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DEFINABLY AMENABLE NIP GROUPS

ARTEM CHERNIKOV AND PIERRE SIMON

1. Introduction

In the same way as algebraic or Lie groups are important in algebraic or differen-
tial geometry, the understanding of groups definable in a given first-order structure
(or in certain classes of first-order structures) is important for model theory as well
as its applications. On the one hand, even if one is only interested in abstract clas-
sification of first-order structures (i.e., in understanding combinatorial complexity
of definable sets), unavoidably one is forced to study definable groups. (This real-
ization probably started with Zilber’s work on totally categorical structures [Zil93],
and later it was made clear by Hrushovski’s theorem on unidimensional theories
[Hru90].) On the other hand, some of the most striking applications of model the-
ory are based on a detailed understanding of definable groups in certain structures.
The class of stable groups is at the core of model theory, and the corresponding
theory was developed in the 1970s–1980s borrowing many ideas from the study of
algebraic groups over algebraically closed fields (with corresponding notions of con-
nected components, stabilizers, generics, etc.; see, e.g., [Poi01]). In particular, this
general theory was applied to groups definable in differentially closed and separably
closed fields, and it was used by Hrushovski to prove the Mordell–Lang conjecture
for function fields [Hru96]. The theory of stable groups was generalized in the 1990s
to groups definable in a larger class of simple theories, centered around the model-
theoretic notion of forking (see [Wag00]), and it led to a number of results including
Hrushovski’s proof of the Manin–Mumford conjecture [Hru01] and other applica-
tions to algebraic dynamics (e.g., [MS14]). More recently, inspired by the ideas
of stable and simple group theory, Hrushovski has obtained a general stabilizer-
type theorem and found striking applications to approximate subgroups [Hru12],
which led to a complete classification by Breuillard, Green, and Tao [BGT12]. On
the other hand, groups definable in o-minimal structures were studied extensively,
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generalizing the theory of real Lie groups. This study culminated in a recent reso-
lution of Pillay’s conjecture for compact o-minimal groups [HPP08], and the proof
has brought to light the importance of the general theory of groups definable in NIP
structures (a common generalization of stable and o-minimal structures, see below)
and the study of invariant measures on definable subsets of the group. In parallel,
methods and objects of topological dynamics were introduced into the picture by
Newelski [New09] and gave rise to some new invariants coming from topological
dynamics and conjectures concerning their relationship to the more familiar model-
theoretic invariants. This circle of ideas has rapidly become a very active research
area. The present paper contributes to this direction and, continuing the work
in [HPP08], develops the theory of groups definable in NIP structures which ad-
mit a translation invariant probability measure on the boolean algebra of definable
subsets.

The NIP condition (the negation of the Independence Property) is a combina-
torial tameness assumption on a first-order structure M which says, in modern
terms, that if D ⊆ Mm+n is a definable set, then the family {D(a), a ∈ Mm}
of its fibers has finite VC-dimension (see section 2.1). Roughly speaking, it says
that the collection of definable subsets of M is very structured. One can think of
NIP as capturing the notion of a geometric structure—as opposed to, say, arith-
metic or random-like structure—and of NIP groups as groups arising in geometric
settings. This condition was introduced by Shelah [She71], and the connection
to VC-dimension was discovered later in [Las92]. In the past 10 or 15 years, the
role of NIP theories has grown to become a central notion in model theory thanks
to applications to o-minimal structures, valued fields and combinatorics (see, e.g.,
[Sim15a] or [Sta17] for a survey). Typical examples of NIP structures are given by
stable structures (such as algebraically closed fields), o-minimal structures (such as
real closed fields), and many Henselian valued fields. On the other hand, an ultra-
product of finite fields is an example of a structure which is not NIP, essentially
because of arithmetic phenomena that enter the picture.

Let now G be a group definable in an NIP structure M (i.e., both the underlying
set and multiplication are definable by formulas with parameters in M). Such a
group comes equipped with a collection of definable subsets of cartesian powers of
G, which is closed under boolean combinations, projection, and cartesian products.
For example, if M = (R,+,×, 0, 1) is the field of reals, then G is a real semi-
algebraic group and definable sets are all semi-algebraic subsets. As is typical in
model theory, we prefer to work in a saturated model of our group (which, in
the case of an algebraic group, corresponds to working in the universal domain
in the sense of Weil). More precisely, let U � M be a sufficiently saturated and
homogeneous elementary extension of M , a “monster model” for the first-order
theory of M . We write G(U) to denote the group obtained by evaluating in U the
formulas used to define G in M (and G(M) will refer to the set of the M -points
of G). So, e.g., if we start with M the field of reals, and G(M) its additive group,
then G(U) is the additive group of a large real closed field extending R, which now
contains infinitesimals, infinitesimals relatively to those infinitesimals, etc.; i.e., it
satisfies a saturation condition—every small enough finitely consistent family of
definable sets has nonempty intersection.
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It was shown by Shelah [She08] that any NIP group G(U) admits a unique
maximal compact quotient denoted G/G00, which plays an important role in this
theory and for which we will give a dynamical interpretation below.

Our goal in this paper is to adapt techniques from stable group theory to the
NIP context in order to have tools at our disposal potentially as useful as those
for stable groups. However, one main difference with the stable case is that we
cannot deal with all groups any more. As we show, to have any hope of having
well-behaved notions of generic types and large subsets, the group must be definably
amenable (this strengthens results of Hrushovski, Peterzil, and Pillay [HP11] who
first observed this).

We say that a definable group G is definably amenable if there is a finitely
additive probability measure on the boolean algebra of definable subsets of G which
is moreover invariant under the group action (this property holds for G(U) if and
only if it holds for G(M); see the remark after Definition 3.1). This notion has
been introduced and studied in [HPP08] and [HP11]. The emphasis in those papers
is on the special case of the so-called fsg groups, which will not be relevant to
us here. Of course, if G(M) is amenable as a discrete group, then it is definably
amenable since we have such a measure on all subsets, not just the definable ones,
but the converse need not hold (e.g., deep work of Sela [Sel13] demonstrates that any
noncommutative free group, viewed as a first-order structure in the group language,
is stable, hence definably amenable; but of course it is not amenable). Here are
some important examples of definably amenable NIP groups:

• stable groups;
• definable compact groups in o-minimal theories or in p-adics (e.g., SO3(R));
• solvable NIP groups or, more generally, any NIP group G such that G(M) is

amenable as a discrete group.
Examples of definable NIP groups which are not definably amenable are SL2(R)

or SL2(Qp) (see [HPP08]).
It is classical in topological dynamics to consider the action of a discrete group

G on the compact space of ultrafilters on G, or in other words ultrafilters on the
boolean algebra of all subsets of G. In the definable setting, given a definable
group G(M), we let SG(M) denote the space of ultrafilters on the boolean algebra
of definable subsets of G(M), hence the space SG(M) (called the space of types
of G(M)) is a “tame” analogue of the Stone–Čech compactification of the discrete
group G. Then G(M) acts on SG(M) by homeomorphisms. The same construction
applies to G(U) giving the space SG(U) of ultrafilters on the definable subsets
of G(U). Our main objects of study in this paper are the dynamical systems
(SG(M), G(M)) and (SG(U), G(U)) and related objects. In this context, we classify
regular ergodic measures and show in particular that minimal flows are uniquely
ergodic. We also give various characterizations of definable subsets of G which have
positive measure for some (resp., for all) invariant measures, connecting topological
dynamics of the system with Shelah’s model-theoretic notion of forking.

A starting point of this theory is a theorem of Shelah stating that any NIP group
G(U) admits a maximal compact quotient G/G00 (the kernel G00 is characterized as
the smallest subgroup of G(U) which is an intersection of definable subsets and has
small index in G(U)). We give a dynamical interpretation of this compact quotient
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by establishing an isomorphism between the ideal subgroup of the Ellis semigroup
of a certain extension of (SG(M), G(M)) and G/G00. Those results settle several
questions in the area.

Now we state the main results more precisely. In the case of stable groups,
a natural notion of a generic set (or type) was given by Poizat (generalizing the
notion of a generic point in an algebraic group), and a very satisfactory theory
of such generics was developed in [Poi87]. In a nonstable group, however, generic
types need not exist, and several substitutes were suggested in the literature, either
motivated by the theory of forking as in simple groups ([HPP08, HP11]) or by
topological dynamics ([NP06]). First we show that in a definably amenable NIP
group all these notions coincide and that in fact nice behavior of these notions
characterizes definable amenability.

Theorem 1.1. Let G = G(U) be a definable NIP group with U a sufficiently
saturated model. Then the following are equivalent:

(1) G is definably amenable (i.e., admits a G-invariant measure on its definable
subsets).

(2) The action of G on SG(U) admits a small orbit.

The proof is contained in Theorem 3.12. It confirms a conjecture of Petrykowski
in the case of NIP groups [New12, Conjecture 0.1] and solves Conjecture 4.13 of
[CP12].

Theorem 1.2. Let G = G(U) be a definably amenable NIP group. Then the
following are equivalent for a definable set φ(x) :

(1) φ(x) does not G-divide (i.e., there is no infinite sequence (gi)i<ω of elements
of G and natural number k such that any k sets in {giφ(x)}i<ω have empty
intersection, see Definition 3.2);

(2) φ(x) is weakly generic (i.e., there is some nongeneric ψ(x) such that φ(x)∨
ψ(x) is generic, see Definition 3.28);

(3) μ(φ(x)) > 0 for some G-invariant measure μ;
(4) φ(x) is f -generic (meaning that for any small model M over which φ(x) is

defined, no G-translate of φ(x) forks over M ; see Definition 3.2).

Moreover, for a global type p ∈ SG(U) the following are equivalent:

(1) p is f -generic (i.e., every formula in p is f -generic);
(2) p has a small G-orbit;
(3) Stab(p) = G00.

This is given by Theorem 3.35 and Proposition 3.8 and, combined with Theo-
rem 1.1, solves in particular [CP12, Problem 4.13].

We continue by studying the space of G-invariant measures using VC-theory,
culminating with a characterization of regular ergodic measures (section 4) and
unique ergodicity (section 3.4). Generalizing slightly a construction from [HP11],
we associate to every generic type p ∈ SG(U) a measure μp, which is a lifting of the
Haar measure on the compact group G/G00 via p (see Definition 3.16). It follows
from Theorem 1.2 that the supports of the measures μp are exactly the minimal
subflows of (SG(U), G(U)) (see Proposition 3.31).
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Theorem 1.3. Let G = G(U) be a definably amenable NIP group. Then regular
ergodic measures on SG(U) are precisely the measures of the form μp, for p an
f -generic type in SG(U). If two such measures have the same support, then they
are equal (i.e., minimal subflows of (SG(U), G(U)) are uniquely ergodic).

The first statement is Theorem 4.5 and the second follows from Proposition 3.24.
The following is Theorem 3.36.

Theorem 1.4. Let G = G(U) be a definably amenable NIP group. Then G has a
unique invariant measure if and only if it admits a unique minimal subflow if and
only if it admits a global generic type. Moreover, in such a group all the notions in
Theorem 1.2 coincide with “φ(x) is generic”, and in the moreover part we can add
“p is almost periodic”.

Next we study enveloping semigroups. This notion from topological dynamics
(see [Gla07a]) was introduced in model theory by Newelski [New09]. He observed
that it behaved better when one replaced the dynamical system (SG(M), G(M))
with an extension of it: The set G(M) embeds into SG(U) as realized types, and
we let SG(M

ext) be its closure. Then G(M) acts on SG(M
ext) and this flow admits

SG(M) as a factor. We consider the enveloping semigroup E of the dynamical
system (SG(M

ext), G(M)). In view of the results in [CPS14], E can be identified
with (SG(M

ext), ·), where · is a naturally defined operation extending multiplication
on G(M) (see section 5.3 for details).

Fix a minimal flow M in (SG(M
ext), G(M)) (i.e., a closed G(M)-invariant set),

and an idempotent u ∈ M. Then the general theory of Ellis semigroups implies
that uM is a subgroup of E, which we call the Ellis group. The canonical surjective
homomorphism G → G/G00 factors naturally through the space SG(M

ext), so we
have a well-defined continuous surjection π : SG(M

ext) → G/G00, tp(g/M) �→
gG00, and the restriction of π to the group uM is a surjective homomorphism.
Newelski asked whether under certain model-theoretic assumptions this map could
be shown to be an isomorphism. Pillay later formulated a precise conjecture that
we are able to prove here.

Theorem 1.5 (Ellis group conjecture). Let G be definably amenable and NIP.
Then π : uM → G/G00 is an isomorphism.

In particular, this demonstrates that the Ellis group is indeed a model theoretic
object, i.e., it only depends on the first-order theory of the group and does not
depend on the choice of a small model M over which it is computed. Some special
cases of the conjecture were previously known (see [CPS14]). For the proof, we
establish a form of generic compact domination for minimal flows in definably
amenable groups with respect to the Baire ideal; see Theorem 5.3.

Remark 1.6. We remark that the study of NIP definably amenable groups can be
thought of as a model-theoretic version of tame dynamics as studied by Glasner,
Megrelishvili, and others, see [Gla07b] (in fact, we discovered the connection only
after having essentially completed this work). The NIP assumption implies that
the dynamical system (SG(M), G(M)) is tame—and even null—in the sense of
[Gla07b], [KL07], but it is not equivalent to it. Nullness of this system is equivalent
to the fact that the definable family of translates of any given definable set has
finite VC-dimension (see [KL07, Proposition 5.4(2)]), whereas the NIP condition
implies that any uniformly defined family of sets has finite VC-dimension.
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2. Preliminaries

In this section we summarize some of the context for our results, including the
theory of forking and groups in NIP, along with some general results about families
of sets of finite VC-dimension.

2.1. Combinatorics of VC-families. Let X be a set, finite or infinite, and let
F be a family of subsets of X. Given A ⊆ X, we say that it is shattered by F if
for every A′ ⊆ A there is some S ∈ F such that A ∩ S = A′. A family F is said to
have finite VC-dimension if there is some n < ω such that no subset of X of size
n is shattered by F . If this is the case, we let V C(F) be the largest integer n such
that some subset of X of size n is shattered by it.

If S ⊆ X is a subset and x1, . . . , xn ∈ X, we let

Av(x1, . . . , xn;S) =
1

n
|{i ≤ n : xi ∈ S}|.

Similarly, if (ti)i<n is a set of truth values, we let Av(ti) =
1
n |{i < n : ti = True}.

Later in the paper, we will often write a ≈ε b for |a− b| ≤ ε.
A fundamental fact about families of finite VC-dimension is the following uniform

version of the weak law of large numbers ([VČ71], see also [HP11, Section 4] for a
discussion).

Fact 2.1. For any k > 0 and ε > 0, there is N < ω satisfying the following.
Let (X,μ) be a probability space, and let F be a family of subsets of X of

VC-dimension ≤ k such that:

(1) every set from F is measurable;
(2) for each n, the function fn : Xn → [0, 1] given by

(x1, . . . , xn) �→ sup
S∈F

|Av(x1, . . . , xn;S)− μ(S)|

is measurable;
(3) for each n, the function gn : X2n → [0, 1]

(x1, . . . , xn, y1, . . . , yn) �→ sup
S∈F

|Av(x1, . . . , xn;S)−Av(y1, . . . , yn;S)|

is measurable.

Then there is some tuple (x1, . . . , xN ) ∈ XN such that for any S ∈ F we have
|μ(S)−Av(x1, . . . , xN ;S)| ≤ ε.

The assumptions (2) and (3) are necessary in general (but follow from (1) if the
family F is countable).

Another fundamental fact about VC-families that we will need is the following
theorem about transversal sets due to Matousek. It uses the following definition: a
family G of subsets of some set X has the (p, k)-property if among any p sets in G,
some k have nonempty intersection.

Fact 2.2 ([Mat04]). Let F be a family of subsets of some set X. Assume that
F has finite VC-dimension. Then there is some k < ω such that for every p ≥ k,
there is an integer N such that for every finite subfamily G ⊆ F , if G has the
(p, k)-property, then there is an N -point set intersecting all members of G.
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2.2. Forking in NIP theories. We will use standard notation. We work with
a complete theory T in a language L. We fix a monster model U |= T which
is κ-saturated and κ-strongly homogeneous for κ a sufficiently large strong limit
cardinal.

Recall that a formula φ(x, y) is NIP if the family of subsets {φ(x, a) : a ∈ U} has
finite VC-dimension. The theory T is NIP if all formulas are NIP. In this paper,
we always assume that T is NIP unless explicitly stated otherwise.

We summarize some facts about forking in NIP theories. Recall that a set A is
an extension base if every type p ∈ S(A) has a global extension nonforking over
A. In particular, any model of an arbitrary theory is an extension base, and every
set is an extension base in o-minimal theories, algebraically closed valued fields, or
p-adics.

Definition 2.3 ([CK12]).

(1) A global type q ∈ S(U) is strictly nonforking over a small model M if q
does not fork over M , and for every B ⊇ M and a |= q|B , tp(B/aM) does
not fork over M .

(2) Given q ∈ S(M), we say that (bi : i < κ) is a strict Morley sequence in q
if there is some global extension q′ ∈ S(U) of q strictly nonforking over M
satisfying bi |= q′|Mb<i

for all i < κ.

Fact 2.4 ([CK12]). Assume that T is NIP, and let A be an extension base.

(1) A formula φ(x, a) ∈ L(U) forks over A if and only if it divides over A, i.e.,
the set of formulas dividing over A forms an ideal.

(2) Every q(y) ∈ S(M) admits a global extension strictly nonforking over M .
(3) Assume that φ(x, b) ∈ L(U) forks (equivalently, divides) over M , and let

(bi : i < κ) in U be an infinite strict Morley sequence in tp(b/M). Then
{φ(x, bi) : i < κ} is inconsistent.

From now on, we will freely use the equivalence of forking and dividing over
models in NIP theories.

Fact 2.5 (See, e.g., [HP11, Proposition]). Assume that T is NIP and M |= T . A
global type p(x) does not fork (equivalently, does not divide) over M if and only if
it is M -invariant. This is, for every φ(x, a) and a′ ≡M a, we have p � φ(x, a) ⇔
p � φ(x, a′).

Remark 2.6. In particular, in view of Fact 2.4, if π(x) is a partial type that does not
divide over M (e.g., if π(x) is M -invariant), then it extends to a global M -invariant
type.

Now let p(x), q(y) be global types invariant over M . For any set D ⊇ M , let
b |= q|D, a |= p|Db. Then by invariance of p and q, the type tp(ab/D) does not
depend on the choice of a, b. Call this type (p⊗ q)D, and let

p⊗ q =
⋃

{(p⊗ q)D : M ⊆ D ⊆ U small}.

Then (p⊗ q)(x, y) is a well-defined, global invariant type over M .
Let p(x) be a global type invariant over M . Then one defines

p(n)(x0, . . . , xn−1) = p(xn−1)⊗ · · · ⊗ p(x0),

p(ω)(x0, x1, . . .) =
⋃
n<ω

p(n)(x0, . . . , xn−1).
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For any small setD ⊇ M and (ai)i<ω |= p(ω)|D, the sequence (ai)i<ω is indiscernible
over D.

We now discuss Borel definability. Let p(x) be a global M -invariant type, pick
a formula φ(x, y) ∈ L, and consider the set Sp,φ = {a ∈ U : φ(x, a) ∈ p}. By
invariance, this set is a union of types over M . In fact, it can be written as
a finite boolean combination of M -type-definable sets ([HP11]). Specifically, let
Altn(x0, . . . , xn−1) =

∧
i<n−1 ¬ (φ(xi, y) ↔ φ(xi+1, y)) , and let An(y) and Bn(y)

be the type-definable subsets of U defined by

∃x0 · · ·xn−1

(
p(n)|M (x0, . . . , xn−1) ∧ Altn(x0, . . . , xn−1) ∧ φ (xn−1, y)

)
and

∃x0 · · ·xn−1

(
p(n)|M (x0, . . . , xn−1) ∧Altn(x0, . . . , xn−1) ∧ ¬φ (xn−1, y)

)
,

respectively.
Then for some N < ω, Sp,φ =

⋃
n<N (An ∧ ¬Bn+1).

Note that the set of all global M -invariant types is a closed subset of S(U). We
now consider the local situation. Let φ(x, y) ∈ L be a fixed formula, and let Sφ(U)
be the space of all global φ-types (i.e., maximal consistent collections of formulas of
the form φ(x, b),¬φ(x, b), b ∈ U). Let Invφ(M) be the set of all global M -invariant
φ-types—a closed subset of Sφ(U), which we equip with the induced topology.

Fact 2.7 ([Sim15b]). Let M be a countable model, and let φ(x, y) be NIP. For any
set Z ⊆ Invφ(M) and p ∈ Invφ(M), if p ∈ Z (i.e., in the topological closure of Z),
then p is the limit of a countable sequence of elements of Z.

2.3. Keisler measures. Now we introduce some terminology and basic results
around the study of measures in model theory. A Keisler measure μ(x) (or μx)
over a set of parameters A is a finitely additive probability measure on the boolean
algebra Defx(A) of A-definable subsets of U in the variable x. Alternatively, a
Keisler measure μ(x) may be viewed as assigning a measure to the clopen basis of
the space of types Sx(U). A standard argument shows that it can be extended in a
unique way to a countably additive regular probability measure on all Borel subsets
of Sx(U) (see, e.g., [Sim15a, Chapter 7] for details). From now on we will just say
“measure” unless it could create some confusion.

For a measure μ over A we denote by S(μ) its support: the set of types weakly
random for μ, i.e., the closed set of all p ∈ S(A) such that for any φ(x), φ(x) ∈ p
implies μ(φ(x)) > 0.

Remark 2.8. Let Mx(A) denote the set of measures over A in variable x; it is
naturally equipped with a compact topology as a closed subset of [0, 1]Lx(A) with
the product topology. Every type over A can be identified with the {0, 1}-measure
concentrating on it; thus Sx(A) is identified with a closed subset of Mx(A).

The following implication of Fact 2.1 was observed in [HP11, Section 4].

Fact 2.9. Let T be NIP. Let μ(x) a measure over A, let Δ = {φi (x, yi)}i<m be
a finite set of L-formulas, and let ε > 0 be arbitrary. Then there are some types
p0, . . . , pn−1 ∈ Sx (A) such that for every a ∈ A and φ (x, y) ∈ Δ, we have

|μ (φ (x, a))−Av (p0, . . . , pn−1;φ (x, a))| ≤ ε.

Furthermore, we may assume that pi ∈ S (μ), the support of μ, for all i < n.
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Corollary 2.10. Let T be an NIP theory in a countable language L, and let μ be
a measure. Then the support S(μ) is separable (with respect to the topology induced
from S(U)).

Proof. By Fact 2.9 for any finite Δ⊆L and k<ω, we can find some pΔ0 , . . . , p
Δ
nΔ
k −1

∈
S(μ) such that for any φ(x, y) ∈ Δ and any a ∈ U we have

μ(φ(x, a)) ≈ 1
k Av(pΔ0 , . . . , p

Δ
nΔ
k −1;φ(x, a)).

Let S0 =
⋃

k<ω,Δ⊆L finite{pΔi : i < nΔ
k }. Then S0 is a countable subset of S(μ),

and we claim that it is dense. Let U be a nonempty open subset of S(μ). Then
there is some formula φ(x) ∈ L(U) such that ∅ �= φ(x) ∩ S(μ) ⊆ U . In particular
μ(φ(x)) > 0, hence for some k and Δ large enough, we have by the construction of
S0 that necessarily φ(x) ∈ pΔi for at least one i < nΔ

k . �

A measure μ ∈ Mx(U) is nonforking over a small model M if for every formula
φ(x) ∈ L(U) with μ(φ(x)) > 0, φ(x) does not fork over M . A theory of forking
for measures in NIP generalizing the previous section from types to measures is
developed in [HP11,HPS13]. In particular, a global measure nonforking over a small
modelM is in fact Aut(U/M)-invariant. Moreover, using Fact 2.9 along with results
in section 2.2, one shows that a global measure μ invariant over M is Borel definable
over M , i.e., for any φ(x, y) ∈ L, the map fφ : Sy(M) → [0, 1], q �→ μ(φ(x, b)), b |= q
is Borel (and it is well-defined by M -invariance of μ). This allows us to define
a tensor product of M -invariant measures: Given μ ∈ Mx(U), ν ∈ My(U) M -
invariant and φ(x, y) ∈ L(U), let N ⊇ M be some small model over which φ is
defined. We define μ ⊗ ν(φ(x, y)) by taking

∫
q∈Sy(N)

fφ(q)dν
′, where ν′ = ν|N is

viewed as a Borel measure on Sy(N). Then μ⊗ ν is a global M -invariant measure.

We will need the following basic combinatorial fact about measures (see [HPP08]
or [Sim15a, Lemma 7.5]).

Fact 2.11. Let μ be a Keisler measure, let φ(x, y) be a formula, and let (bi)i<ω be
an indiscernible sequence. Assume that for some ε > 0, we have μ(φ(x, bi)) ≥ ε for
every i < ω. Then the partial type {φ(x, bi) : i < ω} is consistent.

2.4. Model-theoretic connected components. Now let G = G(U) be a defin-
able group. Let A be a small subset of U . We say that H ≤ G has bounded index
if |G : H| is smaller than the saturation of U , and we define the following:

• G0
A =

⋂
{H ≤ G : H is A-definable, of finite index}.

• G00
A =

⋂
{H ≤ G : H is type-definable over A, of bounded index}.

• G∞
A =

⋂
{H ≤ G : H is Aut (U/A)-invariant, of bounded index}.

Of course G0
A ⊇ G00

A ⊇ G∞
A for any A, and these are all normal A-invariant sub-

groups of G.

Fact 2.12 (See, e.g., [Sim15a, Chapter 8] and references therein). Let T be NIP.
Then for every small set A we have G0

A = G0
∅, G

00
A = G00

∅ , G∞
A = G∞

∅ . Moreover,

|G/G∞| ≤ 2|T |.

We will be omitting ∅ in the subscript and write, for instance, G00 for G00
∅ .

Remark 2.13. It follows that G∞ is equal to the subgroup of G generated by the
set {g−1h : g ≡M h} for any small model M .
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Let π : G → G/G00 be the canonical projection map.
The quotient G/G00 can be equipped with a natural “logic” topology: a set

S ⊆ G/G00 is closed iff π−1 (S) is type-definable over some (equivalently, any)
small model M .

Fact 2.14 ([Pil04]). The group G/G00 equipped with the logic topology is a com-
pact topological group.

Remark 2.15. If L is countable, then G/G00 is a Polish space with respect to the
logic topology. Indeed, there is a countable model M such that every closed set is a
projection of a partial type over M , and {π(φ(U))c : φ(x) ∈ L(M)} is a countable
basis of the topology.

In particular, G/G00 admits an invariant normalized Haar probability measure
h0. Furthermore, h0 is the unique left-G/G00-invariant Borel probability measure
on G/G00 (see, e.g., [Hal50, Section 60]), as well as simultaneously the unique
right-G/G00-invariant Borel probability measure on G/G00.

The usual completion procedure for a measure preserves G-invariance, so we may
take h0 to be complete.

3. Generic sets and measures

3.1. G-dividing, bounded orbits, and definable amenability. Context : We
work in an NIP theory T , and let G = G(U) be an ∅-definable group.

We will consider G as acting on itself on the left. For any model M , this action
extends to an action of G(M) on the space SG(M) of types concentrating on G.
Hence, if p ∈ SG(M) and g ∈ G(M), we have g · p = tp(g · a/M) where a |= p. The
group G(M) also acts on M -definable subsets of G by (g · φ)(x) = φ(g−1 · x) and
on measures by (g · μ)(φ(x)) = μ(φ(g · x)).

One could also consider the right action of G on itself and obtain corresponding
notions. Contrary to the theory of stable groups, this would not yield equivalent
definitions (see section 6.1 for a discussion).

Definition 3.1. The group G is definably amenable if it admits a global Keisler
measure μ on definable subsets of G(U) which is invariant under (left-) translation
by elements of G(U).

As explained for example in [Sim15a, 8.2], if for some model M , there is a G(M)-
invariant Keisler measure onM -definable subsets ofG, thenG is definably amenable
(it can be seen by taking an elementary extension M expanded by predicates for
the invariant measure).

Definition 3.2.

(1) Let φ(x) be a subset of G defined over some model M . We say that φ(x)
(left-) G-divides if there is an M -indiscernible sequence (gi : i < ω) such
that {gi · φ(x) : i < ω} is inconsistent.

(2) The formula φ(x) is (left-) f -generic over M if no translate of φ(x) forks
over M . We say that φ(x) is f -generic if it is f -generic over some small M .
A (partial) type is f -generic if every formula implied by it is f -generic.

(3) A global type p is called (left-) strongly f-generic over M if no G(U)-
translate of p forks over M . A global type p is strongly f -generic if it
is strongly f -generic over some small model M .
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Note that we change the usual terminology: our notion of strongly f -generic
corresponds to what was previously called f -generic in the literature (see, e.g.,
[HP11]). We feel that this change is justified by the development of the theory
presented here.

Note that if μ is a global G-invariant and M -invariant measure and p ∈ S(μ),
then p is strongly f -generic over M since all its translates are weakly random for
μ. It is shown in [HP11] how to conversely obtain a measure μp from a strongly
f -generic type p. We summarize some of the results from [HP11] in the following
fact.

Recall that the stabilizer of p is StabG(p) = {g ∈ G : g · p = p}.
Fact 3.3.

(1) If G admits a strongly f -generic type over some small model M , then it
admits a strongly f -generic type over any model M0.

(2) If p is strongly f -generic, then StabG(p) = G00 = G∞(= 〈{g−1h : g ≡M h}〉
for any small model M).

(3) The group G admits a G-invariant measure if and only if there is a global
strongly f -generic type in SG(U).

Our first task is to understand basic properties of f -generic formulas and types.

Proposition 3.4. Let G be a definably amenable group, and let φ(x) ∈ LG(M).
Let also p(x) ∈ SG(U) be strongly f -generic, M -invariant and take g |= p|M . Then
the following are equivalent:

(1) φ(x) is f -generic over M ;
(2) φ(x) does not G-divide;
(3) g−1 · φ(x) does not fork over M .

Proof.
(2) ⇒ (1): Assume that some translate h · φ(x) forks over M . Then it divides

over M , and as φ(x) is over M , we obtain an M -indiscernible sequence (hi : i < ω)
such that {hi · φ(x) : i < ω} is inconsistent. This shows that φ(x) G-divides.

(1) ⇒ (3): This is clear.
(3) ⇒ (2): Assume that φ(x) does G-divide, and let (gi : i < ω) be an M -

indiscernible sequence witnessing it; i.e., {gi · φ(x) : i < ω} is k-inconsistent for
some k < ω. By indiscernibility, all of the gi’s are in the same G00-coset, and
replacing gi by g−1

0 gi+1, we may assume that gi ∈ G00 for all i.
Let h realize p over (gi)i<ωM . Then g−1

i · h |= p|M by G00-invariance of p. As
the set {gi · φ(x) : i < ω} is inconsistent, so is {h−1gi · φ(x) : i < ω}. Then the
sequence (g−1

i · h : i < ω) is an M -indiscernible sequence in p|M = tp(g/M) (as
tp(h/(gi)i<ωM) is M -invariant). Therefore, g−1 · φ(x) divides over M . �

Note that we do not say “G-divides over M”, because the model M does not
matter in the definition: for any M ≺ N , an M -definable φ(x) G-divides over M if
and only if it G-divides over N . Therefore, the same is true for f -genericity (i.e.,
if φ(x) is both M -definable and N -definable, then it is f -generic over M if and
only if it is f -generic over N), and from now on we will just say f -generic, without
specifying the base.

Corollary 3.5. Let G be definably amenable. The family of nonf-generic formulas
(equivalently, G-dividing formulas) forms an ideal. In particular, every partial f -
generic type extends to a global one.



620 ARTEM CHERNIKOV AND PIERRE SIMON

Proof. Assume that φ(x), ψ(x) are not f -generic, and let M be some small model
over which both formulas are defined. Also let p be a global type strongly f -generic
over M (exists by Fact 3.3) and take g |= p|M . Then by Fact 3.4(3) we have
that both g−1 · φ(x), g−1 · ψ(x) fork over M , in which case g−1 · (φ(x) ∨ ψ(x)) =
g−1 ·φ(x)∨g−1 ·ψ(x) also forks over M . Applying Fact 3.4(3) again, it follows that
φ(x) ∨ ψ(x) is not f -generic.

The “in particular” statement follows by compactness. �

Lemma 3.6. Let G be definably amenable, let φ(x) ∈ LG(U) be a formula, and
let g ∈ G00. Then φ(x)�g · φ(x) is not f -generic (and hence it G-divides by
Proposition 3.4).

Proof. Let M be a model over which φ(x) and g are defined. Let p ∈ SG(U) be a
global strongly f -generic type which is M -invariant (exists by Fact 3.3(1)), and let
h realize p over Mg. Then h−1 · (φ(x)�g ·φ(x)) = (h−1 ·φ(x))�(h−1g ·φ(x)). Since
h ≡M g−1h (as g−1 ∈ StabG(p) by Fact 3.3(2)), the latter formula cannot belong
to any global M -invariant type, and so it must fork over M by Remark 2.6. Hence
φ(x)�g · φ(x) is not f -generic. �

Definition 3.7. A global type p(x) ∈ SG(U) has a bounded orbit if |G · p| < κ for
some strong limit cardinal κ such that U is κ-saturated.

Proposition 3.8. Let G be definably amenable. For p ∈ SG(U), the following are
equivalent:

(1) p is f -generic;
(2) p is G00-invariant (and StabG(p) = G00);
(3) p has a bounded orbit.

Proof.
(1) ⇒ (2): If p is not G00-invariant, then φ(x)�gφ(x) ∈ p for some g ∈

G00, φ(x) ∈ LG(U), and so p is not f -generic by Lemma 3.6. Hence, G00 ⊆
StabG(p). Given an arbitrary a ∈ StabG(p), let M be a small model contain-
ing a, and let b |= p|M . Then a · b |= p|M , hence a = (a · b) · b−1 and a · b ≡M b. By
Fact 3.3(2) it follows that a ∈ G00, hence StabG(p) = G00.

(2) ⇒ (3): If p is G00-invariant, then the size of its orbit is bounded by the index
of G00 (which is ≤ 2|T |).

(3) ⇒ (1): If p is not f -generic, then some φ(x) ∈ p must G-divide (by Proposi-
tion 3.4). Then, as in the proof of Proposition 3.4, we can find an arbitrarily long
indiscernible sequence (gi)i<λ in G00 such that {giφ(x) : i < λ} is k-inconsistent
for some k < ω, which implies that the G-orbit of p is unbounded. �

Next we clarify the relationship between f -generic and strongly f -generic types
in definably amenable groups.

Proposition 3.9. Let G be definably amenable. A type p ∈ SG (U) is strongly
f -generic if and only if it is f -generic and M -invariant over some small model M .

Proof. Strongly f -generic implies f -generic is clear.
Conversely, assume that p is M -invariant but not strongly f -generic over M .

Then g · p divides over M for some g ∈ G. It follows that there is some φ (x, a) ∈
p such that for any κ there is some M -indiscernible sequence (gi âi)i<κ with
g0ˆa0 = gˆa and such that {gi · φ (x, ai)}i<κ is k-inconsistent for some k < ω. By
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M -invariance of p we have that φ (x, ai) ∈ p, so {gi · p (x)}i<κ is k-inconsistent.
This implies that the orbit of p is unbounded and that p is not f -generic in view
of Proposition 3.8. �

Example 3.10. There are f -generic types which are not strongly f -generic. Let R
be a saturated model of RCF. We give an example of a G-invariant (and so f -generic
by Proposition 3.8) type in G = (R2; +) which is not invariant over any small model
(and so not strongly f -generic by Proposition 3.9). Let p(x) ∈ S1(R) denote the
definable 1-type at +∞, and let q(y) ∈ S1(R) denote a global 1-type which is not
invariant over any small model (hence corresponds to a cut of maximal cofinality
from both sides). Then p and q are weakly orthogonal types. Let (a, b) |= p × q
(in some bigger model), and consider r := tp(a, a · b/R). Then r ∈ SG(R) is a
G-invariant type which is not invariant over any small model.

The following lemma is standard.

Lemma 3.11. Let N � M be |M |+-saturated, and let p ∈ SG(N) be such that g · p
does not fork over M for every g ∈ G(N). Then p extends to a global type strongly
f -generic over M .

Proof. It is enough to show that

p(x) ∪ {¬(g · φ(x, a)) : g ∈ G(U), φ(x, a) ∈ L(U) forks over M}
is consistent. Assume not. Then p(x) �

∨
i<n gi · φi(x, ai) for some gi ∈ G(U),

φi(x, y) ∈ L, and ai ∈ U such that φi(x, ai) forks over M . By |M |+-saturation of
N and compactness, we can find some (g′i, a

′
i)i<n ≡M (gi, ai)i<n in N such that

p(x) �
∨

i<n g
′
i · φi(x, a

′
i), which implies that g′i · φi(x, a

′
i) ∈ p for some i < n, i.e.,

(g′i)
−1 · p forks over M . But this contradicts the assumption on p. �

Finally for this subsection, we prove Theorem 1.1. For NIP groups, definable
amenability is characterized by the existence of a type with a bounded orbit, proving
Petrykowski’s conjecture for NIP theories (see [New12, Conjecture 0.1]). In fact,
existence of a measure with a bounded orbit is sufficient.

Theorem 3.12. Let T be NIP, let U |= T , and let G = G(U) be a definable group.
Then the following are equivalent:

(1) G is definably amenable;
(2) |G · p| ≤ 2|T | for some p ∈ SG(U);
(3) some measure μ ∈ MG(U) has a bounded G-orbit.

Proof.
(1) ⇒ (2): If G is definably amenable, then it has a strongly f -generic type

p ∈ SG(U) by Fact 3.3 and such a type is G00-invariant. In particular its orbit has
size at most |G/G00| ≤ 2|T |.

(2) ⇒ (3): This is obvious.
(3) ⇒ (1): Assume that |Gμ| < κ, with κ strong limit and U is κ-saturated.

Let M be a model with |M | = |T |, let N0 � M be an |M |+-saturated submodel
of U of size 2|M | < κ (exists as κ is a strong limit cardinal), and let (Ni)i<κ be
a strict Morley sequence in tp (N0/M) contained in U (exists by κ-saturation of
U and Fact 2.4(2)). In particular Ni is an |M |+-saturated extension of M for all
i < κ.
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Let μi = μ|Ni
. It is enough to show that for some i < κ, the measure gμi does

not fork over M for any g ∈ G(Ni), as then any type in the support of μi extends
to a global type strongly f -generic over M by Lemma 3.11, and we can conclude
by Fact 3.3.

Assume not. Then for each i < κ, we have some gi ∈ G (Ni) and some φi(x, ci) ∈
L(Ni) such that giμi(φ(x, ci)) > 0, but φi(x, ci) forks over M .

As the orbit of μ is bounded, by throwing away some i’s we may assume that
there is some g ∈ G such that giμ = gμ for all i < κ, in particular (gμ)|Ni

= giμi.
By the pigeonhole principle and the assumption on κ, we may assume also that there
are some φ(x, y) ∈ L and ε > 0 such that φi(x, yi) = φ(x, y) and gμ(φ(x, ci)) > ε
for all i < κ, and that the sequence (ci : i < κ) is indiscernible (i.e., the ci’s occupy
the same place in the enumeration of Ni, for all i, and the sequence (Ni)i<κ is
indiscernible by construction). Applying Fact 2.11 to the measure gμ, we conclude
that {φ(x, ci) : i < κ} is consistent. But as (ci) is a strict Morley sequence,
this contradicts the assumption that φ(x, ci) divides over M for all i, in view of
Fact 2.4(3). �
Remark 3.13.

(1) In the special case of types in o-minimal expansions of real closed fields,
this was proved in [CP12, Corollary 4.12].

(2) Theorem 3.12 also shows that the issues with absoluteness of the existence
of a bounded orbit considered in [New12] do not arise when one restricts
to NIP groups.

3.2. Measures in definably amenable groups.

3.2.1. Construction. Again, we are assuming throughout this section that G =
G(U) is an NIP group. We generalize the connection between G-invariant measures
and strongly f -generic types from Fact 3.3 to f -generic types in definably amenable
groups.

First we generalize Proposition 3.8 to measures.

Proposition 3.14. Let G be definably amenable, and let μ be a Keisler measure
on G. The following are equivalent:

(1) The measure μ is f -generic, that is μ(φ(x)) > 0 implies φ(x) is f -generic
for all φ(x) ∈ LG(U).

(2) All types in the support S(μ) are f -generic.
(3) The measure μ is G00-invariant.
(4) The orbit of μ is bounded.

Proof. The equivalence of (1) and (2) is clear by compactness, (1) implies (3) is
immediate by Lemma 3.6, and (3) implies (4) as the size of the orbit of a G00-
invariant measure is bounded by |G/G00|.

(4) ⇒ (1): Assume that we have some G-dividing φ(x) with μ(φ(x)) > ε > 0. As
in the proof of Proposition 3.4 (3)⇒ (2), we can find an arbitrarily long indiscernible
sequence (gi)i∈λ with gi ∈ G00 such that {giφ(x)} is k-inconsistent, for some fixed
k < ω.

In view of Fact 2.11 for any fixed i < λ, there can be only finitely many j < λ
such that giμ(gjφ(x)) > ε. But giμ(gjφ(x)) = g−1

j giμ(φ(x)). This implies that
giμ �= gjμ for all but finitely many j < λ, which then implies that the orbit of μ is
unbounded. �
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In [HP11, Proposition 5.6] it is shown that one can lift the Haar measure on
G/G00 to a global G-invariant measure on all definable subsets of an NIP group G
using a strongly f -generic type. We point out that in a definably amenable NIP
group, an f -generic type works just as well. For this we need a local version of the
argument used there.

Fix a small model M , and let FM be the set of formulas of the form g · φ (x) or
¬g · φ(x), for g ∈ G (U) , φ (x) ∈ LG (M).

Proposition 3.15. Let G be definably amenable, and let p be a maximal finitely
consistent set of formulas in FM . Then p is f -generic if and only if g · p is M -
invariant for every g ∈ G.

Proof. Notice that g · p(x) is also a set of formulas in FM . Assume that g · p (x)
is not M -invariant. Then gp � g0φ (x)�g1φ (x) for some φ (x) ∈ L (M) and
g0 ≡M g1. Hence g−1

1 gp � g−1
1 g0φ(x)Δφ(x) and g−1

1 g0 ∈ G00 (by Fact 3.3(2)).
Then (g−1

1 g0)φ(x)�φ(x) is not f -generic by Lemma 3.6, and so p is not f -generic,
a contradiction.

Conversely, assume that some formula ψ(x) implied by p(x) is not f -generic. Let
N ⊇ M contain the parameters of ψ. Then there is some (hi)i<ω indiscernible over
N such that {hiψ(x)}i<ω is k-inconsistent. Then h0ψ(x) ∈ h0p, but hiψ(x) /∈ h0(p)
for some i < ω. So h0p is not N -invariant and, thus, also not M -invariant. �

Definition 3.16. Let G = G(U) be definably amenable, and let p ∈ SG(U) be
f -generic. Keeping in mind that p (as well as all its translates) is G00-invariant (by
Proposition 3.8), we define a measure μp on G by

μp(φ(x)) = h0({ḡ ∈ G/G00 : φ(x) ∈ g · p}),

where h0 is the normalized Haar measure on the compact group G/G00 and ḡ =
g/G00.

We have to check that this definition makes sense; that is, that the set we
take the measure of is indeed measurable. Let M be a small model over which
φ(x) is defined. Let pM be the restriction of p to formulas from FM (as defined
above). By Proposition 3.15, pM is M -invariant. It follows that pM extends to some
complete M -invariant type (by Remark 2.6). Then we can use Borel definability
of invariant types (applied to the family of all translates of φ(x)), exactly as in
[HP11, Proposition 5.6] to conclude.

Remark 3.17.

(1) The measure μp that we just constructed is clearly G-invariant and G00-
strongly invariant (that is, μp(φ(x)�g · φ(x)) = 0 for g ∈ G00). Besides,
μp = μgp for any g, p.

(2) We have S(μp) ⊆ G · p. Indeed, if q ∈ S(μp) and φ(x) ∈ q arbitrary, then
μp(φ(x)) > 0, which by the definition of μp implies that g · p � φ(x) for
some g ∈ G.
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Question 3.18.1 Let G = G(U) be an NIP group. Are the following two properties
equivalent?

(1) G is definably amenable.
(2) G admits a global f -generic type (equivalently, the family of all non-f -

generic subsets of G is an ideal).

3.2.2. Approximation lemmas. Throughout this section, G = G(U) is a definably
amenable NIP group. Given a G00-invariant type p(x) ∈ SG(U) and a formula
φ(x) ∈ LG(U), let Aφ,p := {ḡ ∈ G/G00 : φ(x) ∈ ḡ · p}.

Note that Ag·φ,p = ḡ ·Aφ,p and Aφ,g·p = Aφ,p · ḡ−1, where ḡ is the image of g in
G/G00.

Lemma 3.19. For a fixed formula φ(x, y), let Aφ ⊆ P(G/G00) be the family of all
Aφ(x,b),p, where b varies over U and p varies over all f -generic types on G. Then
Aφ has finite VC-dimension.

Proof. Let ḡ0, . . . , ḡn−1 be shattered by Aφ. Then for any I ⊆ n, there is some
Aφ(x,bI),pI

which cuts out that subset. Take representatives g0, . . . , gn−1 ∈ G of the
ḡi’s. Let aI |= pI |g0,...,gn−1bI , then we have φ(giaI , bI) if and only if i ∈ I. Hence
the VC-dimension of Aφ is at most that of ψ(u;x, y) = φ(ux, y), so it is finite by
NIP. �

Replacing the formula φ(x; y) by φ′(x; y, u) := φ(u−1 ·x; y), we may assume that
any translate of an instance of φ is again an instance of φ. Note also that then for
any parameters a, b we have

ḡ1Aφ′(x;a,b),pḡ2 = Ag1φ′(x;a,b),g−1
2 p = Aφ′(x;a′,b′),g−1

2 p

for some a′, b′. Using this and applying Lemma 3.19 to φ′(x; y, u), we get the
following corollary.

Corollary 3.20. For any φ(x, y) ∈ LG(U), the family

Fφ = {ḡ1 ·Aφ(x,b),p · ḡ2 : ḡ1, ḡ2 ∈ G/G00, b ∈ U , p ∈ SG(U) f -generic}
has finite VC-dimension.

We would now like to apply the VC-theorem to Fφ. This requires verifying an
additional technical hypothesis (assumptions (2) and (3) in Fact 2.1), which we are
only able to show for certain (sufficiently representative) subfamilies of Fφ.

Fix φ(x) ∈ LG(U), and let S be a set of global f -generic types. Let

Fφ,S :=
{
ḡ1 ·Aφ(x),p · ḡ2 : ḡ1, ḡ2 ∈ G/G00, p ∈ S

}
.

Lemma 3.21. If S is countable and L is countable, then Fφ,S satisfies all of the
assumptions of Fact 2.1 with respect to the measure h0.

Proof. First of all, the family of sets Fφ,S has finite VC-dimension by Corollary 3.20
and the obvious inclusion Fφ,S ⊆ Fφ.

Next, (1) is satisfied by the assumption that S consists of f -generic types and
an argument as in the discussion after Definition 3.16 (using countability of the
language).

1We have claimed an affirmative answer in an earlier version of this article, however a mistake
in our argument was pointed out by the referees.
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For a set S′ of global f -generic types, let

fS′,n(x0, . . . , xn−1) := sup
Y ∈Fφ,S′

{|Av(x0, . . . , xn−1;Y )− h0(Y )|},

gS′,n(x0, . . . , xn−1, y0, . . . , yn−1) := sup
Y ∈Fφ,S′

{|Av(x0, . . . , xn−1;Y )

−Av(y0, . . . , yn−1;Y )|}.
For (2) and (3) we need to show that fS,n and gS,n are measurable for all n < ω.

Note that fS,n = supp∈S f{p},n and gS,n = supp∈S g{p},n. Since S is countable, it
is enough to show that for a fixed f -generic type p the functions fn := f{p},n and
gn := g{p},n are measurable.

Let A = Aφ,p. By G/G00-invariance of h0 on both the left and the right, we
have

fn(x0, . . . , xn−1) = max
ḡ1,ḡ2∈G/G00

|Av(x0, . . . , xn−1; ḡ1 ·A · ḡ2)− h0(A)|

and

gn(x0, . . . , xn−1, y0, . . . , yn−1) = max
ḡ1,ḡ2∈G/G00

|Av(x0, . . . , xn−1; ḡ1 ·A · ḡ2)

−Av(y0, . . . , yn−1; ḡ1 ·A · ḡ2)|.
Then it is enough to show that for a fixed I ⊆ n, the set

AI = {(x0, . . . , xn−1) ∈ (G/G00)n : for some ḡ1, ḡ2 ∈ G/G00,

xi ∈ ḡ1 ·A · ḡ2 ⇐⇒ i ∈ I}
is measurable. But we can write AI as the projection of A′

I ⊆ (G/G00)n+2 where

A′
I is the intersection of {(ḡ1, ḡ2, x0, . . . , xn−1) : ḡ−1

1 xiḡ
−1
2 ∈ A} for i ∈ I and

{(ḡ1, ḡ2, x0, . . . , xn−1) : ḡ−1
1 xiḡ

−1
2 /∈ A} for i /∈ I. As group multiplication is con-

tinuous and A is Borel, those sets are Borel as well. Hence AI is analytic. Now
G/G00 is a Polish space (as L is countable, by Remark 2.15), and analytic subsets
of Polish spaces are universally measurable (see, e.g., [Kec95, Theorem 29(7)]). In
particular they are measurable with respect to the complete Haar measure h0. �

The next lemma will allow us to reduce to a countable sublanguage.

Lemma 3.22. Let L0 be a sublanguage of L, let T0 be the L0-reduct of T , let G
be an L0-definable group definably amenable (in the sense of T ), and let φ(x) be a
formula from L0(U). Let p ∈ SG(U) be a global L-type which is f -generic, and let
p0 = p|L0

.

(1) In the sense of T0, the group G is definably amenable NIP and p0 is an
f -generic type.

(2) Let G00
L0

be the connected component computed in T0, and let μp0
(μp) be

the G-invariant measure on L0-definable (resp., L-definable) subsets of G
given by Definition 3.16 in T0 (resp., in T ). Then μp(φ(x)) = μp0

(φ(x)).

Proof.
(1) The first assertion is clear. Similarly, it is easy to see that if ψ(x) ∈ L0 is G-

dividing in T0, then it is G-dividing in T (by extracting an L-indiscernible sequence
from an L0 indiscernible sequence). Then p0 is f -generic by Fact 3.4 applied in T0.

(2) Let A = {ḡ ∈ G/G00 : g · p � φ(x)} and A0 = {ḡ ∈ G/G00
L0

: g · p0 �
φ(x)}, then by definition μp(φ(x)) = h0(A) and μp0

(φ(x)) = h′
0(A0), where h0 is
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the Haar measure on G/G00 and h′
0 is the Haar measure on G/G00

L0
. The map

f : G/G00 → G/G00
L0
, g/G00 �→ g/G00

L0
is a surjective group homomorphism, and

it is continuous with respect to the logic topology. Note that for any g ∈ G, we
have g · p0 � φ(x) ⇐⇒ g · p � φ(x), so A = f−1(A0). Let h∗

0 = f∗(h0) be the
push-forward measure, it is an invariant measure on G/G00

L0
. But by the uniqueness

of the Haar measure, it follows that h∗
0 = h′

0, and so h0(A) = h∗
0(A0) = h′

0(A0),
i.e., μp(φ(x)) = μp0

(φ(x)) as wanted. �

Proposition 3.23. For any φ(x) ∈ LG(U), ε > 0, and a countable set of f -generic
types S ⊆ SG(U), there are some g0, . . . , gn−1 ∈ G such that for any g, g′ ∈ G and
p ∈ S, we have μgp(g

′φ(x)) ≈ε Av(gjg
′φ(x) ∈ gp).

Proof. First assume that the language L is countable. Using Lemma 3.21, we
can apply the VC-theorem (Fact 2.1) to the family F ′ = Fφ,S and find some
g0, . . . , gn−1 ∈ G/G00 such that for any Y ∈ F ′, we have Av(g0, . . . , gn−1;Y ) ≈ε

h0(Y ). Let gi ∈ G be some representative of gi, for i < n. Let g, g′ ∈ G and p ∈ S
be arbitrary. Recall that μgp(g

′φ(x)) = h0(Ag′φ,gp) and that Ag′φ,gp = g′Aφ,pg
−1,

where g = g/G00, g′ = g′/G00. Then Ag′φ,gp ∈ F ′, and we have μgp(g
′φ(x)) ≈ε

Av(g0, . . . , gn−1;Ag′φ,gp) = Av(g−1
0 g′φ(x), . . . , g−1

n−1g
′φ(x); gp).

Now let L be an arbitrary language, let L0 be an arbitrary countable sublanguage
such that φ(x) ∈ L0 and G is L0-definable, and let T0 be the corresponding reduct.
Let S0 = {p|L0

: p ∈ S}, by Lemma 3.22 it is a countable set of f -generic types
in the sense of T0. Applying the countable case with respect to S0 inside T0, we
find some g0, . . . , gn−1 ∈ G such that for any g, g′ ∈ G and p0 ∈ S0, we have
μgp0

(g′φ(x)) ≈ε Av(gjg
′φ(x) ∈ gp0). Let p ∈ S be arbitrary, and take p0 = p|L0

.
On the one hand, the right-hand side is equal to Av(gjg

′φ(x) ∈ gp). On the other
hand, as g′φ(x) ∈ L0(U) and gp0 = gp|L0

is f -generic, by Lemma 3.22 the left-hand
side is equal to μgp(g

′φ(x)), as wanted. �

Proposition 3.24. Let p be an f -generic type, and assume that q ∈ G · p. Then q
is f -generic and μp = μq.

Proof. First of all, q is f -generic because the orbit of p consists of f -generic types
and the set of f -generic types is closed.

Take a formula φ(x) ∈ LG(U) and ε > 0, and let g0, . . . , gn−1 be as given
by Proposition 3.23 for S = {p, q}. Then we have μq(φ(x)) ≈ε Av(giφ(x); q).

As q ∈ G · p, there is some g ∈ G such that for each i < n, we have giφ(x) ∈
q ⇐⇒ giφ(x) ∈ gp. But we also have μgp(φ(x)) ≈ε Av(giφ(x); gp), which together
with μgp = μp implies μp(φ(x)) ≈2ε μq(φ(x)). As φ(x) and ε were arbitrary, we
conclude. �

Proposition 3.25. Let p be an f -generic type. Then for any definable set φ(x),
if μp(φ(x)) > 0, then there is a finite union of translates of φ(x) which covers the
support S(μp) (so in particular it has μp-measure 1).

Proof. As S(μp) ⊆ G · p (Remark 3.17), any type q weakly random for μp is f -
generic and satisfies μq = μp by Proposition 3.24. Hence μq(φ(x)) > 0, so some
translate of φ(x) must be in q. It follows that the closed compact set S(μp) can be
covered by translates of φ, so by finitely many of them. �
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Lemma 3.26. Let μ be G-invariant. Then for any ε > 0 and φ(x, y), there are
some f -generic p0, . . . , pn−1 ∈ S(μ) such that

μ(φ(x, b)) ≈ε 1

n

∑
i<n

μpi
(φ(x, b))

for any b ∈ U .

Proof. As before, we may assume that every translate of an instance of φ(x, y) is
an instance of φ(x, y). Fix ε > 0.

By Fact 2.9 there are some p0, . . . , pn−1 ∈ S(μ) such that μ(φ(x, b))v ≈ε

Av(φ(x, b) ∈ pi) for all b ∈ U . It follows by G-invariance of μ and the assump-
tion on φ that for any g ∈ G and b ∈ U , Av(gφ(x, b) ∈ pi) ≈ε μ(φ(x, b)).

By Proposition 3.14, all of the pi’s are f -generic. By Proposition 3.23 with
S = {p0, . . . , pn−1}, for every b ∈ U there are some g0, . . . , gm−1 ∈ G such that for
any i < n, μpi

(φ(x, b)) ≈ε Av(gjφ(x, b) ∈ pi).
So let b ∈ U be arbitrary, and choose the corresponding g0, . . . , gm−1 for it. By

the previous remarks we have

1

n

∑
i<n

μpi
(φ(x, b)) ≈ε 1

n

∑
i<n

Av(gjφ(x, b) ∈ pi)

=
1

n

∑
i<n

⎛
⎝ 1

m

∑
j<m

”gjφ(x, b) ∈ pi”

⎞
⎠ =

1

m

∑
j<m

(
1

n

∑
i<n

”gjφ(x, b) ∈ pi”

)

=
1

m

∑
j<m

Av(gjφ(x, b) ∈ pi) ≈ε 1

m

∑
j<m

μ(φ(x, b)) = μ(φ(x, b)).

Thus μ(φ(x, b)) ≈2ε 1
n

∑
i<n μpi

(φ(x, b)). �

Corollary 3.27. Let μ be a G-invariant measure, and assume that S(μ) ⊆ G · p
for some f -generic p. Then μ = μp.

Proof. Let φ(x) ∈ LG(U), and let ε > 0 be arbitrary. By Lemma 3.26 we can find
some f -generic p0, . . . , pn−1 ∈ S(μ) such that μ(φ(x)) ≈ε Av(μpi

(φ(x)) : i < n).

But as pi ∈ S(μ) ⊆ G · p, it follows by Proposition 3.24 that μpi
= μp for all i < n,

so μ(φ(x)) ≈ε μp(φ(x)). �

3.3. Weak genericity and almost periodic types. Now we return to the no-
tions of genericity for definable subsets of definable groups and add to the picture
another one motivated by topological dynamics, due to Newelski.

We will be using the standard terminology from topological dynamics: Given a
group G, a G-flow is a compact space X equipped with an action of G such that
every x �→ g · x, g ∈ G is a homeomorphism of X. We will usually write a G-flow
X as a pair (G,X). A set Y ⊆ X is said to be a subflow if Y is closed and G-
invariant. The flows relevant to us are (SG(U), G(U)) and (SG(M), G(M)) for a
small model M .

Definition 3.28 ([New09,Poi87]).

(1) A formula φ(x) ∈ LG(U) is (left-) generic if there are some finitely many
g0, . . . , gn−1 ∈ G such that G =

⋃
i<n giφ(x).

(2) A formula φ(x) ∈ LG(U) is (left-) weakly generic if there is formula ψ(x)
which is not generic but such that φ(x) ∨ ψ(x) is generic.
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(3) A (partial) type is (weakly) generic if it only contains (weakly) generic
formulas.

(4) A type p ∈ SG(U) is called almost periodic if it belongs to a minimal flow
in (SG(U), G(U)) (i.e., a minimal G-invariant closed set), equivalently if for
any q ∈ G · p, we have G · p = G · q.

Fact 3.29 ([New09], Section 1). The following hold, in an arbitrary theory:

(1) The formula φ(x) is weakly generic if and only if for some finite A ⊆ G,
X \ (A · φ(x)) is not generic.

(2) The set of nonweakly generic formulas forms a G-invariant ideal. In par-
ticular, there are always global weakly generic types by compactness.

(3) The set of all weakly generic types is exactly the closure of the set of all
almost periodic types in SG(U).

(4) Every generic type is weakly generic. Moreover, if there is a global generic
type, then every weakly generic type is generic, and the set of generic types
is the unique minimal flow in (SG(U), G(U)).

(5) A type p(x) is almost periodic if and only if for every φ(x) ∈ p, the set G · p
is covered by finitely many left translates of φ(x).

We connect these definitions to the notions of genericity from the previous sec-
tions. As before, we always assume that G = G(U) is NIP.

Proposition 3.30. Let G be definably amenable, and let φ(x) ∈ LG(M) be a weakly
generic formula. Then it is f -generic.

Proof. We adapt the argument from [NP06, Lemma 1.8]. As φ(x) is weakly generic,
let ψ(x) be nongeneric, and let A ⊂ G be a finite set such that A·(φ(x)∨ψ(x)) = X.
We may assume that A ⊂ M and that ψ(x) is defined over M . Assume that φ(x) is
not f -generic over M . The set of formulas which are not f -generic is G-invariant,
and moreover it is an ideal by Corollary 3.5. Thus A · φ(x) is not f -generic, which
implies that there is some g ∈ G such that g · A · φ(x) divides over M . That is,
there is an M -indiscernible sequence (gi)i<k such that

⋂
i<k gi ·A · φ(x) = ∅.

As A · φ(x)∪A ·ψ(x) = G, we also have gi ·A · φ(x)∪ gi ·A ·ψ(x) = G for every
i < k. Thus G \

⋃
i<k gi · A · ψ(x) ⊆

⋂
i<k gi · A · φ(x) = ∅. But this means that

ψ(x) is generic, a contradiction. �
Proposition 3.31. Assume that G is definably amenable.

(1) If p is almost periodic, then it is f -generic and G · p = S(μp).
(2) Minimal flows in SG(U) are exactly the sets of the form S(μp) for some

f -generic p.
(3) If p, q are almost periodic and μp = μq, then G · p = G · q.

Proof.
(1) An almost periodic type p contains only weakly generic formulas and hence

is f -generic by Proposition 3.30. As S(μp) ⊆ G · p (see Remark 3.17), it follows by

minimality that S(μp) = G · p.
(2) For an f -generic p, the set S(μp) is a subflow by G-invariance of μp. If

q ∈ S(μp) and φ(x) ∈ q, then μp(φ(x)) > 0 and by Proposition 3.25 there are
finitely many translates of φ(x) which cover S(μp), so in particular they cover

G · q ⊆ S(μp). Thus q is almost periodic (by the usual characterization of almost
periodic types from Fact 3.29(5)).

(3) This is clear. �
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In particular, for any f -generic type p there is some almost periodic type q with
μp = μq. However, the following question remains open.2

Question 3.32. Is every f -generic type almost periodic? Equivalently, does p ∈
S(μp) always hold?

Now toward the converse.

Proposition 3.33. Let G be definably amenable. Assume that φ (x) does not G-
divide. Then there are some global almost periodic types p0, . . . , pn−1 ∈ SG(U) such
that for any g ∈ G, there is some i < n such that gφ(x) ∈ pi holds.

Proof. Let k ∈ ω be as given by Fact 2.2 for the VC-family F = {gφ (x) : g ∈ G}.
We claim that F satisfies the (p, k)-property for some p < ω. If not, then by
compactness we can find an infinite indiscernible sequence (gi)i<ω in G such that
{giφ(x) : i < ω} is k-inconsistent, and so G-divides.

By Fact 2.2 and compactness it follows that there are some p0, . . . , pN−1 ∈ SG (U)
which satisfy

(∗) for every g ∈ G, for some i < N , we have gφ (x) ∈ pi.

Now consider the action of G on (SG (U))N with the product topology, and let

F = {g · (p0, . . . , pN−1) : g ∈ G}.
It is a subflow, and besides every (q0, . . . , qN−1) ∈ F satisfies (∗). (It is clear for
translates of (p0, . . . , pN−1); if for some g ∈ G, we have

∧
i<N ¬g · φ (xi) ∈ qi, then

since
∧

i<N ¬g · φ (xi) is an open subset of (SG (U))N with respect to the product
topology containing (q0, . . . , qN−1), it follows that h · (p0, . . . , pN−1) belongs to it
for some h ∈ G, which is impossible.) Let F ′ be a minimal subflow of F , and notice
that the projection of F ′ on any coordinate is a minimal subflow of (G,SG (U)).
Thus, taking (q0, . . . , qN−1) ∈ F ′, it follows that qi is almost periodic for every
i < N , and every translate of φ (x) belongs to one of the qi, i < N . �

Corollary 3.34. Let G be definably amenable. If φ(x) is f -generic, then μq(φ(x)) >
0 for some global f -generic type q.

Proof. Let p0, . . . , pn−1 be some global almost periodic types given by Proposi-
tion 3.33, which are also f -generic by Proposition 3.31. Let Yi = {ḡ ∈ G/G00 :
gφ(x) ∈ pi}. As

⋃
i<n Yi = G/G00 and each of the Yi’s is measurable, it follows

that h0(Yi) ≥ 1
n for some i < n. But then μpi

(φ(x)) ≥ 1
n . �

Summarizing, we have demonstrated that all notions of genericity that we have
considered coincide in definable amenable NIP groups.

Theorem 3.35. Let G be definably amenable NIP. Let φ(x) be a definable subset
of G. Then the following are equivalent:

(1) φ(x) is f -generic;
(2) φ(x) is not G-dividing;
(3) φ(x) is weakly-generic;
(4) μ(φ(x)) > 0 for some G-invariant measure μ;
(5) μp(φ(x)) > 0 for some global f -generic type p.

2While this paper was under review, a negative answer was obtained in [PY16].
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Proof. (1) and (2) are equivalent by Proposition 3.4, (1) implies (3) by Proposi-
tion 3.33, and (3) implies (1) by Proposition 3.30. Finally, (1) implies (5) by Corol-
lary 3.34, that (5) implies (4) is obvious, and (4) implies (1) by Lemma 3.14. �

3.4. Unique ergodicity. We now characterize the case when G admits a unique
G-invariant measure. Following standard terminology in topological dynamics, we
call such a G uniquely ergodic (indeed, it will follow from the next section in which
this condition is equivalent to SG(U) having a unique regular ergodic measure).

Recall that a G-invariant measure μ is called generic if for any definable set φ(x),
μ(φ(x)) > 0 implies that φ(x) is generic. It follows that any p ∈ S(μ) is generic.

Theorem 3.36. A definably amenable NIP group G is uniquely ergodic if and only
if it admits a generic type (in which case it has a unique minimal flow—the support
of the unique measure).

Proof. If G admits a generic type p, then for any type q, p belongs to the closure
G · q (if φ(x) ∈ p, then X =

⋃
i<n gi · φ(x) for some gi ∈ G, so φ(x) ∈ g−1

i q for
some i < n). In particular, for an arbitrary f -generic type q we have μq = μp (by
Proposition 3.24). By Lemma 3.26, this implies that any invariant measure μ is
equal to μp, hence there is a unique invariant measure.

Conversely, assume that G admits a unique G-invariant measure μ. We claim
that μ is generic. Assume not, and let φ(x) be a definable set of positive μ-measure,
and assume that φ(x) is not generic. Then for any g1, . . . , gn ∈ G, the union

⋃
i<n gi·

φ(x) is not generic. Hence its complement is weakly generic. By Theorem 3.35 we
conclude that the partial type {¬g ·φ(x) : g ∈ G(U)} is f -generic and hence extends
to a complete f -generic type p. The measure μp associated to p gives φ(x) measure
0, so μp �= μ, which contradicts unique ergodicity. �

Remark 3.37. In particular, in a uniquely ergodic group every f -generic type is
almost periodic and generic.

Recall from [HP11] that an NIP group G is fsg if it admits a global type p such
that for some small model M , all translates of p are finitely satisfiable over M . It is
proved that an fsg group admits a unique invariant measure and that this measure
is generic. So the previous proposition was known in this special case. We now give
an example (pointed out to us by Hrushovski) of a uniquely ergodic group which is
not fsg.

Remark 3.38. Let Kv be a model of ACVF and consider G = (Kv,+) the additive
group. By C-minimality, the partial type p concentrating on the complement of
all balls is a complete type and is G-invariant. There can be no other G-invariant
measure since any nontrivial ball in (Kv,+) G-divides, hence cannot have positive
measure for any G-invariant measure. Finally, the group G is not fsg since p is not
finitely satisfiable.

4. Regular ergodic measures

In this section, we are going to characterize regular ergodic measures on SG(U)
for a definably amenable NIP group G = G(U), but first we recall some general
notions and facts from functional analysis and ergodic theory (see, e.g., [Wal82]).
As we are going to deal with more delicate measure-theoretic issues here, we will
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be specific about our measures being regular or not. The reader should keep in
mind that all the results in the previous sections only apply to regular measures on
SG(U).

The set of all regular (Borel, probability) measures on SG(U) can be naturally
viewed as a subset of C∗(SG(U)), the dual space of the topological vector space of
continuous functions on SG(U), with the weak∗ topology of pointwise convergence
(i.e., μi → μ if

∫
fdμi →

∫
fdμ for all f ∈ C(SG(U))). It is easy to check that this

topology coincides with the logic topology on the space of measures (Remark 2.8).
This space carries a natural structure of a real topological vector space containing
a compact convex set of G-invariant measures.

We will need the following version of a “converse” to the Krein–Milman theo-
rem (see, e.g., [Jer54, Theorem 1], and we refer to, e.g., [Sim11, Chapter 8] for a
discussion of convexity in topological spaces).

Fact 4.1. Let E be a real, locally convex Hausdorff topological vector space. Let
C be a compact convex subset of E, and let S be a subset of C. Then the following
are equivalent:

(1) C = convS, the closed convex hull of S.
(2) The closure of S includes all extreme points of C.

Now we recall the definition of an ergodic measure.

Fact 4.2 ([Phe01, Proposition 12.4]). Let G be a group acting on a topological
space X with x �→ gx a Borel map for each g ∈ G, and let μ be a G-invariant Borel
probability measure on X. Then the following are equivalent:

(1) The measure μ is an extreme point of the convex set of G-invariant measures
on X.

(2) For every Borel set Y such that μ(gY�Y ) = 0 for all g ∈ G, we have that
either μ(Y ) = 0 or μ(Y ) = 1.

A G-invariant measure is ergodic if it satisfies any of the equivalent conditions
above. Under many natural conditions on G and X the two notions above are
equivalent to the following property of μ: for every G-invariant Borel set Y , either
μ(Y ) = 0 or μ(Y ) = 1. However this is not the case in general.

Proposition 4.3. The map p �→ μp from the (closed) set of global f -generic types
to the (closed) set of global G-invariant measures on SG(U) is continuous.

Proof. Fix φ (x) ∈ LG (U) and r ∈ [0, 1], and let Y be the set of all global f -generic
p ∈ SG(U) with μp (φ (x)) ≥ r. It is enough to show that Y is closed. Let q belong
to the closure of Y , in particular q is f -generic. Let L0 be some countable language
such that G is L0-definable and φ(x) ∈ L0(U), and let T0 = T |L0

.
Now let M be some countable model of T0 over which φ(x) is defined, and let

ψ(x, y) = φ(y−1x). Let q′(x) = q|ψ, i.e., the restriction of q to all formulas of the
form g · φ(x),¬g · φ(x), g ∈ G, and let Y ′ = {p|ψ : p ∈ Y }. By Lemma 3.22, q′ and
all elements of Y ′ are f -generic in the sense of T0. By Lemma 3.15 applied in T0, we
know that q′ and all elements of Y ′ are M -invariant. Working in T0, let Invψ(M)
be the space of all global ψ-types invariant over M . It follows from the assumption
that q′ ∈ Y ′ (i.e., the closure of Y ′ in the sense of the topology on Invψ(M)).
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By Fact 2.7 we know that q′ is a limit of a countable sequence (p′i : i < ω)
of types from Y ′. Each of p′i is f -generic in T0, so in T as well (easy to verify
using equivalence to G-dividing both in T and T0), and it extends to some global
f -generic L-type pi ∈ Y by Corollary 3.5.

Now work in T , and let ε > 0 be arbitrary. By Proposition 3.23 with S = {q} ∪
{pi : i < ω}, there are some g0, . . . , gm ∈ G such that μpi

(φ(x)) ≈ε Av(gjφ(x) ∈ pi)
for all i < ω, as well as μq(φ(x)) ≈ε Av(gjφ(x) ∈ q). As for any g ∈ G, gφ(x) ∈
pi ⇐⇒ gφ(x) ∈ p′i, and the same for q, q′, it follows that for all i < ω large enough,
we have

∧
j<m(gjφ(x) ∈ q ⇐⇒ gjφ(x) ∈ pi). But this implies that for any ε > 0,

μq (φ (x)) ≥ r − ε, and so μq (φ (x)) ≥ r and q ∈ Y . �

Corollary 4.4.

(1) The set {μp : p is f -generic} is closed in the set of all G-invariant measures.
(2) Given a G-invariant measure μ, the set of f -generic types p for which

μp = μ is a subflow.

Proof. This follows from Proposition 4.3. �

Theorem 4.5. Let G be definably amenable. Then regular ergodic measures on
SG(U) are exactly the measures of the form μp for some f -generic p ∈ SG(U).

Proof. Fix a global f -generic type p, and assume that μp is not an extreme point.
Then there is some 0 < t < 1 and some G-invariant measures μ1 �= μ2 such that
μp = tμ1 + (1 − t)μ2. First, it is easy to verify using regularity of μp that both

μ1 and μ2 are regular. Second, it follows that S(μ1), S(μ2) ⊆ S(μp) ⊆ Gp. By
Corollary 3.27 which we may apply as μ1, μ2 are regular, it follows that μ1 = μp =
μ2, a contradiction.

Now for the converse, let μ be an arbitrary regular G-invariant measure which
is an extreme point, and let S = {μp : p ∈ SG(U) is f -generic}. Let convS be the
closed convex hull of S. By Lemma 3.26, μ is a limit of the averages of measures
from S, so μ ∈ convS and it is still an extreme point of convS. Then we actually
have μ ∈ S (by Fact 4.1, as (1) is automatically satisfied for C = convS, then (2)
holds as well). But S = S by Corollary 4.4(1). �

Corollary 4.6. The set of all regular ergodic measures in SG(U) is closed.

Let FGen denote the closed G-invariant set of all f -generic types in SG(U). By
Proposition 3.8 we have a well-defined action of G/G00 on FGen (not necessarily
continuous or even measurable). If ν is an arbitrary regular G-invariant measure,
then S(ν) ⊆ FGen by Proposition 3.14, and we can naturally view ν as a G/G00-
invariant measure on Borel subsets of FGen.

Question 4.7. Consider the action f : G/G00×FGen → FGen, (g, p) �→ g · p. Is it
measurable? It is easy to see that f is continuous for a fixed g and measurable for
a fixed p. In many situations this is sufficient for joint measurability of the map,
but our case does not seem to be covered by any result in the literature.

5. Generic compact domination and the Ellis group conjecture

5.1. Baire-generic compact domination. Let G = G(U) be a definably amen-
able NIP group, and let M be a small model of T . Let p ∈ SG (U) be a global
type strongly f -generic over M . Let π : G → G/G00 be the canonical projection.
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It naturally lifts to a continuous map π : SG(U) → G/G00. Fix a formula φ (x) ∈
LG (U), and we define Uφ(x) =

{
g/G00 : g · p � φ (x)

}
⊆ G/G00.

Proposition 5.1. The set U = Uφ(x) is a constructible subset of G/G00 (namely,
a boolean combination of closed sets).

Proof. Note that U = π (S) with S = {g ∈ G : φ (gx) ∈ p}.
As explained in section 2.2, we have S =

⋃
n<N (An ∧ ¬Bn+1) for some N < ω,

where
Altn(x0, . . . , xn−1) =

∧
i<n−1

¬ (φ(gxi) ↔ φ(gxi+1)) ,

An = {g ∈ G : ∃x0 . . . xn−1(p
(n)|M (x0, . . . , xn−1) ∧ Altn(x0, . . . , xn−1)

∧ φ (gxn−1))},

Bn = {g ∈ G : ∃x0 . . . xn−1(p
(n)|M (x0, . . . , xn−1) ∧ Altn(x0, . . . , xn−1)

∧ ¬φ (gxn−1))}.
Note that An, Bn are type definable (overM and the parameters of φ(x)). Define

A′
n :=

{
g ∈ G : ∃h ∈ G

(
g−1h ∈ G00 ∧ h ∈ An

)}
,

B′
n :=

{
g ∈ G : ∃h ∈ G

(
g−1h ∈ G00 ∧ h ∈ Bn

)}
.

These are also type-definable sets. Let S′ =
⋃

n<N

(
A′

n ∧ ¬B′
n+1

)
. We check that

S′ = S. Note:

(1) S is G00-invariant (because p is);
(2) all of A′

n, B
′
n, S

′ are G00-invariant (by definition);
(3) An ⊆ A′

n, Bn ⊆ B′
n.

First, if g ∈ S′, say g ∈ A′
n ∧ ¬B′

n+1, then there is h ∈ G such that hg−1 ∈ G00

and h ∈ An. As g ∈ ¬B′
n+1, also h ∈ ¬B′

n+1, and so h ∈ ¬Bn+1 (by (2) and (3)).
Hence h ∈ S, and by (1) also g ∈ S. So S′ ⊆ S.

Assume that g ∈ S \ S′, and let n < N be maximal for which there is h ∈ gG00

such that h ∈ An ∧ ¬Bn+1. Then for a corresponding h, we still have h ∈ S \ S′

by (1) and (2). In particular, h /∈ A′
n ∧ ¬B′

n+1. As h ∈ An ⊆ A′
n, necessarily

h ∈ B′
n+1. This means that there is some h′ ∈ hG00 = gG00 such that h′ ∈ Bn+1.

As h′ is still in S by (1), it follows that h′ ∈ Am ∧ ¬Bm+1 for some m, but by the
definition of the Bn’s this is only possible if m+1 > n+1, contradicting the choice
of n. Thus S = S′.

Now, we have π(S′) = π(S) =
⋃

n<N π(A′
n)∧¬π(B′

n+1) since A′
n and B′

n are all

G00-invariant. As π(A′
n), π(B

′
n) are closed, we conclude that π(S) is constructible.

�

Let C := G · p ⊆ SG(U), and we define

Eφ(x) =
{
h̄ ∈ G/G00 : π−1

(
h̄
)
∩ φ (x) ∩ C �= ∅ and π−1

(
h̄
)
∩ ¬φ (x) ∩ C �= ∅

}
.

Remark 5.2. Let X be an arbitrary topological space, and let Y ⊆ X be a con-
structible set. Then the boundary ∂Y has empty interior.

Proof. This is easily verified as Y is a boolean combination of closed sets,
∂(Y1 ∪ Y2) ⊆ ∂Y1 ∪ ∂Y2 for any sets Y1, Y2 ⊆ X, and ∂Y has empty interior if
Y is either closed or open. �
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Theorem 5.3 (Baire-generic compact domination). The set Eφ(x) is closed and
has empty interior. In particular it is meager.

Proof. We have Eφ(x) = π(φ(x) ∩ C) ∩ π(¬φ(x) ∩ C) and φ(x) ∩ C, ¬φ(x) ∩ C are
closed subsets of SG(U), hence Eφ(x) is closed.

We may assume that p concentrates on G00, as replacing p by g · p for some
g ∈ G(U) does not change C, and thus does not change Eφ(x).

Let ḡ ∈ Eφ(x) be given, and let V be an arbitrary open subset of G/G00 contain-

ing ḡ. As the map π is continuous, the set S = π−1(V ) is an open subset of SG(U).
By the definition of Eφ(x), there must exist q, q′ ∈ C such that π(q) = π(q′) = ḡ

and q ∈ S ∩ φ(x), q′ ∈ S ∩ ¬φ(x). As C = G · p, it follows that there are some
h, h′ ∈ G(U) such that h · p ∈ S ∩ φ(x) and h′ · p ∈ S ∩ ¬φ(x). But then, as p
concentrates on G00, π(h) = π(h · p) ∈ V ∩ U and π(h′) = π(h′ · p) ∈ V ∩ Uc

(where U = Uφ(x) is as defined before Proposition 5.1). As V was an arbitrary
neigborhood of ḡ, it follows that ḡ ∈ ∂U , hence Eφ(x) ⊆ ∂U . By Proposition 5.1,
U is constructible. Hence ∂U has empty interior by Remark 5.2, and so Eφ(x) has
empty interior as well. �
5.2. Connected components in an expansion by externally definable sets.
Given a small model M of T , an externally definable subset of M is an intersection
of an L(U)-definable subset of U with M . One defines an expansion M ext in a
language L′ by adding a new predicate symbol for every externally definable subset
of Mn, for all n. Recall that a global type p ∈ S(U) is finitely satisfiable in M if p
lies in the topological closure of M , where M is identified with its image in S(U)
under the map sending a ∈ M to the type x = a. There is a canonical bijection
(even homeomorphism) between S(M ext) and the subspace of types in S(U) finitely
satisfiable in M . Recall also that a coheir of a type p ∈ S(M) is a type over a larger
model N which extends p and is finitely satisfiable in M .

Let T ′ = ThL′(M ext). Note that automatically any quantifier-free L′-type over
M ext is definable (using L′-formulas). The following is a fundamental theorem of
Shelah [She09] (see also [CS13] for a refined version).

Fact 5.4. Let T be NIP, and let M be a model of T . Then T ′ eliminates quantifiers.
It follows that T ′ is NIP and that all (L′-) types over M ext are definable.

Assume now that G is an L-definable group, and let U ′ be a monster model
for T ′ such that U � L is a monster for T . In general there will be many new
L′-definable subsets and subgroups of G(U ′) which are not L-definable. In [CPS14]
it is demonstrated however that many properties of definable groups are preserved
when passing to T ′.

Fact 5.5. Let T be NIP, and let M be a small model of T . Let G be an L-definable
group.

(1) If G is definably amenable in the sense of T , then it is definably amenable
in the sense of T ′ as well.

(2) The group G00(U) computed in T coincides with G00(U ′) computed in T ′.

In particular this implies that G/G00 is the same group when computed in T or
in T ′. Note also that the logic topology on G/G00 computed in T coincides with
the logic topology computed in T ′: any open set in the sense of T is also open in
the sense of T ′, and both are compact Hausdorff topologies; therefore, they must
coincide.
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Remark 5.6. In view of Remark 2.15, if L is countable, then G/G00 is still a Polish
space with respect to the L′-induced logic topology.

5.3. Ellis group conjecture. We recall the setting of definable topological dy-
namics and enveloping semigroups (originally from [New09, Section 4], but we are
following the notation from [CPS14]).

Let M0 be a small model of a theory T , and assume that all types over M0

are definable. Then G(M0) acts on SG(M0) by homeomorphisms, and the identity
element 1 has a dense orbit. The set SG(M0) admits a natural semigroup struc-
ture · extending the group operation on G(M0) and which is continuous in the
first coordinate: for p, q ∈ SG(M0), p · q is tp(a · b/M0), where b realizes q and a
realizes the unique coheir of p over M0b. This semigroup is precisely the enveloping
Ellis semigroup of (SG(M0), G(M0)) (see, e.g., [Gla07a]). In particular left ideals of
(SG(M0), ·) are precisely the closed G(M0)-invariant subflows of G(M0) � SG(M0),
there is a minimal subflow M, and there is an idempotent u ∈ M. Moreover, u ·M
is a subgroup of the semigroup (SG(M0), ·) whose isomorphism type does not de-
pend on the choice of M and u ∈ M. It is called the Ellis group (attached to the
data). The quotient map from G = G(U) to G/G00

M0
factors through the tauto-

logical map g �→ tp(g/M0) from G to SG(M0), and we let π denote the resulting
map from SG(M0) → G/G00

M0
. It is a surjective semigroup homomorphism, and for

any minimal subflow M of SG(M0) and u ∈ M, the restriction of π to u · M is a
surjective group homomorphism.

Now, let T be NIP, and let M be an arbitrary model. Then we consider M0 :=
M ext, an expansion of M by naming all externally definable subsets of Mn for
all n ∈ N, in a new language L′ extending L. Then T ′ = ThL′(M0) is still NIP,
and all L′-types over M0 are definable (by Fact 5.4), so the construction from the
previous paragraph applies to (SG(M0), G(M0)). Let U ′ be a monster model for
T ′, so that U = U ′ � L is a monster model for T . By Fact 5.5, if G(U ′) is definably
amenable in the sense of T , then it remains definably amenable in the sense of T ′,
and G00(U) = G00(U ′) (the first one is computed in T with respect to L-definable
subgroups, while the second one is computed in T ′ with respect to L′-definable
subgroups). Newelski asked in [New09] if the Ellis group was equal to G/G00 for
some nice classes of groups. Gismatullin, Penazzi, and Pillay [GPP15] show that
this is not always the case for NIP groups (SL2(R) is a counterexample). The
following modified conjecture was then suggested by Pillay (see [CPS14]):

Ellis group conjecture. Suppose G is a definably amenable NIP group. Then the
restriction of π : SG(M0) → G/G00 to u · M is an isomorphism, for some/any
minimal subflow M of SG(M0) and idempotent u ∈ M (i.e., π is injective).

Theorem 5.7. The Ellis group conjecture is true; i.e., π : u · M → G/G00 is an
isomorphism.

Proof. Fix notations as above. Throughout this proof, we work in T ′. Let p ∈
SG (U ′) be strongly f -generic over M0. Let C := G · p, and let V := {p|M0

: p ∈ C}.
Note that V is a subflow of G (M0) � SG (M0): it is closed as a continuous image
of a compact set C into a Hausdorff space, and it is G (M0)-invariant as C is
G (U ′)-invariant. Let M be a minimal subflow of V . It has to be of the form

G (M0) · (p′|M0
) for some p′ ∈ C. So replacing p by p′ (which is still strongly

f -generic over M0) we may assume that M = G (M0) · (p|M0
) is minimal.
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Let u ∈ M be an idempotent. We will show that if p1, p2 ∈ u · M and π (p1) =
π (p2) (i.e., they determine the same coset of G00), then there is some r ∈ M
such that r · p1 = r · p2. By the general theory of Ellis semigroups (see, e.g.,
[Gla07a, Proposition 2.5(5)]) this will imply that p1 = p2, as wanted.

Let F be the filter of comeager subsets of G/G00, and let F ′ be some ultrafilter
extending it. Let q1, q2 ∈ C be some global types extending p1, p2, respectively. For
each ḡ ∈ G/G00, let rḡ ∈ SG (M0) be a type in M with π (rḡ) = ḡ. Let r = limF ′ rḡ.
Note that r ∈ M.

Let U∗ � U ′ be a larger monster of T ′. Let ai ∈ U∗ be such that ai |= qi for
i = 1, 2. For each ḡ ∈ G/G00, let r′ḡ be the unique coheir of rḡ over U∗, and let
bḡ |= r′ḡ|U ′a1a2

. Finally, let r′ = limF ′ r′ḡ, the unique coheir of r over U∗, and let
b ∈ U∗ realize r′|U ′a1a2

.

Claim 1. limF ′ tp (bḡ · ai/U ′) = tp (b · ai/U ′) for i = 1, 2.

This follows by left continuity of the semigroup operation, but we give the details.
Let φ (x) ∈ L′ (U ′) be arbitrary, and let a′i ∈ U ′ be such that a′i |= qi|N , where
N � M0 is some small model over which φ (x) is defined. Then we have

φ(x) ∈ lim
F ′

(tp(bḡ · ai/U ′)) ⇔
{
ḡ ∈ G/G00 :|= φ(bḡ · ai)

}
∈ F ′

⇔
{
ḡ ∈ G/G00 :|= φ(bḡ · a′i)

}
∈ F ′ ⇔ φ(x · a′i) ∈ lim

F ′
(tp(bḡ/U ′)) ⊆ r′

⇔ φ(x · ai) ∈ r′ ⇔|= φ(b · ai).

The second equivalence is by M0-invariance of r′ḡ, and the fourth one is by M0-
invariance of r′.

Claim 2. r · p1 = r · p2.

Assume not. Say there exists some φ (x) ∈ L′ (U ′) such that φ (x) ∈ r · p1,
¬φ (x) ∈ r · p2, so |= φ (b · a1) ∧ ¬φ (b · a2) (according to the choice of a1, a2, b and
the definition of the semigroup operation on SG(M0)). We may assume that both
q1 and q2 concentrate on G00. By Claim 1 we have{

ḡ ∈ G/G00 :|= φ (bḡ · a1) ∧ ¬φ (bḡ · a2)
}
∈ F ′.

As Eφ(x) ⊆ G/G00 is meager by Theorem 5.3, we have
(
Eφ(x)

)c ∈ F ′, and so there
is some ḡ /∈ Eφ(x) such that |= φ (bḡ · a1) ∧ ¬φ (bḡ · a2).

For an arbitrary open set V ⊆ G/G00 containing ḡ, we can choose h ∈ G(U ′)
such that π(h) ∈ V and φ (h · a1) ∧ ¬φ (h · a2) holds. Indeed, let S = π−1(V ) ⊆
SG(U ′), which is open by continuity of π. Then there is an L′(U ′)-definable set
ψ(x) ⊆ S such that π(ψ(x)) ⊆ V and |= ψ(bḡ). By finite satisfiability of r′ḡ, take
h ∈ G(U ′) satisfying φ (x · a1)∧¬φ (x · a2)∧ψ(x). As ḡ /∈ Eφ(x) and Eφ(x) is closed
by Theorem 5.3, we find such an h with π(h) /∈ Eφ(x).

Note that π (h · a1) = π (h) = π (h · a2) as q1, q2 concentrate on G00, and that
tp(h · a1/U ′) = h · q1 ∈ C, tp(h · a2/U ′) = h · q2 ∈ C. It follows that π(h) ∈ Eφ(x), a
contradiction. �

Corollary 5.8. In a definably amenable NIP group, the Ellis group of the dynamical
system (SG(M

ext), G(M)) is independent of the model M .
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6. Further remarks

6.1. Left vs. right actions. Until now, we have only considered the action of
the group G on itself by left-translations. One could also let G act on the right
and define analogous notions of right-f -generic, right-invariant measure, etc. In a
stable group, a type is left-generic if and only if it is right-generic, so we obtain
nothing new. However, in general, left and right notions may differ.

We start with an example of a left-invariant measure which is not right-invariant.

Example 6.1. LetG = (R,+)�{±1}, where the two-element group {±1} acts on R

by multiplication. Consider G as a group defined in a model R of RCF with universe
R× {−1, 1} and multiplication defined by (x0, ε0) · (x1, ε1) = (x0 + ε0x1, ε0ε1). Let
p++∞(x, y) be the type whose restriction to x is the type at +∞ and which implies

y = 1. Define similarly p−−∞. Then μ = 1
2

(
p++∞ + p−−∞

)
is left-invariant, but not

right-invariant.

However, some things can be said.

Lemma 6.2. Let G = G(U) be definably amenable. Then there is always a measure
on G which is both left- and right-invariant.

Proof. Let μ be a left-invariant measure onG which is also invariant over some small
model M (always exists in a definably amenable NIP group, e.g., by [HP11, Lemma
5.8]).

Let μ−1 be defined by μ−1(X) := μ(X−1) for every definable set X ⊆ G,
where X−1 := {a−1 : a ∈ X}. Then μ−1 is also a measure, M -invariant (as
μ−1(σ(X)) = μ(σ(X)−1) = μ(σ(X−1)) = μ(X−1) = μ−1(X) for any automorphism
σ ∈ Aut(U/M)) and right invariant (as μ−1(X · g) = μ(g−1 · X−1) = μ(X−1) =
μ−1(X) for any g ∈ G).

For any φ(x) ∈ LG(U), we define ν(φ(x)) := μ⊗ μ−1(φ(x · u)). That is, for any
definable set X ⊆ G and a model N containing M and such that X is N -definable,
we have ν(X) =

∫
SG(N)

fXdμ−1, where for every q ∈ SG(N), fX(q) = μ(X · h−1)

for some/any h |= q (well-defined by M -invariance of μ, see section 2.3). Then ν
is an M -invariant measure, and given any g ∈ G and N such that g and X are
N -definable, for any q ∈ SG(N) and h |= q we have

(1) fg·X(q) = μ((g ·X) · h−1) = μ(g · (X · h−1)) = μ(X · h−1) = fX(q), by left
invariance of μ.

(2) fX·g(q) = μ((X · g) · h−1) = fX(q · g−1), and

∫
SG(N)

fX(q)dμ−1 =

∫
SG(N)

fX(q · g−1)d(μ−1 · g) =
∫
SG(N)

fX(q · g−1)d(μ−1)

as μ−1 = μ−1 · g by right invariance.

Hence ν is both left- and right-invariant. �

Proposition 6.3. Let G be definably amenable, and let φ(x) ∈ LG(U). If φ(x) is
left-generic, then it is right-f -generic.
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Proof. By the previous lemma, let μ(x) be a left- and right-invariant measure on
G. Then as φ(x) is left-generic, we must have μ(φ(x)) > 0. But as μ is also
right-invariant, this implies that φ(x) is right-f -generic (by the right-hand side
counterpart of Proposition 3.14). �

As the following example shows, no other implication holds.

Example 6.4. Let R be a saturated real closed field, and let G = (R2,+)�SO(2)
with the canonical action, seen as a definable group in R. For 0 < a < 1 let
Ca ⊂ R2 be the angular region defined by {(x, y) : x ≥ 0 and |y| ≤ a · x}. Finally,
let Xa = Ca × SO(2) ⊆ G.

Note that any two translates of Ca intersect. Hence any two right translates of
Xa intersect: Let g = (xg, σg) ∈ G. Then Xa · g =

⋃
τ∈SO(2)(Ca+ τ (xg))×{τ ·σg};

hence Xa · g∩Xa is nonempty and in fact has surjective projection on SO(2). This
shows that Xa is right-f -generic.

On the other hand, multiplyingXa on the left has the effect of turning it: g·Xa =
(xg +σg(Ca))×SO(2). If a is infinitesimal, then there are infinitely many pairwise
disjoint left-translates of Xa, hence Xa is not left-f -generic. If however a is not
infinitesimal, then we can cover R2 by finitely many SO(2)-conjugates of Ca, and
hence cover G by finitely many left-translates of Xa.

We conclude that if a is infinitesimal, then Xa is right-f -generic but not left-f -
generic, and if a is not infinitesimal, then Xa is left-generic but not right-generic.

6.2. Actions on definable homogeneous spaces. While the theory above was
developed for the action of a definably amenable group G on SG(U), we remark
that (with obvious rephrasements) it works just as well for a definably amenable
group G = G(U) acting on SX(U) for X a definable homogeneous G-space (i.e., X
is a definable set, the graph of the action map G × X → X is definable, and the
action is transitive). We show that given a definable homogeneous space X for a
definably amenable group G, every G-invariant measure on G pushes forward to a
G-invariant measure on X and, conversely, any G-invariant measure on X lifts to
a G-invariant measure on G, possibly nonuniquely.

Lemma 6.5. Let B0 ⊆ Def(U) be a boolean algebra, and let I ⊆ Def(U) be an ideal
such that I ∩B0 is contained in the zero-ideal of ν0, a measure on B0.

Let B be the collection of all sets U ∈ Def(U) for which there is some V ∈ B0

such that U�V ∈ I. Then B is a boolean algebra with B0, I ⊆ B. Moreover, ν0
extends to a global measure ν on Def(U) such that all sets from I have ν-measure 0.

Proof. It can be checked straightforwardly that B is a boolean algebra containing
B0 and I. Now for U ∈ B, let ν′(U) = ν0(V ), where V is some set in B0 with
U�V ∈ I.

(1) ν′ is well-defined. If we have some V ′ ∈ B0 with U�V ′ ∈ I, then V�V ′ ⊆
(U�V ) ∪ (U�V ′) ∈ I, so V�V ′ ∈ I. But by assumption this implies that
ν0(V�V ′) = 0, so ν0(V ) = ν0(V

′).
(2) ν′ is a measure on B extending ν0. Given Ui ∈ B, i ≤ 2, let Vi ∈ B0 be such

that Ui�Vi ∈ I, i ≤ 2. Then ν′(U1 ∪ U2) = ν(V1 ∪ V2) = ν(V1) + ν(V2) −
ν(V1 ∩ V2) = ν′(U1) + ν′(U2)− ν′(U1 ∩ U2), as wanted.

Now ν′ extends to a global measure ν by compactness; see, e.g., [Sim15a, Lemma
7.3]. �
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Proposition 6.6. Let X be a definable homogeneous G-space, and let x0 be an
arbitrary point in X.

(1) Let μ̃ be a measure on G. For every definable subset φ(x) of X, let μ(φ(x)) =
μ̃(φ(u · x0)). Then μ is a measure on X. Moreover, if μ̃ is G-invariant,
then μ is G-invariant as well. If μ̃ is also right-invariant, then μ does not
depend on the choice of x0.

(2) Assume moreover that G is definably amenable NIP. Let μ be a G-invariant
measure on X. Then there is some (possibly nonunique) G-invariant mea-
sure μ̃ on G such that the procedure from (1) induces μ.

Proof.
(1) It is clearly a measure as μ(∅) = μ̃(∅), μ(X) = μ̃(G) and if φi(x), i < n,

are disjoint subsets of X, then φi(u · x0), i < n, are disjoint subsets of G. If μ̃
is G-invariant, then for any g ∈ G, we have μ(φ(g−1 · x)) = μ̃(φ(g−1 · u · x0)) =
μ̃(φ(u · x0)) = μ(φ(x)).

Finally, assume that μ̃ is also right-invariant. Let x1 ∈ X and φ(x) be arbitrary.
Then by transitivity of the action there is some g ∈ G such that x1 = g ·x0. We have
μ̃(φ(u ·x1)) = μ̃(φ(u · (g ·x0))) = μ̃(φ((u · g) ·x0)) = μ̃(φ(u ·x0) · g−1) = μ̃(φ(u ·x0)),
as wanted.

(2) Now let μ be a G-invariant measure on X, and fix x0 ∈ X. Let B0 ⊆ DefG(U)
be the family of subsets of G of the form {g ∈ G : g ·x0 ∈ Y }, where Y is a definable
subset of X. For U ∈ B0, define ν0(U) = μ(Y ). The following can be easily verified
using that μ is a G-invariant measure:

Claim. The family B0 is a boolean algebra closed under G-translates, and ν0 is a
G-invariant measure on B0.

Next, let I ⊆ DefG(U) be the collection of all non-f -generic definable subsets of
G. We know by Corollary 3.5 that it is an ideal. As in Proposition 3.14, B0 ∩ I is
contained in the zero-ideal of ν0. Then, applying Lemma 6.5, we obtain a global
measure ν on DefG(U) extending ν0 and such that all types in its support are f -
generic. Note that ν is G00-invariant: for any φ(x) ∈ L(U) and ε > 0, there are some
p0, . . . , pn−1 ∈ S(ν) such that for any g ∈ G, ν(gφ(x)) ≈ε Av(p0, . . . , pn−1; gφ(x))
(by Fact 2.9), and each pi is G00-invariant (by Proposition 3.8). Consider the
map fφ : G/G00 → R, g �→ ν(gφ(x)). It is well-defined and h0-measurable (us-
ing an argument as in the proof of Lemma 3.21). Finally, we define μ̃(φ(x)) =∫
g∈G/G00 fφ(g)dh0. It is easy to check that μ̃ is a G-invariant measure on DefG(U)
(and that the procedure from (1) applied to μ̃ returns μ). �
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[Mat04] Jǐŕı Matoušek, Bounded VC-dimension implies a fractional Helly theorem, Discrete

Comput. Geom. 31 (2004), no. 2, 251–255. MR2060639
[MS14] Alice Medvedev and Thomas Scanlon, Invariant varieties for polynomial dynamical

systems, Ann. of Math. (2) 179 (2014), no. 1, 81–177. MR3126567
[New12] Ludomir Newelski, Bounded orbits and measures on a group, Israel J. Math. 187 (2012),

209–229. MR2891705
[New09] Ludomir Newelski, Topological dynamics of definable group actions, J. Symbolic Logic

74 (2009), no. 1, 50–72. MR2499420
[NP06] Ludomir Newelski and Marcin Petrykowski, Weak generic types and coverings of groups.

I, Fund. Math. 191 (2006), no. 3, 201–225. MR2278623
[Phe01] Robert R. Phelps, Lectures on Choquet’s theorem, 2nd ed., Lecture Notes in Mathemat-

ics, vol. 1757, Springer-Verlag, Berlin, 2001. MR1835574
[Pil04] Anand Pillay, Type-definability, compact Lie groups, and o-minimality, J. Math. Log.

4 (2004), no. 2, 147–162. MR2114965
[Poi01] Bruno Poizat, Stable groups, Mathematical Surveys and Monographs, vol. 87, American

Mathematical Society, Providence, RI, 2001. Translated from the 1987 French original
by Moses Gabriel Klein. MR1827833

[Poi87] Bruno Poizat, Groupes stables (French), Nur al-Mantiq wal-Marifah [Light of Logic and
Knowledge], vol. 2, Bruno Poizat, Lyon, 1987. Une tentative de conciliation entre la
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