Skip to Main Content

Transactions of the Moscow Mathematical Society

This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.

ISSN 1547-738X (online) ISSN 0077-1554 (print)

The 2020 MCQ for Transactions of the Moscow Mathematical Society is 0.74.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Holomorphic solutions of soliton equations
HTML articles powered by AMS MathViewer

by A. V. Domrin
Translated by: A. V. Domrin
Trans. Moscow Math. Soc. 2021, 193-258
DOI: https://doi.org/10.1090/mosc/323
Published electronically: March 15, 2022

Abstract:

We present a holomorphic version of the inverse scattering method for soliton equations of parabolic type in two-dimensional space-time. It enables one to construct examples of solutions holomorphic in both variables and study the properties of all such solutions. We show that every local holomorphic solution of any of these equations admits an analytic continuation to a globally meromorphic function of the spatial variable. We also discuss the role of the Riemann problem in the theory of integrable systems, solubility conditions for the Cauchy problem, the property of trivial monodromy for all solutions of the auxiliary linear system, and the Painlevé property for soliton equations.
References
  • E. L. Ince, Ordinary differential equations, Longmans, Green and Co., London, New York and Bombay 1926.
  • Lipman Bers, Fritz John, and Martin Schechter, Partial differential equations, Lectures in Applied Mathematics, Vol. III, Interscience Publishers, a division of John Wiley & Sons, Inc., New York-London-Sydney, 1964. With special lectures by Lars Garding and A. N. Milgram. MR 0163043
  • A. A. Bolibrukh, Inverse monodromy problems in analytic theory of differential equations, MCCME, Moscow 2009. (Russian)
  • N. P. Vekua, Systems of singular integral equations, P. Noordhoff Ltd., Groningen, 1967. Translated from the Russian by A. G. Gibbs and G. M. Simmons. Edited by J. H. Ferziger. MR 0211220
  • A. O. Gel′fond, Calculus of finite differences, International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, 1971. Translated from the Russian. MR 0342890
  • I. C. Gohberg, On linear operators depending analytically on a parameter, Doklady Akad. Nauk SSSR (N.S.) 78 (1951), 629–632 (Russian). MR 0042060
  • E. Goursat, Cours d’analyse mathématique, Gauthier–Villars, Paris 1927.
  • Roger K. Dodd, J. Chris Eilbeck, John D. Gibbon, and Hedley C. Morris, Solitons and nonlinear wave equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. MR 696935
  • A. V. Domrin, The Riemann problem and matrix-valued potentials with a converging Baker-Akhiezer function, Teoret. Mat. Fiz. 144 (2005), no. 3, 453–471 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 144 (2005), no. 3, 1264–1278. MR 2191841, DOI 10.1007/s11232-005-0158-y
  • A. V. Domrin, Remarks on a local version of the method of the inverse scattering problem, Tr. Mat. Inst. Steklova 253 (2006), no. Kompleks. Anal. i Prilozh., 46–60 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2(253) (2006), 37–50. MR 2338686, DOI 10.1134/s0081543806020040
  • A. V. Domrin and A. V. Domrina, On the divergence of the Kontsevich-Witten series, Uspekhi Mat. Nauk 63 (2008), no. 4(382), 185–186 (Russian); English transl., Russian Math. Surveys 63 (2008), no. 4, 773–775. MR 2483208, DOI 10.1070/RM2008v063n04ABEH004557
  • A. V. Domrin, Meromorphic extension of solutions of soliton equations, Izv. Ross. Akad. Nauk Ser. Mat. 74 (2010), no. 3, 23–44 (Russian, with Russian summary); English transl., Izv. Math. 74 (2010), no. 3, 461–480. MR 2682370, DOI 10.1070/IM2010v074n03ABEH002494
  • A. V. Domrin, On holomorphic solutions of equations of Korteweg–de Vries type, Trans. Moscow Math. Soc. , posted on (2012), 193–206. MR 3184975, DOI 10.1090/s0077-1554-2013-00206-x
  • A. V. Domrin, Holomorphic solutions of soliton equations, Diss. Doct. Phys.-Math. Sci., Moscow State Univ., Moscow 2013.
  • V. G. Drinfel′d and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 81–180 (Russian). MR 760998
  • Yu. A. Dubinskii, Cauchy problem in the complex domain, Moscow Energy Inst. Press, Moscow 1996. (Russian)
  • B. A. Dubrovin, Completely integrable Hamiltonian systems that are associated with matrix operators, and Abelian varieties, Funkcional. Anal. i Priložen. 11 (1977), no. 4, 28–41, 96 (Russian). MR 0650114
  • B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Integrable systems. I [ MR0842910 (87k:58112)], Dynamical systems, IV, Encyclopaedia Math. Sci., vol. 4, Springer, Berlin, 2001, pp. 177–332. MR 1866633, DOI 10.1007/978-3-662-06791-8_{3}
  • S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
  • V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174
  • V. E. Zaharov and A. B. Šabat, Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II, Funktsional. Anal. i Prilozhen. 13 (1979), no. 3, 13–22 (Russian). MR 545363
  • Sergei K. Lando and Alexander K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, vol. 141, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier; Low-Dimensional Topology, II. MR 2036721, DOI 10.1007/978-3-540-38361-1
  • Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473, DOI 10.1007/978-3-642-53393-8
  • A. V. Komlov, Estimates for Gevrey classes of scattering data for polynomial potentials, Uspekhi Mat. Nauk 63 (2008), no. 4(382), 189–190 (Russian); English transl., Russian Math. Surveys 63 (2008), no. 4, 788–789. MR 2483210, DOI 10.1070/RM2008v063n04ABEH004559
  • Robert Conte and Micheline Musette, The Painlevé handbook, Mathematical Physics Studies, Springer, Cham, [2020] ©2020. Second edition [of 2449284]. MR 4234601, DOI 10.1007/978-3-030-53340-3
  • Yu. F. Korobeĭnik, Representing systems of exponentials and the Cauchy problem for partial differential equations with constant coefficients, Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997), no. 3, 91–132 (Russian, with Russian summary); English transl., Izv. Math. 61 (1997), no. 3, 553–592. MR 1478561, DOI 10.1070/im1997v061n03ABEH000127
  • Igor Moiseevich Krichever, An analogue of the d’Alembert formula for the equations of a principal chiral field and the sine-Gordon equation, Dokl. Akad. Nauk SSSR 253 (1980), no. 2, 288–292 (Russian). MR 581396
  • I. M. Krichever, “Nonlinear equations and elliptic curves”, J. Sov. Math. 28 (1986), 51–90.
  • N. A. Kudryashov, Analytic theory of nonlinear differential equations, Institute of Computer Studies, Moscow–Izhevsk 2004. (Russian)
  • R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. (Vol. II by R. Courant.). MR 0140802
  • S. Lang, $\operatorname {SL}_2(\mathbb {R})$, Addison–Wesley, Reading etc. 1975.
  • A. F. Leont’ev, Entire functions. Series of exponentials, Nauka, Moscow 1983. (Russian)
  • S. P. Novikov, A periodic problem for the Korteweg-de Vries equation. I, Funkcional. Anal. i Priložen. 8 (1974), no. 3, 54–66 (Russian). MR 0382878
  • O. A. Oleinik, “Theorem of S. V. Kovalevskaya and modern theory of partial differential equations”, Soros Educational J. 8 (1997), 116–121. (Russian)
  • A. N. Parshin, “On Chapter X “The Riemann problem in the theory of functions of a complex variable””, D. Hilbert, Selected works, vol. 2, Faktorial, Moscow 1998, pp. 535–539. (Russian)
  • A. N. Parshin, Letters of Karl Weierstrass to Sofia Kovalevskaya, Nauka, Moscow 1973. (Russian and German)
  • V. P. Potapov, The multiplicative structure of $J$-contractive matrix functions, Amer. Math. Soc. Transl. (2) 15 (1960), 131–243. MR 0114915, DOI 10.1090/trans2/015/07
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
  • G. S. Salehov, On the problem of Cauchy-Kovalevskaya for a class of linear partial differential equations in the domain of arbitrarily smooth functions, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 355–366 (Russian). MR 0037995
  • G. S. Salehov and V. R. Fridlender, On a problem inverse to the Cauchy-Kovalevskaya problem, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 5(51), 169–192 (Russian). MR 0057430
  • L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Translated from the Russian by A. G. Reyman [A. G. Reĭman]. MR 905674, DOI 10.1007/978-3-540-69969-9
  • Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. MR 722297, DOI 10.1007/978-1-4757-1799-0
  • Otto Forster, Riemannsche Flächen, Heidelberger Taschenbücher, Band 184, Springer-Verlag, Berlin-New York, 1977 (German). MR 0447557, DOI 10.1007/978-3-642-66547-9
  • Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients. MR 705278, DOI 10.1007/978-3-642-96750-4
  • B. V. Shabat, Introduction to complex analysis. Part II, Translations of Mathematical Monographs, vol. 110, American Mathematical Society, Providence, RI, 1992. Functions of several variables; Translated from the third (1985) Russian edition by J. S. Joel. MR 1192135, DOI 10.1090/mmono/110
  • G. E. Šilov, Matematicheskiĭ analiz: Vtoroĭ spetsial′nyĭkurs, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0219869
  • D. R. Yafaev, Mathematical scattering theory, Translations of Mathematical Monographs, vol. 105, American Mathematical Society, Providence, RI, 1992. General theory; Translated from the Russian by J. R. Schulenberger. MR 1180965, DOI 10.1090/mmono/105
  • Mark J. Ablowitz and Richard Haberman, Resonantly coupled nonlinear evolution equations, J. Mathematical Phys. 16 (1975), no. 11, 2301–2305. MR 397199, DOI 10.1063/1.522460
  • Mark J. Ablowitz, David J. Kaup, Alan C. Newell, and Harvey Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249–315. MR 450815, DOI 10.1002/sapm1974534249
  • Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris. MR 2807457, DOI 10.1007/978-3-540-69392-5
  • R. Beals, P. Deift, and X. Zhou, The inverse scattering transform on the line, Important developments in soliton theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, pp. 7–32. MR 1280467
  • George D. Birkhoff, General theory of linear difference equations, Trans. Amer. Math. Soc. 12 (1911), no. 2, 243–284. MR 1500888, DOI 10.1090/S0002-9947-1911-1500888-5
  • A.-L. Cauchy, “Mémoire sur les systèmes d’equations aux dérivées partielles d’ordre quelconque et sur leur réduction à systèmes d’equations linéaires du premier ordre”, C. R. Acad. Sci. Paris 40 (1842), 131–138.
  • Kevin F. Clancey and Israel Gohberg, Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, vol. 3, Birkhäuser Verlag, Basel-Boston, Mass., 1981. MR 657762, DOI 10.1007/978-3-0348-5492-4
  • Amy Cohen and Thomas Kappeler, Nonuniqueness for solutions of the Korteweg-de Vries equation, Trans. Amer. Math. Soc. 312 (1989), no. 2, 819–840. MR 988885, DOI 10.1090/S0002-9947-1989-0988885-1
  • L. A. Dickey, Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, vol. 26, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. MR 1964513, DOI 10.1142/5108
  • J. J. Duistermaat and F. A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), no. 2, 177–240. MR 826863, DOI 10.1007/BF01206937
  • Maurice Gevrey, Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire, Ann. Sci. École Norm. Sup. (3) 35 (1918), 129–190 (French). MR 1509208, DOI 10.24033/asens.706
  • Raymond Gérard and Hidetoshi Tahara, Singular nonlinear partial differential equations, Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1996. MR 1757086, DOI 10.1007/978-3-322-80284-2
  • G. Haak, M. Schmidt, and R. Schrader, Group-theoretic formulation of the Segal-Wilson approach to integrable systems with applications, Rev. Math. Phys. 4 (1992), no. 3, 451–499. MR 1189119, DOI 10.1142/S0129055X92000121
  • Heather Hannah, A. Alexandrou Himonas, and Gerson Petronilho, Gevrey regularity in time for generalized KdV type equations, Recent progress on some problems in several complex variables and partial differential equations, Contemp. Math., vol. 400, Amer. Math. Soc., Providence, RI, 2006, pp. 117–127. MR 2222470, DOI 10.1090/conm/400/07535
  • Nakao Hayashi and Keiichi Kato, Regularity in time of solutions to nonlinear Schrödinger equations, J. Funct. Anal. 128 (1995), no. 2, 253–277. MR 1319956, DOI 10.1006/jfan.1995.1031
  • Paul Malliavin, L’œuvre de Jean Leray, Gaz. Math. 84, suppl. (2000), 83–88 (French). Jean Leray (1906–1998). MR 1775592
  • E. Holmgren, “Sur l’équation de la propagation de la chaleur”, Ark. Mat. Astr. Pys. 4 :14 (1908), 1–11; 4 :18 (1908), 1–28.
  • Eberhard Hopf, The partial differential equation $u_t+uu_x=\mu u_{xx}$, Comm. Pure Appl. Math. 3 (1950), 201–230. MR 47234, DOI 10.1002/cpa.3160030302
  • Po-Fang Hsieh and Yasutaka Sibuya, Basic theory of ordinary differential equations, Universitext, Springer-Verlag, New York, 1999. MR 1697415, DOI 10.1007/978-1-4612-1506-6
  • Nalini Joshi, Johannes A. Petersen, and Luke M. Schubert, Nonexistence results for the Korteweg-de Vries and Kadomtsev-Petviashvili equations, Stud. Appl. Math. 105 (2000), no. 4, 361–374. MR 1793346, DOI 10.1111/1467-9590.00155
  • Dmitry Khavinson and Erik Lundberg, Linear holomorphic partial differential equations and classical potential theory, Mathematical Surveys and Monographs, vol. 232, American Mathematical Society, Providence, RI, 2018. MR 3821527, DOI 10.1090/surv/232
  • D. Khavinson and H. S. Shapiro, The heat equation and analytic continuation: Ivar Fredholm’s first paper, Exposition. Math. 12 (1994), no. 1, 79–95. MR 1267629
  • Satyanad Kichenassamy, Fuchsian reduction, Progress in Nonlinear Differential Equations and their Applications, vol. 71, Birkhäuser Boston, Inc., Boston, MA, 2007. Applications to geometry, cosmology, and mathematical physics. MR 2341108, DOI 10.1007/978-0-8176-4637-0
  • Christer O. Kiselman, Prolongement des solutions d’une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (1969), 329–356 (French). MR 267259, DOI 10.24033/bsmf.1687
  • Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758, DOI 10.1007/BF02099526
  • Sophie von Kowalevsky, Zur Theorie der partiellen Differentialgleichung, J. Reine Angew. Math. 80 (1875), 1–32 (German). MR 1579652, DOI 10.1515/crll.1875.80.1
  • M. D. Kruskal, N. Joshi, R. Halburd, “Analytic and asymptotic methods for nonlinear singularity analysis: a review and extension of tests for the Painlevé property”, Integrability of nonlinear systems, Lect. Notes Phys., V. 638, 2004, pp. 175–208.
  • Jean Leray, Problème de Cauchy. I. Uniformisation de la solution du problème linéaire analytique de Cauchy près de la variété qui porte les données de Cauchy, Bull. Soc. Math. France 85 (1957), 389–429 (French). MR 103328, DOI 10.24033/bsmf.1493
  • J. Le Roux, “Sur les intégrales analytiques de l’équation $\partial ^2z/\partial y^2=\partial z/\partial x$”, Bull. Sci. Math. 19 (1895), 127–128.
  • Felipe Linares and Gustavo Ponce, Introduction to nonlinear dispersive equations, Universitext, Springer, New York, 2009. MR 2492151
  • B. Malgrange, Sur les déformations isomonodromiques. I. Singularités régulières, Mathematics and physics (Paris, 1979/1982) Progr. Math., vol. 37, Birkhäuser Boston, Boston, MA, 1983, pp. 401–426 (French). MR 728431
  • Bernard Malgrange, Sur le théorème de Maillet, Asymptotic Anal. 2 (1989), no. 1, 1–4 (French). MR 991413, DOI 10.3233/ASY-1989-2101
  • J. B. McLeod and P. J. Olver, The connection between partial differential equations soluble by inverse scattering and ordinary differential equations of Painlevé type, SIAM J. Math. Anal. 14 (1983), no. 3, 488–506. MR 697525, DOI 10.1137/0514042
  • Sur une transcendante remarquable trouvée par M. Fredholm, Acta Math. 15 (1891), no. 1, 279–280 (French). Extrait d’une lettre de M. Mittag-Leffler à M. Poincaré. MR 1554820, DOI 10.1007/BF02392611
  • Chantal Moussy, Théorème du point fixe et théorème de Cauchy-Kowalewsky-Lednev pour les systèmes semi-linéaires, Ann. Fac. Sci. Toulouse Math. (6) 8 (1999), no. 3, 491–535 (French, with English and French summaries). MR 1751174, DOI 10.5802/afst.942
  • Jan Persson, Some results on classical solutions of the equation $D_{t}{}^{m}u=x^{q}\,D_{x}{}^{n}u,\,m<n$, Boll. Un. Mat. Ital. (4) 3 (1970), 426–440 (English, with Italian summary). MR 0264198
  • P. Remy, Gevrey index theorems for some inhomogeneous semilinear partial differential equations with variable coefficients, Preprint HAL Archives-ouvertes, https://hal.archives-ouvertes.fr/hal-02263353, 2019.
  • Stéphane Rigat, Application of functional calculus to complex Cauchy problems, Comput. Methods Funct. Theory 7 (2007), no. 2, 509–526. MR 2376687, DOI 10.1007/BF03321660
  • Luigi Rodino, Linear partial differential operators in Gevrey spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1249275, DOI 10.1142/9789814360036
  • Alexei Rybkin, The Hirota $\tau$-function and well-posedness of the KdV equation with an arbitrary step-like initial profile decaying on the right half line, Nonlinearity 24 (2011), no. 10, 2953–2990. MR 2842104, DOI 10.1088/0951-7715/24/10/015
  • D. H. Sattinger and J. S. Szmigielski, Factorization and the dressing method for the Gel′fand-Dikiĭ hierarchy, Phys. D 64 (1993), no. 1-3, 1–34. MR 1214545, DOI 10.1016/0167-2789(93)90247-X
  • Pierre Schapira, Sheaves: from Leray to Grothendieck and Sato, Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr., vol. 9, Soc. Math. France, Paris, 2004, pp. 173–183 (English, with English and French summaries). MR 2145942
  • R. Schäfke, “A majorant method for differential equations with a singular parameter”, Trends and developments in ordinary differential equations, World Scientific, Singapore 1994, pp. 283–292.
  • Martin U. Schmidt, Integrable systems and Riemann surfaces of infinite genus, Mem. Amer. Math. Soc. 122 (1996), no. 581, viii+111. MR 1329944, DOI 10.1090/memo/0581
  • Graeme Segal and George Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5–65. MR 783348, DOI 10.1007/BF02698802
  • Yasutaka Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs, vol. 82, American Mathematical Society, Providence, RI, 1990. Translated from the Japanese by the author. MR 1084379, DOI 10.1090/mmono/082
  • Hidetoshi Tahara, On the singular solutions of nonlinear singular partial differential equations, Sūrikaisekikenkyūsho K\B{o}kyūroku 1211 (2001), 105–111. Asymptotic analysis and microlocal analysis of PDE (Japanese) (Kyoto, 2000). MR 1874962
  • Chuu-Lian Terng and Karen Uhlenbeck, Bäcklund transformations and loop group actions, Comm. Pure Appl. Math. 53 (2000), no. 1, 1–75. MR 1715533, DOI 10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.3.CO;2-L
  • George Wilson, The $\tau$-functions of the ${\mathfrak {g}}\textrm {AKNS}$ equations, Integrable systems (Luminy, 1991) Progr. Math., vol. 115, Birkhäuser Boston, Boston, MA, 1993, pp. 131–145. MR 1279820
  • Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310. MR 1144529
  • Martin Zerner, Domaines d’holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1646–A1648. MR 433016
  • X. Zhou, “Zakharov–Shabat inverse scattering”, Scattering, Academic Press, San Diego 2002, pp. 1707–1716.
Similar Articles
Bibliographic Information
  • A. V. Domrin
  • Affiliation: Moscow Center of Fundamental and Applied Mathematics of Moscow State University, Institute of Mathematics with CS, UFRC EAS, Ufa, Russia
  • Email: domrin@mi-ras.ru
  • Published electronically: March 15, 2022
  • Additional Notes: This paper was written with the support of RFBR, grant no. 19-01-00474.
  • © Copyright 2022 American Mathematical Society
  • Journal: Trans. Moscow Math. Soc. 2021, 193-258
  • MSC (2020): Primary 30D30, 32D15, 35Q51, 35A01, 37K10, 37K20, 47A56
  • DOI: https://doi.org/10.1090/mosc/323
  • MathSciNet review: 4397162