Skip to Main Content
Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

   
 
 

 

Stochastic elliptic operators defined by non-Gaussian random fields with uncertain spectrum


Author: C. Soize
Journal: Theor. Probability and Math. Statist. 105 (2021), 113-136
MSC (2020): Primary 60G60, 35J25; Secondary 74Q05, 74A40
DOI: https://doi.org/10.1090/tpms/1159
Published electronically: December 7, 2021
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents a construction and the analysis of a class of non-Gaussian positive-definite matrix-valued homogeneous random fields with uncertain spectral measure for stochastic elliptic operators. Then the stochastic elliptic boundary value problem in a bounded domain of the 3D-space is introduced and analyzed for stochastic homogenization.


References [Enhancements On Off] (What's this?)

References
  • Robert J. Adler, The geometry of random fields, Classics in Applied Mathematics, vol. 62, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. Reprint of the 1981 original [ MR0611857]. MR 3396215, DOI 10.1137/1.9780898718980.ch1
  • M. Bornert, T. Bretheau, and P. Gilormini, Homogenization in mechanics of materials, ISTE Ltd and John Wiley and Sons, New York, 2008.
  • A. Bowman and A. Azzalini, Applied smoothing techniques for data analysis: The kernel approach with s-plus illustrations, vol. 18, Oxford University Press, Oxford: Clarendon Press, New York, 1997.
  • R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math. (2) 48 (1947), 385–392. MR 20230, DOI 10.2307/1969178
  • Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 3, Springer-Verlag, Berlin, 1990. Spectral theory and applications; With the collaboration of Michel Artola and Michel Cessenat; Translated from the French by John C. Amson. MR 1064315
  • J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
  • A. D. Egorov, P. I. Sobolevsky, and L. A. Yanovich, Functional integrals: approximate evaluation and applications, Mathematics and its Applications, vol. 249, Kluwer Academic Publishers Group, Dordrecht, 1993. Translated from the 1987 Russian edition by N. Korneenko and revised by the authors. MR 1233132, DOI 10.1007/978-94-011-1761-6
  • I. I. Gikhman and A. Skorokhod, Introduction à la théorie des processus aléatoires, Edition Mir, 1980.
  • Johann Guilleminot and Christian Soize, On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties, J. Elasticity 111 (2013), no. 2, 109–130. MR 3036127, DOI 10.1007/s10659-012-9396-z
  • J. Guilleminot and C. Soize, Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media, Multiscale Model. Simul. 11 (2013), no. 3, 840–870. MR 3091362, DOI 10.1137/120898346
  • T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures 40 (2003), no. 13-14, 3647–3679.
  • Paul Krée and Christian Soize, Mathematics of random phenomena, Mathematics and its Applications, vol. 32, D. Reidel Publishing Co., Dordrecht, 1986. Random vibrations of mechanical structures; Translated from the French by Andrei Iacob; With a preface by Paul Germain. MR 873731, DOI 10.1007/978-94-009-4770-2
  • P. D. Lax and A. N. Milgram, Parabolic equations, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, Princeton University Press, Princeton, N.J., 1954, pp. 167–190. MR 0067317
  • Nikolai Leonenko and Andriy Olenko, Tauberian and Abelian theorems for long-range dependent random fields, Methodol. Comput. Appl. Probab. 15 (2013), no. 4, 715–742. MR 3117624, DOI 10.1007/s11009-012-9276-9
  • J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. II, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350178
  • Anatoliy Malyarenko and Martin Ostoja-Starzewski, Statistically isotropic tensor random fields: correlation structures, Math. Mech. Complex Syst. 2 (2014), no. 2, 209–231. MR 3336288, DOI 10.2140/memocs.2014.2.209
  • Anatoliy Malyarenko and Martin Ostoja-Starzewski, Tensor-valued random fields for continuum physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2019. MR 3930601, DOI 10.1017/9781108555401
  • A. Nouy and C. Soize, Random field representations for stochastic elliptic boundary value problems and statistical inverse problems, European J. Appl. Math. 25 (2014), no. 3, 339–373. MR 3197997, DOI 10.1017/S0956792514000072
  • M. Ostoja-Starzewski, Random field models of heterogeneous materials, International Journal of Solids and Structures 35 (1998), no. 19, 2429–2455.
  • M. Ostoja-Starzewski, Material spatial randomness: From statistical to representative volume element, Probabilistic Engineering Mechanics 21 (2006), no. 2, 112–132.
  • M. Ostoja-Starzewski, X. Du, Z.F. Khisaeva, and W. Li, Comparisons of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures, International Journal for Multiscale Computational Engineering 5 (2007), no. 2, 73–82.
  • F. Poirion and C. Soize, Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous Gaussian vector fields, Probabilistic Methods in Applied Physics (Paul Krée and Walter Wedig, eds.), Springer-Verlag, Berlin, 1995, pp. 17–53.
  • Christian P. Robert and George Casella, Monte Carlo statistical methods, 2nd ed., Springer Texts in Statistics, Springer-Verlag, New York, 2004. MR 2080278, DOI 10.1007/978-1-4757-4145-2
  • Murray Rosenblatt, Stationary sequences and random fields, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 885090, DOI 10.1007/978-1-4612-5156-9
  • Yu. A. Rozanov, Random fields and stochastic partial differential equations, Mathematics and its Applications, vol. 438, Kluwer Academic Publishers, Dordrecht, 1998. Translated and revised from the 1995 Russian original. MR 1629699, DOI 10.1007/978-94-017-2838-6
  • Reuven Y. Rubinstein and Dirk P. Kroese, Simulation and the Monte Carlo method, 2nd ed., Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2008. MR 2365210
  • A. V. Skorohod and M. Ĭ. Jadrenko, Absolute continuity of measures that correspond to homogeneous Gaussian fields, Teor. Verojatnost. i Primenen. 18 (1973), 30–43 (Russian, with English summary). MR 0312563
  • C. Soize, A nonparametric model of random uncertainties on reduced matrix model in structural dynamics, Probabilistic Engineering Mechanics 15 (2000), no. 3, 277–294.
  • C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 1-3, 26–64. MR 2174357, DOI 10.1016/j.cma.2004.12.014
  • C. Soize, Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilistic Engineering Mechanics 23 (2008), no. 2-3, 307–323.
  • Christian Soize, Random vectors and random fields in high dimension: parametric model-based representation, identification from data, and inverse problems, Handbook of uncertainty quantification. Vol. 1, 2, 3, Springer, Cham, 2017, pp. 883–935. MR 3821488
  • Christian Soize, Uncertainty quantification, Interdisciplinary Applied Mathematics, vol. 47, Springer, Cham, 2017. An accelerated course with advanced applications in computational engineering; With a foreword by Charbel Farhat. MR 3618803, DOI 10.1007/978-3-319-54339-0
  • Christian Soize, Computational stochastic homogenization of heterogeneous media from an elasticity random field having an uncertain spectral measure, Comput. Mech. 68 (2021), no. 5, 1003–1021. MR 4318420, DOI 10.1007/s00466-021-02056-8
  • Erik Vanmarcke, Random fields, Revised and expanded new edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. Analysis and synthesis. MR 2676223, DOI 10.1142/5807
  • M. Ĭ. Yadrenko, Spectral theory of random fields, Translation Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division, New York, 1983. Translated from the Russian. MR 697386

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2020): 60G60, 35J25, 74Q05, 74A40

Retrieve articles in all journals with MSC (2020): 60G60, 35J25, 74Q05, 74A40


Additional Information

C. Soize
Affiliation: MSME UMR 8208, Université Gustave Eiffel, 5 bd Descartes, 77454 Marne-la-Vallée, France
Email: christian.soize@univ-eiffel.fr

Keywords: Non-Gaussian random field, uncertain spectral measure, stochastic elliptic boundary value problem, stochastic homogenization, random effective elasticity tensor
Received by editor(s): March 30, 2021
Published electronically: December 7, 2021
Article copyright: © Copyright 2021 Taras Shevchenko National University of Kyiv