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1. Introduction

1.1. Motivation. A natural and powerful approach to classify mathematical
objects in a given category is to discover properties that are invariant with re-
spect to the isomorphisms of the category. The notion of topological dimension,
which allows us to distinguish between R

2 and R
3 as topological spaces, is a prime

example. These invariants can take various forms, and in metric geometry one
usually seeks properties that are stable under embeddings of a certain type, e.g.,
Lipschitz, uniform, or coarse. In this article we are concerned with a coarse invari-
ant in the form of a concentration inequality for Lipschitz maps defined on infinite
graphs with values into certain infinite-dimensional Banach spaces.

Discovering useful and tractable new concentration inequalities is usually a chal-
lenge. In the Lipschitz category, several fundamental inequalities have been dis-
covered, partially motivated by the investigation of the Ribe program and its
applications in geometric group theory or theoretical computer science. We re-
fer to the survey of A. Naor [25] for an enlightening account of this theory and to
the recent work of Naor and Schechtman ([28], [27], and [26]) where fundamental
and powerful new inequalities were proved.
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Strong interest in the coarse geometry of infinite-dimensional Banach spaces
arose in connection with the Novikov conjecture in topology and with a coarse ver-
sion of the Baum–Connes conjecture in noncommutative geometry (see [30], [38],
[13], and [36]). A very efficient and powerful technique for proving the coarse geo-
metric Novikov conjecture for a bounded geometry metric space is to coarsely embed
this space into a Banach space with some strong enough convexity and smoothness
properties. Indeed, G. Yu [39] showed that a discrete metric space with bounded
geometry that is coarsely embeddable into a Hilbert space satisfies the coarse geo-
metric Novikov conjecture. This result was later generalized by Kasparov and Yu
[23] who proved that the conclusion holds if the space is merely coarsely embed-
dable into a super-reflexive Banach space. It is worth mentioning that the coarse
geometric Novikov conjecture implies Gromov’s conjecture, stating that a uniformly
contractible Riemannian manifold with bounded geometry cannot have uniformly
positive scalar curvature, and the zero-in-the-spectrum conjecture, stating that the
Laplace operator acting on the space of all L2-forms of a uniformly contractible
Riemannian manifold has zero in its spectrum. Consequently, a very natural and
intriguing question became whether the separable Hilbert space is the Banach space
into which it is the hardest to embed. More precisely, the following problem was
raised ([15, Problem 14] and [34, Problem 11.17]).

Main Problem. Does �2 coarsely embed into every infinite-dimensional Banach
space?

There is rather strong evidence that �2 is the space into which it is the most
difficult to embed. It was shown in [33] that every locally finite metric subset of �2
admits a bi-Lipschitz embedding into every infinite-dimensional Banach space, and
in [5] that every proper subset of �2 (i.e., whose closed balls are compact) is almost
Lipschitz embeddable into every infinite-dimensional Banach space. Both proofs use
Dvoretzky’s theorem [11] and the barycentric gluing technique introduced in [3].
Moreover, using Gaussian random variables, one can embed �2 linearly isometrically
into Lp[0, 1] for all p ∈ [1,∞). Nowak [29] proved that �2 coarsely embeds into �p
for all p ∈ [1,∞) using Mazur maps. This technique was extended by Ostrovskii
[33] to embed �2 coarsely into every Banach space with an unconditional basis and
nontrivial cotype using the Mazur maps constructed by Odell and Schlumprecht in
their solution to the distortion problem [31]. There are also Banach spaces with
trivial cotype such as (

∑∞
n=1 �

n
∞)�p , or c0 (which is a universal space for separable

spaces and bi-Lipschitz embeddings [1]) that coarsely contain �2.
On the other hand, useful coarse invariants, such as asymptotic dimension or

finite decomposition complexity, are not well suited to study the coarse geometry
of infinite-dimensional Banach spaces, and the number of properties at our dis-
posal to prevent coarse embeddability between infinite-dimensional Banach spaces
is rather limited. There are essentially three obstructions. The first obstruction
was discovered by Johnson and Randrianarivony [18] when they showed that �q
does not coarsely embed into �2 when q > 2. Their approach relies heavily upon
the fact that the target space is �2. The second obstruction is the metric cotype
of Mendel and Naor [24]. For instance, the metric cotype argument can be used to
rule out the coarse embeddability of �q into �p when q > max{p, 2}. The last one
is Kalton’s property Q [19] which serves as an obstruction to coarse embeddability
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into reflexive (or stable) Banach spaces.1 Since �2 has the smallest possible cotype
allowed for a Banach space and is both reflexive and stable, none of the above
obstructions can provide a negative answer to the Main Problem.

In this article the Main Problem is answered negatively, using the following
approach. We show that there exists an infinite-dimensional Banach space in which
the sequence (Hω

k )k≥1 of k-dimensional Hamming graphs (over a countable set)
does not equi-coarsely embed. Since it is easy, and well known, that (Hω

k )k≥1 equi-
coarsely embeds into �2, the claim follows. Our work is inspired by a concentration
inequality of Kalton and Randrianarivony [21]. They proved the following: Assume
that f is a Lipschitz map from Hω

k into a reflexive Banach space Y , for which there
exists p ∈ (1,∞), such that for any y in Y and any weakly null sequence (yn)

∞
n=1

in Y, we have

(1.1) lim sup
n→∞

‖y + yn‖pY ≤ ‖y‖pY + lim sup
n→∞

‖yn‖pY .

Then for every two vertices m̄, n̄ in some subgraph isometric to Hω
k , one has

(1.2) ‖f(m̄)− f(n̄)‖Y ≤ 3Lip(f)k1/p.

Since diam(Hω
k ) = k, inequality (1.2) says that a Lipschitz map on Hω

k concentrates
on a “full” subgraph. This concentration inequality was originally used by Kalton
and Randrianarivony as an obstruction to coarse Lipschitz embeddability, but it
also provides information on compression exponents (cf. [4] and [9]). Reflexivity is
crucial in obtaining inequality (1.2). Indeed, since c0 is Lipschitz universal, inequal-
ity (1.2) cannot hold for Lipschitz maps with values in c0, even though c0 satisfies
inequality (1.1) for every p ∈ (1,∞). In order to prevent coarse embeddability, one
would like to have for some C ∈ (0,∞), which does not depend on k, the stronger
inequality

(1.3) ‖f(m̄)− f(n̄)‖ ≤ CLip(f).

If we could find a reflexive Banach space Y satisfying inequality (1.2) for p = ∞,
that is,

(1.4) lim sup
n→∞

‖y + yn‖ ≤ max
{
‖y‖, lim sup

n→∞
‖yn‖

}
,

then the concentration inequality (1.3) would hold for Y . Unfortunately, if a Banach
space Y satisfies inequality (1.4), then Y must contain an isomorphic copy of c0 (see
[22]). Thus it cannot be reflexive and moreover it contains a bi-Lipschitz copy of
every separable metric space, which precludes any concentration inequality. As we
shall see, this transition phase phenomenon is not necessarily an obstruction. There
are actually Banach spaces that have a “c0-like” asymptotic smoothness property
which is strong enough to obtain the concentration inequality (1.3) but weak enough
to coexist with reflexivity. A prime example of such space is Tsirelson’s original
space.

Tsirelson’s original space T ∗ was the first example of a Banach space that does
not contain any isomorphic copies of �p or c0 [37]. The validity of the concentration
inequality (1.3) for T ∗ is pivotal in proving an unexpected rigidity result, which in
turn implies that coarse and uniform versions of Tsirelson’s theorem hold.

1A variant of Kalton’s property Q can be useful in the nonseparable setting [20].
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1.2. Main results. All unexplained notation can be found in section 2. The main
result of this article is the following rigidity result pertaining to the spreading model
structure of Banach spaces coarsely embeddable into Tsirelson’s original space T ∗.

Theorem A. Let X be an infinite-dimensional Banach space. If X coarsely embeds
into T ∗ or if its unit ball BX uniformly embeds into T ∗, then X is reflexive and all
its spreading models are isomorphic to c0.

Our rigidity result shows that Tsirelson’s construction is actually extremely ro-
bust in the sense that nonlinear versions of Tsirelson’s theorem hold. Indeed,
Corollary B below is an immediate consequence of Theorem A since for p ∈ (1,∞)
the canonical basis of �p generates a spreading model that is linearly isometric to
�p, while �1 and c0 are not even reflexive.

Corollary B. c0 and �p for p ∈ [1,∞) (resp. Bc0 and B�p) do not coarsely embed
(resp. uniformly embed) into T ∗.

We will say that a Banach space is coarsely minimal if it coarsely embeds into
every infinite-dimensional Banach space. The Main Problem asks whether �2 is
coarsely minimal. In fact, Theorem A provides a much stronger negative solution
to the Main Problem. Indeed, a coarsely minimal Banach space embeds into �2
and it must have nontrivial cotype using Mendel and Naor metric cotype notion
[24], but it also embeds into T ∗, and by Theorem A it must have trivial cotype, a
contradiction.

Corollary C. There is no coarsely minimal infinite-dimensional Banach space.

The proof of Theorem A relies essentially on two ingredients. The main in-
gredient, which is presented in section 4, is a new concentration inequality for
Lipschitz maps on the k-dimensional infinite Hamming graphs that take values into
Tsirelson’s original space T ∗.

Theorem D. Let k ∈ N and f : ([N]k, dH) → T ∗ be a Lipschitz map. Then there
exists M ∈ [N]ω such that for all m̄, n̄ ∈ [M]k one has

(1.5) ‖f(m̄)− f(n̄)‖ ≤ 5Lip(f).

The concentration inequality above is strong enough to rule out coarse and uni-
form embeddings, and it can already be invoked to provide a negative solution to
the Main Problem without the full strength of Theorem A.

The other ingredient, presented in section 3, uses the structure of spreading
models of a Banach space to prove positive embeddability results. Such results
are obtained for three different metrics: the tree metric, the Hamming metric, and
the symmetric difference metric. Our embeddings are based on the existence of
spreading models that are isomorphic, or not isomorphic, to c0.

The proof of Theorem A, given in section 4, is obtained by analyzing the tension
between the concentration inequality for the Hamming graphs and the embeddabil-
ity of the Hamming graphs into spaces which have spreading models that are not
isomorphic to c0. For readers interested mostly in the geometry of Hilbert space
we included in Remark 4.6 a short proof (which avoids the machinery of spreading
models and only requires Theorem D) of the �2-case of Corollary B.
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The analysis of the spreading model structure of infinite-dimensional Banach
spaces in section 3 also leads us to a metric characterization of finite dimensionality
in terms of equi-coarse embeddability of the sequence of countably branching trees
of finite but arbitrarily large height, denoted by (Tω

k )k≥1.

Theorem E. For a Banach space Y the following assertions are equivalent:

(1) Y is finite dimensional.
(2) (Tω

k )k≥1 does not equi-coarsely embed into Y .

We mention a few related open problems in the last section.

2. Preliminaries

2.1. Nonlinear embeddings. Let (X, dX) and (Y, dY ) be two metric spaces, and
let f : X → Y . One defines

ρf (t) = inf
{
dY (f(x), f(y)) : dX(x, y) ≥ t

}
and

ωf (t) = sup{dY (f(x), f(y)) : dX(x, y) ≤ t}.
Note that for every x, y ∈ X,

(2.1) ρf (dX(x, y)) ≤ dY (f(x), f(y)) ≤ ωf (dX(x, y)).

The moduli ρf and ωf will be called the compression modulus and the expansion
modulus of the embedding, respectively. We adopt the convention sup(∅) = 0
and inf(∅) = +∞. The map f is a coarse embedding if limt→∞ ρf (t) = ∞ and
ωf (t) < ∞ for all t > 0. A map f : X → Y is said to be a uniform embedding
if limt→0 ωf (t) = 0 and ρf (t) > 0 for all t > 0; i.e., f is an injective uniformly
continuous map whose inverse is uniformly continuous.

If one is given a family of metric spaces (Xi)i∈I , one says that (Xi)i∈I equi-
coarsely (resp. equi-uniformly) embeds into Y if there exist nondecreasing functions
ρ, ω : [0,∞) → [0,∞) and, for all i ∈ I, maps fi : Xi → Y such that ρ ≤ ρfi ,
ωfi ≤ ω, and limt→∞ ρ(t) = ∞ and ω(t) < ∞ for all t > 0 (resp. limt→0 ω(t) = 0
and ρ(t) > 0 for all t > 0).

2.2. Tree, symmetric difference, and Hamming metrics. In this section we
define the metric spaces that will be needed and studied in the rest of this paper.
For any infinite subset M of N, let [M]

ω
:= {A ⊂ M : A infinite} and [M]

<ω
:=

{A ⊂ M : A finite}. For k ∈ N, we put [M]≤k := {A ⊂ M : |A| ≤ k} and

[M]k := {A ⊂ M : |A| = k}, where |A| denotes the cardinality of the set A.

Elements of [M]
ω

and [M]
<ω

will always be listed in increasing order, i.e., if we

write m̄ = {m1,m2, . . .} ∈ [M]ω or m̄ = {m1,m2, . . . ,ml} ∈ [M]<ω, we assume
that m1 < m2 < · · · or m1 < m2 < · · · < ml, respectively. We define three metrics,

dT , d�, and dH on [N]
<ω

. The restrictions of these metrics to the sets [M]
≤k

, [M]
k

for some M ∈ [N]ω and some k ∈ N, will still be denoted dT , d�, and dH .

The tree metric. For m̄, n̄ ∈ [N]
<ω

, m̄ 
= n̄, let

(2.2) dT (m̄, n̄) := |m̄|+ |n̄| − 2|m̄ ∧ n̄|,
where m̄ ∧ n̄ := {m1,m2, . . . ,ml} if m1 = n1,m2 = n2, . . . ,ml = nl and ml+1 
=
nl+1.
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We denote by �T the partial order of extension on [N]<ω, i.e., m̄ �T n̄ if |m̄| ≤
|n̄|, and for all i ≤ |m̄|, one has mi = ni. One can then define a graph structure on

[N]
<ω

, which is our set of vertices, by declaring two vertices m̄, n̄ to be adjacent if
m̄ is the immediate predecessor of n̄ or n̄ is the immediate predecessor of m̄. The
graph obtained is the countably branching tree of infinite height, denoted Tω

∞(N) or
simply Tω

∞ . The countably branching tree of height k, [N]≤k, will also be denoted
Tω
k . It is easy to see that the tree metric coincides with the graph metric.

The symmetric difference metric. For m̄, n̄ ∈ [N]<ω, m̄ 
= n̄, let

(2.3) d�(m̄, n̄) := |m̄
 n̄|,
where m̄
 n̄ := (m̄ \ n̄)∪ (n̄ \ m̄) is the symmetric difference. At some point it will

be useful for us to notice that one can define a graph structure on [N]k by defining

an adjacency relation as follows: two vertices m̄, n̄ ∈ [N]k are adjacent if and only
if |m̄ \ n̄| = |n̄ \ m̄| = 1. This graph is the k-dimensional Johnson graph over a
countable set and will be denoted Jω

k (N) or simply Jω
k , and its graph metric dJ

coincides with the metric
d�
2 .

The Hamming metric. For m̄, n̄ ∈ [N]<ω, let

dH(m̄, n̄) :=
∣∣{i ∈{1, 2, . . . ,min(|m̄|, |n̄|)} : mi 
= ni}

∣∣(2.4)

+ max(|m̄|, |n̄|)−min(|m̄|, |n̄|).

When restricted to the set [N]k, the metric dH , can be seen as the graph metric
on the Hamming graph over a countable alphabet, denoted Hω

k (N) or simply Hω
k ,

where two vertices are adjacent if they differ in exactly one coordinate.

Remark 2.1. Both graphs Hω
k and Jω

k are infinite versions of finite graphs that
arose from the fundamental work from the mid-twentieth century in coding theory
of R. W. Hamming and S. M. Johnson, respectively.

2.3. Spreading models. For the convenience of the reader we briefly recall a few
useful results from the theory of spreading models initiated by Brunel and Sucheston
[10] in the 1970s. We shall follow the exposition in [8]. An application of Ramsey’s
theorem yields that every bounded sequence (xn)

∞
n=1 in a separable Banach space

admits a subsequence (yn)
∞
n=1 such that for all k ≥ 1, (ai)

k
i=1 ⊂ R,

N(a1, a2, . . . , ak) := lim
n1<n2<···<nk→∞

‖a1yn1
+ a2yn2

+ · · ·+ akynk
‖

exists, where the limit means that for all ε > 0, there is r ∈ N such that for all
r ≤ n1 < n2 < · · · < nk,

(2.5)
∣∣∣‖a1yn1

+ a2yn2
+ · · ·+ akynk

‖ −N(a1, a2, · · · , ak)
∣∣∣ < ε.

It is easy to see that that if (ei)
∞
i=1 denotes the canonical basis of c00, the vector

space of sequences in R which eventually vanish, the formula

‖a1e1 + a2e2 + · · ·+ akek‖E := N(a1, a2, · · · , ak)
defines a seminorm, and that (ei)

∞
i=1 is a spreading sequence in the sense that for

all k ≥ 1, (ai)
k
i=1 ⊂ R, and integers n1 < n2 < · · · < nk,

(2.6) ‖a1en1
+ a2en2

+ · · ·+ akenk
‖E = ‖a1e1 + a2e2 + · · ·+ akek‖E .
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If (xn)
∞
n=1 does not have a converging subsequence, it is simple to show that the

seminorm is actually a norm. The completion of c00 for the norm ‖ ·‖E is a Banach
space E called a spreading model of X generated by the sequence (xn)

∞
n=1, and

we will refer to the sequence (ei)
∞
i=1 as the fundamental sequence of the spreading

model. The fundamental sequence (ei)
∞
i=1 is not necessarily a basis of E but if

the generating sequence (xn)
∞
n=1 is normalized and weakly null, then (ei)

∞
i=1 is a

normalized 1-suppression unconditional basis [8, Proposition 1, p. 24]. We call a
basic sequence (zj)

∞
j=1 in a Banach space Z c-suppression unconditional, for some

c ≥ 1, if for all (ai)
∞
i=1 ∈ c00 and all A ⊂ N,

(2.7)
∥∥∥ ∑

i∈A

aizi

∥∥∥ ≤ c
∥∥∥

∞∑
i=1

aizi

∥∥∥,
and in this case we denote by cs the smallest number c satisfying (2.7). The
basic sequence (zj)

∞
j=1 is called c-unconditional if for all (ai)

∞
i=1 ∈ c00 and all

(εi)
∞
i=1 ⊂ {−1, 1}, we have

(2.8)
∥∥∥

∞∑
i=1

εiaizi

∥∥∥ ≤ c
∥∥∥

∞∑
i=1

aizi

∥∥∥,
and we denote in this case the smallest number c satisfying (2.8) by cu. It is easy
to see that basic sequences are suppression unconditional if and only if they are
unconditional, and that in this case

(2.9) cs ≤ cu ≤ 2cs.

The function ϕE(k) := ‖
∑k

i=1 ei‖E , where (ei)
∞
i=1 is the fundamental sequence of

a spreading model E of a Banach space, is usually called the fundamental function
of E. We deduce the following.

Proposition 2.2. Let (xn)
∞
n=1 be a normalized weakly null sequence in a Banach

space X. Then for every ε > 0 there is a normalized weakly null basic subsequence
(yn)

∞
n=1 of (xn)

∞
n=1 with basis constant (1+ε), generating a spreading model E with

fundamental function ϕE, such that for all k ≥ 1, for all k ≤ n1 < n2 < · · · < nk,
and for all (εi)

k
i=1 ⊂ {−1, 1}, one has

1

2(1 + ε)
ϕE(k) ≤

1

1 + ε

∥∥∥
k∑

i=1

εiei

∥∥∥(2.10)

≤
∥∥∥

k∑
i=1

εiyni

∥∥∥ ≤ (1 + ε)
∥∥∥

k∑
i=1

εiei

∥∥∥ ≤ 2(1 + ε)ϕE(k).

We will be particularly interested in c0-spreading models, where c0 is the space
of real valued sequences converging to 0 equipped with the sup-norm. The following
proposition follows from [8, Lemma 1, p. 73] and [8, Lemma 4, p. 75].

Proposition 2.3. X has a spreading model isomorphic to c0 if and only if for all
ε > 0, X has a spreading model E whose fundamental sequence (ei)

∞
i=1 is (1 + ε)-

equivalent to the canonical basis of c0, i.e., that for all k ≥ 1, (ai)
k
i=1 ⊂ R,

(2.11)
1

(1 + ε)
sup

1≤i≤k
|ai| ≤

∥∥∥
k∑

i=1

aiei

∥∥∥
E
≤ (1 + ε) sup

1≤i≤k
|ai|.
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We will also need the following observation from [8].

Proposition 2.4. [8, Proposition 3, p. 79] Let (xn)
∞
n=1 be a normalized weakly

null sequence in a Banach space X that generates a spreading model E. Then E is
not isomorphic to c0 if and only if there exists a subsequence (yn)

∞
n=1 of (xn)

∞
n=1

such that

(2.12) lim
k→∞

inf
n1<···<nk

inf
(εi)ki=1∈{−1,1}k

∥∥∥
k∑

i=1

εiyni

∥∥∥ = +∞.

2.4. Tsirelson spaces T and T ∗. We recall a construction of a space originally
designed by Tsirelson [37], which is nowadays usually referred to as T ∗, while T
denotes its dual space and was described by Figiel and Johnson in [14]. Doing
so, convenient notation and terminology that will be needed later on are intro-
duced. Tsirelson’s original construction of T ∗ has a geometric flavor while the
Figiel–Johnson construction of T is more analytic.

For E,F ∈ [N]<ω and n ∈ N, we write E < F if max(E) < min(F ), and n ≤ E
or n < E if n ≤ minE or n < minE, respectively. Here we set max(∅) = 0
and min(∅) = ∞. We call a sequence (Ej)

n
j=1 ⊂ [N]<ω admissible if n ≤ E1 <

E2 < · · · < En. For x =
∑∞

j=1 ξjej ∈ c0, we call supp(x) = {j ∈ N : ξj 
= 0}
the support of x and for E ∈ [N]<ω we write E(x) =

∑
j∈E ξjej . We call a finite

sequence (xj)
n
j=1 of elements in c00 a block sequence if supp(xj−1) < supp(xj) for

all 2 ≤ j ≤ n. We define inductively for each k ∈ N0 a norm ‖ · ‖k on c00. For
x =

∑∞
j=1 ξjej ∈ c00, we put ‖x‖0 = maxj∈N |ξj |, and assuming that ‖ · ‖k−1 has

been defined for some k ∈ N, we let for x ∈ c00

‖x‖k = max
(
‖x‖k−1,

1

2
max

{ n∑
j=1

‖Ej(x)‖k−1 : (Ej)
n
j=1 is admissible

})
.

Then we put for x ∈ c00

‖x‖ = lim
k→∞

‖x‖k = max
k∈N

‖x‖k.

‖ · ‖ is then a norm on c00 and T is defined to be the completion of c00 with respect
to ‖ · ‖. As observed in [14], ‖ · ‖ satisfies the following implicit equation for all
x ∈ T,

‖x‖ = max
(
‖x‖0,

1

2
sup

{ n∑
j=1

‖Ej(x)‖ : (Ej)
n
j=1 is admissible

})
,

and the unit vector basis is a 1-unconditional basis of T . Then it was proven in [14]
that T does not contain a subspace isomorphic to �1, which, together with the easy
observation that T certainly does not contain a subspace isomorphic to c0, yields
by James’s theorem [16, Theorem 2] that T must be reflexive. Let us now denote
the dual of T by T ∗ (the original Tsirelson’s space). We denote the unit basis of T ∗

by (e∗j )
∞
j=1 (which is a 1-unconditional basis of T ∗) and its unit ball by BT∗ . Next

to the property that T ∗ is reflexive, the following property of T ∗ will be essential
for us: ∥∥∥

n∑
j=1

x∗
j

∥∥∥ ≤ 2,(2.13)

whenever (x∗
j )

n
j=1 ⊂ BT∗ is a block sequence, with n≤supp(x∗

1).
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Indeed, assume that (x∗
j )

n
j=1 is a block sequence in BT∗ , with n ≤ supp(x∗

1), and let

x ∈ T , ‖x‖ = 1, be such that
∥∥ ∑n

j=1 x
∗
j

∥∥ =
∑n

j=1 x
∗
j (x). By the 1-unconditionality

of (ej)
∞
j=1 in T, we can assume that supp(x) ⊂

⋃n
j=1Ej , where Ej = supp(x∗

j ), for

j = 1, 2, . . . , n. Since (Ej)
n
j=1 is admissible, we obtain from (2.4) that

∥∥∥
n∑

j=1

x∗
j

∥∥∥ =
n∑

j=1

x∗
j (x) =

n∑
j=1

x∗
j

(
Ej(x)

)
≤

n∑
j=1

∥∥Ej(x)‖ ≤ 2‖x‖ = 2,

which proves claim (2.13).
Tsirelson’s space T ∗ is not the only reflexive space satisfying inequality (2.13).

For every countable ordinal α, one can define T ∗
α (see [32]), a higher-order version of

T ∗, where the admissibility condition refers to Schreier families of order α. These
Tsirelson-type spaces are all reflexive and satisfy inequality (2.13), and they are
incomparable in the sense that T ∗

α does not embed isomorphically into T ∗
β whenever

α 
= β.

Remark 2.5. In this article all the results that are valid for T ∗ also hold for every
reflexive Banach space satisfying equation (2.13), so in particular for T ∗

α for any
countable ordinal α.

3. A metric characterization of finite dimensionality

We start by proving some coarse embeddability results for the metric spaces
introduced in section 2.2. Here, we do not need that the metrics can be seen as
graph metrics. In Lemma 3.1 below we show that if Y is an infinite-dimensional
Banach space admitting a spreading model E, generated by a weakly null sequence,
then there always exists a 1-Lipschitz map into Y , defined on any of the spaces
([N]

<ω
, dT ), ([N]

<ω
, dH), or ([N]

<ω
, d�), whose compression modulus is essentially

bounded from below by the fundamental function of the spreading model.

Lemma 3.1. Let (X, dX) be any of the metric spaces ([N]
<ω

, d�), ([N]
<ω

, dT ), or
([N]k, dH) for k ∈ N. Let Y be an infinite-dimensional Banach space admitting a
spreading model E generated by a normalized weakly null sequence. Then for every
ν > 0, there exists a map fν : (X, dX) → Y such that for all x, y ∈ X,

(3.1)
1

8(1 + ν)
ϕE (dX(x, y)) ≤ ‖fν(x)− fν(y)‖Y ≤ dX(x, y).

Proof. Let ε > 0 such that (1+ ε)2 ≤ (1+ ν). By Proposition 2.2 there is a weakly
null normalized basic sequence (yn)

∞
n=1 with basis constant not larger than (1+ ε),

and thus the bimonotonicity constant is at most 2(1 + ε), generating a spreading
model E, such that for all k ≥ 1, for all k ≤ n1 < n2 < · · · < nk, and for all
(εi)

k
i=1 ∈ {−1, 1}k one has

(3.2)
∥∥∥

k∑
i=1

εiyni

∥∥∥ ≥ 1

1 + ε

∥∥∥
k∑

i=1

εiei

∥∥∥ ≥ 1

2(1 + ε)
ϕE(k).

We now consider the three different cases.
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The symmetric difference metric case. Let f : ([N]<ω, d�) → Y be defined

by f(n̄) =
∑k

i=1 yni
, for n̄ = {n1, n2, . . . , nk} ∈ [N]<ω. The map f is clearly

1-Lipschitz since after cancellations it follows for m̄, n̄ ∈ [N]<ω that

‖f(m̄)− f(n̄)‖ =
∥∥∥

d�(m̄,n̄)∑
i=1

εiyqi

∥∥∥

for some q1 < q2 < · · · < qd�(m̄,n̄) and (εi)
d�(m̄,n̄)
i=1 ∈ {−1, 1}d�(m̄,n̄). If d =

d�(m̄, n̄) = 2r is even, then qr+1 ≥ r, and hence (3.2) and the assumption on the
bimonotonicity constant of (yn)

∞
n=1 yield

‖f(m̄)− f(n̄)‖ ≥ 1

2(1 + ε)

∥∥∥
d∑

i=r+1

εiyqi

∥∥∥ ≥ 1

2(1 + ε)2

∥∥∥
d∑

i=r+1

εiei

∥∥∥

≥ 1

4(1 + ε)2
ϕE(r) ≥

1

8(1 + ε)2
ϕE(d).

If d is odd, the proof is similar, as will be seen while treating the next case.

The tree metric case. Let Φ: [N]<ω → N be a bijection. Let f : ([N]
<ω

, dT ) → Y
be defined by f(n̄) =

∑
ū	n̄ yΦ(ū), for n̄ ∈ [N]<ω. The map f is clearly 1-Lipschitz

since after cancellations one has

‖f(m̄)− f(n̄)‖ =
∥∥∥

dT (m̄,n̄)∑
i=1

εiyqi

∥∥∥

for some q1 < q2 < · · · < qdT (m̄,n̄) and (εi)
dT (m̄,n̄)
i=1 ∈ {−1, 1}dT (m̄,n̄). Here we only

detail the case when d = dT (m̄, n̄) is odd, say d = 2r − 1, with r ∈ N. Note
that qr ≥ r. So again (3.2) and the assumption on the bimonotonicity constant of
(yn)

∞
n=1 imply that

‖f(m̄)− f(n̄)‖ ≥ 1

2(1 + ε)

∥∥∥
d∑

i=r

εiyni

∥∥∥ ≥ 1

2(1 + ε)2

∥∥∥
d∑

i=r

εiei

∥∥∥
≥ 1

4(1 + ε)2
ϕE(r) ≥

1

8(1 + ε)2
ϕE(2r) ≥

1

8(1 + ε)2
ϕE(d).

The Hamming metric case. Let Φ: N × N → N be a bijection, and let

f : ([N]k, dH) → Y be defined by f(n̄) = 1
2

∑k
i=1 yΦ(i,ni). The map f is clearly

1-Lipschitz since after cancellations one has

‖f(m̄)− f(n̄)‖ =
1

2

∥∥∥
2dH(m̄,n̄)∑

i=1

εiyqi

∥∥∥

for some q1 < q2 < · · · < q2dH(m̄,n̄) and (εi)
2dH(m̄,n̄)
i=1 ∈ {−1, 1}2dH(m̄,n̄). Necessarily,

qdH(m̄,n̄) ≥ dH(m̄, n̄), and hence, as in the other cases,

‖f(m̄)− f(n̄)‖ ≥ 1

4(1 + ε)

∥∥∥
2dH(m̄,n̄)∑

i=dH(m̄,n̄)+1

εiyqi

∥∥∥ ≥ 1

8(1 + ε)2
ϕE (dH(m̄, n̄)) . �
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Remark 3.2. In Lemma 3.1 we restricted the Hamming metric dH to [N]k, for k ∈ N,
because dH is usually defined for strings of equal length. But it is not hard to show
the existence of a map f : [N]<ω → X, satisfying condition (3.1), if we replace the
value 8 by a larger number.

Lemma 3.1 yields a coarse embedding of ([N]
<ω

, dT ), ([N]
<ω

, d�), and an equi-
coarse embedding of the sequence ([N]k, dH)k∈N into every Banach space which
admits at least one spreading model that is not isomorphic to c0 and is generated
by a weakly null sequence. Recall that Proposition 2.4 ensures that the associated
fundamental function is unbounded. Then the following proposition follows simply
from Lemma 3.1.

Corollary 3.3. The metric spaces ([N]
<ω

, dT ), ([N]
<ω

, d�), are all coarsely em-
beddable, and the sequence ([N]k, dH)k∈N is equi-coarsely embeddable into a Banach
space that has a spreading model E generated by a normalized weakly null sequence,
which is not isomorphic to c0.

More precisely, in all three cases, for any ν > 0, there is a coarse embedding fν
into Y such that fν is 1-Lipschitz and the modulus of compression of fν satisfies
ρfν (t) ≥ 1

8(1+ν)ϕE(t), for t > 0, where ϕE is the fundamental function of the

spreading model E.

For the tree metric we can deduce the following embeddability result, even if all
spreading models are equivalent to c0.

Proposition 3.4. If an infinite-dimensional Banach space Y has a spreading model
isomorphic to c0, then (Tω

k )k≥1 equi-bi-Lipschitzly embeds into Y .
More precisely, for every ν > 0 and every k ∈ N, there exists a map fk : T

ω
k → Y ,

such that for all x, y ∈ Tω
k ,

(3.3)
1

2(1 + ν)
dT (x, y) ≤ ‖fk(x)− fk(y)‖Y ≤ dT (x, y).

Proof. By Proposition 2.3 one may assume that there exists a normalized sequence
(yn)

∞
n=1 such that for all k ≥ 1, for all k ≤ n1 < n2 < · · · < nk, and for all

(ai)
k
i=1 ⊂ R one has

(3.4)
1

(1 + ν)
sup

1≤i≤k
|ai| ≤

∥∥∥
k∑

i=1

aiyni

∥∥∥ ≤ (1 + ν) sup
1≤i≤k

|ai|.

Let Φk : [N]
≤k → {2k, 2k + 1, . . . } be a bijection. For k ∈ N, let fk : T

ω
k → Y be

defined by fk(n̄) =
∑

ū	n̄

∑
s̄	ū yΦ(s̄) for n̄ ∈ [N]≤k. After cancellations one has

‖fk(m̄)− fk(n̄)‖ =
∥∥∥

dT (m̄,n̄)∑
i=1

αiyqi

∥∥∥

for some 2k ≤ q1 < · · · < qdT (m̄,n̄) and (αi)
dT (m̄,n̄)
i=1 ⊂ {1, . . . , dT (m̄, n̄)} satisfying

1
2dT (m̄, n̄) ≤ sup1≤i≤dT (m̄,n̄) |αi| ≤ dT (m̄, n̄). So

‖fk(m̄)− fk(n̄)‖ ≥ 1

(1 + ν)
sup

1≤i≤dT (m̄,m̄)

|αi| ≥
1

2(1 + ν)
dT (m̄, n̄)
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and

‖fk(m̄)− fk(n̄)‖ ≤ (1 + ν) sup
1≤i≤dT (m̄,n̄)

|αi| ≤ (1 + ν)dT (m̄, n̄),

which proves our claim. �

Remark 3.5. If an infinite-dimensional Banach space Y has a spreading model
isomorphic to c0, then, using a duality argument [8, Proposition 1, p. 80], the
relationship between the �+1 -weakly null index and the Szlenk index [2, Theo-
rem 4.2], and the embedding in [6, Theorem 2.6], one can show that Tω

∞ embeds
bi-Lipschitzly into Y .

Moreover, since it is easy to see that every countable tree isometrically embeds
into Tω

∞, we obtain that every countable tree coarsely embeds into any infinite-
dimensional Banach space.

In the following theorem, which includes Theorem E, a purely metric character-
ization of finite dimensionality in terms of graph preclusion in the coarse category
is given.

Theorem 3.6. Let Y be a Banach space. The following assertions are equivalent:

(1) Y is finite dimensional.
(2) (Tω

k )k≥1 does not equi-coarsely embed into Y .
(3) Tω

∞ does not coarsely embed into Y .

Proof. We start with a self-contained elementary proof of the main equivalence
(1) ⇐⇒ (2), which avoids the use of Remark 3.5.

By compactness, a finite-dimensional Banach space cannot contain an infinite
sequence that is bounded and separated. On the other hand, if Y is an infinite-
dimensional Banach space, then by Rosenthal’s �1-theorem, it either contains �1
isomorphically or it has a weakly Cauchy sequence which is not norm converging.
Since �1 contains an isometric copy of Tω

∞, we may assume that X contains a weakly
Cauchy sequence (xn)

∞
n=1 which is not norm converging. After eventually passing

to a subsequence of (xn)
∞
n=1, still denoted (xn)

∞
n=1, the sequence

(zn)
∞
n=1 :=

( x2n−1 − x2n

‖x2n−1 − x2n‖
)∞

n=1

is normalized and weakly null. Therefore, either (zn)
∞
n=1 has a subsequence that

generates a spreading model isomorphic to c0 and we apply Proposition 3.4 or
(zn)

∞
n=1 has a subsequence that generates a spreading model not isomorphic to c0

and we conclude with Corollary 3.3.
We now finish the circle of implications: (2) =⇒ (3) is obvious, and (3) =⇒ (1)

follows from Corollary 3.3 and Remark 3.5. �

4. The concentration inequalities

All the results of this section will be valid for the spaces [N]k, k ∈ N, equipped

either with the Johnson metric dJ =
d�
2 or the Hamming metric dH . So throughout

the section, d• will denote either dJ or dH . We start with a general structural result
on Lipschitz maps from ([N]k, d•) into a reflexive space with a basis. For two vectors
x and y in a Banach space with a basis, we shall use freely the convenient notation
x ≺ y to mean that supp(x) < supp(y), and k � x when k ≤ min(supp(x)), where
the supports are with respect to the basis considered.
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Proposition 4.1. Let Y be a reflexive Banach space with a bimonotone basis
(ei)

∞
i=1. Then, for all k, r ∈ N, ε > 0, M ∈ [N]ω, and Lipschitz maps f : ([M]k, d•) →

Y, there exist M′ ∈ [N]ω and y ∈ Y satisfying the following.

For all m̄ ∈ [M′]k, there exist r � y
(1)
m̄ ≺ y

(2)
m̄ ≺ · · · ≺ y

(k)
m̄ , all with finite supports

with respect to (ei)
∞
i=1, such that

(4.1) ‖y(i)m̄ ‖ ≤ Lip(f) for all i ∈ {1, 2, . . . , k}
and

(4.2) ‖f(m̄)− (y + y
(1)
m̄ + y

(2)
m̄ + · · ·+ y

(k)
m̄ )‖ < ε.

Proof. We will show this result by induction on k. The proof is based on a standard
gliding hump procedure and a few diagonal arguments that we have chosen to detail.
For n ∈ N, we shall denote Pn the basis projection on the linear span of {e1, . . . , en}.

For k = 1, assume that we are given r ∈ N, M ∈ [N]ω, a Lipschitz map
f : (M, d•) → Y , and ε > 0. Since f is bounded and Y is reflexive, by weak
compactness, there exists y ∈ Y and M0 ∈ [M]ω such that (f(m))m∈M0

converges
weakly to y. From the weak lower semicontinuity of the norm of Y, we deduce that
‖f(m)− y‖ ≤ Lip(f) for all m ∈ M0. Since (f(m)− y)m∈M0

is weakly null, one can
find m1 ∈ M0 such that

‖Pr(f(m)− y)‖ <
ε

2
for all m ∈ M0, with m ≥ m1.

Then for all for all m ≥ m1, m ∈ M0, there exists sm > r such that

‖(I − Psm)(f(m)− y)‖ <
ε

2
.

We now set M
′ := {m ∈ M0 : m ≥ m1} and y

(1)
m := (Psm − Pr)(f(m) − y), for

m ∈ M
′. For all m ∈ M

′, r � y
(1)
m , y

(1)
m has finite support and since the basis is

bimonotone, ‖y(1)m ‖ ≤ Lip(f). Finally, we deduce that ‖f(m)− (y+y
(1)
m )‖ < ε from

the triangle inequality.
Assume now that our statement is proved for k ∈ N, and let r ∈ N, a Lipschitz

map f : ([M]k+1, d•) → Y , and ε > 0 be given. Using that f([M]k+1) is a bounded
subset of the reflexive space Y and a diagonal argument, we infer the existence of
M0 ∈ [M]ω such that for all m̄ ∈ [M0]

k, (f(m̄, n))n∈M0
converges weakly to some

g(m̄) ∈ Y . Using again that the norm of Y is weakly lower semicontinuous, we
have that Lip(g) ≤ Lip(f). This allows us to apply our induction hypothesis to the
map g : [M0]

k → Y and to find M1 ∈ [M0]
ω and y ∈ Y , such that for all m̄ ∈ [M1]

k

there exist r � y
(1)
m̄ ≺ y

(2)
m̄ ≺ · · · ≺ y

(k)
m̄ , all with finite supports, such that for all

i ∈ {1, . . . , k} ‖y(i)m̄ ‖ ≤ Lip(f) and

(4.3)
∥∥g(m̄)− (y + y

(1)
m̄ + y

(2)
m̄ + · · ·+ y

(k)
m̄ )

∥∥ <
ε

3
.

We now fix m̄ ∈ [M1]
k. Note that the weak lower semicontinuity of the norm implies

that for all n ∈ M1, ‖f(m̄, n) − g(m̄)‖ ≤ Lip(f). Denote rm̄ = max(supp(y
(k)
m̄ )).

Since (f(m̄, n)− g(m̄))n∈M1
is weakly null, there exists Nm̄ ∈ M1 such that for all

n ∈ M1, n ≥ Nm̄ ∥∥Prm̄

(
f(m̄, n)− g(m̄)

)∥∥ <
ε

3
.

Then, for all n ∈ M1, n ≥ Nm̄, there exists sm̄,n > rm̄ so that∥∥(I − Psm̄,n
)
(
f(m̄, n)− g(m̄)

)∥∥ <
ε

3
.
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We now set y
(k+1)
(m̄,n) := (Psm̄,n

−Prm̄)(f(m̄, n)−g(m̄)). We have that, for all n ∈ M1,

n ≥ Nm̄: y
(k+1)
(m̄,n) has finite support, ykm̄ ≺ y

(k+1)
(m̄,n) , ‖y

(k+1)
(m̄,n)‖ ≤ Lip(f) and

‖f(m̄, n)− (y + y
(1)
m̄ + · · ·+ y

(k)
m̄ + y

(k+1)
(m̄,n))‖ < ε.

We conclude the proof with one last extraction argument.
If M1 = {m1,m2, . . . }, we define M

′ := {m′
1,m

′
2, . . . } recursively as follows.

For all i ∈ N, m′
i := mΦ(i) where Φ(1) = 1,Φ(2) = 2, . . . ,Φ(k) = k, and if Φ(i)

has been chosen for i ≥ k, then Φ(i + 1) is picked such that Φ(i + 1) > Φ(i) and
mΦ(i+1) ≥ Nm̄ for all m̄ in the finite set [{m′

1,m
′
2, . . . ,m

′
i}]k. It is now easy to

check that M
′, y, and for all m̄ ∈ [M′]k and n ∈ M

′, n > max(m̄), the vectors

with finite support y
(1)
(m̄,n) := y

(1)
m̄ , . . . , y

(k)
(m̄,n) := y

(k)
m̄ , y

(k+1)
(m̄,n) satisfy the induction

hypothesis for k + 1. �

Remark 4.2. We have assumed that the basis of Y is bimonotone only for conve-
nience. In the general case, one gets a similar result, with the only difference being

that ‖y(i)m̄ ‖ ≤ CLip(f), where C is the bimonotonicity constant.

Remark 4.3. Proposition 4.1 is actually true if we only assume that Y is a Banach
space with a boundedly complete Schauder finite-dimensional decomposition. In
that case, we just have to use weak∗-compactness instead of weak-compactness.

Our concentration result for Lipschitz maps with values in T ∗ follows easily from
Proposition 4.1. The following theorem is Theorem D when d• = dH .

Theorem 4.4 (Concentration inequality). Let k ∈ N, and let f : ([N]k, d•) → T ∗

be a Lipschitz map. Then there exists M
′ ∈ [N]ω such that for all m̄, n̄ ∈ [M′]k one

has

(4.4) ‖f(m̄)− f(n̄)‖ ≤ 5Lip(f).

Proof. We assume, as we may, that Lip(f) > 0. Then it follows from Proposition
4.1 with Y = T ∗, r = k, M = N, and ε = 1

2Lip(f) that there exists M
′ ∈ [N]ω,

y ∈ T ∗ such that for all m̄ ∈ [M′]k there exist k � y
(1)
m̄ ≺ y

(2)
m̄ ≺ · · · ≺ y

(k)
m̄ , all with

finite supports, satisfying (4.1) and (4.2). And hence, for all m̄, n̄ ∈ M
′,

‖f(m̄)− f(n̄)‖ ≤ 2ε+ ‖y(1)m̄ + y
(2)
m̄ + · · ·+ y

(k)
m̄ ‖+ ‖y(1)n̄ + y

(2)
n̄ + · · ·+ y

(k)
n̄ ‖

≤ 5Lip(f),

where for the last inequality we use property (2.13) of T ∗. �

The concentration inequalities stated above immediately provide an obstruction
to equi-coarse embeddability of the Johnson graphs (Jω

k )k≥1 and the Hamming
graphs (Hω

k )k≥1. A rescaling argument can be used to provide an obstruction to
equi-uniform embeddability of the rescaled metrics.

Corollary 4.5.

(1) The sequence of Hamming graphs (Hω
k )k≥1 (resp. ([N]k, dH

k )k≥1) does not
equi-coarsely (resp. equi-uniformly) embed into T ∗.

(2) The sequence of Johnson graphs (Jω
k )k≥1 (resp. ([N]

k, dJ

k )k≥1) does not equi-
coarsely (resp. equi-uniformly) embed into T ∗.
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Proof. We only treat the case of the Hamming graphs, the case of the Johnson
graphs being similar. Assume by contradiction that (Hω

k )k≥1 equi-coarsely embeds
into T ∗, i.e., that there exist nondecreasing functions ρ, ω : [0,∞) → [0,∞) and
for each k ∈ N a function fk : ([N]

k, dH) → T ∗, such that ρ ≤ ρfk , ωfk ≤ ω,
limt→∞ ρ(t) = ∞, and ω(t) < ∞ for all t > 0. Since dH is the graph distance on
Hω

k , fk is actually ω(1)-Lipschitz. By Theorem 4.4, for every k ≥ 1, there exists
Mk ∈ [N]ω such that for all m̄, n̄ ∈ [Mk]

k one has

(4.5) ‖fk(m̄)− fk(n̄)‖ ≤ 5ω(1).

If m̄ and n̄ are chosen in [Mk]
k such that dH(m̄, n̄) = k, then it implies that for

every k ≥ 1, ρ(k) ≤ 5ω(1), which contradicts the properties of ω and ρ for k large
enough.

Assume now by contradiction that ([N]
k
, dH

k )k≥1 equi-uniformly embeds into T ∗,
i.e., there exist nondecreasing functions ρ, ω : [0,∞) → [0,∞) and for each k ∈ N

a function fk : ([N]
k, dH

k ) → T ∗, such that ρ ≤ ρfk , ωfk ≤ ω, limt→0 ω(t) = 0, and

ρ(t) > 0 for all t > 0. Denote the identity map from ([N]k, dH) to ([N]k, dH

k ) by ik.

Then Lip(fk ◦ ik) = ωfk◦ik(1) ≤ ω( 1k ). By Theorem 4.4, for all k ≥ 1, there exist

Mk ∈ [N]ω such that ‖fk(m̄) − fk(n̄)‖ ≤ 5ω( 1k ) for all m̄, n̄ ∈ [Mk]
k. Therefore,

considering again m̄ and n̄ in [Mk]
k such that dH(m̄, n̄) = k, we get that for all

k ≥ 1, one has 0 < ρ(1) ≤ 5ω( 1k ), which is a contradiction for large enough k. �

Remark 4.6. As previously mentioned, Corollary B follows from the more involved
rigidity phenomenon depicted in Theorem A. Nevertheless, for the reader only
interested in the geometry of Hilbert space, we include an abridged proof of the
�2-case. The proof follows simply from Corollary 4.5 and, in the coarse setting,
the fact that the Johnson graphs equi-coarsely embeds into �2. Indeed, for k ∈ N

consider the map

fk : ([N]
k
, dJ ) → �2, n̄ �→

k∑
i=1

eni
,

where (en)
∞
n=1 denotes the canonical basis of �2. Then

(4.6) ‖fk(m̄)− fk(n̄)‖2 =
√
2dJ (m̄, n̄).

For our claim in the uniform category, define for k ∈ N

gk :
(
[N]k,

dJ
k

)
→ B�2 , n̄ �→ 1√

k

k∑
i=1

eni
,

then

(4.7) ‖gk(m̄)− gk(n̄)‖2 =

√
2dJ (m̄, n̄)

k
,

and we again invoke Corollary 4.5 to conclude the proof of our claim.

Reflexivity is usually not preserved under nonlinear embeddings, as witnessed
by Ribe’s example in [35], where he showed that the two separable Banach spaces
(
∑∞

n=1 �pn
)�2 and (

∑∞
n=1 �pn

)�2⊕�1, where (pn)n≥1 is a sequence in (1,∞) such that
limn→∞ pn = 1, are uniformly homeomorphic. Using the Kalton–Randrianarivony
concentration inequality, it was shown in [6] that if X coarse Lipschitz embeds into
a reflexive Banach space that is asymptotically uniformly smooth, then X must be
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reflexive. Actually, X must have the Banach–Saks property as recently observed
in [9]. Another consequence of the concentration inequality gives that reflexivity is
stable under coarse embeddability into Banach spaces possessing the “c0-like” as-
ymptotic smoothness property of Tsirelson’s space T ∗. In order to preserve reflexiv-
ity, this trade-off between faithfulness of the embedding and smoothness properties
of the target space is a rather interesting phenomenon.

Proposition 4.7. Let X be a Banach space. If X coarsely embeds, or BX uniformly
embeds, into T ∗, then X is reflexive.

Proof. Assume that X is not reflexive. Then, by James’s characterization of reflex-
ive spaces [17], there exists a sequence (xn)

∞
n=1 ⊂ BX such that for all k ≥ 1 and

n̄ ∈ [N]2k,

(4.8)
∥∥∥

k∑
i=1

xni
−

2k∑
i=k+1

xni

∥∥∥ ≥ k

2
.

For every k ∈ N, the map ϕk : H
ω
k (N) → X defined as ϕk(n̄) =

∑k
i=1 xni

for
n̄ ∈ [N]k, is clearly 2-Lipschitz. Assume by contradiction that there exists a coarse
embedding f : X → T ∗. It follows again from the properties of graph distances that
f ◦ ϕk is ωf◦ϕk

(1)-Lipschitz. Since ωf◦ϕk
(1) ≤ ωf (2), it follows from Theorem 4.4

that for all k ≥ 1, there existsMk ∈ [N]ω, such that ‖f◦ϕk(m̄)−f◦ϕk(n̄)‖ ≤ 5ωf (2)
for all m̄, n̄ ∈ [Mk]

k. In particular for all k ≥ 1, if m̄, n̄ ∈ [Mk]
k are such that m1 <

m2 < · · · < mk < n1 < n2 < · · · < nk, we obtain by (4.8) that ρf (
k
2 ) ≤ 5ωf (2),

which is impossible for large enough k.
For the proof in the uniform setting, we use the map ϕk : H

ω
k → BX defined as

ϕk(n̄) = 1
k

∑k
i=1 xni

, which is clearly 2
k -Lipschitz. Assume by contradiction that

there exists a uniform embedding f : BX → T ∗. Then Lip(f ◦ ϕk) ≤ ωf (
2
k ). By

Theorem 4.4, for all k ≥ 1, there exist Mk ∈ [N]ω such that ‖f◦ϕk(m̄)−f◦ϕk(n̄)‖ ≤
5ωf (

2
k ) for all m̄, n̄ ∈ [Mk]

k. In particular for all k ≥ 1, again if m̄, n̄ ∈ [Mk]
k are

such that m1 < m2 < · · · < mk < n1 < n2 < · · · < nk, we get by (4.8) that
0 < ρf (

1
2 ) ≤ 5ωf (

2
k ), which is again impossible if k is sufficiently large. �

Remark 4.8. The conclusion of Proposition 4.7 can be slightly strengthened as
already observed in [9]. Indeed, using [7, Proposition 2, p. 273] one can show that
X has the Banach–Saks property.

Recall that Tsirelson’s space T ∗ has the following important properties:

• T ∗ is reflexive.
• T ∗ does not contain isomorphic copies of �p, for any p ∈ [1,∞), nor of c0.
• All the spreading models of T ∗ are isomorphic to c0.

Theorem A shows that Tsirelson’s construction is surprisingly rigid.

Proof of Theorem A. Assume first that g : X → T ∗ is a coarse embedding. By
Corollary 4.5 the sequence (Hω

k )k≥1 does not equi-coarsely embed into X. Since
Proposition 4.7 ensures that X is reflexive, it follows from Rosenthal’s �1 theorem
that every spreading model of X can be generated by a weakly null sequence.
Finally, it follows from Corollary 3.3 that every spreading model of X is isomorphic
to c0.

Assume now that g : BX → T ∗ is a uniform embedding. Assume also by
contradiction that X admits a spreading model which is not isomorphic to c0. By
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Proposition 4.7 X is reflexive. Thus, it follows from Rosenthal’s �1 theorem and
Proposition 2.4 that there exists a normalized weakly null sequence (xn)

∞
n=1 in X

such that limk→∞ ψ(k) = ∞, where

(4.9) ψ(k) = inf
n1<n2<···<nk

inf
(εi)ki=1∈{−1,1}

∥∥∥
k∑

i=1

εixni

∥∥∥.
Define now ϕk : ([N]

k, dJ

k ) → T ∗ by

(4.10) ϕk(n̄) = g
( 1

ψ(2k)

k∑
i=1

xni

)
for n̄ ∈ [N]k.

Note that ωϕk

(
1
k ) ≤ ωg(

2
ψ(2k)

)
. For every k ∈ N there exists Mk ∈ [N]ω by Theorem

4.4 such that

(4.11) ‖ϕk(m̄)− ϕk(n̄)‖ ≤ 5ωg

( 2

ψ(k)

)
whenever m̄, n̄ ∈ [Mk]

k.

But, it follows from the definition of ψ that ‖ϕk(m̄) − ϕk(n̄)‖ ≥ ρg(1) whenever
dJ (m̄, n̄) = k. So for all k ∈ N, we have 5ωg(

2
ψ(k)) ≥ ρg(1) > 0. This contradicts

the fact that limk→∞ ψ(k) = ∞ and limt→0 ωg(t) = 0. �

5. Final comments and open problems

Since T ∗ clearly has trivial cotype, it follows from the Mendel–Naor metric cotype
obstruction that T ∗ is not coarsely embeddable into any Banach space that coarsely
embeds into a Banach space with nontrivial type. Therefore, T ∗ and �p, p ∈ [1,∞),
are coarsely incomparable in the sense that T ∗ is not coarsely embeddable into
�p and �p is not coarsely embeddable into T ∗. To the best of our knowledge this
provides the first pairs of coarsely incomparable Banach spaces.

Corollary 5.1. Assume that X is a Banach space such that

(1) (Hω
k )k≥1 (or (Jω

k )k≥1) equi-coarsely embeds into X,
(2) X coarsely embeds into a Banach space with nontrivial type.

Then X and T ∗ are coarsely incomparable.

Let us conclude with a few open questions.

Problem 5.1. Does �2 coarsely embed into every super-reflexive Banach space?

In view of Ostrovskii’s result [33], which we referenced in the introduction, a
counterexample to Problem 5.1 would have to be a Banach space that is super-
reflexive not containing any unconditional basic sequence. It seems that the only
known such space is Ferenczi’s space [12].

Problem 5.2. Does �2 coarsely embed into any Banach space which has a spreading
model that is not equivalent to c0?
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