bul], [BEE]. In lower
regularity it is not even always true that hiop(0) = hop(f).

Unlike symbolic extensions, our symbolic space is not compact. But it is Mar-
kovian, and this gives us access to many results which are not true for general
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subshifts, such as Gurevich’s theory which we needed for Theorems [l and
Another advantage of our extension is the lifting theorem (Theorem [[H), which
does not seem to be available for general symbolic extensions.

Markov partitions for billiards. |BS] and [BSC] construct countable Markov
partitions for certain dispersing billiard systems. Their partitions capture sets of
full Liouville measure. If our methods could be adapted to handle maps with
singularities such as billiards, then one could hope to construct Markov partitions
which capture the measure of maximal entropy.

1.5. Overview of the construction of a Markov partition. It is useful first
to recall Bowen’s construction in the case of Anosov diffeomorphisms [B4].

Bowen’s idea was to use e—pseudo—orbits. These are sequences of points z =
{z;}iez such that d(z;41, f(z;)) < € for all i. A pseudo-orbit z is said to d—shadow
a real orbit {f%(x)}iez if d(wi, fi(z)) < § for all i € Z. Anosov showed that for
every ¢ small enough, there exists an € > 0 s.t. the following hold:

(A1) Every e-pseudo-orbit z J—shadows the real orbit of some unique point 7(z).

(A2) “Finite alphabet suffices”: There exists a finite set of points A such that
{n(z) : z € A is an e—pseudo-orbit} is the entire manifold.

(A3) “Inverse problem”: If two pseudo—orbits z, y d—shadow the same orbit, then

their corresponding coordinates are close, d(x;,y;) < 20 for all ¢ € Z.

Since pseudo—orbits are defined in terms of nearest neighbor constraints, one can
view the collection of pseudo-orbits in A% as the collection of infinite paths on the
graph with set of vertices A and edges a — b when d(f(a),b) < e. (Al) and (A2)
say that f is a factor of the topological Markov shift

Y= {z € A% : d(wiy1, f(2:)) < e for all i € Z}.

The factor map is w. It is an infinite-to-one map.

The sets ola] := {z € ¥ : g = a} form a natural Markov partition for the left
shift on £[] Their projections Z(a) = {n(z) : z € ¥ , 20 = a} (a € A) would have
been natural candidates for a Markov partition had they not overlapped. Sinai
came up with a set—theoretic procedure for refining

% ={Z(a):a € A}

into a partition without destroying the product structure. This partition is a
Markov partition [B4].

Our proof follows a similar strategy. But since Anosov’s theory of pseudo—orbits
relies on uniform hyperbolicity and our setting is only non—uniformly hyperbolic,
we have to find a substitute for Anosov’s shadowing theory. This problem was
previously considered by Kriiger and Troubetzkoy [KT], but their construction does
not work in our setting.

In Part I, we introduce e—chains as a replacement to e—pseudo—orbits in the
non—uniformly hyperbolic setup. Much like a pseudo—orbit, a chain is a sequence of
symbols which satisfies nearest neighbor conditions. Each symbol contains partial
information on the location of the point and the position and size of its local stable
and unstable manifolds. The nearest neighbor conditions are tailored in such a

!The product structure is given by W*(z,ola]) := {y € £ : y; = 2; (i < 0)}, W¥(z,0[a]) :=
{yeX: yi=z; (1 20)}.
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way that the following analogues of (Al) and (A2) of Anosov’s theorem hold for a
suitable choice of e:

(A1) Every e—chain v corresponds to a unique real orbit m(v).
(A2') There is a countable set A of symbols s.t. {m(u) : u € AZ is an e—chain} is
x—large. A and € depend on Y.

As a result, we obtain a representation of f (restricted to a large invariant set) as
a factor of a topological Markov shift.

The next step is to construct 2 as before and try to apply Sinai’s method to
obtain a countable refining partition. Here we run into a serious problem: whereas
Sinal dealt with a finite cover, our cover is infinite, and a general countable cover
need not have a countable refining partition. To avoid such pathologies, one needs
to ensure that 2 is locally finite: Every Z € % intersects at most finitely many
other 7' € %. This difficulty turns out to be the heart of the matter.

We deal with this issue in Part II. Here we obtain the following analogue of (A3)
of Anosov’s theorem:

(A3') If two e—chains v,u are “regular” and 7(u) = 7(v), then u; and v; are
“close” for every i € Z (see §0l for the precise statement).

Unlike (A3), this is not a trivial statement, because the symbols u;, v; contain much
more information than mere location. The fact that e-chains satisfy (A3') is the
main point of this work.

The alphabet A from Part I can be chosen s.t. (a) for every u € A, the number of
v € A “close” to u is finite and (b) {m(u) : u € A%, u is a regular e—chain} has full
measure w.r.t. any ergodic invariant probability measure with entropy more than
X- As a result, the sets Z(v) := {n(v) : v € AZ is a regular e-chain} form a locally
finite cover Z of a large set.

Sinai’s refinement procedure can now be safely applied to 2. In Part III, we
check that the elements of & have the “product structure” and “symbolic Markov
properties” needed to push through Bowen’s proof that Sinai’s refinement is a
Markov partition. We also explain how to deduce Theorems [[L3] [[4] and The
proofs are modeled on [B4], [B3].

Some of the lemmas that we need to develop the theory of e—chains are routine
modification of well-known results in Pesin theory. Part IV collects their proofs.

1.6. Notational conventions and standing assumptions. In what follows, M
is a compact C*° Riemannian manifold of dimension two. We assume without loss
of generality that M is orientable (otherwise pass to a finite orientable extension).

Let f: M — M be a C'*# diffeomorphism where 0 < 8 < 1. We assume that
the topological entropy of f is positive and fix a constant 0 < x < hyop(f)-

Suppose P is a property. The statement “for all € small enough P holds” means
“Jeg > 0 which only depends on f, M, 3, and x s.t. for all 0 < e < g9, P holds”.

The metric entropy of an f-invariant measure g is denoted by h,(f). The
topological entropy of f is denoted by hiop(f).

T, M is the tangent space to M at x. The exponential map is denoted by
exp, : T, M — M. The Riemannian norm and inner product on T, M are denoted
by || - ||z and (-,-),. Sometimes, we drop the subscript z. Given two non-zero
vectors u,v € T, M, the angle from u to v is denoted by «(u,v). This is a signed
quantity.

Proposition [6.3(2) is part two of Proposition [6.3] located in 6l
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Let V be a vector space. The zero element in V' is denoted by 0. We identify the
tangent space to V at v € V with V. Let A: V — W be a linear map between two
linear vector spaces V, W. We identify (dA), : T,V — Ta,W with A:V — W.

Suppose a,b,c € R. We write a = b+tcifb—c<a <b+c, and a = e* if
e b <a <e‘. Let ay,,b, > 0. Then a,, ~ b, means that ‘Z—: m 1, and a, < b,
means that IN, ¢ s.t. Vn > N (e~ b, < a,, < €°y,). Finally, a A b := min{a,b}.

Some abbreviations: s.t. is “such that”; w.r.t. is “with respect to”; i.0. is “in-
finitely often”; resp. is “respectively”; and w.l.0.g. is “without loss of generality”.

Part I. Chains as pseudo—orbits
2. PESIN CHARTS

2.1. Non—uniform hyperbolicity. By the variational principle, f admits ergodic
invariant probability measures of entropy larger than x (see [G]). Quite a bit is
known about the properties of these measures. We will use the following fact,
which follows from Ruelle’s Entropy Inequality [Ru] and the Oseledets Multiplica-
tive Ergodic Theorem [Os] (see [BP]):

Theorem 2.1 (Oseledets, Ruelle). Any ergodic invariant probability measure u for
[ s.t. hu(f) > x gives full probability to the set NUH, (f) of points x € M for which
for every y € {f*(x) : k € Z}, T,M = E*(y) ® E“(y) where

(1) E*(y) = spanfe* ()}, lle*(w)lly =1, lim logll(df™)ye’ (W)l n ) < —X;
(2) E*(y) =span{e" (W)}, e @)lly =1, Tim Jlog|l(df")ye" W)llsm) > X;
(3) lim log|sina(f"(y))| =0, where a(y) = £(e*(y),€"(y));

(4) dfy[E*(y)] = E*(f(y)) and dfy[E"(y)] = E"(f(y))-

NUH, (f) is invariant. Properties (1) and (2) determine the splitting E* & E“
uniquely, but the vectors e®, e" are only determined up to a sign. To fix the sign, we
use the assumption that M is orientable to choose a measurable family of positively
oriented bases (e, e2) of T,M (y € M); then we choose the signs of e*/"(y) so that
4(ey,e*(y)) € [0,m) and (e*(y),e"(y)) have positive orientation.

NUH(f) := UX>0 NUH, (f) is called the non-uniformly hyperbolic set of f and
is f-invariant. This set has full probability w.r.t. any ergodic invariant probability
measure with positive entropy.

The linear spaces E*(x), E*(z) are called, respectively, the stable and unstable

spaces of df. The numbers

log A(z) :==

li
n—

1
m  — log ||(df™)z€" ()| f (x):
n o d (x € NUH(J))

: 1 n u
logp(z) := lim —log|[(df")ee"(2)lm @)

are called the Lyapunov exponents of x. They are f—invariant, whence constant
a.e. w.r.t. any ergodic invariant measure. The value depends on the measure. On
NUH, (f), log A(z) < —x and log u(z) > x.

2.2. Lyapunov change of coordinates. The splitting T, M = E*(z)® E"(x) can
be used to diagonalize the action of df on {T, M : x € NUH(f)} (“Oseledets—Pesin
Reduction”).
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We describe a change of coordinates which achieves this. The construction de-
pends on x. Given € NUH, (f), let

- 1/2
sy(x) = V2 (Z 62kx|(dfk)zés($)||fck(m)> ;
k=0
1/2
Uy, (Ze%x| df ) pet (x )”f k(m> :

The /2 is needed to make the change of coordinates a contraction; see Lemma 25

Definition 2.2. The Lyapunov change of coordinates (with parameter y) is the
linear map Cy(z) : R? — T, M (x € NUH,(f)) s.t. Cy(z)e; = sy(x) 'e’(x) and

Cy(z)eq = uy (z) e (x), where e; = ((1)) and e, = (1)

Notice that C,(x) preserves orientation.

Theorem 2.3 (Oseledets—Pesin Reduction Theorem). There exists a constant Cy
which only depends on f s.t. for every x € NUH, (f),

Co(f(x) odfy 0 Cy(z) = ( A"éx) MX(EQ:) >

where Cf_l <Ay (@)] < e X and X < |uy(z)| < Cy.

Pesin’s original construction in [P] is slightly different. He defined s, (z) and
uy (z) with e 2 \(2) 2% or e=2k¢y(x)?F replacing e?*X. His method gives better
bounds on A, (x) and p, (z) and makes sense on all of NUH(f). Our method can
only be guaranteed to work on NUH, (f), but it has the advantage that C, (x) is
not sensitive to the values of A(z), u(x). This is important, because we want to
capture the dynamics of all orbits with exponents bounded away from x; therefore
we have to work with points with different Lyapunov exponents.

We need the following definition from linear algebra: suppose L : V — W is an
invertible linear map between two finite-dimensional vector spaces equipped with
inner products. Then the operator norm of L is |L|| := max{|| Lv||w : [|v|lv = 1},
and the Frobenius norm of L is ||L||p, := 1/tr(0tLtLO), where © is some (any)
isometry © : W — V. ||L||py is well defined and ||L|| < ||L||rr < V2||L|B One
of the advantages of the Frobenius norm is that it has an explicit formula: If L is
represented by the matrix (a;;) w.r.t. some (any) orthonormal bases for V, W, then

||L||FT = (Z” a%) 1/2E

We give some more information on C, (z) (see the appendix for proofs):

Lemma 2.4. ||C,(z) 7 ||rr = /5y ()2 + uy(2)2/| sina(z

Lemma 2.5. CX(:L‘) is a contraction: ||Cy(z) (n)H“’ < H(n)H for all §,n e R.

2Proof: tr(©5L*LO2) = tr[0501 (0 L1 LO1)(0401)!] = tr(©4 Lt LO;).

3Proof: Let s1(L) > s2(L) denote the singular values of L (equal by definition to the eigenvalues
of VL'L). Then ||L|| = s1(L), and ||L|| pr = \/s1(L)? + s2(L)2.

4Proof: Let © : W — V be the isometry which maps the base we chose for W to the base we
chose for V. Then LO : W — W is represented w.r.t. the base we chose for W by the matrix
(aiz). A calculation shows that tr(©'LtLO) = Zafj.
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Lemma 2.6. There is a x-large invariant set NUH, (f) C NUH,(f) s.t. for every
r € NUH,(f),

(1) lim Flog[Cy(f5 ()] = 0;
(2) lim {log |[Cx(F*(@)e'll () = 0, where ¢! = (g) and &* = (3);
(3) hm 1log|detC( fF(x))| = 0.

2.3. Pesin charts. Having diagonalized the action of the differential of f, we turn
to the action of f itself. The basic result (due to Pesin [P]) is that NUH, (f) has
an atlas of charts with respect to which f is close to a linear hyperbolic map.

We give some notation. Let exp,, : T, M — M denote the exponential map. We
denote the zero vector (in T, M or R?) by 0. Balls and boxes are denoted as follows:

By(z) ={y € M :d(z,y) <n}, By(0):={veR*:v= ), Vvi+vi<n}
Bj(0) ={v € ToM : ||vllo <n}, Ry(0) :={ve€R?:v=(}) o, |va] <7}

Since M is compact, there exist 7(M), p(M) > 0 s.t. for every z € M

IG IG

(2.1) exp, maps B, ) (0) diffeomorphically onto a neighborhood of B, (z).

We take p(M) so small that (z,y) — exp, !(y) is well defined and 2-Lipschitz on
B,wm)(2) X Byary(z) for all z € M and so small that [[(dexp;'),| < 2 for all
Y € By (x) (see e.g. [Sp, Chapter 9]). Since Cy is a contraction,

(2.2) U, := exp, oCy ()

maps R, (0) diffeomorphically into M. Since Cy(x) preserves orientation, W,
preserves orlentatlon
Let f, := \I/;(lz) o foW,. Then the linearization of f, at 0 is the linear hyperbolic

map ( )\Xém) i (233) ) . The question is, how large is the neighborhood of 0 where
X

fx can be approximated by its linearization? The size of the neighborhood is known.

For reasons that will become clear later, we prefer to define it as a quantity taking

values in I, := {e~3% : £ € N}, where ¢ will be determined later. Set
Q:(z) :==max{gel.: q < @X(x)} where

A - —12/

Qu() := e (IICx ()" Hlpr) "

Theorem 2.7 (Pesin). For all € small enough and for every x € NUH, (f),

(1) ¥.(0) = = and ¥y : Rigg, (2)(0) = M is a diffeomorphism onto its image
such that ||(d¥;)y|| <2 for every u € Ry (2)(0);
(2) fo =Vt o foW, is well defined and injective on Ri10g.(2)(0) and

f(=@)
(a) f2z(0) =0 and (dfs)o = < Aéx) B(()x) ) where Cy 1 < |A(x)] < e™X

and eX < |B(z)| < Cy (cf. Theorem. 23);

(b) 1Sz = @fdall vy g < on Riog.(@)Q). The CY*% —norm of r: U — R2
||dry—dryl|

(2.3)

on U C R? is supH ()|| + sup ||drg|| + sup —M.
zeU z€U llz=yl#/
z ,yer
(3) The symmetric statement holds for ;1 =W lo f~ 1 oWz

This is a version of [BP, Theorem 5.6.1]. See the appendix for the proof.
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Definition 2.8. Suppose z € NUH, (f) and 0 < n < Q.(«). The Pesin chart ¥}
is the map ¥, : R, (0) — M.

We give some additional information on Q. (z) (see the appendix for proofs):

Lemma 2.9. The following holds for all € small enough:
) Q=(z) < e¥P on NUH,(f);
[C(f* (2 )) NI < e2P/Qc() fori=—1,0,1;
{Q:(2) : Qz(x) > t,x € NUH,(f)} is finite for all t > 0;
L1 ng(f"( ) — 0 on NUH}(f) (¢f. Lemma 2.8);
n—IT oo

F~' < Q.0 f/Q: < F on NUH,/(f), where F is independent of ;
there exists a function q. : NUHL(f) — (0,1) so that q-(z) < eQ:(z) and

e /3 < q.o0 f/qe < e/* on NUHL(f).

(1

(2)
(3)
4)
(5)
(6)

2.4. Distortion compensating bounds. Our main use of Pesin charts is to ana-
lyze local stable and unstable manifolds. First we will use the charts to parameterize
the manifolds, and then we will interpret the analytic properties of the parameter-
izations in terms of the Riemannian metric.

The last step is dangerous, because Pesin charts can distort distances and angles
considerably. To see where the distortion comes from, recall that a Pesin chart
is given by ¥, = exp, oC,(z). The exponential map causes no problems: it is
bi-Lipschitz and uniformly smooth. But the linear map C, (z) can have enormous
distortion. We can measure this distortion by ||Cy (z) || (we do not need to worry
about ||Cy(z)|| because Cy(z) is a contraction). By Lemma 24 ||C, (z)~!| (and
therefore the distortion of ¥,) is large iff

e s, (x) is large (it takes a long time for df} to contract e®(z)) or
e u,(z) is large (it takes a long time for df ™ to contract e"(x)) or
e |sina(z)| is small (the stable direction is close to the unstable direction).

So the distortion of ¥, is tied to the quality of hyperbolicity at z.

For non—uniformly hyperbolic diffeomorphisms, there are no uniform bounds on
5y (), uy(x), and | sin a(z)|. Therefore the distortion of Pesin charts is not bounded.

We will deal with the unbounded distortion of Pesin charts by tying the quality
of the estimates we make in Pesin coordinates to the size of ||C, (x)~!||: the larger
the norm, the stronger the bounds we will require from our parameterized objects.
The idea is to make the bounds so strong that something useful will survive the
application of the map W, : Rg_(;)(0) — M. These “distortion compensating
bounds” will often take the form

(x)some power sSome power

distance, error, proximity bound < const Q. or constn

where x is the center of the chart and 0 < n < Q. ().
Since Q.(z) < [|Cy(x)~1||~Ple Power "this will do the work provided the powers
are chosen correctly.

2.5. NUHf(f). The set NUH, (f) constructed in Lemma is y-large. By the
Poincaré Recurrence Theorem, the set

(24) NUHZ(f) := {w € NUH,(f) : limsup q. (" (x)), limsup q. (f " (x)) # 0}

n—oo n—r oo

is x—large. This is the set that we will attempt to cover by a Markov partition.
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3. OVERLAPPING CHARTS

We would like to replace ¢’ := {¥] : x € NUH (f),0 < n < Q:(x)} by a
countable collection &/ in such a way that every element of € “overlaps” some
element of &/ “well”. Later, we will use &/ to construct the set of vertices of a
directed graph related to the dynamics of f.

3.1. The overlap condition. We need to compare the maps Cy (z) : R? — T, M
for different x € M, even though they take values in different spaces. We circumvent
the problem as follows. Every x € M has an open neighborhood D of diameter less
than p(M) and a smooth map ©p : TD — R? s.t.

(1) ©p : T.M — R? is a linear isometry for every z € D.

(2) Let ¥, := (Op|r,m)~t : R2 — T, M. Then (z,u) — (exp, od,)(u) is
smooth and Lipschitz on D x Bs(0) with respect to the metric d(z,z") +
llw— ']

(3) = — ¥, oexp, ! is a Lipschitz map from D into C?(D,R?), the space of
C? maps from D to R2,

Let & be a finite cover of M by such neighborhoods. Let £(Z) be a Lebesgue
number for 2. If d(z,y) < €(2), then z,y fall in some element D. Instead of

comparing C, (z) to Cy(y), we will compare ©p o Cy(x) to Op o C,(y) (two linear
maps from R? to R?).

Definition 3.1. Two Pesin charts W1, W72 e—overlap if e™° < Z—; < €, and for

some D € 9, x1,x2 € D and d(z1,22) + ||Op o Cy(z1) — Op o Cy (z2)|| < nin3.

The overlap condition is symmetric. It is also monotone: if Ui e-overlap, then
\Ilg e—overlap for all n; < & < Q- (x;) s.t. e7° < & /& < e°. Notice that the
overlap requirement is stronger at areas of NUH, (f) where s, (z) or u,(z) is large
or where e*(z) and e“(z) are nearly parallel. This is because by construction

| sin ()]

sx (@) + uy (2)?

ni < Qe(wi) < ||Cx (i) gy =

The following proposition explains what the overlap condition means.

Proposition 3.2. The following holds for all ¢ small enough. If ¥, : R, (0) — M
and ¥, : Ry, (0) = M e—overlap, then
(1) Wa, [Re—2e, (Q)] € W, [R, ()] and Vo, [Re—200, (0)] C Wi, [Ryy, (Q));
(2) dist ., s (O, oW, 1d) <enin ({i,7} = {1,2}), where the C%5 ~distance
is calculated on R,z (0) and v(M) is defined in (2.1).

Remark. By (2), the greater the distortion of ¥, or ¥,,, the closer they are to one
another. This distortion compensating bound will be used in the sequel to argue
that \I/;(lw) o f oW, remains close to a linear hyperbolic map if we replace W y(,) by

an overlapping chart ¥, (Proposition [3.4] below).

Proof. Suppose the W}i e—overlap, and fix some D € & which contains z; and
such that d(z1,22)+||©poCy(x1) —OpoCy(z2)| < nins. Write C; := ©OpoCy (z;).
Then ¥,, = exp,, oy, o C;.
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By the definition of Pesin charts, 7; < Q(x;), where Q.(z;) is given by (2.3).
Lemma 2.5 and the general inequality || - ||z > || - || (see page B49) guarantee that

(3.1) N < 53/ﬁHCx(xi)71”712/ﬁ-

In particular, 7; < €%/,
Our first constraint on ¢ is that it be so small that
53/6 Hlln{L’r‘(M),p(M)}
5(Ly + Lo+ Ly + Ly)3’
where (M) and p(M) are given by (1)) and
(1) Ly is a common Lipschitz constant for the maps (z,v) — (exp, o, )(v) on
D x B,y (0) (D € 2);
(2) Ly is a common Lipschitz constant for the maps z + ¥, o exp, ! from D
into C?(D,R?) (D € 9);
(3) Ls is a common Lipschitz constant for exp; ' : By (@) = T M (z € M);
(4) Ly is a common Lipschitz constant for exp, : By, (0) = M (z € M).

(3.2)

We assume w.l.o.g. that these constants are all larger than one.
Part 1. Wy [Re—2:,,(0)] C ¥y, [R,,(0)].

Proof. Suppose v € R.-2cy,(0). Lemma says that C,(z1) is a contraction;
therefore ||Cro| = ||Cy(z1)v]| < [lz|l, and (z1, C1v), (22, Crv) € D X By (0).
Since d(x1,z2) < nins,

d (expxz 019I2 [Cly}v €XPg, Oﬁﬂvl [Cly]) < Lﬂﬁﬁ%-
It follows that V., (v) € By, yaps(exp,, 0¥z, (C1v)). Call this ball B.
The radius of B is less than p(M) because of our assumptions on . Therefore

exp;; is well defined and Lipschitz on B, and its Lipschitz constant is at most L.
Writing B = exp,, [expg,' (B)], we deduce that

\I’wl (Q) €BC expm [BziLm%ng (1912 (Cly))] = \I/wz [E]v

where E := Cx(xz)fl[BziLw;lng (U, (C120))].

We claim that E C R,,(0). First note that E C BHCX(acg)*l||L3L1n%n§(02_lcly);
therefore if w € E, then

[wlloo <105 Crlloe + O (w2) ™ | LaLanin;
< (G2 1Cr = 1d)ullos + [[0lloo + [[Crwa) | LaLamyny
< llelloo + VEICTHIC1 = Calll2lloo + I Co(2) 1 Ls Lanind
< e %+ [|Cy () HI(minavV2e ™ my + LaLyinins) (.- |C1 — Ca|| < nin3)
< e ¥+ | Cy(wa) " Hing - [(e7* V2 + LaLa)ni] - m
<e % +e?n, because of B1) and [B2)
< ef(e7% + %)y < 1o, because 7y < €y and 0 < € < % by (B2).
It follows that £ C R,,(0). Thus ¥,, (v) € ¥,,[R,,(0)]. Part 1 follows.

Part 2. The C'*#/2 distance between \I/;11 oWy, on Re—cp(ary(0) is less than en.
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Proof. One can show exactly as in the proof of Part 1 that W, [R.-<,(ar)(0)] C
oo [Ry(a1)(0)]; therefore W1 o Wy, is well defined on Re-<,(a)(0). We calculate
the distance of this map from the identity:

‘Ij;} oW, = 01_1 o 19;11 o exp;l1 oexp,, oUz, 0 Co
=C;to [, ! oexp, ! 49, oexp,! =9, oexp, ] o exp,, 0d,, o Cs
=C O+ Cyl o9, oexpy ! =0, oexpy!] o Ty,

=Id+C; Y (Cy —Cy) + Ot o [19;11 o exp;11 —19;21 o exp;j] oW,,.

The C'*8/2-norm of the second summand is less than ||C'_1||77‘1L77§l The C1+8/2-

norm of the third summand is less than ||C] (|- Lod(z1, z2) - L T2 This is less than
ICT M| L2 Lanins.

It follows that dlstcl+ﬂ/2(\lf Low,, Id) < ||C;H|(1 4 Lo L3)nins. This is (much)
smaller than en?n3, because of (Bj]) and ([3.2)). O

The following distortion compensating bound is needed in §7] below:

Lemma 3.3. Suppose W', U2 e—overlap. Then

(#1) WlT1) Qe @)Qe () Qe (@)@ a2)).
Sx(72) " uy(22)

—~|—~

Proof. We use the notation of the previous proof. \I/;; oW, maps R.-<,, (0) into
R2. Tts derivative at the origin is
A= CX(IZ)ild(eXp;;)xlOx(ml) = C;ld[ﬂ;; eXP;;]wlﬁxlcl
= Cy "0+ Cy M dW;) expy e, — 95 02, C1
=Cy 01+ Gyt (dIYy) expy e, — d[9,) expy ey ) Uay Ch

Since ||d[d7, expyle, — [0 expylle, | < Lod(x1,22) < Loniny < enini and
¥4,C1 is a contraction and ||A —Id || < distcr (U} o W, Id) < engns3,

|C5 1 Cy = 1d || < 2¢||C5 H|[nin3.

Since ||Cy|| < 1, we have that ||Cy — Cy|| < 2¢[|C5 t|nin3.
Recall that sX(:ci)_l = ||Cy(x:)eq ]| and sy (z;) = ||Cy (w;)"te* (x1)]], so

sy(w2) ! = sy (21) 7!
Sx(xl) !
<Oy ()7 - [ICx (z1)eq || = O (22)es ||

=ICT - [IC1eall = 1 Cagy ]
<ICTHI- ICL = Call < 2¢|CT IG5 Inin3 < emuma.

ux(wl)
uy (z2)

Similarly

— 1‘ < enna. Since n; < Q< (x;), the lemma follows. O



SYMBOLIC DYNAMICS FOR SURFACE DIFFEOMORPHISMS 355

3.2. The form of f in overlapping charts. Theorem R.7lsays that \Il OfO\I/
is close to a linear hyperbolic map. This remains the case if we replace \I/ f(x) by
some overlapping chart W,:

Proposition 3.4. The following holds for all € small enough. Suppose x,y €
NUH, (f) and \I/?(I) e—overlaps \IIZ/. Then fgy = \11;1 o foW, is a well-defined
injective map from Rioq_(z)(0) to R?%, and f., can be put in the form

(3.3) fay(u,v) = (Au + hi(u,v), Bv + ha(u,v)),

where CJZl < |A] < e7X, eX < |B| < Cf (c¢f. Theorem 23), |h;(0)] < en,
IVRi(0)]| < en/?, and [[Vhi(uw) — Vhi(v)|| < ellu—v[|** on Rigq. (2)(0)-

-1

A similar statement holds for f,,’,

assuming that \Iff,l( ) e—overlaps V7.

Proof. We write fyy = (¥, 0 Vs(,)) o fr where f, = v 193 o foW, and treat fy,
as a perturbation of f,.
By Theorem 2.7 if € is small enough, then f, has the following properties:

(1) It is well defined, differentiable, and injective on Rigq_(2)(0).
A

(2) f+(0) =0and (dfy)o = < 0 g )Where C’;l <|A] <e X, eX < |B| < Cy.

(3) For all u,v € Rigg.()(0), [[(dfe)u — (dfz)ull < 2¢]lu — v]|#/? (because the
C'+% distance between fz and (dfz)o on Ripg.(2)(0) is less than ).

(4) For every 0 < < 10Q.(z) and u € R,(0), |[(dfz)u|| < 3Cy, provided ¢ is
small enough (because ||(df,)u < ||(dfi)oll +en?/? < 2C; +¢).

Properties (2) and (4) imply that f.[R10q. () (0)] C B3oq. (x)c, (). Since Qc(z)
< &3P fulRiog.(x)(0)] C Bsoc,ea/s(0). If € is so small that 30038 < e~er(M),
then fi[R100.(2)(0)] C Re-<r(ar)(0). Re—cr(ar)(0) is in the domain of W+ o Wy,
(Proposition B.2(2); therefore f,, is well defined, differentiable, and 1nJect1ve on
Ri0q. (2)(0).

Equation B3] can be used to define the functions h;(u,v). We check that they
satisfy the properties in the statement.

We have (1(0),h2(0)) = fuy(0) = W, (f(2)) = (" 0 W,)(0); therefore
1(h1(0), ha(Q))]| < disteo (W 0 W), 1d) < en?(n)* < en.

We differentiate the identity fu, = (¥, ' 0 Wy (,))o f, at an arbitrary u € R,(0).
The result, after some rearrangement, is

(34) (df:ﬂy)g = [d(\l’gjl © \I'f(m))fz(g) - Id](dfw)ﬁ_‘_ [(dflﬂ)ﬁ - (dfw)g] + (dfw)Q'
The norm of the first summand is less than 3Cy distcl(\Ily_l o Wy(y),1d), which
by Proposition is less than 3Cren?(n')? < 3Cfen?. The norm of the second

summand is less than e|ju|/?/? < 2en?/2. The third term is < A0 ) Thus

0 B
= |- (5 )

<enP3 (30 + 2076 < enP/3 . [3Cs 4 2]ve by B).

If € is so small that [3C; + 2]/ < 1, then ||Vh;|| < en®/3 on R,(0). In particular,
VR (O < en®?.

H ey < e[3Cy + 22

d(u,v)
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Equation ([B.4) also shows that for every u,v € RlOQE(x) (0),
1(dfay)w = (dfay)oll < NA(TGH 0 Cpi0)) f ) — d(Ty " o ‘Iff(x ) o) - 1(dfa)ul
+ [1(dfa)u = (dfz)oll - (Hd( oW fwll +1)-
By Proposition B2} distci+s/2(¥, " 0 Wy (y),Id) < en?(n')?; therefore

1Ay — (Afey)ull < en® ()2 - | f(w) = Fo@) |3 3Cy +2¢]|u— vl (en®(n')? + 2)

B8 B B8
<en®- sup [(dfe)wll? - lu—2v[|2 -3C + 5ellu — v 2
WER10Q, (z)(0)

< e((BCy) 4 5)lu —u]|F < £(3C))" 2P 4 5)lu— v #
< 6eflu — y||5, provided ¢ is small enough

< 62(30Q: ()70 lu — wll < 122 Ju — 0|7 (- Q= < ¥7)

1
< §5||y —v||?/3, provided ¢ is small enough.

Tt follows that || %5222} (w) — Z522) ()| < deflu—v]|#/? for all u,v € Riog. (x)(0),
whence ||Vh;(u) — Vh;(v)] < %SHQ—Q”B/?’ (i =1,2) for all u,v € Rypg,(x)(0). O

3.3. Coarse graining. We replace ¢ := {V¥] : v € NUH, (f),0 <7 < Q-(2)} by
a “sufficient” countable subset /. We remind the reader that NUH; is defined in
Lemma 28 and that I. = {e~3%< : k € N}.

Proposition 3.5. The following holds for all € small. There exists a countable
collection < of Pesin charts with the following properties:
(1) Discreteness: {U7 € o7 : n >t} is finite for every t > 0.
(2) Sufficiency: For every x € NUH](f) and for every sequence of positive
numbers 0 < n, < e~53Q.(f"(x)) in I. s.t. €5 < Np/Mny1 < €, there
exists a sequence { V" }ncz of elements of o/ s.t. for every n,
(a) \IJZZ e-overlaps \I’;]-:'L(z) and e=¢/3 < Qe(f"(2))/Qc(xn) < 66/3;
(b) \I/"’E*;) e—overlaps Ut ;
(c) \I/"” IZx ) e-overlaps V"' ;

(d) \IIQZ e o foralln, € I, s.t. n, <1, <min{Q(z,), €Ny }.

Proof. The general idea is simple: A chart U7 is given by a point z, a matrix
Cy(z), and a real number 7. The spaces of points, matrices, and real numbers are
separable, so all that one needs to do is to find a sufficiently dense discrete subset.

But there is a twist: ¥, does not necessarily depend continuously on x, because
x +— Cy(x) is not necessarily continuous. As a result there is no clear connection
between conditions (a), (b), and (c), and we are forced to treat them separately.
The following construction will help us to do this. Let

X := M3 x (0,00) x GL(2,R)3,

together with the product topology. Next recall the finite open cover & of M from
§3.1] and let Y C X denote the collection of all (z,Q,C) € X where

o z=(z, f(x),f}(z)), » € NUH](f);
o Q=(Q:(),Qc(f()), Qc(f (@) (cf. @));
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L d Q = (@Do OCX(x)v 9D1 OCX(f(x))v 9D—1 OCX(fil(x)))a where DO, Dla D*l
€ 9 satisty (w, f(z), f~1(x)) € Dy x Dy x D_;.

Let Vi == {(z,Q,C) € Y : x € NUH}(f),e”*) < Q.(z) < eV} (k€ N).
Y}, is a pre-compact subset of X. To see this, pick some (z,Q,C) € Yy. The vector
z belongs to the compact set M3. @ belongs to a compact subset of (0, o0)? because
by Lemma 2.9 for each i = —1,0, 1,

F—le—(k-i-l) < Qs(fz(x)) < Fe_(k_l).
C belongs to a compact subset of GL(2,R), because (a) the ©p, are isometries; (b)
|CL(f @) < 1 (LemmaBZ); and (¢) [[C (@) H|< (27 Pet+1) ™™ by @3) B
It follows that Y} is a subset of a compact subset of M3 x (0,00)% x GL(2,R)3.

Since Y}, is pre-compact, it contains a finite set Yy, s.t. for every (z,Q,C) € Yy
there exists some (y,Q’,C") € Vi n such that for every |i] <1,

(1) d(fi(z), f{(y)) < 36(2Z) where £(2) is a Lebesgue number of 2,

(2) d(fi (@), fi(y) + 0D 0 Cy(fi(x)) = Op 0 Cy(f1(y)) | < e+ for every
D € 2 which contains f*(z) and f*(y),

(3) e™/% < Q:=(f*(2))/Q:=(f*(y)) < /.
Define 27 to be the collection of all Pesin charts W7 such that for some k, m € N,
x is the first coordinate of some element (z,Q,C) € Y} ., and
0<n<Qz), e ™D <p<e ™2 andpel. ={e?:0=0,1,2,...}.
Part 1. Discreteness.

Proof. Suppose U7 € o/. Choose k,m € N s.t. = is the first coordinate of some
(2,Q,0) € Yim, 0 <1 < Q(x), and n € [e7" 72, e 2. Since Yim C Y,
Q:(z) < e **1 50 k < |logQ.(z)| + 1. Tt follows that k,m < |logn| + 2, and so
{Wled:n>t< Y |[Yimlx{nel:n>t}
k,m<|logt|+2

The last quantity is finite, because Y} ,, are finite.
Part 2. Sufficiency.

Proof. Suppose x € NUH, (f) and 7, € I satisfy 0 < 7, < e~ */3Q.(f"(x)) and
e % < np/Nny1 < e for all n € Z.

Choose My, ky, € Ns.t. n, € [e"™ "1 e7™nH ] and Q. (f™(x)) € [e Fn—1 e Fntl].
Find some element of Yy, whose first coordinate is f™(z), and approximate it by
some element of Y, ., with first coordinate x,, so that for i = —1,0,1,

(An) d(fi(fm (@), Filan)) < 3e(@)s |

(Bn) d(f'(f™(@)), [ (@n)) +[©poCy (f'(f™(2)) =OpoCy(fi(wn))|| < e~ 8mnt?)
for every D € Z which contains (@), fH(xn);

(Cn) /% < Q(f1(f™(2))/Qe(fi(wn)) < /.

Claim 1. ¥} € o/ and \I/Z/n € o foralln), € I s.t. ny, < n, < min{en,, Q-(x,)}.

5Here we use the obvious observation that {A € GL(2,R) : [|A]],||A7!|| < C} is a compact
subset of GL(2,R) for every C' > 0.
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Proof. By construction x, is the first coordinate of an element of Yj ., , and
Nn € [e”mn=1 emn 1 Since n, < 1), < €0y, 1), € [e7™n 72, eMn 2], It remains to
check that 7,1, < Q:(z,). In the case of 7/, there is nothing to check. In the case
of N, (Cp) with i = 0 says that Q.(z,) > e */3Q.(f™(x)) > M.

Claim 2. U» and W7, ) e-overlap.

Proof. (A,) with ¢ = 0 says that d(f™(z), z,) is smaller than the Lebesgue number

of 2, so there exists D € & s.t. f*(x),z, € D. (B,) with ¢ = 0 says that
d(f"(x),x0) + [|©p 0 Cx (f"(x)) = Op 0 Cy (2| < e F2.

Since n,, € [e~(MnF1) e=(mn=1)] ¢=8(mn+2)

Yiin \Il?”; @) e—overlap.

n

< U:LLW?L-H' Since e7° < fpy1/mn < €°,

)

Tndi

Claim 3. \Il??(m ) e-overlaps Uinti for i = +1.
Proof. We do the case ¢ = 1 and leave the case i = —1 to the reader.

Setting i = 1 in (A,,), we see that d(f(z,), f(f"(z))) < 3e(2). Setting i =0 in
(Ap11), we see that d(f"™(z),zn41) < 1(2). It follows that there exists some
D e P st. f(zn), xne1, fP(x) € D.

By (B,) with ¢ =1 and (Bp,4+1) with ¢ =0,

d(f(zn); &nt1) + 18D 0 Ox(f(2n)) = Op © Oy (a1

< (d(f(xn), F(fM(2)) + 110D © O (f(2n)) — Op o Oy (F(f™(x)))]])

+ (d(f" (@), 2pg1) + [|OD 0 Oy (S (2)) = Op 0 Cy(2ny1)])
< e—S(m,,L-i-Z) +e—8(mn+1+2)
<e®(nh + i) <281+ 685)’72+177i+1 < 77;1&177;11-5-1-

It follows that U'}7 " e-overlaps W31} .

(zn Tt

4. e-CHAINS AND AN INFINITE-TO-ONE MARKOV EXTENSION OF f

4.1. Double charts and s—chains. Recall that ¥7 (0 < 7 < Q.(x)) stands for
the Pesin chart ¥, : R, (0) = M. An e-double Pesin chart (or just “double chart”)
is a pair U2"P" .= (V2" WP") where 0 < p¥, p* < Q.(z).

o). u 8 u s
Definition 4.1. V-7 — Wl 7 means

o \I/Z'u/\qsk and \I]?{Q)qi e—overlap (recall that a A b := min{a, b});
o V2P and \Il’},/l\fy) e—overlap;
e ¢" = min{e“p", Q=(y)} and p* = min{eq*, Qc(x)}.

Definition 4.2. {5 """ },c7 (vesp. {5 "' };50, {Uhi P },<0) is called an e-chain
. . . . . s J T .
(resp. positive e—chain, negative e—chain) if 5. """ — W 1" for all i. We abuse

terminology and drop the € in “e—chains”.

Let o7 denote the countable set of Pesin charts which we have constructed in
§3.3] and recall that I. = {e=%¢/3 : k € N}.
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Definition 4.3. ¥ is the directed graph with vertices ¥ and edges & where
o V= {UEF LU € o ptpt € Ly ptp° < Qe(2) )

u s

o &:={(UL"P W) e x Y WP 5 WY

This is a countable directed graph. Every vertex has finite degree, because of the
following lemma and Proposition [3.5)2):

Lemma 4.4. If U?"7" — \I/Zu’qs, then e=¢ < (¢“ A q®)/(p* A p®) < €. Therefore
for every WP"P" € ¥ there are only finitely many \Ilgu’qs €V st WPP \I/gu*qs
or \I/gu’qs — WP,

Proof. We"P" \Ilgu’qs implies ¢* = min{e®p*, Q:(y)}, p° = min{eq¢*, Q. ()},
¢° < Q:(y), and p* < Q(x). It follows that

q“ Ng®  min{e®p, Q. (y),¢°}  min{ep", ¢°}

pt Aps  min{p¥, esqs, Q. (x)}  min{p¥, esq}’

2e
q“NG® min{e®p",e*“¢°} __ q“ NG min{e®p“,¢°} _  _¢
So pUADS < min{p¥,ecq®} =e and pUApS 2 min{e2cp¥,ecqs} e 0

We establish a connection between the collection of infinite admissible paths on
% and the set of orbits of f in NUHf(f). Note that “most” orbits lie in NUHi(f):
this set has full measure w.r.t. every f—ergodic invariant probability measure with
entropy greater than y.

Proposition 4.5. For every x € NUHf(f), there is a chain {\Pﬁ%’pz}kez C 2(9)

s.t. \I/fi“’i e-overlaps \I/?%Ef)’“ for all k € Z.

The proof relies on two simple properties of chains, which we now describe.

We give some terminology: Let (Qg)rez be a sequence in I, = {e~%/3 : ¢ € N}.
A sequence of pairs {(p}, p;)}rez is called e-subordinated to (Qr)rez if for every
keZ,0<pt,p; < Qr, pi,p; € I, and

Pty = min{epy, Qe+1} and  pi = min{e*pp, Qu—1}.
For example, if {\I/p" P trez is a chain, then {(p},p;)}rez is e-subordinated to

{Qc(zk) frez.

Lemma 4.6. Let (Qr)rez be a sequence in I, and suppose for all k € Z, qi € I
satisfy 0 < g < Qk and e < qi/qr+1 < €. There exists a sequence {(p¥, pi) tkez
which is e-subordinated to {Qy}xez for which p} A p; > qi for all k.

Proof. The following short proof was shown to me by F. Ledrappier. By the as-
sumptions on g, Qe (Tg—n), Qc(Tp+n) > € "qy, for all n > 0; therefore the following
definitions make sense:

pj = max{t € I. : e” "t < Q(xk_p) for all n > 0};

py, r=max{t € I, : e "t < Qo (xp4p) for all n > 0}.
The sequence {(p},p;) }kez is e-subordinated to {Q.(zk) trez- a

Lemma 4.7. Suppose {(p¥, ps)}nez is e—subordinated to a sequence {Qyn}nez C 1.
If hm sup(pn Ap:) >0 and limsup(p¥ Aps) > 0, then p¥ (resp. ps) is equal to Qn

n——oo

for mﬁmtely many n > 0, and for infinitely many n < 0.



360 OMRI M. SARIG

Proof. We prove the statement for p! and leave the statement for p; to the reader.
M := sup @, is finite, because @Q,, € I. for all n. Let p,, := p! A p?, and define
m := 3 min{limsup p_,, limsup p,} and N := [e~*log(M/m)].

n—oo n—oo
There exist infinitely many positive (resp. negative) n s.t. p, > m. We claim

that for every such n, there must exist some k € [n,n+N] s.t. p}! = Q. Otherwise,
by e-subordination,

. N
pZ+N = min{Qn+n, @EPZ+N—1} = eEPZ+N—1 =-.=e " py>e p,>e
which is false. O

We can now prove Proposition Suppose = € NUHf( f), and recall the
definition of g.(-) from Lemma[Z3l Choose g, € I.N[e~*/3q.(f"(x)), e*/3q.(f(x))].
The sequence {gy, }ncz satisfies the assumptions of Lemmald6} therefore there exists
a sequence {(q%, ¢ )}nez that is e-subordinated to {¢=*/3Q.(f"(x))}nez and that
satisfies ¢ A g7 > qi.

Let 1, := ¢“ A q. As the proof of Lemma [l shows, e ¢ < n,41/m, < €°, so we
may use Proposition to construct an infinite sequence W}» € &/ such that

(a) Wi e-overlaps \Il?’,;(z) and e7%/3 < Q.(f™())/Q< () < e/3;
(b) \I!""+1 e-overlaps Wirt;

) \I!n" 1 2,y E-0verlaps yint

(c
(d) \Ilzﬁ € o for all ), € I s.t. p, <), < min{Q:(z,), €Ny }.

Construct a sequence {(p¥, p3 ) }nez which is e-subordinated to {Q:(zy) }nez and
which satisfies pi A p5 > 1y,

Claim 1. \Ilf;ﬁ’pi € ¥ for all n.

Proof. 1t is sufficient to show that 1 < % < e® (n € Z), because property (d)

n’

with 7}, := p¥ A pg, says that in this case \Ilp" Pr g </, whence \Ifiﬁ”’fl ev.

We start by showing that there are infinitely many n < 0 such that p! < e®g.
Since = € NUHZ‘? (f), lim sup gy, limsup ¢, > 0. Therefore by Lemma [£7] there are
n—oo n——oo

infinitely many n < 0 for which ¢* = e~*/3Q.(f™(x)). Property (a) guarantees
that for such n, ¢% > e ¢Q.(x,) > e “p¥, whence p¥ < e“g".
If p;; < eqyy, then pi | < eq,,, because

Pp1 = min{epy, Qc(2ny1)} = " min{py, €™ Qe (n 1)}
< e min{eqy, e PQ(f" ()} = .

It follows that p! < e®qgr for all n € Z.

Working with positive n, one can show in the same manner that p;, < e®q; for all
n € Z. Combining the two results, we see that p%Aps, < (e“gt)A(e°qs) = E(q}f/\qi)
for alln € Z. Since by construction pAp;, > nn = ¢ Ags, we obtain 1 < 0y AZ" <ef

n n

as needed.

) u s pY s A
Claim 2. For every n € Z, WhnPn — Wpr i+ and \I/p" AP e—overlaps \IJZ}’; (f)".

Proof. This follows from properties (a), (b), and (c) above, the inequality p¥ A p?,
Tn, and the monotonicity property of the overlap condition.

R



SYMBOLIC DYNAMICS FOR SURFACE DIFFEOMORPHISMS 361

4.2. Admissible manifolds and the graph transform. Suppose x € NUH, (f).
A u—manifold in ¥, is a manifold V* C M of the form

Ve = W {(FH(0), 1) 11 < g,
where 0 < ¢ < Q.(z) and F* is a C*+A/3 function s.t. ||F"|le < Qc(2).

An s-manifold in ¥, is a manifold V* C M of the form

Ve =0 {1, Fo (1)) « [t] < g},
where 0 < ¢ < Q.(x) and F* is a C*+A/3function s.t. [|F*| s < Q.(x).

We will use the superscript “u/s” in statements which apply both to the s case
and to the u case. The function F' = F“/* is called the representing function of
Vu/s at U,. The parameters of a u/s manifold in ¥, are:

e the o-parameter: o(V/*) = ||F||5/3 := || F'||sc + Hélg/3(F"), where
. F .y
HOlﬂ/g(F/) = sup { | |§i1_)t2|ﬁ/(3tz)‘ }7
e the y—parameter: v(V*/*) .= |F'(0)|;
e the p-parameter: p(V¥/*) .= |F(0)];
e the g-parameter: q(V*/*) :=q.

A (u/s, 0,7, ¢,q)-manifold in ¥, is a u/s—manifold V*/* in ¥, whose parameters
satisfy o(V*/%) < o, y(V/*) <, p(V*/?) <, and ¢*/*(V*) = q.

Definition 4.8. Suppose UP"P" is a double chart. A u/s—admissible manifold in
Ue'P s a (u/s, 0,7, ¢, q)-manifold in ¥, s.t.

U

p*  u—manifolds,

p

o<

S

| —

, ¥ <

|~

(" Ap*)P?, o <107 (p" Ap®), and ¢ = )
s—manifolds.

This is similar to but stronger than the admissibility condition in Katok and
Mendoza [KM|, Definition S.3.4] or Katok [K1]. The bounds on v and ¢ are dis-
tortion compensating bounds: the larger the distortion of the chart, the closer the
u/s—admissible manifolds are to the u/s-axes. These bounds were designed to be
sufficiently strong to imply Proposition ELTT(4) but also sufficiently lax to remain
invariant under the graph transform (Proposition below).

Let F be the representing function of a u/s-admissible manifold in WE"»". TIf
e < 1 (as we always assume), then the conditions o < %, ¢ < 1073(p" A p*), and
P, p® < Qe () force
(4.1) Lip(F) < e,

because for every t in the domain of F, [t| < p*/* < Q.(x) < */# and

1 1
(42) [F'(O] < [F'(0)] + HOl(E K]S < S0 Ap°)S + 505 < (015 <.
Another important fact is that if € is small enough, then [|[F|. < 1072Q.(z),
because ||F||oo < |F(0)] 4+ max |[F’|-p*/* < p+ep™/* < (1073 +¢)p™/s < 10~ 2p¥/s.

Definition 4.9. Let V;,V,> be two u—manifolds (resp. s—manifolds) in ¥, s.t.
q(V1) = q(V3). Then dist(V;, V3) := max |F; — Fy| where F}; and F; are the repre-
senting functions of Vi and V5 in ¥,.

Occasionally we will also need the C'-distance defined by

distor (V, V2) := max |Fy — Fy| + max |F| — F}|.
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Notice that dist and distc: are defined using the Pesin charts, not the Rie-
mannian metric. Riemannian distances are bounded by a constant times distances
w.r.t. Pesin charts, because Pesin charts take the form ¥, = exp, oC, (z) where
Cy(z) : R? — M is a contraction.

Definition 4.10. Let V* V" be a u—manifold and an s—manifold in ¥,, with
representing functions Fj, Fy,. Suppose V*® V* intersect at a unique point P =
o (u,v). Then (V2 V*) = £((0%2) () (py(a) - (%) (7).

Remark. Pesin charts preserve orientation; therefore there are only two possible
choices to the pair of directions of V*, V* at P. Both lead to the same angle, and
this angle is in (0, 7). Thus the angle of intersection is independent of the chart.

Proposition 4.11. The following holds for all € small enough. Let V" be a u—
admissible manifold in \Ifg“ms, and let V* be an s—admissible manifold in \Iﬂ;u’ps.
Then:

(1)
(2)
(3)
(4)

“ mtersects V?® at a unique pomt P.

\%
P =Y, (v,w) with |v|, |w| <1072(p% A p®).
P is a Lipschitz function of (V*,V*®), with Lipschitz constant less than 3.
Suppose 1 := p* A p°. Then the angle of intersection at P satisfies
B/4 sin £(V*,V?) B/4
< sin L(E%(x),E*(x)) ’
| cos £ (V¥ V®) — cos £(E*(x), E*(x))| < 2n°/%.

Parts (1), (2), and (3) follow from [KH, Corollary S.3.8]. Part (4) is a distortion
compensating bound, which will be used in the proof of Proposition below. It
follows from the assumptions we made on vy and ¢ and is the reason why we require
more from admissible manifolds than Katok and Mendoza did in [KM]. See the
appendix for proofs.

The following result describes the action of f on admissible manifolds. Results of
this type (often called “graph transform” lemmas) are used to prove Pesin’s stable
manifold theorem [BPL Chapter 7], [P]. The version below says that the graph
transform preserves admissibility as defined above. The proof is in the appendix.

e " <el

Proposition 4.12 (Graph transform). The following holds for all & small enough.
Suppose \I/g“vpb — \Ilgu’qb and V" is a u—admissible manifold in \Iﬂ;u’p&. Then:

(1) f(V¥) contains a u-manifold V* in \Ilqu’qs with parameters
o(V*) < eV® —2><[ (V*) + Ve,

(V) < eVEe X[y (V) + eP/3(g A ¢°)P/7),

p(V*) < eVee ™o + Ve(g" A g®)],

g(V") > min{e”VZeXq(V"), Q- (y)}.

(2) f(VY) intersects any s—admissible manifold in \I/guﬂs at a unique point.

(4.3)

(3) VU restricts to a u—admissible manifold in \Ifgu’qs. This is the unique u—
admissible manifold in \Ilgu’qs inside f(V"). We call it F,[V"].

(4) Suppose V" is represented by the function F. If p := U,(F(0),0), then
f(p) € FulV"].

Similar statements hold for the f~'~image of an s—admissible manifold in \Ifgu’qs.
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Definition 4.13. Suppose \Il’;u g \Ilgu’qs. The graph transforms are the maps

e JF, which maps a u-admissible manifold V* in \I/g“vps to the unique u—
admissible manifold in \Ilgu’qs contained in f(V*");

e F, which maps an s—admissible manifold V* in \I!gu’qs to the unique s—
admissible manifold in W2"?" contained in f~1(V*).

The operators Fy, F, depend on the edge ¥ »" — \I/gu*qs.

Proposition 4.14. If € is small enough, then the following holds. Lett = s, u.
Then for any t-admissible manifolds Vi,V in WE" P

(4.4) dist (F(VY), Fo(Vy)) < e /2 dist(V{, V4);
(45)  dister (F(V), Fo(Vi)) < e/ 2[dister (VE, Vi) + (dist(VY, Vi) P
See [BP), Chapter 7], [KM], and the appendix.

4.3. A Markov extension. Let ¥ := ¥(¥) denote the topological Markov shift
of two-sided infinite paths on the graph G(¥,&):

Y= {(vi)iez : vi € ¥, v; = vi4q for all i}.

We equip ¥ with the metric d(v, w) = exp[— min{k : vy # wi}] and the action of
the left shift map o : ¥ — X, 0 : (v;)iez — (Vit1)iez-

Our aim is to construct a map 7 : ¥ — M with a y—large image s.t. too = fom.
In fact, the map we construct will be well defined for all chains.

We begin with ‘some comments on general chains of double charts. Suppose
(vi)iez, Vi = @ﬁﬁ"”"ﬁ is a chain, and let V¥ be a u—admissible manifold in v_,,. The
graph transform relative to v_,, = v_,41 maps V*, to a u-admissible manifold
in v_py1, Fu[Von]. Another application of the graph transform, this time relative
t0 V_pt1 — V_pt2, maps JF,[V_,] to a u—admissible manifold in v_, 12, which
we denote by F2[V%]. Continuing this way, we eventually reach a u—admissible
manifold in vy which we denote by F[V*,]. Similarly, any s—admissible manifold
in v, is mapped by n applications of Fs to an s—admissible manifold in vyg. The
manifolds F7*[V*, ] and F7[V,*] depend on (v_y,...,v,).

Let V,, denote a sequence of u/s—manifolds in a chart ¥,. We say that V,
converges to a u/s—manifold V if the representing functions of V,, converge uniformly
to the representing function of V.

Proposition 4.15. Suppose (v;)iez is a chain of double charts, and choose arbi-
trary u—admissible manifolds V*, in v_, and s—admissible manifolds V;J in v,,.

(1) The limits V¥[(v;)i<0] = nlLIr;of;l[an] and Vo[(v;)i>0] = Frive]
exist and are independent of the choice of V¥, and V7.

(2) V¥[(v:)i<0] s a u-admissible manifold in vy, and V*[(v;)i>0] is an s—
admissible manifold in vg. -

(3) F(Vo[(vi)izol) € Vo[(vig1)izo] and f=H(V*[(vi)i<ol) € V*[(vi-1)i<o].

(4) Write v; = W5 """ Then

V[(vi)iz0] = {p € Vo [Rp (0)] : Yk 2 0, f*(p) € Vo [Rr0q. () ()]},
V¥(vi)i<o] = {p € Way [Rpg (0)] : ¥k 20, f " (p) € Vo [Ri0g. (2 (0)]}-

lim
n— o0



364 OMRI M. SARIG

(5) The maps (u;)icz — V*[(u;i)i<o], V[(ui)i>o] are Hélder continuous: there
exist constants K > 0 and 0 < 0 < 1 s.t. for every n > 0 and any two
chains u, v, if u; = v; for all |i | n, then

dister (V*[(wi)i<o], V*[(vi)i<o]) < KO,
diStcl (VS[(UZ‘)Z‘Z()], VS[(Q)Z‘)Z‘Z()]) < Ko™,

Parts (1)—(4) are a version of Pesin’s Stable Manifold Theorem [P]. The new twist
is that Proposition generates local stable manifolds with a definite choice of
size, whereas Pesin’s theorem speaks of a germ of local stable manifolds at a point.
In §8T1we will see that for many chains, this size is “almost maximal” and therefore
“almost canonical”. This will be instrumental to the proof of local finiteness.

Part (5) should be compared to Brin’s theorem on the Holder continuity of the
Oseledets distribution [Bri]. Whereas Brin’s theorem only states Holder continuity
on Pesin sets, part (5) gives Holder continuity everywhere. The secret behind this
“improvement” is the difference between the metric in the symbolic space and the
Riemannian metric of the manifold.

Proof. We give the proof in the case of u—manifolds. The case of s—manifolds is
symmetric Before we begin, we mention the following obvious fact: for any double

u s

chart W2"?" and any two u-manifolds V%, V3 in W2"P
dist(V)*, V3*) <2Qc(z) < 1.
Part 1. Existence of the limit.

By Proposition 412l F'[V* ] is a u—admissible manifold in vy. By Proposition

14 for any other choice of u—admissible manifolds W*, in v_,,

dist(F [V ], Fu W) < exp[—%xn] dist(V*®,, W™ ) < exp[—%xn].
Thus, if the limit exists, then it is independent of V", .
For every m > n, W* = F» "V | is a u—admissible manifold in v_,. It

follows that for every m > n, dist(F[V*,], F*[V*,.]) < exp[—5xn]. It follows that
lim F?[V*,] exists.
Part 2. Admissibility of the limit.
Write vg = W2“P" | and let F,, denote the functions which represent F?*[V* ] in
vo. Since the F[V",] are u-admissible in vy, for every n,
o [Ells/s < 33
o [FLO)] <5 (P A )P
o Fn(0)] < 10-2(p A ).
Since F'[V* ] —— V*[(vi)i<o], Fr» —— F uniformly on [—p",p“], where F
n—oo - n—oo
represents V*[(v;)i<o].
By the Arzela-Ascoli theorem, Iny 1 oo s.t. —> G uniformly, where
IGlls/3 < &. Thus F,, (t) = Fy,( f t)dt — F(- +f G(t

whence F is differentiable, and F' = G. We also see that {Fn} can only have one
limit point. Consequently, F, — F’ uniformly.

It follows that ||F'||5/5 < \F’( )| < L(p* Ap*)P/3, and |F(0)] < 1073 (p® Ap®),
whence the u—admissibility of V“[( i)i<0 ]
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Part 3. Invariance properties of the limit.

Let
V¥ = V¥[(v;)i<0) = im F [V, ]
and
W = V*¥[(vi—1)i<o] = im F [V¥,_4]-

Then dist(V*, F, (W) < dist(V", F(V®)) + dist(F2(VY,), FrrH(ve, )
+ dist(FrrH VY, ), Fu(WH))

< dist(V*, FP (V™)) + e 2™ dist (VY , Fu (VY )
+ e X dist (P (VY ), W),

The first and third summands tend to zero, by the definition of V* and W*. The
second summand tends to zero, because dist(V¥,, Fu (Vi 1)) < 2Q:(x) < 1. It
follows that V* = F,,(W*) C f(WH*).

Part 4. Suppose v; = \1/’;" i Then
V= {p € l11930 [Rpg (Q)] :Vk > 0, f_k(p) € lI/ﬂ?—k[Rlon(I—k)(Q)}}'

u S
The inclusion C is simple: Every u—admissible manifold W in \Ilf;’g Pi ig con-

tained in W, [R,«(0)], because if W} is represented by the function F, then any

(3

p =T, (v,w) in W satisfies |w| < p¥, and
o] = |F(w)| < [F(0)] +max |F'| - [w| < ¢ +e|w] < (107° +e)p} < py'.

Applying this to V* := V*[(v;)i<o], we see that for every p € V¥, p € W, [Rpu(0)],
and by Part 3 for every k > 0

f*p) € V™) CV[(viek)i<o] C Vo [Rpe, (0)] C ¥y [R10q. (i) (0)]-
We have C.

We prove . Suppose z € Wy [Rpu (0)] and f~%(2) € U, [Rig0, (o, (0)] for all
k> 0. Write z = ¥, (vg, wp). We show that z € V* by proving that vy = F(wy),
where I is the function which represents V*.

Introduce for this purpose the point Z = U, (Tg, Wo), where Wy = wp and Ty =
F(w). For every k >0, f7%(2), f"(Z) € V,_,[Ri0g.(z_,)(0)], the first point by
assumption and the second point because f~%(z) € f~*(V%) C V¥[(v;i—k)i<o). It
is therefore possible to write

f_k(z) = \ij—k(”fknwfk) and f_k(z) = \I}m_k(@fkuwfk?) (k > 0)7

where |v_g|, |w_g|, [0-k|, [W—| < 10Q(z_) for all k > 0.
Proposition 3.4} in its version for f~!, says that for every k > 0, f! =

LT_kp—1T—Fk

Ul of loW, , can be put in the form

T—k—1

L () = (A + g (v, w), B tw + g8 (0, w)),

Tk—1T—f

where |Ag| < e X/2, |By| > eX/2, and MAaXR o6 o ) ||Vg£k)|| < ¢ (provided ¢ is
small enough).
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Let Av_g := v_p —U_p and Aw_p := w_ — W_k. Since for every k

(et w_p—1)= [y o (v—pw_p)and (U p_1, W_p—1)= fr ' . Uk

S 07
mfk%
|Av 1| > [A; ] |Av_g| — max |Vg{™|| - (|Av_g| + | Aw_])
> (X2 — &)|Av_i| — | Aw_y),
Aw_ 1] < B - [Aw- ] + max [V | - (|Av_y] + [Aw_y])
< (eX? 4 &) Aw_i| + e|Av_g].

Write for short ay, := |Av_g| and by, := |Aw_y|. If we assume, as we may, that ¢ is
so small that e X/2 + & < ¢ X/3 and eX/2 — ¢ > eX/3, then we obtain

aps1 > X 3ay — eby,
b1 < 67X/3bk + eay.
By definition, by = 0.

Suppose ¢ is so small that e X/3 + ¢ < 1 and eX/3 —¢ > 1. We claim that
ar, < ag+1 and by < ay, for all k. For k = 0, this is because by = 0. Assume by
induction that ay < ag41 and by < ag. Then

b1 < e X3by deap < (€73 4 e)ay, < a < apy1,
Aky2 = GX/SCLk_H — Ebk-l,-l > (GX/S — 6)ak+1 > Aky1-

We see that a1 > (eX/3 — ¢)ay, for all k, whence ax > (eX/3 — £)kaq. Either

ag = 0 or ay, k—> 00. But ap, = [v_ —T_p| < 20|Q:(x_x)| < 20, so ag = 0. Since
— 00

ag = 0, vg = Tp, and therefore F(wy) = F(wp). Thus z = U, (F(wp),wo) € V.

Part 5. Holder continuity of u — V¥[(u;)icz]: If v = (v;)icz, w = (w;)icz satisly

v; = w; for i = —N, ..., N, then dist(V*[(v;)i<o], V*[(wi)i<o]) < e~ 3Nx,

Given n > N, let V" be a u-admissible manifold in v_,,, and let W*  be a
u—admissible manifold in w_,.
Let F£(V*,)) (resp. F£(W¥,)) denote the result of applying F,, £ times to V%,
using the path u_,, = -+ = u_p,4¢ (resp. using w_,, = -+ = W_p4¢).
Fr=N(ve ) and Fr=N (WY, ) are u-admissible manifolds in v_y (= w_x). Let
Fn, Gy be their representing functions. Admissibility implies that
[FN = GNlloe < [[FNlloo + 1GN e <2Qc <1,

IFy = G lloo < 1Fxlloc + Gy lloe < 26 < 1.
Represent F7~*[V¥ ] and F2~k[W* | by functions Fy, and Gy. By(@H),

(4.6) |Fr1 — Gr-1lloo < € X/?||F}, — G| loo,
(4.7) IF 1 — Ghalloo < e X2(IFf — Gilloo + 21 Fx — Gi|2%).

Iterating (A0) starting at k = N and going down, we get ||Fr — Gk |loo < e zx(N=k)
whence dist(F2[V¥,], Fr[W*,]) < e~ 2XN. Passing to the limit n — oo, we get

(S

dist (V" [(vi)i<o], V" [(wi)i<o]) < e72VX.
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Now substitute ||[Fj, — Gilloo < e 2XN=F) in @), and set ¢, := ||F} — G4 loo,
01 = e X/2 and 0 := e~ 88X, Then c¢x_; < 01(cr + 2%\[—’“). It is easy to see by
induction that for every 0 < k < N,

co < OFcy, + 20070 F F oF o TR o900 .

We now take k = N, paying attention to the inequalities ; < 03 and cy < 1:
co <O +2N0Y < (2N +1)65.

It follows that disten (F2 [V, ], FRIWE,]) < 2(N +1)65. In Part 2, we saw that
Fove ] and Fr W, ] converge to V¥[(w;)i<o] in C'. Therefore if we pass to the
limit as n — oo, we get dister (VE[(v;)i<o], V¥(wi)i<o]) < 2(N + 1)8Y. Now pick
two constants 6 € (f2,1) and K > 0 s.t. 2(N + 1)0Y < KN for all N > 0. O

Theorem 4.16. Given a chain of double charts (v;)iez, let w(v):= unique inter-
section point of V*[(v;)i<o] and V*[(vi)i>o0].
(1) 7 is well defined and moo = fom;
(2) m: X — M is Holder continuous;
(3) (%) > 7w(T#) D NUHf(f); therefore m(X) and w($%) have full probability
w.r.t. any ergodic invariant probability measure with entropy larger than x.

Proof. Proposition LTT] guarantees that 7 is well defined for every chain.

Part 1. moo = fom.

Suppose v is a chain, and write v; = \112: P and z = 7(v). We claim that
(4.8) F*(2) € Vo, [Ra. ) (0)] (k€ Z).

For k = 0, this is because z € V*[(v;);>0] and V*[(v;);>0] is s—admissible in \If’;ﬁ”’a.
For k > 0, we use Proposition [.15(3) to see that

FH(2) € AV [(vi)izol) C VE[(vigr)izo)-

Since V*[(vi+)i>o0] is an s—admissible manifold in \11275 Pk f¥(2) € Ua [Rg. (2 (0)].
The case k < 0 can be handled in the same way, using V*[(v;)i<o]. Thus z = 7(v)
satisfies (4.g]).

Any point which satisfies (£.8) must equal z, because by Proposition E.15(4), it
must lie on V¥[(v;)i<0] N V*[(vi)i>0]. So (@) characterizes 7 (v).

It is now a simple matter to deduce that 7(c(v)) = f(7(v)): f*[f(7(v))] =
S (v)] belongs to Wa,  [Rq. (sy,,)(0)] for all k, and this is the condition which
characterizes m(owv).

Part 2. 7 is Holder continuous.

We saw that u — V*[(u;)i<0] and u — V*[(u;)i>0] are Hélder continuous (Propo-
sition IH). Since the intersection point of an s—admissible manifold and a u—
admissible manifold is a Lipschitz function of these manifolds (Proposition d.TT|(3)),
m is also Holder continuous.

Part 3. w(X) has full probability with respect to any ergodic invariant probability
measure with entropy larger than y.

We prove that 7(X) D NUHf(f). Suppose x € NUHZ‘Z£ (f). By Proposition E.5]

Pk Pk Pk Pk Ph41:PR41 Py Pk
there exist W% € ¥ s.t. W% — Wyt for all k and s.t. UF""* e—overlaps
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Pk for all k € Z. By Proposition B:2[(1), this implies that

p‘u,
Yk (a)

FH(@) = W) (0) € Uy [Rpunps (0)] € Wa, [Rgy. (2)(0)]  for all k € Z.

Thus « satisfies [@L8]) with v = (\Ilig’p:)iez. It follows that z = 7 (v).

In fact this argument proves something stronger that will be of use to us later.
Looking closely into the proof of Proposition 5] we see that the chain we con-
structed above satisfies the property pi A pf > e~*/3q.(f(z)). By the definition
of NUHf (f), there exist sequences i, ji 1 oo for which pji Apj and p*; Ap®,
are bounded away from zero. By the discreteness property of &7 (Proposition B.H]),
\I/I;::’p ¢ must repeat some symbol infinitely often in the past and (possibly a different
symbol) in the future. Thus the above actually proves that

(4.9) m(£#%) > NUHZ(f),
where X% := {v € ¥ : Jv,w € ¥, Ing, my T 00 s.t. v, = v and v_,,, = w}. O

4.4. The relevant part of the extension. We cannot rule out the possibility that
some of the vertices in ¥ do not appear in the coding of any point in NUH, (f).
Such vertices are called irrelevant. More precisely,

Definition 4.17. A double chart v = WP P is called relevant if there exists a chain
(vi)iez 8.t. vo = v and w(v) € NUH,(f). A double chart which is not relevant is
called érrelevant.

Definition 4.18. The relevant part of ¥ is X,.¢; := {v € ¥ : v; is relevant for all i}.

Yrer is the topological Markov shift corresponding to the restriction of the graph
G(¥,&) to the relevant vertices.

Proposition 4.19. Theorem holds with X, replacing X.

Proof. All the properties of 7 : X,.; — M are obvious, except for the statement
that m(3%,) > NUH#(f), where £%, := S# N %,

rel

Suppose p € NUHf(f). Then the proof of Theorem shows that Jv € ©#
s.t. m(v) = p. Since NUHf(f) is f-invariant and form = oo, m(oi(v)) = fi(p) €
NUHi(f), so v; is relevant for all 4 € Z. It follows that v € Eil. O

The proposition shows that we do not need the irrelevant vertices to code a
x—large set of orbits. Henceforth we assume w.l.o.g. that all irrelevant vertices
have been removed from ¥, and we set % := 3,.¢. This is needed for the proof of
Proposition [7.3] below.

Part II. Regular chains which shadow the same orbit are close
5. THE INVERSE PROBLEM FOR REGULAR CHAINS

In the previous section we constructed a map 7 from the space of chains to M
and showed that every z € NUH?( f) takes the form x = m(v) for some chain
v € ¥#. In principle, there could be infinitely many chains v s.t. 7(v) = 2. We ask
what one can say about the solutions v to the equation 7(v) = x.

Under the additional assumption that one of the pre-images of x is regular (see
below), we shall see that the coordinates v; of v are determined “up to bounded



SYMBOLIC DYNAMICS FOR SURFACE DIFFEOMORPHISMS 369

error”. Here is the precise statement:

Definition 5.1. A chain (v;);ecz is called regular if every v; is relevant (see §4.4)
and if there are v, u s.t. for some ng, my 1 00 v_p,, = u, v,, = v for all k.

Every element of ©# is regular, because of the convention stated in §4.41.

Theorem 5.2. The following holds for all € small enough. Suppose (\I/ﬁf’pf)iez,
(\I/Z::’qf)iez are regular chains s.t. w[(wiﬁ"pf)iez] = w[(\I/g;’q:)ieZ]. Then for all 4,
(1) dai) < &
(2) (\I/;l oW, )(u) = (—1)%u+c¢;+ A (w) for allu € R.(0), where o; € {0, 1},
¢; s a constant vector s.t. ||¢;|| < 1071 (g¥ Aqf), and A, is a vector field s.t.
Ai(0) = 0 and [|(dAi).|| < /€ on R:(0);
(3) py/ai', v} /g € le” VE, VA,

The proof of Theorem [5.2]is long, so we broke it into several sections (§§6] [7 ).
Here is an overview. Suppose (U5 ),cz, (Vg% );cz are two chains in % s.t.

(5.1) (W5 ) iez] = (U™ )ica] = .

We want to show that ¥, is close to ¥, for all i.

Equation (5.1)) implies that f?(z) is the intersection of a u—admissible and an
s—admissible manifold in \1127 ,pi; therefore (Proposition EETT), fi(z) = ¥, (v, w;)
where |v;], [w;] < 1072(p¥ A pf). By construction, Pesin charts are 2-Lipschitz;
therefore d(f%(z),z;) < 50~(p* A pg). Similarly d(f*(z),y:;) < 507 (g* A ¢). Tt
follows that d(z;,y;) < 25~ max{p¥ Aps,q* A ¢} < e for all i € Z.

Assume without loss of generality that € is smaller than the Lebesgue number
of the cover 2 which we had constructed in §3.I1 Then z;,y; belong to the same
element D; of 2. This allows us to write

\Ijzi = expa:i 01911‘, © sz,a
U, = exp,, oy, o Cy,

where 9., : R? — T,,M (z; = z;,y;) are the isometries we constructed in §3.1] and
Cy,,Cy, € GL(2,R) are given by Cy(x;) = U4, 0 Cy, and Cy(y;) = V,, 0 Cy,.
Let z; = x;,y;. Then C,(z;) is the unique linear operator which maps e
(1) to sy(z:)7te*(z) and € = (0) to uy(z) te"(z;). Writing as usual a(z) :
£(€e”(2i), €" (%)), we see that

(5.2) C.,=R., < sx(zi) 7! UX(Zz‘):ll(ZOSOé(zi) > 7

0 Uy (z;) "t sina(z;)

1

where R, is the unique orientation-preserving orthogonal matrix which rotates e!
to the direction of ¥ '(e®(2;)) (2i = 4,y;). We give some terminology:

the z; are called position parameters,

R,, and a(z;) are called azes parameters,
Sy (2i), uy (%) are called scaling parameters,
the (p¥,p?) are called window parameters.

The proof is done by comparing the parameters of \Iﬂ;if”’ ? to those of \Ilgg’q’?.
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The comparison of the position parameters has already been done above. We
record the conclusion for future reference:

Proposition 5.3. Let (\Ilg’pf)iez, (\I/g’y’q’?)iez be two chains s.t. w[(@ﬁ?’pf)iez] =

m[(Uh " )iez). Then d(w;,y;) < 25~ max{pl Apf,q* ANg5} (i € Z).
Regularity is not needed here. We shall make use of it when we analyze the scaling
parameters and the window parameters.

6. AXES PARAMETERS
Let (\I’ﬁ;’pf)iez, (\I,Zi",qf)iez be two chains s.t. W[(\Ifg;;’pf)iez] = F[(\I/g::’qf)iez].
We compare R, to R,, and a(z;) to a(y;). The analysis relies on a special property
of V*[(zk)k<i] and V*[(2k)k>i] (21 = @k, yx), which we call “staying in windows”.
We begin by discussing this property.

6.1. Staying in windows.

Definition 6.1. Let V" be a u-admissible manifold in the double chart V2R
V' stays in windows if there is a negative chain (\ng’p:)igo with \Iﬂ;ﬁ PO gpp
and u—admissible manifolds W} in \Ilﬁz Pigt, f _W(Viu) C Wk for all i < 0.
Definition 6.2. Let V* be an s-admissible manifold in the double chart ¥2"»",
V* stays in windows if there is a positive chain (\Ilgu ’pf)izo with \1/’;5; PO = we
and s—admissible manifolds W in \Ilgi:’p st FH(VE) C Wy for all i > 0.

If v is a chain, then V}* := V¥[(vk)r<i] and V® := V*[(vi)x>:] stay in windows,
because f‘k(Vi“) c V*, and fk(VZS) C V., for all k> 0 (Proposition E15).

The following proposition says that s/u—admissible manifolds which stay in win-
dows are local stable/unstable manifolds in the sense of Pesin [P]:

Proposition 6.3. The following holds for all € small enough. Let V* be an admis-
sible s—manifold in \Ilgu P and suppose V* stays in windows.

(1) For every y,z € V*, d(f*(y), f*(2)) < e 2" for all k > 0.

(2) Foreveryy € V*, let e®(y) denote the positively oriented unit tangent vector

to V® aty. Then ||d 5§S(y)||fk(y) < 6||Cx(x)_1||e_%kx forall k> 0.

(3) log lldfye’ (v)ll pr () — log lldf¥ e ()| 1z < Qe () (y, 2 € Vo, k > 0).
The symmetric statement holds for u—admissible manifolds which stay in windows:
replace the s—tags by u-tags and replace f by f~1.

The proof is modeled on the proof of Pesin’s Stable Manifold Theorem [BP|
Chapter 7]: f™:V?® — f™(V*®) is given in coordinates by

\IJ;nl © fn © \Ijﬁfo = fﬂcn—lxn O---0 fﬂfoﬁfl'
Since V*® stays in windows, the orbits of points in V® remain in the “windows” where
fz;zi41 18 close to a linear hyperbolic map. One can then prove the proposition by
direct calculations. See the appendix for details.
Proposition 6.4. The following holds for all e small enough. Let V* (resp. U®)
be an s—admissible manifold in \Ilgu’pb (resp. in \I/Zu’qb). Suppose V* U® stay in
windows. If x =y, then either V*,U® are disjoint or one contains the other.
The same statement holds for u—admissible manifolds.

See the appendix for a proof.
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6.2. Comparison of a(z;) to a(y;).
Proposition 6.5. Let (\I/I;;:’pf)iez, (\I/Zg’qf)iez be chains s.t.

(027 )iez] = w[(¥y " )iezl].
Then for all i € Z
(1) e VE < sinalzi) < Ve

— sina(y:) —

(2) |cosa(x;) —cosaly;)| < ve.

Proof. Write v; = \I'%’pf, u; = \I/Zg’qf, x = W[(\Ifﬁz’pj)iez] = W[(\I'gg’qf)iez], and

Vo, = V?[(vi)izkl, Vi, = V*{(vi)i<kl], B3l =Ty Vil
Vo = Vo{(wi)i>kl, Ve = V*{(ui)i<k], B/ = Ty Vil ™.

We claim that
(i) li7rln_>solip i log [[df i ywll < 0 on B3, \ {0} and B}, \ {0},
(i) hyrlrl_ilip % log ||df/’}k(z)w|| >0on B, \ {0} and By \ {0}.

We give the details for E;éu The case of E;,{u is identical.
Part (i) follows from Proposition [6.3(2) applied to V;? and V7 .
The proof of (ii) is slightly more complicated. Suppose w € £ \ {0}. Then w

is tangent to V% at f*(z). For every n, f*"(2) = 7[(vithin)icz] € V2 ., s0

Tr4n’
o) = (@) € Vi -
It follows that dff. , w € Tprin () Ve \ {0}

We apply Proposition [6.3[(2) in its version for u—admissible manifolds to the

manifold Vi, and the vector df}?k(z)g. This gives the estimate

lawll = [ [ i ayte]| < 67X C () 2 - e
< 66_%"XQ€(xk+n)_1||df?k(x)w|| (definition of Q)
< 63X (Pl APha) P el
< 6e™ 2™ (it A pi) T |df i gyl (Lemma FEF).
Thus ||df;fk(w)w|| > %e%“XJF”E(pz A pi)llw|l. Part (ii) follows.

By (i) and (ii), E2

T

Es = {w € Ty M : liisolipilongf}lk(m)wH < 0}. For

reasons of symmetry, £,

follows that £ = Ej and Ej, = E .
As a result, £(VS ,V¥) = £L(V2 V%), By Proposition 11} sin £(V2 ,V4) =

Tk’ Tk Yk’ " Yk T " Tk

uApSYB/4 . . ungS)B/4 . .
eEPIAPD™ gin a(xy,) and sin LV, V)= e N sin a(yy). Since p¥ A p$ <
3/4

Q- () < %P and ¢* A ¢¢ < Qc(y;) < €%/, e=2"" < sin a(zg)/sina(yg) < e*
Similarly one sees that | cos a(xy) — cos ayy)| < 4¢3/, and the proposition follows
for all € so small that 4¢3/ < \/e. O

EY = {w € Ty M : liﬁsolip Llog ||df;,féw)w|| <0} It

The proof actually gives the following stronger estimates, which will serve their
purpose as distortion compensating bounds in §9 below.
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Lemma 6.6. Under the assumptions of the previous proposition,

(1) e=@irp)?/ =(aing))?/* o sinalza) o o} Ap))?*+(a' Aa))?* .
sin a(y;)

(2) |cosa(w;) — cosaly:)| < 4[(p} A pf)P* + (g Agf)P/).
6.3. Comparison of R,, to R,,.

Proposition 6.7. The following holds for all € small enough. For any two chains
(UhP ) icn and (U )iez, if 7[(Uh P )icz] = 7[(Vei Y )iez], then for all i

-1 _(_ 1\ €11 €12
RyIR,, = (-1) Id+(€21 )

where o; € {0,1} and |eji| < [(B¥ A D3PS + (g A gf)P/P] < (/E.

Proof. In order to keep the notation as light as possible, we only do the case i = 0
and write \Ifﬁfgj”’g = \Il’;u’ps , \Ifiﬁ”’a = \Ilgu’qs, p:=p“Ap°, and q := q“ A ¢°. We
also set as usual v; = U P and u; = U% %

Let z = w[v] = 7[u]. The manifold V*[(v;)i>0] inherits an orientation from the
chart ¥,.. Let e2(z) denote the positively oriented unit tangent vector to V*[(v;);>0]
at z. The manifold V*[(u;);>0] inherits an orientation from the chart ¥,. Let
e, (2) denote the positively oriented unit tangent vector to V*[(u;)i>o] at z. Since

T.V3[(vi)iez] = T-V*[(u;)icz] (see the proof of Proposition G5, ef(z) = :I:Q;(z).
We write 2 and e;(2), ¢;(2) in coordinates in ¥, and ¥,:

s [(d¥.)c]a
o z = W, (C¢) and ¢;(2) = m, where ¢ € Rjg—2,(0), a = ((11), and
la| < pP/? (see Proposition ELI1 and (@2)).
[(d¥y),]b
ez = W,(n) and ¢;(z) = 7”[(“,3);&”, where 7 € Ryp-—24(0), b = (i), and

|| < ¢/3 (see Proposition EIT] and (@32)).
Since e; (z) = ey (2), there is a non-zero (signed) scalar A such that

(6.1) Cra = \(dexp, Oﬁx)cwg]*l [(dexp, Oﬁy)cyﬂ]C’yQ,
where Cy, C, are given by (5.2).

Claim 1. Cpa x R, (lipBM) and Cyb o< R, (éigijz) Here @ o b means that @ = tb

0£ph/4
for some t # 0, and a £ ¢ means a quantity in [a — ¢,a + ¢J.
Proof.
Coa— R, (sx(x)l + uxl(x)*1 cos a(x)a)
uy (2) " tsina(x)a

L [|Cy) =M - Ia> .
x Ry , because u, > 1 and s, = ||C\(z)” " e’(z
<0i||CX(x)—1||-|a x x = [Cx (@) e (2)]

pB/4

1Cx ()~

1+ pf/a 8/3 P
_Rx<0ipﬁ/4 , because |a| < p?/3 < Q, (x)?/"*p?/* <

Similarly, Cyb x R, (éigijz)

Claim 2. There exists a constant J > 1 (which only depends on M) s.t. for all
D e 97 T,y € D7 and ||w1||7 ||w2H < 27

[[(dexp, 00z )w, ]~ [(dexp, 00y )w,] = 1d|| < J(d(z,y) + [lwy — ws])).
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Proof. Let J; denote a common Lipschitz constant for the maps
(w,w) — (dexp,, oVy)w

on D x B(0) for all D € 2. Let Jo denote the maximum over D € 2 of
sup{||(dexp,, oY), || : w € D, [Jw|| < 2}. The claim holds with J := J;.Jo + 1.

Claim 3. Ry (})+e;, o« Ry(})+e, where ||| and [|e, || are less than 3.7 (p%/4+¢5/4).

Proof. Cy(-) is a contraction, so [|Co¢ — Cynll < [IC]| + |In]l < 1072(p+q). Also, by
Proposition 5.3l d(z,y) < 2571 (p + q). Therefore, by Claim 2,

[(dexp, 002)c, ()]~ (dexp, 09y, (yyg] = 1A +E

where F is a matrix s.t. ||E|| < J(p + ¢). The claim follows from (6] by direct
calculation.

We can now prove the proposition. R, and R, are rotation matrices; therefore
Ry 'R, is a rotation matrix. The problem is to estimate the angle. Claim 3 allows
us to write

_ 1 1 _ e
(6.2) R,;'R, (0) =c KO> + R ey — 'R ey |

}i“i” Since [lg;|| < 3J(p%/* + ¢%/%) < 634,

lc| € [e7107VE e107VE] at least provided ¢ is small enough.

Since R, and R, are orthogonal matrices, the vector on the right-hand side of
[©2) is a unit vector. Put it in the form (—1)7°(cos@,sin ) where o¢ € {0,1} and
0c(—%,%). Then

o1 <t (L LYl
T lleal — 1 eall) < T= lleall = e ey]
3J(1+ e07VE)
1—6J(1+ el0/vE)ed/4

where ¢ is a scalar s.t. || =

(" + ¢,

Since p, ¢ < €%/#, if € is small enough, then this is less than p?/°+¢%/% < 2e3/5 < \/e.
It follows that (—l)UoRy_lRm is a rotation by angle less than p?/° +¢%/5 < \/e. O

7. SCALING PARAMETERS

7.1. The s, and u, parameters of admissible manifolds. In §2.1] we defined
sy () on NUH, (f). We now extend this definition to all points lying on s-admissible
manifolds V* which stay in windows.

Suppose y € V*®. If y € NUH,(f) define e°(y) as in §2.0] and note that by
Proposition [6.3(2), e®(y) is tangent to V* at y. Motivated by this, we define e*(y)
for y ¢ NUH, (f) to be one of the two unit tangent vectors to V* at y (it doesn’t
matter which), and then we let

2

sx(y) = V2 (Z ezkxlldffgs(y)lék(w) € (V2,00].
k=0

Similarly, for any wu—admissible manifold V* which stays in windows and any
y € V" we define e*(y) as in §211 when y € NUH, (f), and we let e“(y) be one of
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the two unit tangent vectors to V" at y when y € NUH, (f). Then we define

1

2

uy(y) = V2 (Z €2kx|dfy_k§u(y)||?k(y)> € (vV2,00].
k=0

Although these numbers depend on y, they are not very sensitive to its value:
by Proposition [6:3((3), for any pair of points y, z in the same s—admissible manifold,
if s, (y) is finite, then s, (z) is finite and

e VE < sy () /sy (2) < eve.
A similar statement holds for u,—parameters on u—admissible manifolds.
Definition 7.1. Let V* be an s-admissible manifold in WU2"?" with represent-

ing function F*. Let V* be a u—admissible manifold in \Ilgu P" with representing
function F*. If V* and V* stay in windows, then

(1) s,(V*®), the s —parameter of V*, is s, (p) where p := ¥, (0, F*(0)),
(2) uy(V"), the uy —parameter of V*, is u,(q) where g := ¥, (F"(0),0).
Lemma 7.2. The following holds for all € small enough. Suppose WP P" — \Ilgu’qs,

and let V*° be an s—admissible manifold in \I/gu’qs which stays in windows. If
54 (V?®) < 00, then s, (Fs(V?)) < 00, and for every p > exp(y/e),

5, (V) sx(Fs(V?)) p1eQe (@) pe—QEu)W}_
sx () sx(2)

A similar statement holds for u—admissible manifolds in WP P" and F,.

-1

(7.1) Elp 0l =

Note that the ratio bound in (7I]) improves.

Proof. Suppose V* is represented by the function G and U® := F,[V*] is represented
by the function F'. Let p := ¥, (0, F(0)) and ¢ := ¥,(0,G(0)).

Suppose s, (V*®) < co. Then s,(¢) < co. By Proposition £12(4) (in its version
for s-manifolds), f~'(¢) € U®. Since U* is one-dimensional, df /-1, e*(f~!(q)) =

Eldfy-1(q)e°(f~H(@))llq - €*(q), and so

s (f7Hg)? =2 (1 + Ze%xldffldff—%q)és(fl(qm?kl(q))

k=1
=24 X[|df 1) (fH(@)1Z - 5x(q)? < oc.

Since f~1(q) € U?, 5, (U®) < e*ﬁsx(ffl(q)) < 00.
Next assume that s, (V*) is finite and
5 (V) -1
- € [p 7p]a
Sx(y)

where p > exp(/€). Since s, (U®) = sy(p),

(7.2) S0 _ _sp)  sU7H@) s W)

sy(@) s (f7H) sy (M) sx(x)
The three terms are well defined and finite, because (proceeding from right to left):
e 5,(z),5,(f(y)) are well defined and finite, because z,y € NUH, (f);
e 5,(f7!(q)) is finite by the argument at the beginning of the proof;
e 5, (p) < 00, because sy (p) = Sy (Us) < 0o (see above).
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The first factor in (Z2) belongs to [e~@@"" ¢Q:(@""] by Proposition B3(3).
The third factor in (7.2)) takes values in [e’QE(m)BM,eQE(z)BM] because W2 P" —
\I/Zu’qs; see Lemma [3.3l To prove the lemma, it is enough to show that

1. £)B/4 sy (f7'(q)) x| )8/
(7.3) P p[3Qe(2) kisx(f*l(y)) < pexp[—3Qc(2)"/7].

We begin with some identities. We omit the tags of the Riemannian norm, to
avoid heavy notation. Since df p-1(,ye*(f ™1 (y)) = ||df =1 e*(f (W) - €* (y),

sx(fH(y)? =2 (1 + Z62'”‘IIdff_ldff—l(y)gs(f_l(y))ll2>

k=1
(7.4) =2+ M, (y)?ldf -1y (FH )1

Similarly, dfy-1(g)e°(f~*(q)) = £lldfs-1e*(f (@) - €*(q), so
sx(f7H@))? = 2+ X5 (0)?ldf 51 gy (F (@) II?
sy(@) _ sy (V)

< 24PN W) Il 1€ U € o = =t < )

< (2 + erZXsX(y)Zdef1(y)§s(f_1(y))||2)

x eXP(2 log l|df -1 (g€*(f ()] — log IIdff1<y)§S(f‘1(y))|||>-

We obtain the estimate

sx(fH@)? _ <2+p262"sx(y)2||dff1(y>25(f1(y))||2)
S (F7HW)? =\ 2+ eXsy ()2 ||df p-1 e (F (W) |12

X exp (2 |log [|df -1 (gy€*(f " (q))|| — log IIdff1<y)§S(f‘1(y))ll|>-

Call the first factor I and the second factor II.

(7.5)

Analysis of 1.

- 2(p* - 1)

2+ ¢35, (y)2[ldf - (e (F 1 ()P
_2 2P
=7 e Y
e =" 2(p? — 1)

sx(z)?

I=p

-1
, because SX(fi(()y)) = exp[+e%/] by Lemma B3]
sy (z

2 — 267266/5(1 —r) since s, () = z) e (x z)~t
<p (1 TAGEIE > x(@) = [[Cx (@) e*(@)]| < [|Cx(z) |

<p® -

c1/2

T —l
1Cx (@)~ 1|2
By the definition of Q. (z),

) for all € small enough, because p > eve.

1/2

m > Qs(l')ﬁ/ﬁ = Qs(l')iﬁ/uQs(l')ﬁ/4 > 571/4Qs(x)ﬁ/4'
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In particular, for all € small enough, m > 7Q:(x) B/4 and by the inequality

l—z<e®for0<az<1,1<p?exp[-7Q.(x)?/4].
Analysis of 11. Since f is a C'*#-diffeomorphism, (p,7) dfpU can be written
in coordinates as a linear map of the coordinates of ¢, with coefficients which are

S-Holder continuous functions of the coordinates of p. Since ||e®(:)|| = 1 and ||df||
is uniformly bounded, there exists a constant Ky = Ko(f) so that

IT < exp [Kodmrl(q), £ @) + Kodras (és(f‘l(q))ves(f‘l(y)))} ,

where dp; and drps are the Riemannian distance functions on M and T M.
Since f is a C'*# diffeomorphism and e*(-) are unit vectors, there is another
constant H; (which only depends on f), such that

I < exp {HldM(q, y)? + Hidray (QS(Q)&S(y))B}

We estimate d(g,y). By definition ¢ = ¥, (0, G(0)) and y = ¥, (0,0). Since Pesin
charts have Lipschitz constant smaller than or equal to 2,
d(g,y) < 2|G(0)| <2-107°(¢" A g®) <2-107% - & (p" A p°)
(see Lemma [A4]). In particular, d(q,y) < Q-(z).
We estimate drar(e®(q),e°(y)). By the definition of ¥y, e®(y) is the normaliza-
tion of (d\I/y)Q(é) = (dexp,)o [Cx(y) ((1))] , and e®(q) is the normalization of

(d¥y)(0,6(0)) (G/l(o)) = (dexpy) e, (4)(4%) [Cx(y) (G/l(O))} '

It is not difficult to see using the admissibility of V* and Lemma 4] that |G(0)| <
Q-(z) and |G'(0)| < Q-(x)?/3. Since O, (y) is a contraction, p exp,, is smooth,
and d(q,y) < Q<(x), there exists a constant Gy (which only depends on the smooth-
ness of the exponential function) such that dras(e®(q),e*(y)) < GoQe(x)5/3.

We see that IT < exp[(H; + H1Go)Q-(2)?/3]. Tt follows that for all ¢ sufficiently
small, IT < exp[Q.(x)?/4].

Summary. Combining the estimates of I and II, we find that

SUTHD) o a0 ()84
S (7)) < pexp[—3Qc ()7

The other half of (Z.3) is proved in a similar way. First, one proves that

s (fH@)? o <2+92€2X5x( Y)?lldfr-1) S(fl(y))|2>
sx(f7H W) 7\ 24Xy ()2 df e (FH ) IIP

xexp( 2 [log [df; -+ (e (F~(@))]] — log [dfy -+ (e ( H)

and then one analyzes the two terms as before. (Il

7.2. Comparison of s, (z;), uy (x;) to sy (ys), uy(¥i)-

Pr0p051t10n 7.3. The followmg holds for all € small enough For any two regular
chains (V5" )icz, (Vi )iez, if m[(U5 P )iez] = n[(UE T )iez), then

e~HVE < M <e™F oand e MVEL M < etVE for alli € Z.
Sx (Ui Uy (i)
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Proof. Write v := (\I/I;g’pf)iez, u= (\I/Z,;;’qf)iez, and p :=7w(v) = 7(w).
Let Vi := Vo [(vi)ize], Vi i= V" [(vi)isk), U i= VE{(ui)izkl U = V" {(us)i<i]-
We claim that it is enough to prove that

o) () 1) sx(UD) (V) (e vy
Sx(@n) " ux (k) " sy (yk) " ux(yw)
Here is the reason. The manifolds V)7 stay in windows and contain f%(p); there-

fore by Proposition B3(3), s, (V;?)/s,(f¥(p)) € [e"VZ,evE]. The same argument

. sy (V3 uy (Vi sy Uy ux (Ug' -
applies to UL, Vit UL, so S5t it sy it © €Yo e De-

s k s
composing 2T = DXV - L rGy R ) Ve see that [B) implies
that s, (21)/sy () € [e~*VE, e*VE]. Similarly, u, (1) /uy (i) € [e~*VE, e*VE].

We show that s, (Vi) /sy (z0) € [eVE, ev?]. The other parts of (T6) are proved
in the same way, and their proofs are left to the reader.

We are assuming that v is regular; therefore there exists a relevant double chart
v and a sequence ny 1T 00 s.t. vy, = v for all k. Write v = W27,

Claim 1. There exists some p > exp(y/e) which only depends on v such that
5o (Vi) [y (@ny) € [p 1, p] for all k.

Proof. By convention v is relevant (see §4.4]). Choose a chain w s.t. wy = v and
w = w(w) € NUH,(f). Let W* := V*[(w;);>0]. This manifold has a finite s,—
parameter, because s, (W?®) < e\/gsx(w) and w € NUH, (f) so s, (w) < co. Let

sy (W?) sx(z)
Po = max{ ’ s 7eXp(\/E) .
sy() " s (W?)

W* is an admissible manifold in v,, = v. By Proposition [{.15] if we take W*
at vp,,, and apply the graph transform F; to it nyie — ng times using the path
(Vngs -+ Vny ), then the resulting manifold

Wy i B )
is an s—admissible manifold in v, , which converges to V,;, . By Lemma [L.2]

Sy (W§) _
7.7 X e oot pol-
( ) Sy (I) [pO pO]
The convergence of W to V,; means that if W is represented in v,, = A
by the function Fy and V;?_is represented in 2" 7" by F, then [|[Fy — F o P 0.
— 00

In fact, since sup ||Fy||3/3 < oo, we have the stronger statement that

|Fe = Flloe + | Ff = F'lloc —0;

see Part 2 of the proof of Proposition Therefore, if £ := ¥,(0,F(0)) and
& = U4 (0, F4(0)), then & ——— & and ¢*(&) ——— €*()-

Fix some N large and § > 0 small. Since df is continuous, there exists ¢ so large
that

1
2 2

N N
V2 e dfle (TN | < e V2D ePXldf e (f (&) lFse,)
j=0 =0
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The expression on the right is smaller than €°s, (W), and therefore by (.7), smaller
than e’pgs, (). Since this is true for all N and 6, s, (V,% ) < po - 55 (7).

Recalling that z,, = x and that s, (V) > V2, we see that sy (V5 )/sy(2s,) €
[vV2/5,(x), po]. The claim follows with p = pg - s, (z).

Claim 2. 5,(V§) 5y (z0) € [exp(—vE), exp(vE)]
Proof. Fix k large. By Claim 1,

——s e p7hpl
SX(xnk)
By Proposition AI5(3), F.(V,;),) = V,;, _1, and by Lemma [L.2] the bounds for

Ve Ve
sx (Vi) improve. We ignore these improvements and write zi#’;j; e p .

sx (Vi) —2)
Sx(xn:—2) e [p
eventually reach the index nx_1 + 1 and the bound

sx (Vi +1) _
2O et et gl
SX(xnk—1+1)

-1

Another application of Fy gives ,p].  Continuing this way, we

Since z,, = z, the next application of Fs improves the ratio bound by at least

exp[Q. (x)5/4]:

sy (V3
X( k71) c [p_legg(w)ﬂ/(l,pe_Qa(w)ﬁM}.

SX(xnkfl)

We repeat the procedure by applying Fs ng_1 — ng_o + 1 times, while ignoring
the potential improvements of the error bounds and then applying Fs once more
and arriving at

Sx(fok,Q)
Sx (wﬂk—z)

We are free to choose k as large as we want. If we make it so large that
exp[kQ-(x)?/4] > pexp(—+/2), then eventually we will reach a time n, when the
ratio bound is smaller than or equal to exp(1/€):

sy (V2
o) ¢ exp(—vE).cxp(vB).
Sx ('Tnko )

This is the threshold of applicability of Lemma [7.22l Henceforth we cannot claim
that the ratio bound improves. On the other hand it is guaranteed that the ratio
bound does not deteriorate. Therefore, after additional ny, iterations, we obtain

2) ¢ [exp(—+/E), exp(y/E)] as desired. -

sx (zo)

e [p7162Qs (r)ﬁ/él7 p672QE (z)ﬁ/4].

8. WINDOW PARAMETERS

8.1. e—maximality. Let v = (\Ilgif’pf)iez,g = (\I/Zi:u’qf)iez be two regular chains
such that w[v] = 7lu]. We compare p¥ to ¢ and p{ to ¢f. The idea is to use
regularity to see that the g—parameters of V*[(v;);<o] and V*[(v;);>0] are “almost
maximal” in a certain sense that we describe below.

But first, we give some notation and terminology: (a) a positive or negative
chain is called regular if it can be completed to a regular chain (equivalently, every
coordinate is relevant, and some double chart appears infinitely many times); (b)
if v is a double chart, then p*(v) and p*(v) mean the p* and p® in v = 2" P",
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Definition 8.1. A negative chain (v;);<o is called e-mazimal if it is regular and

p"(vo) > e~ VEp"(up)
for every regular chain (u;);ez for which there is a positive regular chain (v;);>¢ s.t.
m[(vi)iez] = m[(wi)iez].
Definition 8.2. A positive chain (v;);>¢ is called e-mazimal if it is regular and
p*(vo) = e~ V¥p* (uo)
for every regular chain (u;);cz for which there is a negative regular chain (v;);<o
s.t. W[(Uz’)iel] = W[(ui)iez]. -
Proposition 8.3. The following holds for all € small enough: for every regular
chain (vi)iez, (vi)i<o and (v;);>0 are e-mazimal.

Proof. The proof is made of several steps.
Step 1. The following holds for all € small enough: Let u and v be two regular chains
s.t. wlu] = 7v]. I up = U2 and vy = \Ilq 4 then Q.(z)/Q.(y) € [e~ V&, e V7).

Proof. PropositionsB.5and [ say that S22 ¢ [=VE eVE], Zi% € [em4VE, Ve,

sin a(y)
and Zi—g; € [e=4VE e*V?]. By Lemma 2.4 H € [exp(—5vZ), exp(5v2)],
whence Q. (2)/Q:(y) € [exp(—— € — 3¢), exp(GO\/E—i— z¢)]. If & is small enough,

then Qc()/Q:(y) € [exp(—/E), exp(V/E)]-

Step 2. The following holds for all ¢ small enough: Every regular negative chain
(v3)i<o 8:t. vg = WEP" where p" = Q.(z) is e maximal, and every regular positive
chain (v)i>0 s.t. vg = U2 P where p° = Q.(x) is e maximal.

Proof. Suppose (v;)i<o is regular and vy = WE'?" where p* = Q.(z). We show
that (v;)i<o is e-maximal.

Suppose (v;);ez is a regular extension of (v;);<o and let (u;);cz be some regular
chain s.t. w[(u)iez] = w[(vi)icz]. Write ug = W44, We have to show that
p* > e~ VEq". Indeed, by Step 1, p* = Q:() > e~ VEQ.(y) > e~ Vg

The proof of the second half of Step 2 is similar.

Step 3. Let (vi)i<o be a regular negative chain and suppose vg — v1. If (v;)i<0 is
e—maximal, then (v;);<1 is e-maximal. Let (v;);>0 be a regular positive chain, and
suppose v_1 — vg. If (v;);>0 is e-maximal, then (v;);>_1 is e-maximal.

Proof. Let (v;);<o be an e-maximal regular negative chain, and suppose vy — v1.
We prove that (v;);<1 is e-maximal.

Suppose (u;)iez, (vi)i<1 are regular and there is an extension of (vz)z<1 to a
regular chain (v;);ez s.t. ©[(Vit1)iez] = 7[(wir1)iez]. We write v; = \Ilpl i , U =
\I/gi""’f and show that p¥ > e~ Vegu,

Since W[(“i—kl)iel] = W[(ui-i-l)ieZ] and Too = f o, W[(Uz’)iel] = W[(Ui)iez]-
Therefore, since (v;);j<o is e -maximal, p¥ > e~ V5q¥. Also, by Step 1, Q.(x1) >
e~ VEQ, (y1). Tt follows that

pl = min{e®py, Qc(x1)} (. vo — v1)
> min{e® - e~ %qg, e %Qe(yl)}

= e_\%min{egqg, Q-(y1)} =e" \%qlf (. ug = up).
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This proves the part of Step 3 dealing with negative chains. The case of positive
chains is similar, and we leave it to the reader.

Step 4. Proof of the proposition.

Suppose (v;)icz is a regular chain, and write v; = \Ifﬁ’f”’f. Since (v;)icz Is a
chain, {(p¥,pf)}icz is e-subordinated to {Q.(x;)}icz. Since (v;)iez is regular,
limsup(pj A p§) > 0; therefore by Lemma BT pj; = Qc(z,) for some n < 0 and

i—*Foo

p; = Q< (z¢) for some £ > 0.

By Step 2, (v;)i<n is an e-maximal negative chain, and (v;);>¢ is an e-maximal
positive chain.

By Step 3, (v;)i<o is an e-maximal negative chain, and (v;);>0 is an e-maximal
positive chain. O

8.2. Comparison of p;‘/ ® to qf/ ®. We can now easily compare the window pa-
rameters of all regular chains with the same 7 image.

Proposition 8.4. Let (\Ili?f”’f)iez and (ng’qf)iez be two regular chains such that
(Ve " )iez] = 7l(Wyi ™ icz]. Then pi'/qf',pi/a; € [exp(—/z), exp({/e)] for all
1€ 2.

s

Proof. By Proposition B3] (\Ilgg’pi)igo is e-maximal, so pj > e~ %qg. (\Il?;ql )i<o
is also e-maximal, so g > e~ Vepy. Tt follows that p/q4 € [e~ V=, e V%], Similarly,
pi/as € e VF, e V). o o

Working with the shifted sequences (\Ilf;ii’;’p”" )iez and (\Ilgjf,z’q”k )icz, We obtain
PL/ gk PR g € eV, e V) 0

9. PROOF OF THEOREM

Parts (1) and (3) of the theorem are handled by Propositions 53] and B4, so we
focus on part (2). )

Suppose w[(V5; " )jez] = w[(V5; " )iez] where (V5™ )iez and (V5" )iez are
regular chains. We compare ¥, and ¥, . Write, as in §5 ., = exp,, oy, 0 Cy,
and ¥, = exp,, ody, o Cy,. We also let p; := pi Apj and ¢; := qj' N ¢q;.

Claim 1. C,'C,, = (=1)71 Id +E where 0; € {0,1} and E is a matrix all of whose
entries have absolute value less than 7/e.

Proof. By (52)) and Proposition [6.7]

. _ sy (yi) _ _
clc,, = ( sxéyz) fan o (y7) )R;IR@ ( (@)1 uy () 1160805(331‘) >

i sﬁ*i%’;b 0 Uy ()~ sin ;)
_ Sx(yl) _t:ITEvy(iy)i) [(_1)01‘, Id —l—E’] sx(xl-)*l ux(l'i)il Cosa(xl-)
0 gt 0 uy(z) sinalz) )

where o; € {0, 1} and B/ = (eij)2><2 and |Eij‘ < pﬂ/5 + qf/5 < \/E

%

We call the contribution of (—1)% Id the “main term”, and we call the contribu-
tion of E’ the “error term”.
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sx (1) sx(yi) sinfa(y:) —a(@s)]
Main term: This equals (—1)% ( ngi) Zf((f/g;)) 3133%141)) >
ux (z4) sinaly:)

Proposition [T.3says that sxg’g and "X(y’) 5 belong to [exp(—44/€), exp(41/€)], and

Proposition [6.3] says that :iizgg [exp( \/_ ),exp+/e]. Tt follows that the (1,1)
and (2, 2) terms of the main term are, up to a sign (—1)%¢, in [exp(—5+/2), exp(5+/¢)].
We bound the (1,2) term: Since u, (y;) > v/2 > 1 and % < | Cyx(yi)" M pr

[sin a(y;
(Lemma 2.4]),

Sx(yi) Sin[a(yi) - a(xl)] ‘ < ch(yi)ilnFr . |sin(a(yi) _ a(xl)”

Uy () sin a(y;)

<NCx(ya) "Ml - (Isinaly:) = sina(w;)] + | cos aly:) — cos afzy)]).

By Lemma [6.6] if ¢ is small enough,

+qh.

sy (yi) sinfo(y;) — o) e
Ux(xi) Sina(yi) ‘ < HCX(%) | 7 (

By Proposition B4 p; < e V2g;; therefore
!t < @V 1)) < 2g)7 < 2Q0 () < 28Oy I

(@) sin a(y:)

that the main term equals (—1)7 Id 4+(m;;)2x2 where |m;;| < 64/e.

Since ||Cy ()" Hlpr > 1, ‘Sx(y")sm[a(.yi)*o‘(mi)] ‘ < /g, for all € small enough. We see
Error term: This is

sx (i) —tjg‘f,%;)i) E11 €12 sy (i)™t uy () cos a(zy)
0 Uy (yl) €921 £992 0 ’LLX (.’L’i)_l Sin Oé(flfl) ’

sin a(y;)

Every entry of the product matrix is the sum of four products, each consisting
of three terms, one for each matrix.

The term from the left matrix is bounded by ||Cy (y;) ™! rr (Lemma Z4). The
term from the middle matrix is bounded by

/3/5_’_(]/3/5 <q[3/5(1_’_e\/_5/5) <2Q ( )5/5

7

The term from the right matrix is bounded by one. The product of these terms is
bounded by 4/|Cy (y;) | pr - 2Q-(y;)?/° - 1. By the definition of Q.(y;), this is less
than 83/ < \/e.

Combining the two estimates, we see that every entry of C; 1C,, — (=1)911d is
less than 7,/¢ in absolute value.

Claim 2. V.1 oW, is well defined on R.(0).

Proof. We use the constants L1, ..., L4 introduced in the proof of Proposition
and the ball notation of §2.31 We assume that e satisfies (3.2).

Suppose v € R.(0). By Proposition 53] d(z;,v:) < 2571 (p; + ¢;), and by Propo-
sition B4l p; < eVeq;, so d(x;,y;) < g;- By the definition of L, (page B53),
d((exp,, 0V, )(Cr,), (exp,, 00y,)(Cy,v)) < Lid(zi, yi) < L1gi-
Therefore, ¥, (v) € B := Br, 4, (exp,, 00y, (Cy,v)).
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As in the proof of Proposition [3.2] exp,. Lis well defined on B and has Lipschitz
constant at most Lg there, so
expy, (B) C BY 1., (9y,(Cy,0)).
It follows that W, (v) € exp,,[exp, ' (B)] C expy, [BY 1., (9y,(Cr,0))] = ¥y,
where E := C\(y:) " '[BY' 1., (94, (C,v))] C BLngucy_:”qi(nglCziy).
We now use the inequalities ¢; < Q.(y;) < €3/7||Cy(y;) ™|~ and (Claim 1)

1CCy — (—1)7 1A || < (O3, — (—1)741d ||y < 1442

[E],

These give B C Br,z,c0/0 414010 (-1)7'0) © Bryzge9/0 11407+ (Q)- Since
v € R.(0), for all £ small enough
L1Lse®P +14/e ||| + ||u|| < (L1Lae® + 14/ 4+ 1)V2e < 2 < r(M),

where (M) is given in (ZI)). It follows that £ C B, (0).

We just showed that for every v € R.(0), V., (v) € ¥y, [Bya)(0)]. In other
words, V., [R:(0)] C ¥y, [B,(a)(0)]. By the definition of r(M), ¥, : B,y (0) — M
is a diffeomorphism onto its image. It follows that ¥ Lo W, is well defined and
smooth on R.(0).

Claim 3. W, oW, (v) = (—1)%"v + ¢; + Ai(v) where o; € {0,1}, ¢; is a constant
vector s.t. ||l¢;|| < 1071g;, and A,(+) is a vector field s.t. A;(0) = 0 and ||(dA;). || <
e on R.(0).

Proof. Choose o; as in Claim 1. One can always put W;l o WU, in the form
Ut oWy, (v) = (~1) 7w+ ¢ + Aq(v)
where ¢; := (\I';i1 oW, )(0) and A;(v) := (\I/;I1 oW, )(v) — (\11;1 oW, )(0)—(—1)%w.
Then
Ai(v) = [C, 19, expy ! exp,, U2, Ca ) (0) — ¢ — (1)7'w
_ o —lpg—1 o —1 -1 o
=C, (U, exp, exp, Vs, —1d)Cp,v+ (C, " Cp, — (=1)7" 1d)v — ¢
—1g—-1 =1 -1 —1 -1 o
= Cyl (19% eXpyi _19% expwi )(\I’wL (Q)) + (CUL CIL - (_1) Id)y — &
It is clear that A;(0) = 0 and that for all v € R.(0)
[(dAd)o]l < ICHI- 19y, expy N w,, @) — A9 expw,, w1 (dPz,). |
€y, — (~)7 1d |
<2C M- 1d(9y, expy v, ) — A0, expyw,, w)ll + 14V
<2||C M| - Lad(wi, i) + 14VE,
where Lo is a common Lipschitz constant for the maps = — 9, exp, ! from D to
C?*(D,R?) (D € 2). As we saw above, d(z;,y;) < gi < 63/6”01;1”_1, whence
[(dA:)yl| < 2Loe®P + 144/E.

This is smaller than /¢ for all & small enough.

Finally we estimate ¢;. Let z := fi(w[(qfﬁg”’f)iez]) = fi(w[(qug’qf)iez]). This is

s
Pi .
bl

the intersection of a u—admissible manifold and an s—admissible manifold in @57
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therefore by Proposition 111 f(z) = \I/I;g’pf (¢) for some ¢ € Ryg-2p,(0). Similarly,
fi(z) = \Iz;j,::“’qf (n), for some n € Ryg-24,(0). It follows that
n= (T, 0Ws)(¢) = (-1)7¢ + ¢ + Ai(Q),

and consequently ||¢;[| < [In|| + [IC]| + |A:(O)]-
Now [|¢]| < 1072v/2p; < 1072v/2e VE¢q;, ||n|| < 1072/2¢;, and by the bound on
A, 1A ()] < \3/5||§|| It follows that ||¢;|| < 10 1g;. O

Part I1I. Markov partitions and symbolic dynamics
10. A LOCALLY FINITE COUNTABLE MARKOV COVER

10.1. The cover. In lwe constructed a countable Markov shift 3 with countable
alphabet 7 and a Holder continuous map « : ¥ — M which commutes with the
left shift o : ¥ — 3, so that m(X) has full measure w.r.t. any ergodic invariant
probability measure with entropy larger than x. Moreover, if]

Y# = {u € ¥ :uis aregular chain}

={veX:Jv,we? Ing,mg T oost. vy, =0,0_p, =w},

then 7(X#) D NUHi(f); therefore m(X#) has full probability w.r.t. any ergodic
invariant probability measure with entropy larger than y.

In this section we study the following countable cover of NUHf( h:
Definition 10.1. 2 := {Z(v) : v € ¥}, where Z(v) := {7 (v) : v € ¥#, vy = v}.

This is a cover of NUH;‘?é (f). The following property of % is the hinge on which
our entire approach turns (see §LI)):

Theorem 10.2. For every Z € &, {Z' € & : Z' N Z # @}| < 0.

Proof. Fix some Z = Z(WP"P"), If 7/ = Z(\Ilgu’qs) intersects Z, then there must
exist two chains v,w € X# s.t. vg = WP P wy = \I/gu’qs7 and 7(v) = w(w).
Proposition B4l says that in this case

¢">e V' and  ¢° e VPt
It follows that Z’ belongs to {Z(\Ilgu’qs) : \Ilgu’qs eV, ¢“ Ng® > e VE(pt ApT)).
By the definition of ¥, this set has cardinality less than or equal to
{0y e inze VE AP )} x [{(a",¢°) € I x I : q" A g® = e VE(p" Ap*)}.
This is a finite number, because of the discreteness of o/ (Proposition 3. O

10.2. Product structure. Suppose x € Z(v) € 2. Then Jv € X# s.t. vg = v
and 7(v) = z. Associated to v are two admissible manifolds in v: V*[(v;);<o] and
V¥[(v;)i>0] (Proposition EI5). These manifolds do not depend on the choice of v:
if w € ¥# is another chain s.t. wy = v and 7(w) = z, then

V¥ [(wi)i<o] = V*[(vi)i<o] and  V*[(w;)io] = V*[(vi)ixol,

6This uses the convention from §4.4] that every element of ¥ is relevant.
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because of Proposition and the equalities p*/*(wo) = p™/*(vy) = p*/*(v). We
are therefore free to make the following definition:
Definition 10.3. Suppose Z = Z(v) € &. For any x € Z:
(1) V¥(x, Z) := V*[(v;)i>0] for some (every) v € ¥# s.t. vg = v and 7(v) = =.
W (z,Z) = VS(z, Z2) N Z.
(2) V¥(x,Z) := V¥[(v;)i<o] for some (every) v € ¥# s.t. vg = v and 7(v) = =.
W¥(x,Z) =V (z,Z)N Z.

It is important to understand the difference between V*/%(z, Z) and W*/%(z, Z).
Whereas the V%/*(x,Z) are smooth manifolds, the W"/*(z, Z) could in princi-
ple be totally disconnected. Whereas the V*/#(x, Z) extend all the way across
Uy [Ryu/s (0)] (assuming v = W2"P"), the W*/*(xz, Z) are subsets of the much smaller
set W,[Rig-2(punps)(0)], because every point in W/s(x, Z) is the intersection of an
s—admissible manifold in v and a u—admissible manifold in v (Proposition FTT]).

Proposition 10.4. Suppose Z € % . For every x,y € Z, V¥(x,Z) and V*(y, Z)
are either equal or they are disjoint. Similarly for V:(x,Z) and V*(y,Z), for
W(x,Z) and W¥(y, Z), and for W*(x,Z) and W*(y, Z).

Proof. The statement holds for V*/* because of Proposition 6.4l The statement for
W/s is an immediate corollary. (Il

Proposition 10.5. Suppose Z € % and x,y € Z. Then V¥(x,Z) and V*(y, Z)
intersect at a unique point z, and z € Z. Thus W¥(x, Z) N W*(y, Z) = {z}.

Proof. Write Z = Z(v) where v € ¥. V¥(x, Z) is a u—admissible manifold in v, and
V#(x,Z) is an s—admissible manifold in v. Consequently, V*(z, Z) and V*(z, Z)
intersect at a unique point z (Proposition [.1T]).

We claim that z € Z. There are chains v, w € % s.t. 19 = wy = v and so that
V“(aj, Z) = VU[(Ui)igo] and V*® (l‘, Z) = Vs[(wz)zzo] Define u = (ui)iEZ by

Vi, ISO7
Uy = .
w;, 1> 0.

It is easy to see that u € % and ug = v; therefore m(u) € Z. By definition,
{r(W)} = V*{(ui)i<o] N V*[(ui)izo] = V*[(vi)i<o] N V*[(wi)ixo]
=V x,Z)NV?3(y, 2).
It follows that z = 7(u) € Z. O

Definition 10.6. The Smale bracket of two points =,y € Z € Z is the unique
point [x,y]z € W¥(z, Z) "N W*(y, Z).

This definition is motivated by [Sm] (see also [B4, Chapter 3]).

Lemma 10.7. Suppose z,y € Z(vg) and f(x), f(y) € Z(v1). If vog — v1, then
f([xay]Z(vo)) = [f(x)a f(y)]Z(vl)-

Proof. Write Y = Z(vy), Z = Z(v1), and w := [z,y]y. By definition
(10.1) {f(w)} = Wz, Y) N W*(y,Y)]  f[V*(2, V)N FIVZ(y, V)]
Claim. f[V*(y,Y)] € V*(f(y), Z) and f[V*(x,Y)] D V*(f (), Z).
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Proof. Since f(y) € Z(v1) = Z, V?® :=V?*(f(y),Z) is an s—admissible manifold in
v1, and this manifold stays in windows. Applying the graph transform (Proposition
[A12)), we see that f~1[V*(f(y), Z)] contains an s—admissible manifold F;[V*] in vp.
Since V* stays in windows, F,[V*] stays in windows.

Since Fs[V?] is s—admissible in vg, it intersects every u—admissible manifold in vg.
The larger set f~1(V*) intersects V*(y,Y) at a unique point (Proposition E12(2)).
This point must be y, so Fs[V | NV (y,Y) = {y}, whence F,[V?*] 5 y.

This means that Fs[V®] intersects V*(y,Y). These manifolds are s—admissible
in vy, and they stay in windows. Since they intersect, they are equal. It follows
that f~1(V®) D F,[V®] = V*(y,Y), whence f[V:(y,Y)] C V*, which is the first
half of the claim. The other half of the claim is proved in the same way.

Returning to (I0.1]), we see that f(w) € f[V¥(z,Y)|NV*(f(y), Z). By the second
half of the claim,
fVH @ YNV (f(y), 2) 2 V*(f(2), 2) NV (f(y), Z) 2 {lf (%), f(y)]z}-

Thus f[V¥(z,Y)]NV(f(y),Z) > f(w),[f(x), f(y)]z. But Proposition LI2(2) says
that f[V*(z,Y)] intersects V?(f(y), Z) at a single point. So f(w) = [f(x), f(y)]ZD

Occasionally we will need to form the Smale bracket of points belonging to
different elements of Z:

Lemma 10.8. The following holds for all ¢ small enough: Suppose Z,7' € % . If
ZNZ + @, then foranyx € Z andy € Z', V¥(x, Z) and V*(y, Z') intersect at a
unique point.

We do not claim that this point is in Z or Z’. The proof is in the appendix.
10.3. The symbolic Markov property.

Proposition 10.9. If + = 7[(v;)icz] where v € Y%, then fIW*(z,Z(vy))] C
We(f(x), Z(v1)) and f=H{WH(f (), Z(v1))] € W(z, Z(v0)).

Proof. We prove the inclusion for the s—manifolds. The case of u—manifolds follows
by symmetry.

Step 1. f[W*(z, Z(v0))] € V*(f(x), Z(v1)).

]
By definition, W#(x, Z(vg)) C V*(x, Z(vo))
f(V2[(vi)izo]) € V®[(vig1)izo). Since f(z)
equal to V*(f(x), Z(v1)). Thus fIW*(z, Z(vg))] C
Step 2. fIW*(x, Z(v9))] C Z(v1).

Suppose y € W*(x, Z(vp)).
e Since y € Z(vg), y € Wu, [R10-2(pznps)(0)] (it is the intersection of a u— and
an s—admissible manifold in vg).

e Since y € V*[(vi)izol, f*(y) € V*[(vitr)iz0] C Var [Rq. (ay)(Q)] for all k >
WhE Pk,

>0]. By Proposition [4.15]
)iez], the last manifold is
(x

) Z(01))-

= V*[(v):
= [v

( i+1
V(s

0, where vy, =
e Since y € Z(vp), Jw € ¥ s.t. wg = vg and y = w(w) € V*[(w;)i<o].
It follows that f~*(y) € V*[(wi—k)i<o] C ¥y_,[Rq.(y_»)(0)] for all k > 0,

qi,q;
where w; = U, " .
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Writing

i< w s

ug = {wz; Z._O7 and ’U/l:\IJ;: 77'1‘,
v, >0,

we see that u € X%, ug = vo, Yy € Uz [Rpunps(0)], and f*(y) € V., [Rg. (2,)(0)]

for all k € Z. By Proposition LI5(4), y = 7(u). It follows that f(y) = w[o(u)] €

Z(ul) = Z(Ul). [l

Lemma 10.10. Suppose Z,7' € & and ZN 7' # @.

(1) If Z = Z(W2™) and Z' = Z(U3 ™), then Z C Wy, [Rygngs (0)].
(2) Foranyxze ZNZ', W*(x,Z) CV¥(x,Z") and W*(x,Z) C V5 (x,2").

See the appendix for the proof.

11. A COUNTABLE MARKOV PARTITION

In Section [0 we described a locally finite countable cover 2 of NUHf( f) by
sets equipped with a Smale bracket and satisfying the symbolic Markov property.
Here we produce a pairwise disjoint cover of NUHf( f) with similar properties.

Sinal and Bowen showed how to do this in the case of finite covers [Sil], [B4].
Thanks to the finiteness property of 2, their ideas apply to our case almost without
change. The only difference is that in our case, the sets Z € 2 are not the closure
of their interior, and therefore we cannot use “relative boundaries” and “relative
interiors” of Z € % as done in [Sil] and [B4]. The price is that we cannot claim
that the coding we get is one-to-one almost everywhere.

11.1. The Bowen—Sinai refinement. Write & = {Z,,75,Z5,...}. Following
[B4], we define for every Z;,Z; € & s.t. Z;NZ; # O,

T o =A{z € Zi : W'z, Z;) N Z; # &, W*(z,Z;) 0 Z; # &},

) (x, Zi)
T4 i={x € Zi: W' (x, Zi) N Z; # @, W*(x, Z;) N Z; = @},
Ti?s = {33 ez, W (l‘,Zz) NZ; =, Ws(x,Zl) nZ; =+ @}7
3% = {x € Zi: W"(@,2) N Z; = 8, W'(x,Z) N Z; = 2.

Let T = {T;;-B:z',j eEN,Z,NZ; # 2, a€{u,o}, 6 € {s,a}}.

Notice that T = Z;; therefore 7 covers the same set as 2, namely 7(3#).
Another useful identity is T;}S = Z; N Z;. The inclusion 2D is trivial. To see
C, suppose x € T;5°. Choose some y € W*(z,Z;) N Z;. Then y € Z; N Zj,
so W¥(x,Z;) = W"(y, i) C V"(y7 ;) (Lemma [T0.I0). Slmllarly7 for every z €
Wz, Z,) N Z;, Wo(x, Z;) C V3(z, ) It follows that

{z} =Wz, Z,) "N W?*(z, Z;) CV*(y, Z;) "N V(2,Z;) C Zj,
whence x € Z; N Z;.

Definition 11.1. For every x € 7(X%#), let R(z) := (W{T € F : T > z}, and set
% = {R(z) : x € m(X7)}.

Proposition 11.2. Z is a countable pairwise disjoint cover of NUHf (f)-
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Proof. We prove that % is countable by observing that thanks to Theorem [10.2]
R(z) is a finite intersection of elements of 7. Since 7 is countable, there are at
most countably many finite subsets of .7 and therefore at most countably many
different R(x)’s.

Next we claim that Z covers NUHf(f). Every z € T € Z belongs to R(x) € %,
so JZ = 7. We saw above that for every Z; € 2, T* = Z;. Consequently,
U7 =UZ = r(X#). Since 7(2#) D NUHf(f) (see the proof of Theorem (.16,
X covers NUHf(f).

It remains to prove that & is pairwise disjoint. We do this by proving that R(x)
is the equivalence class of x for the following equivalence relation on | J %:

(11.1)
r€Z & yez,
r~yifftvVZ, 7' e Z, | W (x,Z2)NZ #£2 & W y,Z)NZ #+ 2,
Wiz, Z)NZ' £ < Wi(y,Z)N
.

So for every z,y € |JZ, either R(z) = R(y) or R(x) N R(y) =
Part 1. If © ~ y, then © € R(y).

If  ~ y, then x and y belong to exactly the same elements of 7. So R(z) = R(y).
Part 2. If x € R(y), then z ~ y.

Fix some Z; € 2. We claim that x € Z; < y € Z;. Recall that Z; = T}4*.

If y € Z;, then T4 is one of the sets in the intersection which defines R(y).
Consequently, z € R(y) CTY* = Z;, and z € Z;.

Next suppose x € Z;. Pick some Z; € 2 which contains both x and y (any k
s.t. T,?f > y will do, because for such k, Zy O R(y) 3 z,y). Since y € Zj and
ZyNZy #+ @,y € Tlf‘iﬁ for some «, 3. By the definition of R(y), R(y) C Tlf‘iﬁ,
whence x € Tgf. But z € Z, N Z; = T}, so necessarily (a,3) = (u,s). Thus
y € T = Zy, N Z; C Z;. This completes the proof that x € Z; & y € Z;.

Next we show that if x € R(y), then W"(z, Z;,)NZ; # @ & W"(y, Z;)NZ; # &.

If W*(x,Z;) N Z; # @, then x € T1*, where x stands for s or @. In particular

x € Z;. By the previous paragraph, y € Z;, and as a result y € Tf;ﬁ for some

a, 8. Therefore x € R(y) C Tfjfﬁ, and since T;%* N Tg* = &, a = u. It follows
that y € T}5*, whence W*(y, Z;) N Z; # @ as required. The other implication is
trivial: If W*(y, Z;) N Z; # @, then y € T}%*, whence € R(y) C T}5*, and so
Wz, Z;) N Z; # 2.

The proof that if z € R(y), then W*(z,Z,) N Z; # @ < W*(y, Z;,) N Z; # & is

exactly the same. ]

7'+ @

Lemma 11.3. Z is a locally finite refinement of % :

(1) for every R€ Z and Z € &, if RNZ # &, then R C Z;
(2) for every Z e Z, {R€ #:Z > R}| < .

Proof. Suppose RNZ # @ and let x € RNZ. If Z = Z;, then Z = T}}°. Since
x€Z,R=R(x) CTY¥ =7, =Z, whence R C Z.

For the second part, suppose R C Z. Then R is the intersection of a subset of
T(2)={T" € 7:T3°NZ # 2} WI.°NZ # @, then ZiNZ +# @, Z;NZ; # 2,
and {«, 8} C {u,s,@}. By Theorem [[0.2] there are finitely many possibilities for
Z; and therefore also finitely many possibilities for Z;. Thus .7 (Z) is finite.
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Since 7 (Z) is finite and any R C Z is the intersection of a subset of .7 (Z),
HRe % :Rc Z}| <217 < . O

11.2. Product structure and hyperbolicity.
Definition 11.4. For any R € Z and = € R, let
W?(x, R) n{WS (x, Z; ﬂTgﬁ :Ti‘;ﬂ € 7 contains R},
W"(x, R) ﬂ{W“ x, Z; ﬂTgﬁ : Tgﬁ € 7 contains R}.
Proposition 11.5. Suppose R € # and x,y € R.
(1) W*(x,R),W*(x,R) C R and W"(z, R) N W*(x,R) = {z}.
(2) Either W"(z, R), W"(y, R) are equal or they are disjoint, and similarly for
Ws(z,R) and W*(y, R).
(3) W¥(x, R) and W*(y, R) intersect at a unique point z, and z € R.
(4) If &,m € W#(x, R), then d(f™(&), f™(n)) — 0. If &, n € W¥(z, R), then
d(f="(€), [~ () —= 0.
Proof. Suppose R € #Z and z,y € R.
Part 1. By definition, W*/*(z, R) ¢ ({T2” € 7 : T2° > R} = R. Tt follows that
W/s(z,R) C R.

If z € R, then for every Tgﬁ € .7 which contains R, x € W**(z,Z;)N R C
Wl (z, Z;) N T;;B. Passing to the intersection, we see that 2 € W*/%(x, R). Thus
x € W¥x,R) N W?*(x,R). On the other hand for every Z; O R, W*(x,R) N
W¥(z,R) C W"(z, Z;) "W (x, Z;) = {x}, so W¥(z, R) N W*(z, R) = {z}.

Part 2. Suppose W¥(x, R) N W¥(y,R) # &. Then W"(z, Z;) N W"(y, Z;) # &
for every i s.t. there is some Tuﬁ € .7 which contains R. By Proposition [[0.4]
Wu(z, Z;) = W¥(y, Z;), whence W (z, Z;) N TS’B = W"(y, Z;) N Tg’g Passing to
the intersection, we see that W*(z, R) = W*(y, R). Similarly, one shows that if
We(x, R) N W*(y, R) # &, then W*(z, R) = W*(y, R).
Part 3. For every Tia-ﬁ € 7 which covers R and for every z € R, let
u af u af s af s af

W T80 = Wiz Z) N TS and WA(, TS0 = W*(z, 2) N TS,

Fix z,y € R. For every Taﬁ € 7 which contains R, W¥(z, Z;)N\W*(y, Z;) = {2}
where z; := [z,y]z,. By Proposmonm WY (z;, Z;) = W¥(x, Z;) and W*(z;, Z;) =
W*(y, Z;). It follows that z; € T , whence

Wu(vaz(;B) NW*(y 7Ti(;ﬁ) = {Zz}
Since z; = [x,y]z,, 2; is independent of j, «, and 8. In fact z; is also independent
of i: If T,;yf € J also covers R, then x,y € Z; N Z}, and so
{z:} =Wz, Z;) "Wy, Z;) C V2, Z;) N V3(y, Zy),
{z1i} = W (x, Zx) "Wy, Zy,) CV(x, Z;) " V3(y, Z;) (Lemma [T0I0]).
Since V¥(x, Z;) N V*(y, Z;) is a singleton, z; = z.

Denote the common value of z; by z. Then W¥(z ,Tg’g) NWe(y 7TZ-O;-B) = {2} for
all Tgﬁ €  which cover R. Passing to the intersection, we obtain that W*(x, R)N
Ws(y, R) = {z}. By part (1) of Proposition IT.H z € R.



SYMBOLIC DYNAMICS FOR SURFACE DIFFEOMORPHISMS 389

Part 4. Fix some Z € % such that R C Z. Then z = 7(v) where v is a regular chain
such that Z := Z(vg). By construction, W#(z, R) C V*[(v;);>0] and W"(z, R) C
V*[(vs)i<o]. Part (4) follows from Proposition G.3(1).

O

Recall the definition of the Smale bracket (Definition [[0.0]). In the course of the
proof we showed the following:

Lemma 11.6. Suppose R € Z and z,y € R. Let [z,y] denote the unique element
of W¥(xz, R)NW*(z,R). Then [z,y] = [z,y]|z for any Z € & which contains R.

11.3. The Markov property. % satisfies Sinai’s Markov property [Sil]:
Proposition 11.7. Let Ry, Ry € Z. If x € Ry and f(x) € Ry, then
fIW*(x, Ro)] € W*(f(z), R1) and  f~H{W"(f(x), R1)] C W*(z, Ro).

Proof. The proof is an easy adaptation of an argument in [B4l pp. 54-55], except
that our “rectangles” R € Z are defined differently. We give all the details to
convince the reader that everything works as it should.

It is enough to show that f[W?*(z, Ro)] C W*(f(z), R1): the statement for W™
follows by symmetry.

Suppose y € W#(x, Rg). We prove that f(y) € W*(f(z), R1) by checking that
for every Tf;ﬁ € 7 which covers Ry, f(y) € W*(f(x), Z;) N Tf;ﬂ.

We can show that f(y) € W#(f(x), Z;) as follows. Since Ti‘;ﬂ covers Ry, Ti‘;ﬂ
contains f(x). Thus f(x) € Tf;ﬁ C Z;. Write Z; = Z(v) and f(z) = 7(ov) where
v € X¥ satisfies v; = v. Since for = moo, x = 7(v) € Z(vy). It follows that
Z(vg) 2 R(z) = Ry, whence y € W9(z,Ry) C W*(z, Z(vg)). By the symbolic
Markov property (Proposition [0.9]),

FIW*(z, Z(vo))] € W?[f (x), Z(v1)],
so f(y) € fIW*(x, Ro)] C fIW*(z, Z(vo))] € W*(f(), Z(v1)) = W*(f(x), Zi)-
It remains to prove that if y € W#(x, Rp), then f(z) € T;jﬁ < f(y) € Tf;ﬁ

Since y € W#(x, Ry) < W*(x, Ro) = W*(y, Ry), this is equivalent to showing that
it W#(z, Ro) = W*(y, Ry), then for every Z;,Z; € & st. ZyNZ; # @,

o f(x)eZ; & fly) € Zs;
o Wo(f(x),Zi)NZ; # & W(f(y), Zi) N Z; # &;
o WU(f(x),Zi)NZ; # @ < W"(f(y), Zi) N Z; #+ 2.

We only prove =. The other implication follows by symmetry.
Step 1. f(x) € Z; = f(y) € Z;.

If f(z) € Z;, then f(x) € T}* = Z;. Thus T* D R(f(z)) = R1. We saw above
that if Tf;ﬁ covers Ry, then f(y) € W*(f(z), Z;). Applying this to T}**, we see that
fy) e W=(f(x), Z) C Zi.

Step 2. W*(f(x), Z) ( Z; # @ = W*(f(y), Z) N Z; # 2.

Write Z; = Z(v). Since f(z) € Z;, f(x) = w[ov] where v € ¥# and v; = v.
Since form = moo, x = w(v). By the symbolic Markov property, f[W*(z, Z(vo))] C
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We(f(z), Z(v1)) = W?o(f(x), Z;). Since x = w(v), x € Z(vg), whence Ry = R(z) C
Z(vg). Consequently,

fy) € f(W*(y,Ro)] = f[W?*(x,Ry)] (by assumption)
C fIW3(x, Z(vo))] € W*(f(x), Z(v1)) = W*(f(2), Z;).

Since f(y) € W*(f(x), Z:), W*(f(y ) i) = W(f(x),Z;). Tt is now clear that
W (f(x), Zi) N Z; # @ = W3(f(y), Zi) N Z; # 2.

Step 3. W*(f(x), Zi)NZ; # @ = W' (f(y), Z:) N Z; # @.

In order to reduce the number of indices, we write Z; = Z, Z; = Z*. We pick
some f(z) € W*(f(x),Z) N Z* and show that W*(f(y),Z) N Z* > f(w) where
w := [y, z]y for some suitable Y € & that we proceed to construct.

Since f(x) € Z, there exists v € ©# such that 7(ov) = f(z) and Z = Z(v;). Let
Y := Z(v). Then z = n(v) € Y. By assumption, R(z) = Ry = R(y); therefore,
x ~ y in the sense of (ITI)). Since x € Y and y ~x, y €Y.

By construction, f(z) € Z* so there exists v* € % such that m(ov*) = f(z) and
Z* = Z(vy). Let Y* := Z(v}). Then z = w(v*) € Y*. By the symbolic Markov
property,

2 € [THWH(f(2), 2)] = W (f(2), Z(v1))] € W (2, Z(vo)) = W"(2,Y).

Thus z € W*(z,Y) NY™*. In particular, z € Y N Y™.

Since y,z € Y, the Smale bracket w := [y, z]y is well defined. We show that
f(w) € WH(f(y), 2) 0 Z°.

By construction, w = [y, z]y. Since f(y) € Z (by Step 1), f(z) € Z (by choice),
and Y = Z(v),Z = Z(v1), and vg — v; (by construction), we have by Lemma

M0.7 that f(w) = f([y, 2]y) = [f(y), f(2)]z € W"(f(y), Z).

Next recall that W*(z,Y) N Y™ is non—empty (it contains z). Since z ~ v,
W¥(y,Y)NY* is non—empty. Pick some ¢y € W¥(y,Y)NY™*. Since y/,z € Y NY™,
we have by Lemma that

fw} = W'y, Y) W (2 Y) € VA, Y N V(2 Y) = (I, v ).
0,

Thus w = [y, 2]y~ € W*(z,Y*). Now Y* = Z(v§), Z Z(v
therefore by the symbolic Markov property,

f(w) € fIV*(z,Y) C W2 (f(2), 27) € 2",

and z = 7(v*);

It follows that f(w) € Z*. This completes the proof of Step 3. The proposition
follows from the discussion before Step 1. |

12. SYMBOLIC DYNAMICS

12.1. A directed graph. In the previous section we constructed a Markov parti-
tion Z for f. Here we use. this partition to relate f to a topologlcal Markov shift.
The shift is E(g) where ¢ is the directed graph with vertices ¥ = % and edges

& :={(R1,Ry) € #*: Ry, Ry € ¥ s.t. Ry N [ 1 (Ry) # &}

If (Ry, Rs) € &, then we write Ry — Rs.
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For every finite path R,, = Ry41 — -+ — Ry, in 52, let ¢[Rpm,...,Ry] =
l+n—m

N f*(Rrim—¢)- In particular,

k=t

m By Rl = () F7H(Ry).
k=m

Lemma 12.1. Suppose m < n and R,, = Ry11 — -+ — R, is a finite path on
4. Then m[Rm, ..., Ry] # 2.

Proof. We use induction on n.
If n = m, then the statement is obvious.

Suppose by induction that the statement is true for n — 1, and let R,, — --- —
R,,_1 beapathon 2 By the induction hypothesis, ,[Rm, - - ., Rn—1] # &; therefore
there exists a point y € ﬂz;:n f~*(Ry). Since R,,_; — R,, there exists a point
z€ R,_1N f7Y(R,). Let x be the point such that

{7 H@)} = W ("M (Y), Ru1) N W (2, Ry ).
We claim that = € ,,[Rn,...,R,]. This follows from the Markov property
(Proposition [[T.7):

o ["(x) € Ry, because f"(x) € f[W*(z, Rn_1)] C W*(f(2), Bn) C Rn;

e f"~1(x) € R,_1 by construction;

e f"%(z) € R,_2, because f""(z) € W*(f"(y), Rp—1) C Rn_1 so

P2 (@) € W), Rue1)] C W2 (), Rn—2) C Rn—a;
o ["73(x) € Ry_3, because f"*(x) € W*(f"2(y), Rn_2) s0

P73 (@) € W2 (Y), Rus2)] € WH(f" 2 (y), Rn—3) C Rn_s.
Continuing this way, we see that f"*(z) € R,,_j for all 0 < k < n —m. O

We compare the paths on 9 to the paths on ¢ (the graph we introduced in
#). Recall the map 7 : ¥ — M from Theorem ET6] and define for any finite path
Uy —> *++ — Uy 0N Y,

Zn (Vs ., 0) = {m(w) : w € X% w; = v; for all i =m, ..., n}.

Lemma 12.2. For every infinite path --- — R; — Riy1 — -+ in G there ex-
ists a chain (v;)iez € X such that for every i, R; C Z(v;), and for every n,
R, s Ry) C Z_p(v_p, .., 0p).

Proof. Fix, using Lemma [[21] points y, € _[R—n, ..., R

Pick some vy € ¥ s.t. Ry C Z(vg). Since y, € Ry, there is a chain v =
(vgn))iez € X% such that v(()n) = v and y,, = w[u™)].

For every |k| < n, f*(y,) = w[c®(@™)] € Z(v,(gn)); therefore Z(vfﬂ")) covers
R(f*(yn)). Since, by construction, f*(y,) € Ri, R(f*(yn)) = Ri. It follows that

Ry C Z(vlin)) for every k = —n, ..., n.

Every vertex in the graph ¢ has finite degree (Lemma [£4]). Therefore, there
are only finitely many paths of length k£ on ¢ which start at vg. As a result, every
set of the form {v,(cn) : n € N} is finite. Using the diagonal argument, choose a
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subsequence n; 1 oo s.t. for every k the sequence {v,(cn"')}izl is eventually constant.
Call the constant vy.

The sequence v := (vg)kez is a chain, and Ry C Z(vg) for all k € Z. We claim
that ,[R_pn,...,Rn] C Z_n(v_p,...,vy,) for all n.

Suppose y € _,[R_p, ..., R,]. Since f*(y) € R, and R,, C Z(v,), there exists a
chain w € # s.t. f*(y) = 7[o™(w)] and w,, = v,. Since f~"(y) € R_,, and R_,, C
Z(v_,), there exists a chain u € X% s.t. f~"(y) = w[oc~"(u)] and u_,, = v_,,. Let

a=(a;)iez wherea; =<v;, -n<i<n

For every k, f*(y) € Z(ay), because
o forall k < —n, f*(y) € V*[(w)i<k] C Z(w;) = Z(as),
o forall —n <k <n, f*(y) € Ry C Z(vy) = Z(a.),
o for all k > n, f*(y) € Vo[(wy)i>k] C Z(w;i) = Z(a;).

Writing a; = \I/f;u ’pf, we see that y € Wy, [Ro_(2,)(0 )] for all ¢ € Z. By Proposition
EI5(4), y € V*[(ai)i<o] N V*[(a;)iz0], s0 y = 7T( ) —n(V=p, ..o, Up). 0

Proposition 12.3. FEvery vertex of?\ has finite degree.

Proof. Fix Ry € %. We bound the number of paths R_; — Ry — R;.

Consider all the possible paths v_1 — vg — v1 on ¢ s.t. _1[R_1,Ro, R1] C
Z_1(v_1,v0,v1). There are finitely many possibilities for vy, because any two pos-
sible choices vg, v, satisfy Z(vg) N Z(v)) D Ry # @ and 2 has the finiteness
property (Theorem [I0.2). Since every vertex of ¢ has finite degree, there are also
only finitely many possibilities for v_; and v;. By Lemma IT3|(1), R; C Z(v;)
(li] <1). By Lemma [IT3(2) the number of possible R_1, Ry, or Ry is finite. O

12.2. The Markov extension. Let
S = %(9) = {(Ri)icz € #* : R; — Ryyy for all i € Z}.

Abusing notation, we denote the left shift map on 5 by o and the natural metric
on ¥ by d(-,-): d(z,y) = exp[-min{|k| : zx # yx}]. Since every vertex of ¢ has

finite degree, S is locally compact. Define as before
# .= {(Ri)iez : 3R, S € #,3ny,,m), T 0 s.t. R,, = Rand R_,,, = S}.

Clearly $# contains every periodic point for 0. By Poincaré’s Recurrence Theorem,
every o—invariant probability measure on S is supported on S#.

The Markov extension 7 : ¥ — M is not finite-to-one. Our aim is to construct
a finite-to-one Holder continuous map 7 : ¥ — M which intertwines o and f and
such that 7(3) (and even #(X#)) has full probability w.r.t. any ergodic invariant
probability measure with entropy larger than y.

We start with the following simple observation:

Lemma 12.4. There exist constants C' and 0 < 6 < 1 s.t. for every (R;)icz € i,
diam(_n[Ry, ..., Ry])) < CO™.
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Proof. Recall that m : ¥ — M is Holder continuous; therefore there are C' and
0 < 6 < 1s.t. for every v,u € X, if v; = u; for all [i| < n, then d(w(u), 7(v)) < CO™.
By Lemma [[2:2] there exists a chain (v;);cz € X s.t.

—nlRen,y o s Ry C Z_p(v_py, oy 0p).

The diameter of Z_,(v_p,...,v,) is less than or equal to C8™. Therefore the
diameter of _,[R_,,..., Ry] is less than or equal to C'6". O

Suppose (R;)icz € 3, and let F, := _,[R_,, ..., Ry] (closure in M). Lemmas
2.1 and [[2.4] say that {F,},>1 is a decreasing sequence of non-empty compact
subsets of M whose diameters tend to zero. It follows that (), -, F, consists of a
single point. We call this point 7[(R;)iez]: -

o0

{%[(Ri)iez]} = m —n[Rn,..., Rn].

n=0
Theorem 12.5. 7 : & — M has the following properties:
(1) #oo = for;
(2) 7 is Holder continuous;

(3) ﬁ(i) D %(i#) D NUHf(f); therefore the image of T has full measure w.r.t.
every ergodic invariant probability measure with entropy larger than x.

Proof. The commutation relation is satisfied because for every R = (R;);cz in i,

o0 oo

{rlo(B)]} = m —n[Rent1, s Roga] D m —n—2[Ron-1,..., Rny1]
n=0 n=0
= m ﬂ f Rk+1 f(—N[R—N7~"aRN])
n=0k=—n—2 N=0

m f ( [R_n,-- -, RN]) , because f is a homeomorphism

=f ( ﬂ _N[R-N,-- .,RN]> , because f is a bijection

— [ ({(x(R)}) = {/In(R)]}.

The reason for the Holder continuity of « is that if R, S € S and R; = S; for all
li| < N, then m(R),7(S) € _n[R-N, ..., Ry], whence by Lemma [I2.7]

d(7(R),7(S)) < diam(_y[R_n, ..., Ry]) < COV.

Finally we claim 7(X) and 7#(5#) contain NUH;‘Eé (f). Suppose z € NUHf(f).
By Theorem 7(X#) D NUHf(f); therefore there exists a chain v € %7 s.t.
7(v) = x. ¥# is o-invariant and f o7 = 7w o0, so fi(x) € ©(X#) for all i € Z.
The collection % covers 7(%#); therefore for every i € Z there is some R; € Z s.t.
fi(x) € R;. Obviously R; — Riy1, 0 R := (R;);ecz belongs to 3. Also,

o0

z€ () -nlRop, ..., R

n=0

(even without the closure), so z = 7(R). It follows that 7(X) D NUHf(f).
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We claim that the sequence R which was constructed above belongs to f)#, and
we deduce that ﬁ(i#) > NUHf(f).

The sequence v is in ©# by construction; therefore there exist v and u s.t. v; = u
for infinitely many negative i and v; = v for infinitely many positive .

The sets R; and Z(v;) intersect, because they both contain fi(x). By Lemma
II3 R; C Z(v;) for all i € Z. Tt follows that there are infinitely many negative i
s.t. R; C Z(u) and infinitely many positive i s.t. R; C Z(v).

The sets Z(w) :={R € #: R C Z(w)} (w = u,v) are finite (Lemma [IT3).
Therefore Iny, T oo and IR € Z(v) s.t. R,, = R for all k, and Imy 1 oo and
3S € Z(u) s.t. R_y,,, = S for all k. Thus R € S# as required. O

The following result is not needed for the purposes of this paper, but we antici-
pate some future applications.

Proposition 12.6. For every z € #(%), T,M = E*(x) & E*(z) where
(a) limsup L log [|df2 v fn(z) < =% on E*(z)\ {0};
n— oo
(b) lim sup s loglldfy vl p-n @y < —F on E¥(2) \ {0}

The maps R — E*/*(7(R)) are Hélder continuous as maps from S to TM.

Proof. Suppose z = 7T(R) where R € 3. By Lemma [IZ2] there is a chain (v;)iez
st. R; C Z(v;) for alld and _,[R_p, ..., Rp] C Z_p(V—p,...,vy) for every n. Then
f™(x) € Z(vy,) for all n. Every element of Z(v,,) is the intersection of s/u—admissible
manifolds in v, so if v, = \I/];E’pz, then Z(v,) C Wy, [Rps apu(0)] (Proposition
[M171](2)). By Proposition EI5(4), € V*[(v:)i<o] N V¥ [(vi)i>0]-

Let E*(z) := T, V*[(vi)i>o0] and E*(z) := T,,V*[(v;)i<o]- These spaces satisfy (a)
and (b), because they are tangent to admissible manifolds which stay in windows
(Proposition [63). This definition of E*(z), E*(z) is independent of the choice of
(vi)iez, because there can be only one decomposition of T, M into two spaces which
satisfy (a) and (b).

Suppose © = 7(R) and y = 7(S) where R; = S; for i = —N,..., N, and let
v = (v;);ez be as before. The argument in the first paragraph shows that © = w(v).
We claim that y = w(w) where w is a chain s.t. w; = v; for all |i| < N.

By assumption, y € _,[S_n,...,Sn] = _n[R-N,.- ., BN] C Z_Nn(v_N,...,UN),
(n)
vertex of ¢ has finite degree, each of the sets {wl(n) : n € N} is finite. It follows

that there is a convergent subsequence w() k—) w. The limit is a chain w s.t.
—00

s0 y = lim 7(w(™) where the w(™ € ¥ satisfy w;"’ = v; for all |i| < N. Since every

y = m(w) and w; = v; for all |i| < N.

Write vy = \Ilgg’pg, and let F,, F,; be the representing functions in ¥,  for
V¥[(vi)i<o], VE[(vi)i>0]- Let Gy, G5 be the representing functions for V*[(w;)i<o],
Ve {(wi)izo]-

The intersection of the (vertical) graph of F, and the (horizontal) graph of Fj
is the point £ € R? s.t. W, (§) = 2. The intersection of the vertical and horizontal
graphs of G, and G is the point n € R? s.t. ¥, (n) = y. By Proposition E.11] and
the uniform hyperbolicity of f in coordinates, ||€ — 7| < K6"(p¥ A pg) for some
global constants K > 0, 6 € (0,1). -
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By admissibility, F,,, Fs, Gy, G have —7H61der exponent at most 1 . This implies
[Fi(&1) — Gim)], [Fu(&2) — Gu(m)| = (9*”@5(%0) 7). It follows that

distrs (Telgraph(FL)], Ty [graph(GL)]) = 003N Q. (wo) %),

E*(z), E°(y) are the images of T¢[graph(F})] and T [graph(G;)] under d¥,,. By
Lemma [ZW(2), distya (E* (), B*(y)) = O(035N). Similarly, distya (E*(z), E“(y))
= 0(9%51\/). All implied constants are uniform, so R — E*/“(7(R)) are Holder
continuous. ]

12.3. The extension is finite-to-one. Say that R, R’ € # are affiliated if there
exist Z,7' € ¥ st. RCZ, R CZ',and ZNZ' # @. For every R € %, let

N(R):=[{(R',Z") e # x Z : R is affiliated to R and Z’ contains R'}|.
Lemma 12.7. N(R) < occ.

Proof. Suppose R € #. The set A(R) :={Z € & : Z D R} is finite, because if
Y € & contains R, then every Z € A(R) intersects Y and the number of such Z is
finite (Theorem [[0.2)).

Since A(R) is finite, B(R) := {Z' € & : 3Z € A(R) s.t. Z' N Z # @} is finite
(Theorem [[0.2)). For every Z’' € B there are at most finitely many R’ € Z s.t.
R’ C Z' (Lemma [I1.3)). Therefore, C(R) := {R' € Z : R, R’ are affiliated} is
finite. It follows that N(R) =} p co(ry [AR)] < 0. O

Theorem 12.8. Every z € %(i#) has a finite number of T—pre-images. More
precisely, if x = T(R) where R; = R for infinitely many ¢ < 0 and R; = S for
infinitely many i > 0, then |77 1(z)| < ¢y (R, S) :== N(R)N(S).

Proof. The proof is based on an idea of Bowen’s [B3l pp. 13-14] (see also [PPl p.
229]), who used it in the context of Axiom A diffeomorphisms. We show that the
product structure described above is sufficient to implement his argument in our
setting.

Suppose = € %(i#). Then z has a T—preimage R € S st. R = R for infinitely
many negative ¢ and R; = S for infinitely many positive i. Let N := N(R)N(S)
and assume by way of contradiction that there are N 41 different points in 5 whose
image under 7 is equal to z. Call these points RY) = (jo))iez (j =0,...,N).
Assume w.l.o.g. that RO =R

By Lemma there are chains v\ = (vgj))iez € ¥ s.t. for every n

(12.1) RY c ZzwP) and _,[RY),... . RY)c Z_,(wY) . . v@D).

Claim 1. w(vV)) = x for every 0 < j < N.

The following inclusions hold:

(12.2) ﬂz o9 o) ﬂz_ o9 o),

—n?

=7(RBYV) € () <alRY),....RP () Zon@), ..., 0P).
n=0
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(4)

77“...7

uﬁf’) —— 0, s0 m(vW)) = 2.

Since 7 is Hélder continuous, diam | Z_,, (v
n—00

Claim 2. Suppose i € Z. Then REO), . ,RZ(»N) are affiliated.

Proof. By 22), © = 7(u)) € Mg Z-n(Y),...,vd), so fi) € Z(v{").
Thus Z(v (O)),..., Z(v Z( )) have a common intersection. Since REJ) C Z(UEJ)),
RZ(-O), cee RE ) are affiliated.
Claim 3. There exist k,¢ > 0 and 0 < j1, jo < N such that

o« (RS R{)#RY,.RYY);

. R(Jl) _ R(Jz) and R(Jl) Ré]z);

. ’U(J;:) _ U(J’z) and U( ) 1}232)

Proof. We are assuming that the RY) are different; therefore there exists some m

such that the words (R(j) A R%)) (0 <j < N) are different.

o
0)

We are assuming that Rg equals R for infinitely many negative i and that it

equals S for infinitely many positive i. Choose k, ¢ > m s.t. R(_OI)€ = Rand R§O) =S5.
The words (R(j,)c, .. ,Réj)) (0 <j < N) are different.

By Claims 1 and 2, the R(j) are all affiliated to R" ) = R, and by (@21,
R(_J; C Z(w (_J,l), thereforg {( R(_j,l, (J)) j=0,...,N} < N (R). In the same way,
one can show that ’{ jo),vm) :7=0,... 7N}| < N(S). Tt follows that

{(RY),v9); RP v} 1 j=0,...,N}| < N(R)N(S) = N.
By the pigeonhole principle, at least two quadruples coincide, proving the claim.

To ease up the notation, we let 4 := RYY, B := RU2) ¢ := U1 and b:=v02),

and we write A_, = B_, =: B, Ay = By, =: A a_ k—b r =: b, (lg—be a.By
Lemma [I2.7], there are two points

er_k[A_k,...,Ag] and l‘BE_k[B_;C,...,Bg].

By definition, f~*(z4), f ¥(x5) € B C Z(b) and f'(za), f'(xg) € A C Z(a).
Define two points z4, zp by the equations

F75(za) € WH(f (), B)N W (f " (za), B);
(z8) € W"(f*(xp), A) "W (f*(x.), A).
Claim 4. z5 # zB.
Proof. By construction, f~*(z4) € W*(f~*(x4),A_). By the Markov property

(Proposition [IT.7]),
T (za) € FIWP(F R (@), Ap)] CWP(F T (@a), Akpa),
FH2(za) € FIWE(f M (@A), Ackn)] CWE(f T2 (0a), Aopra),

and so on. It follows that f=%(z4) € _x[A_y,..., A]. Similarly, if we start from
4 (zB) € W¥(f*(xp), Be) and apply f~! repeatedly, then the Markov property will
give us that f~%(zp) € _1[B_k, ..., Bi.
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But (A_g,..., A7) = (RYY ... Ry % (RY) ... RU?))=(B_4,...,By), and
the elements of % are pairwise disjoint, so _g[A_k,..., Ag] N _k[B_k,..., B =@
and z4 # 2.

Claim 5. z4 = zp (a contradiction).

Proof. We saw above that f=%(z4) € _1[A_k,..., Ad], f%(28) € _k[B_k, ..., Bd.
In particular, f~*(zp) € By = B C Z(b) and fz(zA) € Ay =AC Z(a).

Construct chains a, 8 € $# such that z4 = 7(a), oy = a and 25 = 7(B), Bk =
b. Define a sequence ¢ by

ﬁiu Zg_k7
cG=1%a;, —-k+1<i</ti-—1,
(679 ’LZE

This is a chain because S_, = b = a_;, and ay = a = ay. This chain belongs to X%,
because o, 8 € Y#. We write ¢; := \I/p‘ PE

We claim that f=%(z4), f~%(25) € V¥[(c;)i<—k]. First note that both points
belong to W"(f~*(xg), B): f~*(24) by definition, and f~*(zp) because f*(zp) €
Wu(f“(xg), Be). Since B C Z(b),

W(f " (xp),B) C V*(f *(xp), Z(b)) = V*[(Bi)ic—k] = V"[(c:)i<—x]-

It follows that f=%(z4), f~*(2p) € V¥[(c:)i<—k)-
This together with the fact that f=%(z4), f~%(25) € Z(b) = Z(c_},) implies that

(12.3) Fi(z), f1(2B) € Z(c;) C Wy, [Rpuppe (0)] for all i < —k.
Similarly, one can show that f*(za), f/(z5) € V*[(¢;)i>¢], whence
(12.4) fi(za), ' (zB) € Z(ci) C Wa, [Rpupps (0)]  for all i > £.

Using the inclusions f~%(24) € _x[A_g,..., 4], f*(28) € _k[B—k,..., B (see
the proof of Claim 4), we see that if —k < i < £, then f%(z4), fi(28) € A; U B;.
Therefore fi(z4), fi(25) € Z(a;) U Z(b;). The sets Z(a;), Z(b;) intersect, because
by Claim 1, fi(z) = n[o%(a)] = 7[0?(b)] € Z(a;) N Z(b;). Thus by Lemma [0.10}

(12.5)  f'(za), f*(zB) € Z(a;) U Z(b;) C Wy, [Rg.(2)(0)] forall —k <i<¢.

In summary, f%(z4), f'(zB) € ¥4, [Rq. (2:)(0)], where ¢; = \Iﬂ;f”’f is a chain. By
Proposition 15((4), z4, 25 € V*[(¢i)i<o] NV ?®[(¢i)i>0]. So z4 = 7(c) = zp, and the
claim is proved.

The contradiction between Claims 4 and 5 shows that x cannot have more than
N pre-images. (]

13. INVARIANT MEASURES

Let o : & — 5 denote the finite-to-one Markov extension of f which we con-
structed in Part [IIl We compare the invariant Borel measures of o : S = S to
the invariant Borel measures of f : M — M. We restrict our attention to measures
whose entropy is larger than x.

Proposition 13.1. Suppose [i is an ergodic Borel probability measure on . Then

p:=po7w ! is an ergodic Borel probability measure on M, and h,(f) = hz(o).
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Proof. Tt is clear that p is well defined, ergodic, and invariant.
By Poincaré’s Recurrence Theorem (applied to i) there is a vertex R € Z s.t.

T:={R€ OF dng,my T oo st. Ry, , Ry, = R}

has full measure with respect to fi. The map 7 : T — M is bounded-to-one (the
bound is ¢, (R, R)). Finite extensions preserve entropy, so h,(f) = hg(o). O

The other direction, “every invariant measure u supported on %(i) lifts to an
invariant measure on i”, is less clear[l Lifting measures to Markov extensions
is a difficult issue in general, and it has received considerable attention (see e.g.
[HofT], [Kell, [Bru], BT, [PSZ], [Bu2], [Z]). But our case is very simple, because
our Markov extension is finite-to-one.

Indeed, suppose p is an ergodic f—invariant probability measure on M s.t.
hu(f) > x. Define a measure ji on S by

(13.1) iE) = [ (i X 16 duta).

#(B)=x

Proposition 13.2. Suppose u is an ergodic f—invariant Borel probability measure
on M s.t. h,(f) > x.

(1) 1 is a well-defined o—invariant Borel probability measure on 5.
(2) Almost every ergodic component i of [ is an ergodic o—invariant probability
measure such that 1o 7 = u and hz(o) = h,(f).

Proof. The first thing to do is to verify that the integrand in (I3.I)) is measurable.
We recall some basic facts from set theory (see e.g. [Stl §4.5, §4.12]): Let X,Y be
two complete separable metric spaces.
(I) F: X —Y is Borel iff graph(F') is a Borel subset of X x Y.
(I1) Suppose F : X — Y is Borel and countable-to-one (i.e. F~1(y) is finite or
countable for all y € V). If E C X is Borel, then F(E) C Y is Borel.
(III) Lusin’s theorem: Suppose B C X x Y is Borel. If B, :={y: (z,y) € B} is
finite or countable for every x € X, then B is a countable disjoint union of
Borel graphs of partially defined Borel functions.
Since h,(f) > x, p is carried by 7(X#). Since 7 : ¥# — M is finite-to-one,
7(X#) is Borel. Henceforth we work inside 7(X#).

Step 1. x — |77 1(x)| is constant on a Borel set Q s.t. u(2) = 1.

Proof. Since T oo = f o7 and f is a bijection, x + |77 1(x)| is f-invariant.
We show that the restriction of x — |7~1(z)| to 7(X#) is Borel measurable. The
claim will then follow from the ergodicity of u.

Graphs of Borel functions are Borel; therefore B := {(7(R),R) : R € $#} is a
Borel subset of M x . R

By Lusin’s theorem, there exist partially defined Borel functions ¢,, : M,, — $#
s.t. the M, are pairwise disjoint Borel subsets of M and B = {(z,¢n(z)) : = €

7o 7 does not work: it is not even o—additive.
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M,,, n € N}. In particular, 7 !(z) = {pi(x) : i € Ns.t. M; > z}. The graphs of
¢y, are pairwise disjoint, so ¢ # j = ¢;(x) # ¢;(x). Consequently,

7 (z)| = Z 1o, () on 7(S#).

Since the M; are Borel, x - |7#~1(z)| is Borel on #(S#).

Step 2. Let T := 7 1(Q) and let N denote the number of pre-images of points
x € Q. There exists a Borel partition T = Lﬂf\il T, such that 7 : ¥; — Q is
one-to-one and onto for every i.

Proof. This is a consequence of Lusin’s theorem.

Let By := {(7(y),y) : y € 7 '(Q)}. Each z-fiber of By has N elements. By
Lusin’s theorem, By = 4,5, graph(gpn) where the ¢, : M,, — 3 are Borel.

Q =,>, Mp. Define ¢ : Q — S by ¢4 = ¢; on M, \U;<i M; (i € N). Then
1y is Borel and 4 (z) € 7 1(z) for all . Since 7 o1y = Id, ¢; is one-to-one. It
follows that Ty := ¢ (€2) is Borel and 7 : Ty —  is one-to-one and onto.

Now take By := B \ graph ;. Each a—fiber of By has N — 1 elements, and Bs
is disjoint from graph(v). Apply the previous process to Bs to obtain Y5. After
N steps, we are done.

Step 3. The restriction of the integrand in (I31) to 2 is Borel measurable.

Proof. Every = € § has exactly N pre-images, one in every Y;. It follows that for
every Borel set £ C X,

1
m Z 1E g Z EﬁT) on Q.

%(g)—z i=1

Since T is one-to-one on Y;, T(ENY;) is a Borel set. It follows that the right-hand
side is Borel measurable.

2

Step 4. 1 is an invariant Borel probability measure such that 1o 7! = u and

hii(o) = hy(f)-

Proof. We saw that f(E) is well defined for all Borel sets E C 5. This set function

is obviously o—additive, and it is clear that ﬁ(i) = 1. Thus u is a Borel probability
measure.
This measure is o—invariant, because

ﬁ(alE)—/M<%%(x)| > 1E(0(E))>du(x)

T(R)=x

[ (e S 1) )dute) (Foo=oR)

#(oR)=f(w)
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It is a lift of u because

~i~—1 _ 1 T ) = x x) = .
16 8) = [ (i 3 WEE) )duto) = [ 1e@duto) = )

#(R)=x
Finally g and g have the same entropy, because 7 is N-to-one on a set of full
measure, and finite extensions preserve entropy.

Step 5. Almost every ergodic component of [ satisfies 1o 7! = p and hg(o) =
().
1

Let o = [f,dv(y) be the ergodic decomposmon of . Then p = po7 ! =
[ iy o7 'dv,. Each of the measures fi, o 7' is f-invariant. Since y is ergodic,
fyom ! =y forae. y.

The equality of the entropies follows as before from the fact that finite extensions
preserve entropy. O

Part IV. Appendix: Proofs of standard results in Pesin theory

Proof of Theorem 223 This is an adaptation of the proof of Theorem 3.5.5 in [BP].
The idea is to evaluate A, (z) := Cy (f(z))~! odf, o Cy () on the standard basis of
R2.

We start from the identity df, E°(x) = E°(f(x)). Both sides of the equation are
one-dimensional; therefore dfye®(x) = | df,e ()| f(2)e*(f(x)). It follows that

Ax(@)ey = sy (@) 7O (f(2)) ! o dfale’ (x)
= L83 (2) 7 [ dfoe® (@) 1) Ox (f () 7'e” (f(2)

_ 4t ((()))Ildfx @)l e

We see that e; is an eigenvector of A, (x) with eigenvalue

(A1) M) o= £ 2 (( )))Ildfm ()] o)-

Similarly, e, is an eigenvector of A, (x) with eigenvalue

(A.2) px(z) = £ 2 D) (( )” o () o)

We estimate the eigenvalues:

s (@) =2 X df")oe’ (@)1 Fui) > 2D EX(dFM)ae® (@)1
k=1

k=0

=2 Z eQ(kJrl)XH(dfk)f(w)dszS (z) ||3‘k+1(z)
k=0

= 2||dfze’ Hf(w)ZeQ(kH)XH df*) ()€ (F @) G511 ()
= X df e ($)||f(x)sx(f($))2~

Rearranging terms, we find that e 2% > SE f(”” ||dfm (@7 ) = Ax(@)*. Tt follows
that |\, (x)| < e”X. Similarly, one shows that |uX( )| > eX.
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Since f is a diffeomorphism, the number My := max{||df,|, [|df; ] : x € M}
is well defined and finite. It is easy to see that My > 1. By [KH, Cor. 3.2.10],

hiop(f) < 21log M.
By definition of s, (z) and the identity df,e®(z) = £||dfze®(z)|e*(f(x)),

(1 + Ze%xud bl <x>>||§k<m)|dfwgs<x>|i>

<2 (1 + X M7 Z e%Xde}C(x)Qs(f(a?))||?k+1(m)>

k=0
<24 X M7s\(f(2))?

< (M 4+ 1D)sy(f(2))? (7 sy > V2 and x < hyop(f) < 2log My).
Therefore by (A1)
(A3) (@) > (1 M)V dfe® (@)@ > My (L4 M)
Similarly, one can bound |, ()| from above by a function of Mj. O
Proof of Lemma [ We put the standard basis e! = ((IJ),QQ = ((1)) on R? and the
basis e*(z),e*(x)T on T, M, where v1 denotes the unique vector s.t. the signed

angle from v to vt is /2. The linear map C,(z) : R? — T, M is represented in
these bases by the matrix

( sx(@)™ uy(2) " cosa(x) )

0 uy (z) "L sina(z)
Inverting, we find that Cy(z)~! : T, M — R? is represented by

(") e )

The lemma follows by direct calculation, using the fact that the Frobenius norm of

a linear map represented by a matrix (a,;) is equal to (D afj)l/ 2, O

Proof of Lemma 25l Define an inner product (-,-)" on T, M by the conditions (a)
lle* (@)% = sy (@), (b) lle*(@)|I; = ux (), and (c) (e"(x),e*(x)), = O (compare with
[BPL §3.5.1]). || - || > || - ||, because for every £, € R
€€”(x) + ne* ()]l = \/525x 2 nPuy ()2 > V2(E2 +12) (0 syuy > V2)
> [l + Inl = e’ (@) |z + lIne“ (@)l = [16e” (@) + ne” (@)«
O @) G)lle < 10 @) C) 15 = sy () 7 e (@) + nuy(z) e (2) 5 = V/E + 7.

The lemma follows. O

Proof of Lemma 26l Let A (z) := Cy(f(z))~! o dfy o Cy(x). Extend A, to a

cocycle AU using the identities A{) := A, and A" (2) = A{™ (7 (2))A (")(gc).

The extension is unique and is given by A&")(:E) = O\ (f™(x))tdf2Cy (z).
Theorem 2.3 says that A, (z) is a diagonal matrix with entries in [Cf_l7 Cy] for

every x € NUH, (f). In particular, log ||A§<1)|| and log ||(A§(O))’1|| are uniformly
bounded on NUH, (f), whence absolutely integrable w.r.t. any ergodic invariant
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probability measure with entropy larger than y. This allows us to apply the Multi-

plicative Ergodic Theorem to A;”) w.r.t. every ergodic invariant probability measure
with entropy larger than x.

Let NUH! 1 (f) denote the set of points 2 € NUH,(f) for which for every y €
{f*(x): ke Z} there is a decomposition T,R* = E$ (y) ® E¥(y) so that

): MY
(1) E3(y) = span{es )}, e W)l = 1. ngrfoo%bgnfﬂ" () )]| < 0:
(2) E2(y) = span{er()}. 2]l = L. lim_Llog [ AL (n)ek(w)]| > 0:
(3) lim ;log|sinay (f"(y))| = 0, where ay (y) := £(e (), € (v)):
(4) (e o) [Ex(y)) = Ex(f(y)) and Ay (y)[Ex(v)] = EY(f(y))-
By the discussion above, NUHL( f) has full measure w.r.t. any ergodic invariant
probability measure with entropy larger than y.

Let NUH] (f) denote the subset of NUHL( f) which consists of all points x for
which there exist a sequence ny 1 oo s.t. C,(f™*(z)) P Cy(z) and a sequence
— 00

my 4 —oo s.t. Oy (f™(z)) = Cy(z). By the Poincaré Recurrence Theorem,
—00

every invariant probability measure which is carried by NUHL( f) is carried by
NUH, (f), so NUH}(f) has full measure w.r.t. every ergodic invariant measure
with entropy greater than y.

Applying the Multiplicative Ergodic Theorem to the cocycles df, and A;n) (z)
on NUH] (f), we obtain the existence of the following limits:

(A4) T~ log A Cy()el pngey » Tim - og [ Cy(7" (@)~ dfECr(@)el].
Let ny 1 0o be a subsequence for which C, (f™*(z)) = Cy(z). The norms of
Cy (f™(z)) and Cy(f™*(x))~* are bounded along this sequence, so
IO (F7 (@)~ df = Cr()e'|| < [|dfy C ()€l
We see that the limits in (A4) agree. As aresult E5(z) = Rx{0}, E}(z) = {0} xR,
and z has Lyapunov exponents log A(x) and log u(x) w.r.t. Ag(n)_

Let Ay (z) := < A(()x) M(Ox) > . Then the limits (A4) mean that
(AP @) Ay (@)= Y —— 1.

Similarly, if A(x) is the linear operator s.t. A(z)e®(x) = A(z)e®(x) and A(x)e"(z) =
()e(z), then
||(dff/\($)_")i1||1/" — L

n—too
Since A, () = Cy (@) 'A(2)Cy (x) and AL (@) = Cy(f7 (@) ~F 0 dff 0 Oy (w),
IO (" (@) 7M™ = | AYY (@) O ()~ (df”) e
= | A{Y (@) O (@) T A@) " COx(@) - Orla) ™ - Al)"(df) M
< A (@) Ay ()71 Co () HI P If A ) ) V™ = 1

Thus limsup £ log ||Cy(f"(2)) "' < 0. On the other hand C, is a contraction
(Lemma 23], so [|Cy(f™(z))~!|*/™ > 1, whence liminf L log ||Cy (f™(z)) || > 0.
The first part of the lemma is proved.

T

T
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We prove the second part of the lemma: Llog | Cy(f™(2))e'||fn@y — O.

n—+oo

We do this for ¢ = 1 and leave the case i = 2 to the reader. Since the A§§”(~) is

diagonal, A&") (z)e! is proportional to e'. The multiplicative ergodic theorem for

A;")(x) says that Agcn)(:c)e1 = +\(x)" exp[o(n)]e!; therefore
dim O @)el I = M) lim (IO(F @) AL (@)e I,

= Aa)™" lim ([ Cy@)e 1,

n—=+
S ny s 1/n
=A@l e @I = 1

proving that = log [|Cy (f™(x))e!|| n(x) N

n—Foo
Finally, we prove that &log|detCy(f"(x))| — 0. We begin with some

general comments on determinants.

Suppose L : V — W is a linear operator between two 2-dimensional vector
spaces with inner product. The determinant of L can be defined as det(LO) for
some (every) isometry © : W — V. The following fact holdsf§ I u,v span V, then

sin £(Lu, Lv)  ||ul|||v]| det L
sin4(u,v) || Lul/||Lv]|

It follows that |det L| = ”Lﬂlhﬁ%miﬁﬁ Ll al

Applying this to L = A§< ") with u=-¢cl, v=2¢?and to L = df? with u = e*(x),
v = e"(z), we find that

(A.5)

U,
2

(u, v independent).

1
lim log | det A(")( )| = log A(x) + log p(x) = ll}ril - log | det df|.
n o0

n—Foo
Since | det AXn (z)| = |det C\ (f"(z))| | det df || det Cy (z)],
1 n
Llog | det (/" (@)] == 0
as required. O

Proof of Lemma [29. Parts (1) and (3) are obvious, and part (4) is a consequence
of Lemma and the estimate Q.(f"(z)) < ||Cy(f™(z))~1||~'?/. For part (6),
define ¢.(z) on NUH*(f) by the formula

ke L
Z Qe(f*(x))

k:—foo

The sum converges because 1 log Q.(f*(z)) PR 0, and it is easy to check that
— o0

¢ () behaves as required; see [BP Lemma 3.5.7].
It remains to prove parts (2) and (5). First we prove the following claim.

Claim. There exists a constant C, which only depends on M, f, and x, such that
C™H <O (@) HI/NCx (=) 7HI < € on NUH,(f).

8Proof: Let wy, wy denote the volume 2-forms on V, W. Then wy (u,v) = ||ju||||z] sin £ (u, v)
and wyy (u, v) = |Jul|||v|| sin £(u, v). Since wy (Lu, Lv) is also a 2-form on V and any two 2—forms
on V are proportional, 3¢ s.t. wyy (Lu, Lv) = cwy (u,v). Evaluating on an orthonormal basis of
V', we find that ¢ = det L. Consequently, ||Lul|||Lv|| sin £(Lu, Lv) = det L||ul|||v]| sin £(u, v).
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Proof. By Lemma [2.4]it is enough to show that

syof uyof [sinao f|
Sy | uy  |sing]

are uniformly bounded away from zero and infinity on NUH, (f).

The following quantity is well defined and finite, because f is a diffeomorphism
and M is compact:

Fy = max{[[df. |, |f; ] | det(df. )], | det(df; )| = @ € MY,

Notice that Fy > 1.

Equation (AT makes it clear that Sx(féf))) = F' )\ (2)] € [(CrFy) ", CrF)

on NUH, (f). Similarly, uz(xf((ag)) takes values in [(CyFp)~t,CrFo] on NUH,(f).

Finally, by (A5) and the fact that e3/*(f(x)) have the same direction as df,e*/" ()
up to a sign,
sina(f@)] _ [sn e (@), U@ ____|dets
|sina(z)| |sin £(e*(z), e ()| ldfze® (@)[[[|df oe ()
The last quantity takes values in [F, ®, F$]. The claim follows.

Part (5) follows directly from the claim. For part (2), we start by noting
that Q.(z) < 53/B\|CX(90)_1||;12/B < &38| C (x)~ 1| ~'?; therefore also Q.(z) <
(e3/BC12/B) || O\ (fF ()7 712. If € is small enough, then e/#C1%/# < 1, and
the proof of part (2) is complete. O

Proof of Theorem 21l What follows is based on [BP, Theorem 5.6.1].

Recall the following basic fact from differential geometry [Spl Chapter 9]: Every
p € M has an open neighborhood W), and a positive number r > 0 s.t.
(1) any g,¢’ € W, are connected by a unique geodesic of length less than r;
(2) for each ¢ € W), exp, maps BZ(0) C T, M diffeomorphically onto an open
set Uy 2 W), in a 2-bi-Lipschitz way, and d(exp,)o = Id;
(3) for every q,q € W), there is a unique vector v(q,q’) € ToM s.t. ||v(g,q)|lq
<7 and expy[v(g, ¢')] = ¢';
4) (q,4') = v(g.q) is a well-defined C*° map from W, x W), to M.
Since M is compact, there exist positive constants r(M), p(M) s.t. for every
p € M, exp, maps B? ( M)(Q) C T,M diffeomorphically onto a neighborhood of
By (p) € M, in a 2-bi-Lipschitz way. Let

min{1,r(M), p(M)}
10[Lip(f) + Lip(f~1)]"

(A6) Tro =

Note that rg < 1.

Suppose € < ro/5. By the definition of Q. (), Q:(z) < €°, so 10Q.(z) < ro/\/_
By Lemma 2.5 C, (x) maps Rygq, (z)(0) contractively into B,,O( ). Therefore U,
exp, oCy(x) maps Ryoq, (@) y(0) diffeomorphically in a 2-Lipschitz way into M. The
first part of the theorem is proved.

Next we show that f, := \I/JI(lw) o foW, is well defined on Rygq. () (0) and establish
its properties.

Since exp, is 2-Lipschitz, C, (z) is a contraction, and 10Q.(z) < 70/V/2,

U, maps Ry, (z)(0) diffeomorphically into By, ().
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It follows that f o W, maps Riog,(x)(0) diffeomorphically into Bsrip(f)r, (f(2)),
which by the definition of ro is a subset of B, (f(z)), whence a subset of
expf(w)[Bf(M) (0)]. Tt follows that f, := \I';(lx) o foW, is well defined, smooth,
and injective on Ryoq_(x)(0).

For every p € M, exp,(0) = p and d(exp,,)o = Id. It easily follows that f,(0) =0
and (dfy)o = Cy(f(x)) "t o (df)z 0 Cy(x). By Theorem 23] this is a diagonal matrix
with diagonal elements A(z) = A.(x), B(x) = pe(x), and C;l < |A(z)] < e7X,
eX < |B(z)| < Cy.

We compare f, to its linearization at 0 by analyzing

re(w) = fo(w) = (dfz)o(w)-
By assumption f is C'*#  so there is a constant L s.t. for all u,v € R, (0),
||d(exp;(lm) Ofoexpw)ﬁ—d(exp;(lw ofoexp,)y|l < Lllu—uvl|”. For every u,v € Ry, (0),
1(dra)u = (dra)ull = [Cx(f(2)) " d(exp}(,) of © expy) oy (2)uCo ()
Cy(f(@)) " dlexpy, of © exp,) oy (2)sCx (@]
= [Cx(f(@)) " d(expylyy of © expy) ey (r)u
—d(expy(yy of 0 exp,) oy ()] Cx (@)

< IO (f @)l ‘L||Cx($)\|ﬂ||u—y||ﬁ NCx @)l

< (IO (F @) - Ll = w]|772) - flu = ol (- IOk ()] < 1).
If w,v € Ripg. (2)(0), then the term in the brackets is smaller than

IC (f ()" - L(20V2Qc ().

Plugging in the definition of Q.(z) from ([Z3), and recalling that ||C\(-)7!| > 1
(because Cy(-) is a contraction), we see that the term in the brackets is smaller
than 30%/2Le3/2. Thus, if e < 1 -3077/2L71, then

1(dra)u — (dra)ull < ellu—o®? (4,0 € Riog. @ (Q).

Since (dry)o = 0, we have that |(dry)u| < 2ellul|?/? on Rigg.(x)(0). Now
Qc(z) < %P so |lul| < (10v/2)Q.(x) < 15638, Tf £ < 1578/3, then |ju| < 1, so

I(dra)ull < 38 on Rigg.(x)(0)-
Since r,,(0) = 0, we have by the Mean Value Theorem that
Ire (@)l < gellul < 3¢ on Riog.(x)(0)-

In summary, if ¢ is small enough, then the C**#/2 distance between 7, and 0
on Ryoq, ()(0) is less than . This shows that the C+8/2_distance between f, and
(dfz)o on this set is less than e.

The treatment of f, ! is similar and is left to the reader.

Proof of Proposition 11l The proof of parts (1), (2), and (3) of the proposition is
based on [KM]. Part (4) is new, but routine.

Assume that 0 < & < 1. Write V¥ = U, {(F(w),w) : |w| < p*} and V* =
U, {(v,G)) : |v| < p°}, and let n := p* A p°. Note that n < ¢ and that

[F(0)],|G(0)] < 10~%y and Lip(F), Lip(G) <  see (@I).
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The maps H = F, G are contractions (with Lipschitz constant less than ¢), and
they map the interval [—1072n,10~2y)] into itself, because for every [t| < 10~2p,

|H(t)| < |H(0)| + Lip(H)[t| < 10*n+e-102n = (10" +£)102n < 10~ 2.

It follows that G o F is an e?-contraction of [—1072n,10725)] into itself. By the
Banach Fixed Point Theorem, G o F has a unique fixed point: (G o F)(w) = w.
Let v := F(w). We claim that V* V¢ intersect at P := W, (v, w).
e P € VY because v = F(w) and |w| < 1072p < p%;
e P e V7 because w = (Go F)(w) = G(v) and |v| < |F(0)| + Lip(F)|w| <
1073y +¢-1072n <107 2n < p°.
We also see that |v], |w| < 10727.

We claim that P is the unique intersection point of V* and V*. Let L £ :=p"Vp*
and extend F, G (arbitrarily) to e-Lipschitz continuous functions F.G: [=6,8 =
[—Q-(2), Qc(2)]. Let V¥ and V* denote the u/s—sets represented by F,G. Any
intersection point of V* V' is an intersection point. of V“ Vs, Such points take
the form P = W, (v, @) where ¥ = F(w) and @ = G(¥). Notice that @ is a fixed
point of G o F. The same calculations as before show that G o F' contracts [ &, ¢
into itself. Such a map has a unique fixed point; therefore w = w, whence P=P"P.

Next we show that P is a Lipschitz function of V*, V*. Suppose V*,V;? (i = 1,2)
are represented by F; and G; (i = 1,2), respectively. Let P; denote the intersection
points of V* N V;*. We saw above that P; = ¥, (v;, w;) where w; is a fixed point
of Gjo F; : [-1072n,1072] — [-10721,1072y]. The maps f; := G; o F; are
g2—contractions of [—~10727, 1072y into itself; therefore

w1 — wa| = |1 (w1) = f5 (wa)| < [A(f1 (wr)) = fo (7 (w))]

+ 1 f2 (7 Hwr) = fo(f5 7 (w2))]
11 = falloo + €2 1F7 7 (wr) — f3~ (w2)]
< f1 = folloo (€24 -+ 2 TD) 4 2wy — wy).

IN

IA

Passing to the limit as n — oo, we obtain |w; — wa| < (1 — )7 Y f1 — f2llc0-
Similarly, v; is a fixed point of F; o G; : [-10721,1072n] — [-1072n, 10~ 2y], and
the same argument gives that |v; — va| < (1 —€2)7Y g1 — g2/ Where g; = F; 0 G;.
Since ¥, is 2-Lipschitz, this means that

d(Py, Pp) < ([G1o F1 — G20 Falle + [[F1 0 G1 — F2 0 Gal|) -

==
Now
[F10G1 = FyoGalles < |[F10Gr— Fi 0 Galloc + [[F1 0 G — Fr 0 Ga|
< Lip(F1)[|G1 = Gzl + [[F1 — Fal[oos
|G1 o Fi — G2 0 Fyl|oo < Lip(G1)||F1 — F2|lco + |G1 — G2l co-

Since Lip(F;), Lip(G;) < €2, d(Py, Py) < 22 [dist(Vi*, V) + dist(V¢, V)] The
coefficient is less than 3 for all € small enough. For such e, P is a 3—Lipschitz
function of V%, V*,

Finally, we analyze the angle of intersection at P. We assume throughout that
cissosmall that 0 <t <e== e 2 <1—t < 1+t < e?. In what follows we drop
the subscript z in || - || 5.
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v = (v,w) be the ¥,—coordinates of P (i.e. P = ¥,(v)) and write E® =
E*(z), E* E“( ). The following identities hold:

L(B* B") = £((d¥4)oe", (d¥,)pe?), where e = (é) and ¢* = ((1)>

1 F’
LV, V%) = £((d0)u0*, (dT,),0"), where v = and v = (09,
- = G'(v) 1
It is not difficult to see that the admissibility of V', V* and the inequalities |v], |w] <
102y imply that |F’'(w)|, |G’ (v)| < n°/3.
. . s sin £L(V°, V" sin £((d¥z)w
We begin with the estimate of sm&EES Eu; = o 4(((((1\1/ ))Oe ,((dq, )062) By (AF),

sin (V2. V") sind(v%,0") o'l det(d¥e)y  [[(d¥s)oe [ (d¥x)oc’|

sin £(B%, B%)  sin4(el,e?) el €] " det(dW,)o (dW)uet[[(d¥,)pr]

First factor: The first factor equals sin £(v®, v*). Using the formula for the sine of
the difference of two angles, it is not difficult to see that

. 1 1 F(w)
A S %) = —d t :
sin £(v*, v*) o®[[][o* ]l ¢ ( G'(v) 1 )

28/3

Since |G’ (v)], |F'(w)| < n%/3, the first factor is e*27

Second factor: Since |G'(v)|,|F'(w)| < n°/3, the numerator is """ Since the
denominator is equal to one, the second factor is etn™?
Third factor:
det(dV,), = det(dexp,)c, ()o - det Cy(z),
and
det(d¥,)o = det Cy (z);

therefore the third factor is equal to det(dexp,)c, (z)v-
The exponential map on M is smooth, and det(dexp,)o = 1; therefore there
exists a constant K3 which only depends on M s.t.

|det[(dexp,)u] — 1| < Kilul| for all z € M and ||u| < 1.

Since Cy(z) is a contraction (Lemma R.3]) and [[v]| < 27, det(dexp,)c, (z)p = 1 £
2K1n. Since 0 < n < g, 2K3n < /7 for all € small enough. For such ¢, the third
factor is e*V7 (provided ¢ is small enough).

Fourth factor: Find a global constant K s.t. ||[(©pdexp,), —Id | < Kslju| for all
x€DeZand |ul| <1 (cf. §3).
Write u = C\ (2)v, and choose some D € 2 which contains ¥, [Rg_(,)(0)]. Then
100 (d¥.)ov* — Op(d¥s)ee' | < Op(d¥ys)y — Op(dW¥y)oll[l2”|l
+110p(dPs)olllv” — '
(A7) < 1®p(dexp,)u — 1 [[[[Cx (2)]|[|lv”]]
+2[Cy(@)lllle® — '
< 3Kon+ 20°/3,
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because C,(x) is a contraction, ||v|]| < 2n, and v°® = (oiiﬁﬁ). Consequently,
1(dW,) %] — [[(d¥a)ee ||| < (BK2 + 2)n?/3. Since also

(A.8) 1(d®2)oe’ | = [Cx(@)e! | = 1Cx (@) 7M™,

[(d%2)u” ||

T — 1] < 3K +2)[[Cy(@)~HIn/?.
Since n < Qc(z) and Q. (x) < e3/P||Cy (z) 71| ~1#/7,

(A.9) 1Cx (@)™ < |[Cy ()~ 12 - /% < 4P,
It follows that for all € small enough, Hiﬁl,:i))il” = exp [:l: (%775/ 4)} . How small

depends only on K5, and therefore only on the surface M.
vl

Similarly, one can show that % = exp[j:%nﬂ /4], with the result that the

fourth factor is exp[+2n?/4].

Putting all these estimates together, we see that
sin £L(V*, V¥) 5 2
A\ Y ) 1 (2928/3 26/3 Bl
snZ(Be By P @2 7 i+ o)

Since 0 < n < ¢, for all € small enough, this is etn®/t

K17 KQ, and B
Next we estimate | cos £(V*, V") — cos £L(E*, E*)|. This is equal to

(dD,),0%, (dT,),0")  ((d¥,)oe!, (AT, )oe?)
1(dP2) v [[(d¥e) v ]| [[(d¥s)et (AT, )oe?]|

. How small just depends on

o v vl
= @ M@ 10T )
! s v — e e
o T ] [0t () = (o, ()|
AN APATNTICARTE AN
= @ oe o] ™ ) a0 ) 0]~

H(d\II )0€1||1H(d\11 ) 2” |<(d\11w)225a (dqjat)yyu> - <(dqja’:)Q§15 (d\I/:C)Q§2>| .

By (A8) and the estimate of the “fourth factor” above, this is smaller than
2,8/4
(A20) 37O () TP (A2 u”, (02 u0) = (T2 )oe", (d02)oc™)]

Since ©p is an isometry, the difference of the inner products is equal to

[(©p(d¥s),0°, Op(d¥s),w") — (Op(d¥.)oc', Op(d¥s)oe”)|

< [|©p(d¥,),0° — Op(dW,)ee | - [[(dW,)u"|
+ 1©p(d¥, )oelH ©p(d¥.),0" — Op(d¥s.)ee”|
< 3(||©p(d¥s)p0® — Op(d¥y)ee' || + H@D(d\If Jov" — Op(d¥,)oe’)
<3(10p(d¥,)lv° = ']l + 210p(d¥,), — Op(d¥, )l
+ ©p(dW, )yl — )
< 31202 + 2. 2K,n + 213,
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because O p is an isometry, [|[d¥,|| < 2 on Rg_(,)(0), and [[v3/*—e'/?| < /3. Thus
’<(d\I/x)2yS, (d\Ifm)Ey“> — <(d\Ifm)Qg1, (d\I/x)gg2>| < K3n?/3, where K3 only depends
on M. Tt now follows from (A.IQ) and the inequality n < ¢ that

3/4

[cos £(VZ,V*) —cos £L(E®, E*)| < e3e 77[3/4 + ||CX(J?)_1H2 -K3n6/3.

We now argue as in (A9) and deduce that
|cos £(VE, V") —cos £(E®, E*)| < (6%53/4 + Ksel/4)pP/4,
This is smaller than 27%/4, for all £ small enough. |

Proof of Proposition (Graph transform). The proof is a straightforward adap-
tation of the arguments in [KM] and [BP, Chapter 7] (see also [P]).

Let V¥ = W {(F(t),t) : |t| < p"} be a u-admissible manifold in ¥2"?". We
denote the parameters of V¥ by o,7, ¢, and ¢, and let n := p“ Ap®. V* is admissible,
o)

(A.11) o< v <

1 1
2’ -2
see Definition L8 and (@.T]).

We analyze I') := lI/ljl[f(V“)] C R2, looking for parameterizations of large
u—sub-manifolds. Notice that

0?3, 9 <107%p,q=p" and Lip(F) <e;

where fu, = W, ' o f oW, and graph(F) := {(F(t),t) : [t| < q}.
Since V* is admissible, graph(F) C Rg_()(0). On this domain, f, can be
expanded as follows (Proposition B4)):

(A.12) foy(u,v) = (Au+ hy(u,v), Bv + ha(u,v))

where C;l < |A] < e7X, eX < |B| < Cy, and the h; are C*5 functions s.t.
[7i(0)] < en, [|[Vhi(0)|| < en®/?, and |[Vhi(u) = Vhi(v)|| < e]lu—wv]|*/®. Necessarily,
[Vhi|| < en/? +e[vV2Q-(2)]P/3 < 3eQ.-(x)?/? and |h;| < en + 3Q.(2)7/3 - Q. ().
Since n < Q.(x) and Q. (z) < */#, the following holds for ¢ small enough:

(A.13) [Vhi| < 3¢* and |hi] <&* on graph(F).
Using (A.12), we can put I'yy in the following form:
(A.14) Iy = {(AF(t) + h1(F(t),t), Bt + ho(F(t),t)) : |t| < q}.

The idea is to call the second coordinate 7, solve t = ¢(7), and substitute the result
in the first coordinate.

Claim 1. The following holds for all € small enough: Bt + ho(F(t),t) = 7 has a
unique solution t = t(7) for all 7 € [—eX~VEq, eX~VEq], and

(a) Lip(t) < ex*<;

(b) [¢(0)] < 2en;

(c) the C#/3-norm of ¢ is smaller than |B|~'e3*.
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Proof. Let 7(t) := Bt + ho(F(t),t). For every [t| < g,

7' (t)] > |B] — max|[Vho|| - [(F'(t), )] > |B] = 3¢*V1 +¢2 (. (AI3), (A1)
> |B|(1—3e2V1+¢2) (|B]>eX>1)
> e °|B| > 1 provided ¢ is small enough.

It follows that 7 is e~¢|B|-expanding, whence one-to-one.

Since 7 is one-to-one, 7! is well defined on 7[—gq, g]. We estimate this set. Since
T is continuous and e~ °B-expanding, 7[—¢,q] D (7(0) — e ¢|B|q, 7(0) + €°|Blq).
The center of the interval can be estimated as follows:

17(0)] = [h2(F(0),0)] < [h2(0)] + max ||Vhz| - [F(0)]
<en+ 321073 < 2en  (admissibility and (AI3)).

Recall that n = p* A p® < p* = ¢; therefore |7(0)| < 2eq. Since |7/| > e ¢|B|,

T[=q,q] 2 [2eq — e™°|Blq, —2eq + e 7| Blq] 2 [-(|Ble”" — 2¢)q, (|Ble™* — 2¢)q]

2 [-|Bl(e™° —2¢)q, |Bl(e™° — 2¢)q].

Since |B|(e™¢ — 2¢) > eX(e2¢ — 2¢) > eX~VE for all ¢ small enough, 77! is well
defined on [—eX~Veq, eX~VZ(].

Since t(-) is the inverse of a |Ble~¢—expanding map, Lip(t) < ef|B|~! < e™X*¢,

proving (a).
We saw above that |7(0)| < 2en. For all € small enough, this is (much) smaller
than eX~VZg; therefore 7(0) belongs to the domain of t. It follows that

[(0)] = [t(0) — t(7(0))| < Lip()|7(0)] < e™X*< - 2en.
For all € small enough, this is less than 2en, proving (b).
Next we calculate the C*/3-norm of #/(-).

We remind the reader that the C*norm of ¢ : [—¢,¢]% — R% (0 < a < 1) is
defined by [[glle := oo + Holo (), where

Hol, (p) == sup {w u,v € [—q, g™ different} .

lu — ]|
The following inequalities are easy to verify:
(HL) [l Ylla < llollalldlla for all ¢,9 € C*[—q,q].
(H2) |l o glla < |l¢lloo + Hola () Lip(g)« for all ¢ a—Hdlder and g Lipschitz.
(H3) In case d2 =1 and [[pfla < 1, [1/(1 +¢)lla < (1 = flefla)~".
Differentiating the identity s = 7(¢(s)) = Bt(s) + h2(F (¢(s)),t(s)) w.r.t. s, we
obtain after some manipulations

06 = 5 (14 57 G2 (P60 P e00) 4 B G2 (P, 09) )

We write this in the form ¢/(s) = B~(1 + T'(s)) "', where

T(s) := B_l%(F(t(s)),t(s))F'(t(s)) + B_laa—};(F(t(s)),t(s)).
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By (H3), it is enough to find | T'[|5,3. Here is the estimation:

oh oh
|z e ) H2 + HOly (Vo) [Lip(F o 1, )]/~ (H2)
B8/3
< 362 + e [Lip(F)2(Lip(t))? + (Lip(t))?] "/
<3e2+e[Ve2 +1(ef|B 7Y - (RID), (BEID)
< g, provided ¢ is small enough,

oh

H 2 t(s))H < ¢ (same proof),
B/3
1E" (#()) /5 < 1 Flloo + | F" [l /3 Lin(8)*/* (see (H2) above)
<o +0-(eX*)P/3 <1 provided ¢ is small enough.

Putting these estimates together, we see that [T/ < 2¢. It now follows from
(H3) that [[t'||5/3 < |B|~'(1 —2e)~!. This is smaller than e3|B|~"! for all € small
enough. This proves (c¢) and completes the proof of the claim. O

We now return to (A14)). Substituting ¢ = ¢(7), we find that
Ly > {(G(7),7) : 7] < X Voq},

where G(7) := AF(t(7)) + h1i(F(¢(7)),t(r)). Claim 1 guarantees that G(7) is well
defined and C'*F/3 on [—eX~VEq, eX~VEq]. We find the parameters of G.

Claim 2. For all € small enough, |G(0)| < e XtVE[p + \/2(¢* A ¢°)], and |G(0)]| <
107%(¢" A ¢%).
Proof. Claim 1 says that |¢(0)| < 2en. Since Lip(F) < ¢, |F(0)] < ¢, and ¢ <
1073, |F(t(0))| < ¢ + 2e%n < n provided ¢ is small enough. Thus
[G(O)] < [A]- [F(£(0))] + [ha (F(£(0)), £(0))]
< |Al(p + 2¢n) + (71 (0)] + max || Vha | - [(F(£(0)),(0))]]

< |Al(p +26%n) + [en+ 36 - /iP + 2en)?| (2 IF(0)] <)
< |4 {<p+77(2€2 —|—€+352\/1—|—452)} :

Recalling that |A| < e X and n = (p* Ap®) < e*(¢* A ¢°) (Lemma ), we see that
|G(0)| < e™XTe[p + 2e(q“ A ¢*)] for all € small enough.

Since p < 1073(p* A p*) < 1073e% (g% A ¢*), |G(0)] < e XTE[1073 + 2¢](q“ A ¢*).
This is less than 1073(g% A ¢°*) for all ¢ sufficiently small. The claim follows.
Claim 3. For all € small enough, |G/(0)| < e 2XtVe[y 4+ &B/3(¢% A ¢°)P/3], and
G'(0)] < 3(a" A g®)P/2.

Proof. |G'(0)] < [t'(O)[[JA] - [F"(t(0))] + VA1 (F(£(0)), t(0)]| - (£ (£(0)), D)[I], and
e [t/(0)| < Lip(t) < e7X*¢ (Claim 1);
o |[F'(t(0)] < v+ %gﬁ/377ﬁ/37 because Holg,3(F') := sup 7‘F‘gl)t2|5/(§2)l <3
and therefore by Claim 1(b)
[ (t(0)] < [F'(0)|+HoLs 3 (F")[£(0)|*/* < y+0-(2en)*/® < 74572973
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o [|[VRhi(F(t(0)),t(0)| < 3en?/3, because |F(t(0))| < n (proof of Claim 2),
and |t(0)| < 2en (Claim 1), so by the Holder regularity of Vh,,

[V (F(E(0)). 40| < VA )] + & (VIFGODP + 6OF)
< en 4 e(V/? + (2em)?)*/* < 3en/?;

o [[(F'(t(0)),1)]| < V142 <2

Putting these estimates together, we see that
|G'(0)] < e X*¢|A4] [7 + %85/3’)7’8/3 +]A|7Y - 3enf/3 2}
< e e ['y+ <§sﬁ/3 +6‘Cf5> nﬁ/?’} , CJZl < |A] < e™X
< e xAE [”y + @55/3 + 60f5> B3 (g A qs)ﬁ/g’} pUADS < ef(gh A gE).

This implies that for all € small enough, |G'(0)| < e=2XF¢ [y + £8/3(q" A ¢°)P/3],
which is stronger than the estimate in the claim.
Since v < (p A p® )5/3 and (p* A p®) < e°(¢" A ¢°), we also get that for all €

small enough, \G'( )| < L(g" A ¢®)P/3, as required.

Claim 4. For all € small enough, [|G’||5/3 < e”2*FVe[o + /2], and ||G'||5/3 < 3-

Proof. Differentiating, we see that G' = t'-[AF" ot + 1 I (Fot, t)F ot + 5 I (Fot,t)).
By Claim 1 and its proof

o [t'llg/s < |B|7e*,

o [[F'ot|lg/3 <o, because ||[F'||3/3 < o and t is a contraction,

o |G (Fot,t)]gs <e and |G2(Fot,t)|ss <e.
Thus by (H1), [|G'|lg/3 < |B|7'e* [|Alo +e0 +¢€]. Since o < 3, eX < |B] < Cy,
and C;l <Al < e, |G lgz < e 2P [6+ 3Cre] . I € is small enough, then
G llg/3 < e Ve[ + V/E], and [|G'|l55 < 3.

Claim 5. For all & small enough, V* := U, {(G(7),7) : |7| < min{eX~Veq, Q. (y)}}
is a u—manifold in ¥, the parameters of V* satisfy (43]), and V" contains a u—
admissible manifold in \I/gu’qs.

Proof. To see that V* is a u-manifold in ¥,,, we have to check that G is C1+5/3
and [|G]loe < Q< ().

Claim 1 shows that G is C'8/3, To see that ||Gls < Q-(y), we first observe
that for all e small enough, Lip(G) < /€, because

. 1
|G| < |G'(0)] + Hélg/g(G')Qs(y)ﬁ/‘3 <e+ 26 < Ve, provided ¢ is small enough.

It follows that |G|l < |G(0)] + vEQ:(y) < (1073 + /&) Q. (y) < Q-(v)-
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Next we claim that V¥ contains a u-admissible manifold in \Ilgu’qs. Since
wePt \Ilgu’qs, ¢ = min{e®p", Q- (y)}. Consequently, for every ¢ small enough,

(A.15) eXﬁ\/gq = eXf\/Ep" > ep* > qY,

so V' restricts to a u-manifold with g—parameter equal to ¢*. Claims 2-4 guarantee
that this manifold is u—admissible in \Ilgu’qs and that (€3] holds.

Claim 6. f(V*) contains exactly one u—admissible manifold in \Ilgu’qs. This mani-
fold contains f(p) where p = ¥, (F(0),0).

Proof. The previous claim shows existence. We prove uniqueness. By formula
(A14), any u—admissible manifold in \I'gu’qs which is contained in f(V*) must be
a subset of

We saw in (AI5) that for all ¢ small enough, ¢* < eX~Veq. By Claim 1, the
equation

7 = Bt + ha(F(t),t)
has a unique solution ¢ = t(7) € [—gq,¢] for all |7| < ¢*. Our manifold must

therefore equal W, {(AF(¢(7)) + h1(F(t(7)),t(r)),7) : |7| < ¢*}. This is exactly the
u—admissible manifold that we constructed above.

Let F,[V*] denote the unique u-admissible manifold in Wg"4" contained in
f(V*). We claim that F,[V*% > f(p) where p = ¥,(F(0),0). By the previous
paragraph, it is enough to check that the second coordinate of ¥, '[f(p)] has abso-
lute value less than ¢*. Call this second coordinate 7. Then

|7] = second coordinate of f,(F(0),0) = |h2(F(0),0)]
< |ha(0)] + max ||Vhe| - |F(0)] < en+3e?-10n < e °n < (¢“ A ¢°) < ¢*.

Claim 7. f(V*") intersects any s—admissible manifold in \I/Zu’qs at a unique point.

Proof. Let W* be an s—admissible manifold in \I/gu’qs. We saw in the previous claim
that f(V*) contains a u—admissible manifold W* in \I!guvqs. By Proposition [L.11]
W% and W* intersect. Therefore f(V*) and W* intersect at least at one point.

We claim that the intersection point is unique. Recall that one can put f(V%)
in the form

V) = W {(AF(t) + ha(F(t), 1), Bt + ho(F(2),1)) : [t] < q}.

We saw in the proof of Claim 1 that the second coordinate, 7(t) := Bt + ha(F(t),t),
is a one-to-one continuous map whose image is an interval [«, 5] with endpoints
a < —eXVeg < —q* B> eX"VEg > ¢ We also saw that |7/| > e~%|B| > eX~°.
Consequently, the inverse function ¢ : [, 8] — [—q, ¢] satisfies |¢/(T)] < 1, and so

f(V*) =9, {(G(r),7): 7 € [o, f]}, where Lip(G) <e.
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Let H : [—¢",¢"] — R denote the function which represents W* in ¥,. Then
Lip(H) < e. Extend it to an e—Lipschitz function on [a, 8]. The extension rep-
resents a Lipschitz manifold W > W#. The same argument we used to prove
Proposition [TT] shows that f(V*) and W* intersect at a unique point. We see
that f(V*) and W* intersect at most at one point.

This completes the proof of the proposition in the case of u—manifolds. The case
of s—manifolds follows from the symmetry between s— and u—manifolds:

(1) V is a u—admissible manifold w.r.t. f iff V' is an s—admissible manifold
w.r.t. ! and the parameters are the same.
(2) wp"PT — Wi wort. ff W — WPTPT wort. L O

Proof of Proposition [£14. We prove the proposition for F, and leave the case of
Fs to the reader.
Suppose \Ilgu L \I/gu’qs, and let V;* be two u—admissible manifolds in \Ifgu P
We take € to be small enough for the arguments of the previous proof to work.
We saw in the proof of Proposition that if V; = U {(F;(¢¥),t) : [t| < p*},
then F,[Vi] = U, {(Gi(7),T) : |7| < ¢*}, where

Gi(1) = AFi(ti(7)) + ha (Fi(ti(7)), ti(7));

ti(t ) is defined implicitly by Bt;(7) + ho(F;(t;(7)),t:(7)) = 7, and |t}]| < 1;
Cy <Al <e X, eX < |B| < Cf;

|hi(Q)| <e(p" Ap*), Holg/3(Vhy) < e, and max || Vh|| < 3¢2.

In order to prove the proposition, we need to estimate ||G; —G2||o and |G} — G4l
in terms of ||F1 — F3l|eo and || F] — Fj| -

Part 1. For all € small enough, ||t1 — t2]|co < €||F1 — F2|co-

By definition, Bt;(T) + ha(F;(t;(7)),t;(17)) = 7. Taking differences, we see that

|B| - [ty — ta] < [ha(F1(t1),t1) — ha(Fa(t2),t2)]
8h2 Oho
Ox

< 3e%( |F1(t1) By(t)] + [Fa(tr) — Fa(ta)] + [t — t2])
< 3% ([|[F1 = Falloo + (Lip(F2) + 1)[t1 — tof)
< 33| Py — Faloe +3€2(1 +¢) |ty — tof (see @ET)).

|[Fi(t1) — Fa(t2)] + [t1 — ta]

oo

Rearranging terms and recalling that |B| > eX~¢, we see that

3| FL = Foloo
e —3e2(1+¢)

t1 —t2lloo <

The claim follows.

Part 2. For all € small enough, ||G1 — Ga|lec < €™X/2||F} — Fb||oo, whence @4).
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Subtracting the defining equations for G;, we find that
|G1 = G| < A[ - [Fi(t1) — Fa(t2)| + [ha(F1(t1), t1) — ha(F2(t2), t2)|

<Al [Fi(t) = Fa(to)| + (VI[P (81) — Fa(t)]? + [t1 — t2f?
< (JA] + 3€?)|Fy(t1) — Fa(to)| + 32|t — tof
< (|A] +3*)(|F1(t1) = Fa(ta)| + |Fa(th) = Fa(t2)]) + 3|t — Lo
< (JA] + 32 (| Fy — Falloo + Lip(Fy)|t1 — ta) + 3€2|t1 — tof
< (JA| +3e*) (1 +e-e+ 3% - ¢)||[F1 — Falloo (see Part 1)
< JA|(1+3Cse*)(1 + €2 + 36%) || Fi — Falloo
< e X(1+30pe*)(1+ €%+ 38| F1 — Fallo-

It follows that for every ¢ small enough, |Gy — Galloo < e X/2||F} — F3| o0.
Part 3. For all € small enough, ||}, — t}]lee < VE(|F! — F4l|oo + || F1 — F2||3L%).
Differentiating both sides of the defining equation of ¢; gives

Ohs Ohs
tt|B+ —=—=(F;ot;,t;)F ot; Fiot;t; 1.
B+ G ot tF ot AR ot -
Taking differences, we obtain after some rearrangement
oh oh
(tll — t/z) B + —2(F1 Otl,tl)Fll Otl + —2(F1 Otl,tl) =

ox Oy
[Ohy ho |

— 1 B ——(Fioti,t1) — B (F20t2,t2)_ Flot =:1

8h

- tga—;(Fz oty te) [(Floty — Fyoty)+ (Fyoty — Fyoty)] =11
[Ohy Ohso |

-t Fyoty,t1) — —(Fyota,t =: III.

2 ay(lolu 1) ay(2027 2)

Since |B| > eX, |F{| < 1, and ||[Vha]|| < 32,
1
!/ /!
18 = talloo < ——p I+ I+ Tl
Since I, II, and III involve partial derivatives of ho evaluated at (F; ot;,t;), we

begin by analyzing Vhy(F; ot;,t;). Since Holg,3(Vh;) <

o |[Vho(Fioty, t1) — Vho(Fyoty, t1)|| < el|Fy — F2\|5/3

[ ] ||Vh2(F20t1,t1) VhQ(FQ Otg,tl)” < €||t1 —tg”ﬁ/g (because Llp(FQ) < 1),

o [IVha(Fy ota,t1) = Vha(Fy o t, to)]| < llts — ta|°.
By Part 1, ||t1 — t2]|co < €||F1 — F2||co- It follows that

[V ha(Fy oty,t1) — Vhg(Fayota, ta)|| < 3e||Fy — Fy||/3.

Using the facts that [t}| < 1, |[F]| < 1, Lip(#:) < 1, and Holg/3(F3) < 1 (see the
definition of admissible manifolds and the proof of Proposition dI2]), we get that

1| < 3| Fy — |83
0| < 3¢ (||F] — Fylloo + |t — t2]|23) < 3% FY — Fj|loo + 32| Fy — F2||2L%;
|TII| < 3e|| Fy — Fa|23.
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So for all e sufficiently small, ||t} — t|lc < VE(|F] — F3lloc + [|[F1 — F2||g<{3)

— 3
Part 4. |Gy = Gylloe < e X2(|F{ = Fiflo + | F1 = F2[13%).

By the definition of G;, G, = t;[AF} ot; + %(Fi oty t;)Fl ot; + %—hyl(Fi ot ti)].
Taking differences, we see that

G — Gy
< |t — 5] - AFllotl+%(Flotlatl)F{Otl+%];1(F10t1,t1) — T
+ [th] - |A] - (|F{ ots — Fyoty] + |Fy oty — Fj ota|) — 1T
+ [t %(Fwtl,tl)—%(ﬁotz,tz) |F{ oty =: 11T
1 | 2L By 10, 1)| [P o 1 — F ot v
+ [t %—}Z(Flotlvtl)_%—};l(FZOt%tQ) =V

Using the same arguments that we used in Part 3, one can show that

U < |ty = thlloo(e™ +6¢%) < VE(IF] = Fyloo + | Fy = F213%),
' <e™X(| F{ = Fylloo + It = t2l13%) Se (| F{ = Fyllo + | Fv— F2|I3%) (Part 1),
III' < 3¢||Fy — F»||?/3 (see the estimate of I in Part 3),
IV' < 3¢%||F] — Fi|loo 4 3€°||F1 — F2||%/3 (see the estimate of IT in Part 3),
V' < 3¢||Fy — Fy||?/? (see the estimate of III in Part 3).

It follows that |G} — G}llee < (e7X + 10 + /&) (| F — Filloo + || F1 — Fo||2®). If £
is small enough, then |G} — Gblloe < e X/2(|F — Filoo + || F1 — F2||g.f3) O

Proof of Proposition [6.3l The following proof is based on [BP), Chapter 7].

Suppose V* is an s—admissible manifold in.\Ilgu’ps which stays in windows. Then
there is a positive chain (U5 *);5¢ s.t. U507 = ¥P"P" and there are s-admissible
manifolds W7 in WhiPi gt fivse) c W§ for all ¢ > 0. We write

o V=W, {(t, Fo(t)) : [t| < p°},

o Wi =W, {(t, Fi(t)) : [t| < pi},

o 1 :=pl Ap;.
Admissibility means that ||F]||5/3 < 3, |[F/(0)] < %77?/3, and |F;(0)] < 1073n;. By
Lemma [ e~ < n;/mi+1 < e°. By @I), Lip(F;) < e.

Part 1. If € is so small that e X + 4e2 < e X/2, then for every y,z € V?,
d(f*(y), f5(2)) < 6pge= %X for all k > 0.

Proof. Since V* stays in windows, f*(V*) C ¥y, [Rq_(x,)(0)] for all k > 0. There-
fore, for any y, z € V*, one can write f*(y) = Vs, (y,) and fE(z) = U, (z;), where
Y, = Wk, Fi(yr)), 2& = (2k, Fi(2x)) belong to Rg_ (4, (0).



SYMBOLIC DYNAMICS FOR SURFACE DIFFEOMORPHISMS 417

For every k, y, \ = forona(y,) and 2y = foian (22), where foo,, =
UL ofo¥,,. By B3),
Jerags (0, 0) = (Agv + hi(v,w), Byw + ha(v,w)) on Rg_(4,)(0),
where C’;l < |Ag| < e7X, eX < |Bi| < Oy, and max || Vh;|| < 3¢%. Thus

k1 — zrs] < Akl |k — 2i| + 3¢ (Jye — 21| + Lip(Fi)|yx — 21)
< (X 4%y — zn] < e BNy — 2 <o < e BEEDX|y — 4],

Since Yy Zo are on the graph of an s—admissible manifold in \I/p 075 °, their z—

coordinates are in [—pg, pgl, 50 |yo — zo| < 2pg. Thus |y, — zx| < 2e~2FXpg. Since

Y, = ks Fr(ur)), 2, = (2, Fi(2x)), and Lip(Fy) < e, [ly, — 2]l < 3pge™ 2k,
Pesin charts have Lipschitz constant less than two, so d(f*(y), f*(z)) <6pge2+x.

Part 2. Suppose ¢ is so small that e X + 32 4 33 < e~ 3X and Cre+ 32 < 1. For
every y € V*, let e*(y) denote the positively oriented unit tangent vector to V* at
y. If y € V*, then ||dfFe(y)| < 66~ 35X||C (o) || for all k > 0.

Proof. If y € V*, then f*(y) € Wi C Wy, [Rg.(2)) (0)]. So dfye’(y) = (d¥4,)y, (5F)

where (Z:) is tangent to the graph of Fj. Since Lip(F)) < ¢, |bi| < ¢lag]| for all k.
The identity (3*+') = (dfzrwrss)y, (4 ) holds. Since ||Vh;|| < 32,

b1

(ak+1> _ A+ 9 (y,) aa];l (y,) (%) _ ((Ak + 3e%)ay, + 3€2bk|>
bri1 82(y,)  Bu+92(y,) ) \bi (B £ 3¢2)by, + 3¢2|ay| )
It follows that |agi1]| < (JAx| + 32 + 3¢3)|ax|. By the bounds on A and By, and
the assumption on ¢,

lar] < e 5¥|ag] and  |be| < elar| < e FX|a).

Returning to the defining relation dffie*(y) = (d\I/Ik)g (a:) and recalling that
|[dP,, || <2 (Theoremﬂ) we see that [|dfye*(y)| < 2\/_6 kX |ag).

Since (22) = (dW,,); ' e*(y), laol < 4], so dffe* (W)]] < 2v2e X |aw; 1.

For every z, ||dU, 1H < 2||Cy(z)71| because Cy(z)~! maps Bjg. (1)(0) into
Byes/6(0) C Bao(0) C Byan(0), provided e < $p(M), and by the definition p(M)
is so small that ||(dexpw )yll <2 forall . € M and y € B, (0).

It follows that [|dfFe®(y)]l < 6]|Cy (o)~ e~ sk,

Part 3. The following holds for all £ small enough: for all y,z € V* and n > 0,
|log [|dfye®(y)| —logldfze® (2)Il] < Qe(xo)?/*.

Proof. Call the quantity to be estimated A. For every p € V|
dfy1e’(p)] = df i ldfpe® (0)) = £l dfpe” )] - df 7y [ (f ()]

= o= £ T e P ODI - )

k=0

d, ”eg
Thus A := [log sy | < z log [|df 1 (y° (£ ()| = log [[df pr e (FF (DI

We shall estimate the sum term by—term using the Holder continuity of df.
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In Section [3.I] we covered M by a finite collection & of open sets D, equipped
with a smooth map ©p : TD — R? s.t. Op|r,ar : ToM — R? is an isometry and
¥, = Op'[ge : R? = TD has the property that (x,v) + 9, (v) is Lipschitz on
D x B;(0). Since f is a C'*#-diffeomorphism and M is compact, df,[v] depends
in a f-Holder way on p and in a Lipschitz way on v. It follows that there exists a
constant Hy > 1 s.t. for every D € 2, for every y,z € D, and for every u,v € R?

of length one, |log||df, (9, (w))|| —log|ldf- (9. ()|l < Ho(d(y,2)" + |lu— v])-

Choose Dy, € Z s.t. Dy > f*(y), f¥(2). Such sets exist provided ¢ is much
smaller than the Lebesgue number of 2, because by Part 1, d(f*(y), f*(2)) < 6e.
Writing Id = ©p, 0 9k () and Id = ©p, o Jgk(.), we see that

(A.16)
A= :_: [Log [|df 14y 0 1) O D” (FF W)l = log ldf g oy i) O, (F* ()]
< k_ Ho (d(7* (). £(2))° + [0p," (£ (1)) — O, (4 (2)])
=7 _(6p° +Ho Z 1©p,e*(f*(y)) — Op,e*(f*(2))l, by Part 1.

We estimate Ny := [|©p,e*(f¥(y)) — Op,e*(f*(2))||. By definition, e*(f*(y))
and e*(f*(z)) are the positively oriented unit tangent vectors to f*(V*) C W, at
f¥(y) and f*(z). Defining y, and 2, as before, we obtain

(dquk)y (F’(1 )) (dlllack )Zk (F’ (12 ))
es k — e A , es k 2)) = k\Zk i

We saw in Part 1 that ||(d\I/mk) 1H and ||(d¥,, ), 1H are bounded by 2||C, (zx) !,

so the denominators are bounded below by 1||Cy(zx) 7! Since for any two

o/lloll = w/llul|| < 2w —ull/lv,

non-zero vectors v, u,

M <2000 en @y, () = Onwe) ()|

On Dy we can write ¥, = exp,, oU;, o Cy,, where ¥y, o Cy, = Cy (). Let
w, = Clan)y,, = COxlar)zy,

and
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Then Ni < 2(Cy (24) "} - || @, (dexp, Ju, 02, (24)] = O, (dexp, g [0, (2]
Since ©p, ¥, are isometries, Cy, are contractions, ||(dexp,, )u, || < 2, and [F}(yx)—
Fi(zn)] < glyx — 2?72,

Ni < 2|Coa) 7| [0, (dexpy, ), [0, (24)) = O, (dexpy, ), [, (1]
+ 20| C (@) - | O (dexp, Ju, [0, (01)] = O, (dexpy, g [0 ()]
< 20|C ()M g — 2l
+ 2 o) - O, (dexpy, Ju, [0y (21)) — O, (dexy, Jug [0, ()]

We study this expression. In what follows we identify the differential of a linear
map with the map itself.

By construction, the map (z,u,v) — [©p o (dexp,)u| [J;(v)] is smooth on D x
B5(0) x B2(0) for every D € &. Therefore there exists a constant Ey > 1 s.t. for
every (z,u;,v,) € D x Bs(0) x B2(0) and every D € 9,

s Hgy 2

[©p(dexp, )y, [Vx(v1)] = Op(dexp, )u, [V (w2)]]| < Eo(lluy — usll + llug — o).
It follows that

Ne < 201Cx ()~ - (low = 2672 + Bo (g, = i) + ey, = 1)

< 20Cm) M- (I = 2477 + Bo (Ily,, — zell + gk — 217%))

< 6Eo||C (z1) " llly,, — zl?® (- Eo > 1)

< 6Eo||Cy(zx) 7 |(3p5)P e 55X% because Iy, — zill < 3pge ~3kX (Part 1)
< 9E||Cy (k) 7| (p5) P/ P 50X,

By the definition of Q.(), ||Cy(zx)7Y| < eY/4Q.(zy) P/12 < eV/4(p3)=P/12,
and therefore Ny, < 9¢'/4Eq(p§)~P/12(p 8)/3e=50xk Since (\Iﬂ;; pl)iez is a chain,
p; = min{e®p;, |, Qc(x;)} < epj,, for all 4, whence pj < ekeps. Tt follows that for
all € small enough,

(A.17) Ny < 964 Ey(pg)P/* exp[— 1 Bxk].

Plugging this in (AI6), we obtain

log Hd ( )H < 66H0(p8)36/4 961/4E0H0 (ps)ﬂ/4
IIdf”eS( )l 1— e 38x 1—e—38x ) V0
9e38/4 By H,
< () e

The term in the brackets is less than one for every ¢ small enough. How small
depends only on M (through Ep), f (through Hy and ), and . O

Proof of Proposition [6.4. We continue to use the notation of the previous proof.

Assume that VN U® # &. We show that V* C U® or U® C V*.

Since V* stays in windows, there is a positive chain (\I/‘;?j’p ;L)Z—ZO such that
\I/]gﬁib’pf = U2"?" and such that for all i > 0, f(V*) C W7 where W7 is an s-
admissible manifold in \Ilgg’p i
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Claim 1. The following holds for all & small enough. f"(V*) € ¥y, [R1q, (s, (0)]
for all n large enough.

Proof. Suppose y € V¢ and write as in Part 1 of the previous proof, f™(y) =
Vs, (y,) where y = (yn, F(yn)) and F, is the function which represents Wy in
Uy, Wehavey . = foo, 11(y,,), which implies in the notation of the previous
proof that if € is small enough, then

1l < 1Al - gl + [h1(,)] < [Aul - o] + B2(©)] + [ VR (fynl + [Fa(y)])
< e Xyn| + em + 32 (lyn| + 13) < (€7 + 36?) |yl + 2215
< (e7X 4 3e)|yn| + 2e min{epd 1, Qc(2,)}
< (7% 4 3% |yn| + 2¢%epf 1y < € |yn| + dep)

We see that |y,| < a, where a,, is defined by induction by
ag = Qc(zo) and apy1 = e X/%q, + dep} g

We claim that if ¢ is small enough, then a, < ipfl for some n. Otherwise,
pS < 4a, for all n, whence a, 11 < (e7X/2 4 16¢)a, for all n, which implies that
an < (e72X+16¢)"ag. But by assumption, a, > 105 > L aps) > L= (py Ap)
(Lemma ), so necessarily e=* < e™X/2 + 16¢. If ¢ is small enough, this is false
and we obtain a contradiction. It follows that Jn s.t. a, < Ip.

It is clear from the definition of a,, that if ¢ is small enough, then a,, < ipft ==
any1 < ipflﬂ. Thus a, < ipfl for all n large enough.

In particular, |y,| < $Q.(z,) for all n large enough. Since Y, = WUn, Fn(yn))
and |Fy(yn)| < [Fa(0)] + Lip(Fn) ya| < (1072 + £)Qc(zn), ||yn|| < %Qs(xn) for all
n large enough.

Claim 2. The following holds for all € small enough: f"(U*®) C ¥, [Rg_(x,)(0)] for
all n large enough.

Proof U? stays in windows, so there exists a positive chain {\Ilql 4 }i>o such that
\I/Zg B \I!Z " and such that for all i > 0, f/(U®) is a subset of an s-admissible
manifold in \Ilg;:’qf.

Let z be a point in U*NV*. By Proposition[6.3(3), for any we U?, d(f"(z), f™(w))
< 6gie~2"X. Therefore f™(z2), f™(w) € Bg. (@n)+6q5 (tn) C Bre(zy). I e < 1p(M)
(cf. §23), then | exp ! [f"(2)] — exp, ' [f™(w)]|| < 12e~2™Xgs, s0

121" (2] = O3 ™ @) < 10 (@)~ - 12672 gs.
Since pg, < Qc(wn) < [|Cy () 171,
05 ()] = O (w)]| < 12(p5) P gge =X

Since {\I'pl P biez is a chain, pf = max{e®p] |, Q:(z;)} < epj ., for all i. It
follows that p§ < e™°py,, whence

n—roo

|| Tn ) - v ™ (w || <12 (p ) emznXtne 4y exponentially fast.
0
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Since Qe (zyn) > (PE ApS) > e " (py A p), for all n large enough

Je22 1)) = L ]| < 5Qee)

How large depends only on (p§, py) and ¢.

Since, by Claim 1, @ 1(f"(2))| < 3Qc(zx) for all n large enough, we have that
(@ 1(f™"(w))|] < Qe(xy) for all n large enough. All the estimates are uniform in
w € U?, so the claim is proved.

Claim 3. Recall that V* is s—admissible in ¥2"?" and U* is s-admissible in \Ilgu’qs.
If p* < ¢®, then V* C U?, and if ¢° < p*, then U® C V*.

Proof. W.lo.g. p* < ¢°. Pick ng s.t. f*(U*), f*(V®) C ¥, [Rqg.(,)(0)] for all
n > ng. Then fro(V?), fro(U%) € W* := VS[(¥E P');5,..] (Proposition EIH(4)).

Let G denote the function which represents W* in ¥, . Then W' [f"(U*)] and
W Hf™(V#)] are two connected subsets of graph(G). Write

fr(Ve) =V, {(t,G(1)) : t € [o, 5]},
f1U°) = 9., {(t,G(t) : t € [, B]}.

The manifold f(V?®) has endpoints A := ¥, (a,G(a)), B := ¥, (8,G(B)), and
the manifold f™(U#) has endpoints A" :== ¥, (o/,G(c)), B' := ¥, (8',G(8)).

Since V* and U? intersect, f™(V?®) and f™(U?®) intersect. Consequently, [«, f]
and [o/, 8] overlap. We use the assumption that p* < ¢° to show that [a, §] C
[, 3.

Otherwise a < o’ or 8 > . Assume by contradiction that oo < a’. Then A’ is
in the relative interior of f™(V*®). Since f is a homeomorphism, f~"(A’) is in the
relative interior of V*. Since f~"(A’) is an endpoint of U?®, we obtain that U* has
an endpoint at the relative interior of V*.

We now use the assumption that z = y and view V*° and U® as submanifolds of
the chart ¥,. The endpoints of U® have s—coordinates equal in absolute value to
¢°, and the points on V* have s—coordinates in [—p®, p®]. It follows that ¢° < p*, in
contradiction to our assumption. The contradiction shows that a > /. Similarly
one shows that f < g, with the conclusion that [a, §] C [o/,8]. Tt follows that
f™(Ve) C f™(U®), whence V* C U*. O

Proof of Lemma [[0.8. Suppose Z = Z(\Ilgz’;’pg), ARES Z(\I/g‘g’qg) intersect. We are
asked to show that for every z € Z and y € Z/, V*(z, Z) and V*(y, Z') intersect at
a unique point. Loosely speaking:
e Since Z, Z' intersect, the parameters of \I'gg P (S’, \I/gg’qg are close.
e This implies that u—admissible manifolds in \Ifﬁfgj”’ o are very close to being
u—admissible manifolds in \pgﬁ’qg.
e Therefore they intersect every s—admissible manifold in \Ilg‘g’qé at a unique
point.
The details follow. .. ..
Fix some z € ZN Z'. Then there are v,w € % s.t. vy = \Ilﬁg’po, woy = \Ifgg’%,
and z = 7(v) = w(w). Write p := p§ A p§ and ¢ := ¢§ A ¢§. By Theorem (.2
P /a8, p5/a5,p/a € [~ VF, e VF] and

U loW, = (-1)7Id4+c+ A on R.(0),

Yo
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where o € {0,1}, ¢ is a constant vector s.t. |c[| < 107!g, and A : R.(0) — R?
satisfies A(0) = 0, and ||(dA)u|| < /€ for all w € R.(0). By the Mean Value
Theorem, ||A(u)|| < ellu| for all u € R.(0).

Now suppose = € Z. V¥ := V¥%(z, Z) is u—admissible in \1125;”’5; therefore it can
be put in the form V¥%(x,Z) = ¥, {(F(t),t) : |t| < py}, where F : [-p§,py] = R
satisfies |F(0)] < 1073p, || F|loo < 1072p¥, and Lip(F) <

We write V¥(z, Z) in ¥, —coordinates. Let ¢ = (c1,¢2), A = (A1, Ag). Then

Vi (z,Z)
= [Ty, 0 (Ty, 0 UupJ{(F (1), 1) : |t] < 15
= Uy {(=1)7F @) + 1 + AL (F(2), 1), (=1)7 + c2 + Do (F(2),1)):[t] < pg}
= Wy {(F(0) + c1 + A1 (F(6),0),0 + ca + Ao (F(6),0)) : |60] < pi},

=7 (6)

where we have used the transformations 6 := (—1)7t, F(s) = (=1)° ((—1) s), and
Ai(u,v) == Ay((=1)°u, (—1)°v). Notice that |[F(0)] = |F(0)] < 107 3p, ||F||oo =
|Flloo < 1072p%, and Lip(F) = Lip(F) < e. Also A(0) = 0 and ||(dA),| =
1(dA)u] < ¥/ on R(0).
Let 7(0) := 0 + ¢y + Ay(F(6),60). Assuming ¢ is small enough, we have
o 7€ [em2VE 2V5),
o [7(0)] < |ea| + |A2(F(0),0)] < 107 g + {2 -10%p < &p (. p < eVEq).
It follows that 7 is one-to-one and 7[—p§,py] = [, B8] where a := 7(—p§) and
B = 7(py). It is easy to see that |a + p§| < &p§ and |B — pj§| < £py§: both
quantities are less than |ca| + sup Ry (0) |As|, which is less than Lpy provided ¢ is
small enough. It follows that 7[—p, pi] = [, B] D [~ 24, 2q].
Since 7 : [-pY, py] — [o, f] is one-to-one and onto, it has a well-defined inverse

function 6 : [, 8] — [—pl,p]. Let G(s) i= F(8(s)) + 1 + Ay (F(6(s)), 6(s)). Then
VU x,Z) =V, {(G(s),s) : s € [, B]}.
Using the properties of 7, it is not difficult to check that 6’ € [6_2‘%,62 ‘%]
and [0(0)] = |0(0) — 6(7(0))| < 2¥5|r(0)] < Le?Vep. Tt follows that [F(6(0))| <
|F(0)| +£]6(0)] < (1073 + se? V2e)p < 1072p, whence

1G(0)] <1072p+ 107 g + ¥/ep < min{lp, Lg} (. q/pele” V5, eVF)),

G| < |F||oo]@'] + &2\ 1+ | F7|2 - 10| < 2z

It follows that (for all € small enough) G[—%p, %p] C [—%p, %p]

We can now show that |[V*(z, Z) N V*(y,Z’)| > 1 (compare with [KM| S.3.7]).
Represent

Vi(y, Z") = Wy {(t, H(t)) : |t| < g5}

By admissibility, |H(0)| < 1073¢ and Lip(H) < €, so H[—2p, 2p] C [-2p, 2p).
It follows that H o G is a contraction of [— %p, %p] into itself. Such a map has a
(unique) fixed point (H o G)(sg) = so. It is easy to see that ¥, (G(so), so) belongs
to V¥(z, Z)NV*:(y,2Z").

Next we claim that V*(z, Z) N V*(y, Z’) contains at most one point. Extend
G and H to e-Lipschitz functions G, H on [—a,a] where a := max{|al, ||, ¢}-
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By construction, |G(0)| < ta, so G[—a,a] C [—a,a]. Also |H(0)| < 1073a, so

H[—a,a] C [—a,a]. Tt follows that H o G is a contraction of [—a, a] into itself, and
therefore it has a unique fixed point. Every point in V¥%(x, Z) NV*(y, Z') takes the
form ¥, (G(s),s) where s € [a, 5] and s = (H o G)(s) = (H o G)(s). Since the
equation s = (H o G)(s) has at most one solution in [—a,al, it has at most one
solution in [a, B]. It follows that |[V%(z, Z) NV*(y,Z")| < 1. O

Proof of Lemma [[0.10. We have to show that if Z = Z(\I/f;‘g ’ps) and Z' = Z(\I/Z‘g’qg)
intersect, then (1) Z C W, [Ryungs(0)] and (2) for any x € Z N Z', W*(x,Z) C
Vi (x,Z'") and W¥(x, Z) C V*(x, Z').

Fix some # € Z N Z'. Write z = 7(v), ¢ = 7(w) where v,w € ©# satisfy
vy = \Ifiﬁ”’f) and wyg = \I/Z‘E’qa. Write p = p§ A pj and ¢ := gq§ A ¢j. Since
7(v) = 7(w), we have by Theorem [5.2 that p/q € [e~ V=, e V%] and

U, loW, = (-1)7Id4+c+ A on R.(0),

Yo

where o € {0,1}, ¢ is a constant vector s.t. |c[| < 107!g, and A : R.(0) — R?
satisfies A(0) = 0, and [|(dA),|| < ¥ for all w € R.(0). By the Mean Value

Theorem, [|A(u)| < ¥/E|ul for all u € R.(0).
Every point in Z is the intersection of a u—admissible and an s—admissible man-
ifold in W55 7°; therefore Z is contained in W, [R1g-2,(0)] (Proposition ELIT)). Thus

Z C Wy, (W, 0 Wy ) [Rig-2,(Q)]] C Wy, [(W,.' 0 Way)[B 102, (0)]]
C Wy, [B(H {0’/5)\/5-10*2;0(9)} C Wy, [B(1+ ¥E)V/2-10—2¢ %q-',-lO*lq(Q)]
- \I/yo [R(l.:,_ Y2)v2-10-2¢ ?’Eq.;_loflq(g)] - \I/yo [RQ(Q)] ( 0<e< 1)'

This proves the first statement of the lemma.
Next we show that W*(z, Z) C V3(z, Z'). Write v; = W% P" and w; = Wi %,
Since z = 7(v) and Z = Z(vg), we have by the symbolic Markov property that

Frwe (e, 2)) c We(f* (@), Z(or)) (k> 0).

The sets Z(vy) and Z(wy,) intersect, because they both contain f*(z). By the first
part of the lemma, Z(vi) C Wy, [Ryung: (0)]. Tt follows that

fEwWs(z, 2)) C Wy [Rarngs (0)] C Wy, [Rq, (4,)(0)]
for all k£ > 0. By Proposition @I5(4), W*(x, Z) C V*[(w;)i>0] = V¥(z, Z'). O
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NOTE ADDED IN PROOF

Recently Pierre Berger has come up with a construction of countable Markov
partitions for certain Hénon-like diffeomorphisms. For these maps he proved that
the measure of maximal entropy is unique [Brg].
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