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Introduction
Nearly all of us have been brought up to believe
that clear-headed logical thinking is our only sure
way to face and solve problems. But experience
suggests that logical thinking is not natural to us.
Indeed, we have to practice, and for a long time,
before we can do it well. Since complex problems
usually have many related factors, traditional
logical thinking leads to sequences of ideas so
tangled that the best solution cannot be easily
discerned.

For a very long time people believed and argued
strongly that it is impossible to express the intensity
of human feelings with numbers. The epitome of
such a belief was expressed by A. F. MacKay who
writes [12] that pursuing the cardinal approaches
is like chasing what cannot be caught. It was
also expressed by Davis and Hersh [5]: “If you
are more of a human being, you will be aware
there are such things as emotions, beliefs, attitudes,
dreams, intentions, jealousy, envy, yearning, regret,
longing, anger, compassion and many others.
These things—the inner world of human life—
can never be mathematized.” In their book [11]
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Lawrence LeShan and Henry Margenau write: “We
cannot as we have indicated before, quantify
the observables in the domain of consciousness.
There are no rules of correspondence possible
that would enable us to quantify our feelings.
We can make statements of the relative intensity
of feelings, but we cannot go beyond this. I
can say: I feel angrier at him today than I did
yesterday. We cannot, however, make meaningful
statements such as, I feel three and one half times
angrier than I did yesterday. . . . The physicists’
schema, so faithfully emulated by generations of
psychologists, epistemologists and aestheticians,
is probably blocking their progress, defeating
possible insights by its prejudicial force. The
schema is not false—it is perfectly reasonable—but
it is bootless for the study of mental phenomena.”

The Nobel Laureate Henri Bergson [4] writes:
“But even the opponents of psychophysics do not
see any harm in speaking of one sensation as
being more intense than another, of one effort as
being greater than another, and in thus setting
up differences of quantity between purely internal
states. Common sense, moreover, has not the
slightest hesitation in giving its verdict on this
point; people say they are more or less warm, or
more or less sad, and this distinction of more and
less, even when it is carried over to the region of
subjective facts and unextended objects, surprises
nobody.”
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Figure 1. Decomposition of the problem into a hierarchy.

If we were to ask what in practical terms mea-
surement means, one would most likely propose a
scale that is applied to measure objects: a set of
numbers, a set of objects and a mapping from the
objects to the numbers. Then we can agree that
appropriate judgment must be used to interpret
the scale readings and use them in practice. So
judgment is also essential. But there is another
way to think of a scale.

Henri Lebesgue, who was concerned with ques-
tions of measure theory and measurement, wrote
[10]:

“It would seem that the principle of econ-
omy would always require that we evaluate
ratios directly and not as ratios of measure-
ments. However, in practice, all lengths are
measured in meters, all angles in degrees,
etc.; that is we employ auxiliary units and,
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Table 0. Fundamental scale of absolute numbers.

as it seems, with only the disadvantage of
having two measurements to make instead
of one. Sometimes, this is because of exper-
imental difficulties or impossibilities that
prevent the direct comparison of lengths or
angles. But there is also another reason.

“In geometrical problems, one needs to
compare two lengths, for example, and only
those two. It is quite different in practice
when one encounters a hundred lengths and
may expect to have to compare these lengths
two at a time in all possible manners. Thus
it is desirable and economical procedure
to measure each new length. One single
measurement for each length, made as
precisely as possible, gives the ratio of the
length in question to each other length.
This explains the fact that in practice,
comparisons are never, or almost never,
made directly, but through comparisons
with a standard scale.”

Lebesgue did not go far enough in examining why
we have to compare. When we deal with intangible
factors, which by definition have no scales of
measurement, we can compare them in pairs.
Making comparisons is a talent we all have. Not

only can we indicate the preferred object, but we can
also discriminate among intensities of preference.
The philosopher, Arthur Schopenhauer [25], said,
“Every truth is the reference of a judgment to
something outside it, and intrinsic truth is a
contradiction.”

A common kind of decision problem we face is
something like this: which house to buy? The differ-
ent houses being considered have some attributes
or criteria in common that are important to the
decision maker. If one house were best on every
criterion, the choice would be easy, but usually the
house that is the best on one criterion (e.g., cost) is
worst on another (e.g., size). How should one make
the tradeoff? We describe and discuss a mathemat-
ical model, the Analytic Hierarchy Process (AHP),
not a prescriptive (normative) but a descriptive
psychophysical process that can be used to make
such decisions by dealing with the measurement
of intangibles using human judgment. Intangibles
can be nonphysical influences that are passing
and very transient. No conceivable instrument can
be devised to measure them other than the mind
itself, which must also interpret their meaning.
Intangibles leave an impact on our minds, which
are biologically endowed to respond to influences,
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Table 1. The family’s pairwise comparison matrix for the criteria.

Table 2. Pairwise comparison matrices for the alternative houses.

Table 3. Distributive and ideal synthesis.
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by making comparisons both consciously and
subconsciously. It is a way of measurement that
took place long before Nicole Oresme, Pierre de
Fermat, and finally René Descartes more rigor-
ously introduced general coordinate systems for
physical measurements and assumed that they
were extensible from zero to infinity by using
an arbitrarily chosen unit applied uniformly over
the entire range of measurement. Taking ratios
removes the arbitrariness of the unit and creates
relative absolute scales, invariant under the iden-
tity transformation. The example below is more
staid than dealing with evanescent phenomena like
political decisions, but it serves to illustrate the
ideas whose mathematical foundations have been
developed in a separate paper and in books.

Choosing the Best House
Consider the following (hypothetical) example: a
family wishing to purchase a house identifies eight
criteria that are important to them. The problem is
to select one of three candidate houses. The first
step is to structure the problem into a hierarchy
(see Figure 1). On the first (top) level is the overall
goal of Satisfaction with House. On the second level
are the eight criteria that contribute to the goal, and
on the third (bottom) level are the three candidate
houses that are to be evaluated by considering the
criteria on the second level.

The criteria important to the family are:
1. Size of House: Storage space; size of rooms;

number of rooms; total area of house.
2. Transportation: Convenience and proximity

of bus service.
3. Neighborhood: Degree of traffic, security,

taxes, physical condition of surrounding buildings.
4. Age of House: How long ago the house was

built.
5. Yard Space: Front, back, and side space and

space shared with neighbors.
6. Modern Facilities: Dishwasher, garbage dis-

posal, air conditioning, alarm system, and other
such items.

7. General Condition: Extent to which repairs are
needed; condition of walls, carpet, drapes, wiring;
cleanliness.

8. Financing: Availability of assumable mortgage,
seller financing or bank financing.

The next step is to make comparative judgments.
The family assesses the relative importance of
all possible pairs of criteria with respect to the
overall goal, Satisfaction with House, coming
to a consensus judgment on each pair; and
their judgments are arranged into a matrix. The
questions to ask when comparing two criteria are,
which is more important and how much more
important is it with respect to satisfaction with a
house?

The matrix of pairwise comparison judgments
on the criteria given by the home-buyers in
this case is shown in Table 1. The judgments
are entered using the fundamental scale of the
Analytic Hierarchy Process (AHP) Table 0: a criterion
compared with itself is always assigned the value
1 so the main diagonal entries of the pairwise
comparison matrix are all 1. We are permitted to
interpolate values between the integers, if desired.
Reciprocal values are automatically entered in the
transpose position, so the family must make a
total of twenty-eight pairwise judgments.

We have assumed that an element with weight
zero is eliminated from comparison because zero
can be applied to the whole universe of factors not
included in the discussion.

The foregoing integer-valued fundamental scale
of response used in making paired comparison
judgments can be derived from the logarithmic re-
sponse function of Weber Fechner in psychophysics
as follows. For a given value of the stimulus, the
magnitude of response remains the same until the
value of the stimulus is increased sufficiently large
in proportion to the value of the stimulus, thus
preserving the proportionality of relative increase
in stimulus for it to be detectable for a new
response. This suggests the idea of just noticeable
differences (jnd), well known in psychology. Thus,
starting with a stimulus s0, successive magnitudes
of the new stimuli take the form [2]

s1 = s0 +∆s0 = s0 + ∆s0
s0
s0 = s0(1+ r),

s2 = s1 +∆s1 = s1(1+ r) = s0(1+ r)2 ≡ s0α2,
...

sn = sn−1α = s0αn (n = 0,1,2, . . . ),∆s0
s0
= ∆s1
s1
= ∆s2
s2
= · · · .

We consider the responses to these stimuli to
be measured on a ratio scale (b = 0). A typical
response has the form Mi = a logαi , i = 1, . . . , n,
or one after another they have the form

M1 = a logα, M2 = 2a logα, . . . ,Mn = na logα.

We take the ratios Mi/M1, i = 1, . . . , n, of these
responses in which the first is the smallest and
serves as the unit of comparison, thus obtaining
the integer values 1,2, . . . , n of the fundamental
scale of the AHP. It appears that numbers are
intrinsic to our ability to make comparisons and
that they were not an invention by our primitive
ancestors. We must be grateful to them for the
discovery of the symbolism. In a less mathematical
vein, we note that we are able to distinguish
ordinally between high, medium, and low at one
level and for each of them in a second level below
that also to distinguish between high, medium, and
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low, giving us nine different categories. We assign
the value one to (low, low), which is the smallest,
and the value nine to (high, high), which is the
highest, thus covering the spectrum of possibilities
between two levels and giving the value nine for the
top of the paired comparisons scale as compared
with the lowest value on the scale. The scale
consists of absolute numbers, which unlike the
familiar numbers that belong to a ratio scale that
are invariant under a similarity transformation
(multiplication by a positive number) are invariant
under the identity transformation.

In his book The Number Sense: How the Mind
Creates Mathematics [6], the mathematician and
cognitive neuropsychologist Stanislas Dehaene
writes more than twenty-five years after we derived
this scale that “Introspection suggests that we
can mentally represent the meaning of numbers 1
through 9 with actual acuity. Indeed, these symbols
seem equivalent to us. They all seem equally easy to
work with, and we feel that we can add or compare
any two digits in a small and fixed amount of
time like a computer. In summary, the invention
of numerical symbols should have freed us from
the fuzziness of the quantitative representation of
numbers.”

It can be shown that when comparisons involve
greater contrast than 9, the elements can be
aggregated into clusters, with a pivot element from
one cluster to an adjacent one, again applying
the same kind of comparisons within the next
cluster using the scale 1–9. One then divides by
the weight of the pivot element in the second
cluster and multiplies by its weight from the first
cluster, and now the priorities in the two clusters
are comparable and can be put together and so
on. This type of clustering is called homogeneous
clustering [22]. In addition, as we shall see later,
for stability of the priorities with respect to small
changes in judgment, each cluster must not contain
more than a few elements: about seven [20].

In the AHP model, the vector of priorities for
the criteria is obtained by computing the principal
eigenvector, the classical Perron vector, of the
pairwise comparison matrix. The Perron vector is
a necessary condition for obtaining the priorities
when the judgments are inconsistent. As we shall
see below, consistency and near consistency are
important concepts in our considerations. Because
the pairwise comparison matrix has positive entries,
Perron’s theorem ensures that there is a unique
positive vector (denoted by w) whose entries sum
to one that is an eigenvector of the pairwise
comparison matrix, associated with an eigenvalue
(denoted by λmax) of strictly largest modulus. That
eigenvalue, the Perron eigenvalue, is positive and
algebraically simple (multiplicity one as a root of
the characteristic equation) [14]. Consistency of

the family’s set of judgments is measured by the
consistency ratio (C.R.), which we explain later.

Table 1 shows that size dominates transporta-
tion strongly since a 5 appears in the (size,
transportation) position. In the (finance, size) po-
sition we have a 4, which means that finance is
between moderately and strongly more important
than size. The priority vector shows that financing
is the most important criterion to the family as
the entry of w corresponding to finance has the
largest value, 0.345.

Consistency, which was alluded to previously, is
an elaboration of the common sense view expressed
in this statement: if you prefer spring to summer
by 2, summer to winter by 3, and spring to winter
by 6, then those three judgments are consistent.

The family’s next task is to compare the houses
in pairs with respect to how much better (more
dominant) one is than the other in satisfying each
of the eight criteria. There are eight 3-by-3 matrices
of judgments since there are eight criteria and
three houses are to be compared for each criterion.
The matrices in Table 2 contain the judgments of
the family. In order to facilitate understanding of
the judgments, we give a brief description of the
houses.

In Table 1 an element on the left of the matrix is
compared for dominance over another at the top.

House A: This house is the largest. It is located
in a good neighborhood with little traffic and low
taxes. Its yard space is larger than that of either
house B or C. However, its general condition is not
very good, and it needs cleaning and painting. It
would have to be bank financed at a high interest
rate.

House B: This house is a little smaller than house
A and is not close to a bus route. The neighborhood
feels insecure because of traffic conditions. The
yard space is fairly small, and the house lacks basic
modern facilities. On the other hand, its general
condition is very good, and it has an assumable
mortgage with a rather low interest rate.

House C : House C is very small and has few
modern facilities. The neighborhood has high taxes
but is in good condition and seems secure. Its
yard is bigger than that of house B but smaller
than house A’s spacious surroundings. The general
condition of the house is good, and it has a pretty
carpet and drapes. The financing is better than for
house A but poorer than for house B.

In Table 2 both ordinary (distributive) and ide-
alized priority vectors of the three houses are
given for each of the criteria. The idealized priority
vector is obtained by dividing each element of the
distributive priority vector by its largest element.
The composite priority vector for the houses is
obtained by multiplying each priority vector by
the priority of the corresponding criterion, adding
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across all the criteria for each house and then
normalizing. When we use the (ordinary) distribu-
tive priority vectors, this method of synthesis is
known as the distributive mode and yields A = .345,
B = .369, and C = .285. Thus house B is preferred
to houses A and C in the ratios: .369/.346 and
.369/.285, respectively.

In Table 2 again an element on the left of each
matrix is compared for dominance over another at
the top. If the top element is dominant, a fraction is
entered and its inverse, a whole number, is entered
in the reciprocal position.

When we use the idealized priority vector,
the synthesis is called the ideal mode. This yields
A = .315, B = .383, C = .302 and B is again the most
preferred house. The two ways of synthesizing are
shown in Table 3. They need not yield the same
ranking. In general, the ideal mode is used when
rating the alternatives one at a time (see later)
with respect to the criteria and when the criteria
priorities are independent of the alternatives. The
ideal mode is used to force rank preservation when
new houses are added to the collection by only
comparing them with respect to the ideal and not
the other alternatives. But always preserving rank
is not always desirable [16].

The Pairwise Comparison Matrix
In comparing pairs of criteria with respect to the
goal, one estimates which of the two criteria is
more important and how much more. The result of
these comparisons is arranged in a positive matrix
A = [aij] whose entries satisfy the reciprocal
property aji = 1/aij .

We start with a positive reciprocal matrix such
as Table 1. In an n-by-n table, n(n−1)/2 judgments
must be made, which is why the house-buying
family had to make (8 × 7)/2 = 28 judgments.
These judgments are made independently, but they
are not really “independent”. If the family feels that
financing is twice as important as size and that
size is twice as important as age, for consistency
of judgments we should expect them to feel that
financing is four times as important as age. The
mathematical expression of our expectation is the
set of identities

aij = aik/ajk for all i, j, k = 1, . . . , n

among the entries of a consistent pairwise com-
parison matrix A = [aij]. Of course, real-world
pairwise comparison matrices are very unlikely to
be consistent, and we address the consequences
of that reality next [16], [19].

Why the Principal Eigenvector?

Suppose a positive square matrix A = [aij] is
consistent. ThenAmust have unit diagonal entries,
since aii = aik/aik, for all i, k = 1, . . . , n. Moreover,

A must be reciprocal since aijaji = 1 means that
aij = 1/aji . Such a matrix has a very simple
structure since aik = ai1a1k = ai1/ak1 for all i, k.
Thus the entries in the first column of A determine
all other entries! For convenience, write αi ≡ ai1,
so that A = [aij] = [αi/αj]. If we define the two
positive n-by-1 vectors x ≡ [αi] and y ≡ [(αi)−1],
then it is clear that A = xyT has rank one. Thus,
the positive matrix A has one nonzero eigenvalue
and n − 1 zero eigenvalues. It is easy to check
that Ax =

∑n
j=1(αi/αj)αj = [nαi] = nx, so the

nonzero eigenvalue of A (its Perron eigenvalue,
which we have denoted by λmax) is n, and an
associated positive right eigenvector is x ≡ [αi]. If
we set c ≡ α1 + · · · + αn, the Perron vector of A
(its unique positive eigenvector whose entries sum
to one) may be written as w ≡ x/c = [αi/c] ≡ [wi].
The Perron vector determines all the entries
of A : A = [aij] = [αi/αj] = [(αi/c)/(αj/c)] =
[wi/wj]. When a matrix is consistent, right and
left eigenvectors have reciprocal corresponding
entries.

We know that an n-by-n positive consistent
matrix A = [aij] has a unique positive eigenvector
w ≡ [wi] (its Perron vector) whose entries sum
to one and whose corresponding eigenvalue (its
Perron eigenvalue) is n. Moreover, the ratios of
the entries of w are precisely the entries of
A : aij = wi/wj . If we think of A as a matrix of
(perfectly) consistent pairwise comparisons for n
given elements, then the n values wi are a natural
set of priorities that underlie the set of pairwise
judgments: aij = wi/wj . There are several ways to
prove that the principal eigenvector is necessary
when the judgments are inconsistent [18], [21].

The foregoing discussion is intended to motivate
the central and critical choice of the Perron vector
as the means to extract a vector of priorities
from a given pairwise comparison matrix in the
AHP model. If humans made perfectly consistent
judgments all the time, the model would be perfect.
But they do not, so we must now face the question
of assessing the deviation from consistency of
an actual pairwise comparison matrix and the
consequences of inconsistency for the quality of
decisions made according to the AHP model. In
passing, we observe that if humans were always
perfectly consistent, they would not be able to learn
new things that modify or change the relations
among what they knew before and they would
be like robots. But there is a level of tolerable
inconsistency that we must allow beyond which
the judgments would appear to be uninformed,
random, or arbitrary.

When we compare things, unlike assigning
them numbers independently of one another, their
priorities always depend on what other things
they are compared with. Were we to assume that
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the universe is interdependent (the subject of the
Analytic Network Process (ANP) [17], [18]) with a
complicated field of influences in every aspect, our
traditional way of assigning numbers from scales
of measurement would not be “the natural way” to
determine their importance. More and more we are
finding with this relative way of thinking that the
world is different (has different rank orders) than we
think we understand it to be today. Another useful
observation is that comparisons are necessary
for comparing criteria to derive their priorities
because there are no scales for their measurement
and also because their importance varies from
decision to decision. In the ANP the criteria are
compared with respect to each alternative and the
alternatives are compared with respect to each
criterion to derive their interdependent priorities.

Regrettably, the three laws of thought (identity,
excluded middle, and contradiction), known to
Plato and Aristotle and even to Leibniz, that are
strict requirements we all adhere to in language,
logic, science, and mathematics have precluded
comparisons, our biological heritage. Without
comparisons nothing can be known in and of itself
without also knowing other things with which it
is compared, including knowing it at an earlier
time, so we can ensure it is the one we have in
mind (the law of identity), thus recognizing it.
Arthur Schopenhauer, who was not equipped to
develop a mathematical theory to use comparisons,
listed the laws of thought by adding a fourth
one in his On the Fourfold Root of the Principle of
Sufficient Reason. (1) a subject is equal to the sum
of its predicates, or a = a; (2) no predicate can be
simultaneously attributed and denied to a subject,
or a 6=∼ a; (3) of every two contradictorily opposite
predicates one must belong to every subject;
and (4) truth is the reference of a judgment to
something outside itself as its sufficient reason
or ground.

We are all familiar with the arbitrarily imposed
axiom in logic and mathematics that if A dominates
B and B dominates C, then A must dominate C.
But in the real world team A beats team B, B beats
C but C beats A, contradicting theory. It appears
that theory needs to be changed to accommodate
reality.

When is a Positive Reciprocal Matrix
Consistent?
Let A = [aij] be an n-by-n positive reciprocal
matrix, so all aii = 1 and aij = 1/aji for all i, j =
1, . . . , n. Let w = [wi] be the Perron vector of A, let
D = diag(w1, . . . , wn) be then-by-n diagonal matrix
whose main diagonal entries are the entries of w ,
and set E = D−1AD = [aijwj/wi] = [εij]. Then E is
similar toA and is a positive reciprocal matrix since
εij = ajiwi/wj = (aijwj/wi)−1 = 1/εij . Moreover,

all the row sums of E are equal to the Perron
eigenvalue of A:

n∑
j=1

εij =
∑
j
aijwj/wi = [Aw]i/wi

= λmaxwi/wi = λmax.

The computation
(1)

nλmax =
n∑
i=1

 n∑
j=1

εij

 = n∑
i=1

εii +
n∑

i,j=1
i 6=j

(εij + εji)

= n+
n∑

i,j=1
i 6=j

(εij+ε−1
ij ) ≥ n+ 2(n2 − n)/2 = n2

reveals that λmax ≥ n. Moreover, since x+ 1/x ≥ 2
for all x > 0, with equality if and only if x = 1, we
see that λmax = n if and only if all εij = 1, which is
equivalent to having all aij = wi/wj .

The foregoing arguments show that a positive
reciprocal matrix A has λmax ≥ n, with equality
if and only if A is consistent. As our measure of
deviation of A from consistency, we choose the
consistency index

µ ≡ λmax − n
n− 1

.

We have seen that µ ≥ 0 and µ = 0 if and only ifA is
consistent. These two desirable properties explain
the term “n” in the numerator of µ; what about the
term “n−1” in the denominator? Since trace A = n
is the sum of all the eigenvalues of A, if we denote
the eigenvalues of A that are different from λmax

by λ2, . . . , λn+1, we see that n = λmax +
∑n
i=2 λi , so

n − λmax =
∑n
i=2 λi and µ = − 1

n−1

∑n
i=2 λi is the

negative average of the non-Perron eigenvalues of
A.

It is an easy, but instructive, computation to
show that λmax = 2 for every 2-by-2 positive
reciprocal matrix:[

1 α
α−1 1

][
1+α

(1+α)α−1

]
= 2

[
1+α

(1+α)α−1

]
.

Thus, every 2-by-2 positive reciprocal matrix is
consistent.

Not every 3-by-3 positive reciprocal matrix is
consistent, but in this case we are fortunate to have
again explicit formulas for the Perron eigenvalue
and eigenvector. For

A =

 1 a b
1/a 1 c
1/b 1/c 1

 ,
we have λmax = 1+ d + d−1, d = (ac/b)1/3, and

(2)

w1 = bd/
(
1+ bd + c

d

)
, w2 = c/d

(
1+ bd + c

d

)
,

w3 = 1/
(

1+ bd + c
d

)
.

February 2013 Notices of the AMS 199



Table 4. Random index.

Figure 2. Plot of random inconsistency.

Figure 3. Plot of first differences in random
inconsistency—7 is critical.

Note that λmax = 3 when d = 1 or c = b/a, which
is true if and only if A is consistent.

In order to get some feel for what the consistency
index might be telling us about a positive n-by-
n reciprocal matrix A, consider the following
simulation: choose the entries of A above the
main diagonal at random from the seventeen
values {1/9,1/8, . . . ,1/2,1,2, . . . ,8,9}. Then fill in
the entries of A below the diagonal by taking

reciprocals. Put ones down the main diagonal and
compute the consistency index. Do this 50,000
times and take the average, which we call the
random index. Table 4 shows the values obtained
from one set of such simulations for matrices of
size 1,2, . . . ,10.

Figure 2 is a plot of the first two rows of
Table 4. It shows the asymptotic nature of random
inconsistency.

The third row of Table 2 gives the differences
between successive numbers in the second row.
Figure 3 is a plot of these differences and shows
the importance of the number seven as a cutoff
point beyond which the differences are less than
0.10, where we are not sufficiently sensitive to
make accurate changes in judgment on several
elements simultaneously.

Since it would be pointless to try to discern any
priority ranking from a set of random comparison
judgments, we should probably be uncomfortable
about proceeding unless the consistency index of
a pairwise comparison matrix is very much smaller
than the corresponding random index value in
Table 4. The consistency ratio (C.R.) of a pairwise
comparison matrix is the ratio of its consistency
index (C. I.) to the corresponding random index
value in Table 4.

As a rule of thumb, we do not recommend
proceeding if the consistency ratio is more than
about 0.10 forn > 4. Forn=3 and 4 we recommend
that the C.R. be less than 0.05 and 0.09, respectively.
Thus in general when asked, we require that C.R.
not exceed 0.10 by much. How do we explain this
outcome in general?

The notion of order of magnitude is essential
in any mathematical consideration of changes in
measurement. When one has a numerical value
say between 1 and 10 for some measurement and
one wants to determine whether a change in this
value is significant or not, one reasons as follows: a
change of a whole integer value is critical because it
changes the magnitude and identity of the original
number significantly. If the change or perturbation
in value is of the order of a percent or less, it would
be so small (by two orders of magnitude) and
would be considered negligible. However, if this
perturbation is a decimal (one order of magnitude
smaller), we are likely to pay attention to modify
the original value by this decimal without losing the
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Table 5. A family’s housebuying pairwise comparison matrix for the criteria.

Table 6. Partial derivatives for the house example.

significance and identity of the original number as
we first understood it to be. Thus in synthesizing
near-consistent judgment values, changes that
are too large can cause dramatic change in our
understanding, and values that are too small cause
no change in our understanding. We are left with
only values of one order of magnitude smaller
that we can deal with incrementally to change
our understanding. It follows that our allowable
consistency ratio should be not more than about
.10. The requirement of 10% cannot be made
smaller, such as 1% or 0.1%, without trivializing the
impact of inconsistency. But inconsistency itself is
important because without it new knowledge that
changes preference cannot be admitted. Assuming
that all knowledge should be consistent contradicts
experience, which requires continued revision of
understanding.

If the C.R. is larger than desired, we do three
things: (1) find the most inconsistent judgment in
the matrix; (2) determine the range of values to
which that judgment can be changed corresponding
to which the inconsistency would be improved; (3)
ask the family to consider, if they can, changing
their judgment to a plausible value in that range.
If they are unwilling, we try with the second most
inconsistent judgment, and so on. If no judgment
is changed, the decision is postponed until better
understanding of the criteria is obtained. In our

house example the family initially made a judgment
of 6 for the a37 entry in Table 1 and the consistency
index of the set of judgments was C.I. = (9.669−
8)/7 = 0.238. But C.R. = .238/1.40 = 0.17 is larger
than the recommended value of 0.10. If we are
going to ask the family to reconsider, and perhaps
change, some of their pairwise comparisons, where
should we start?

Three methods are plausible for this purpose.
All require theoretical investigation of convergence
and efficiency. The first uses an explicit formula
for the partial derivatives of the Perron eigenvalue
with respect to the matrix entries.

For a given positive reciprocal matrix A = [aij]
and a given pair of distinct indices k > l, define
A(t) = [aij(t)] by akl(t) ≡ akl + t , alk(t) ≡ (alk +
t)−1, and aij(t) ≡ aij for all i 6= k, j 6= l, so
A(0) = A. We use a linear function of t because
multiplying by t when t is zero or close to zero
can make the reciprocal very large, and thus
we want t to be bounded away from zero. Also,
we don’t want t to be very large because the
judgments would be too widespread, violating the
requirement of homogeneity. Thus our assumption
on the functional relationship is reasonable. Let
λmax(t) denote the Perron eigenvalue ofA(t) for all
t in a neighborhood of t = 0 that is small enough
to ensure that all entries of the reciprocal matrix
A(t) are positive there. Finally, let v = [vi] be the
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Table 7. εij = aijwj/wiεij = aijwj/wiεij = aijwj/wi .

Table 8.

Table 9. Modified matrix in the a37a37a37 and a73a73a73 positions.

unique positive eigenvector of the positive matrix
AT that is normalized so that vTw = 1. Then a
classical perturbation formula [4, Theorem 6.3.12]
tells us that

dλmax(t)
dt

∣∣∣∣
t=0
= v

TA′(0)w
vTw

= vTA′(0)w

=
∑
k6=l
vkwl −

1

a2
kl
vlwk.

We conclude that

∂λmax

∂aij
= viwj − a2

jivjwi for all i, j = 1, . . . , n.

Because we are operating within the set of positive
reciprocal matrices,

∂λmax

∂aji
= − 1

a2
ij

∂λmax

∂aij
for all i and j.

Thus, to identify an entry of A whose adjustment
within the class of reciprocal matrices would result
in the largest rate of change in λmax, we should
examine the n(n − 1)/2 values {viwj − a2

jivjwi},
i > j , and select (any) one of largest absolute value.
This is the method proposed for positive reciprocal
matrices by Harker [8]. Ergu et al. [7] propose
another method for dealing with consistency in
the ANP. Here is how Harker’s method is applied
to our house example with the initial judgments in
Table 1 replaced by a37 = 6, a73 = 1/6 to make it
more inconsistent.

Table 6 gives the array of partial derivatives for
the matrix of criteria in Table 1.

The (4, 8) entry in Table 5 (in bold print and
underlined) is largest in absolute value. Thus,
the family could be asked to reconsider their
judgment of 1/8 for age vs. finance which indicates
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that finance is very strongly to extremely more
important than age. One needs to know how much
to change a judgment to improve consistency,
and we show that next. One can then repeat this
process with the goal of bringing the C.R. within the
desired range. If the indicated judgments cannot
be changed fully according to one’s understanding,
they can be changed partially. Failing the attainment
of a consistency level with justifiable judgments,
one needs to learn more before proceeding with the
decision. Actually, the values used in the original
example were a37 = 1/2, a73 = 2, derived in the
simpler approach described next.

Two other methods, presented here in order
of increasing observed efficiency in practice, are
conceptually different. They are based on the fact
that

nλmax − n =
n∑

i,j=1
i 6=j

(εij + ε−1
ij ).

This suggests that we examine the judgment for
which εij is farthest from the number 1, that is,
an entry aij for which aijwj/wi is the largest, and
see if this entry can reasonably be made smaller.
We hope that such a change of aij also results
in a new comparison matrix that has a smaller
Perron eigenvalue. To demonstrate how improving
judgments works, take the house example matrix in
Table 1. To identify an entry ripe for consideration,
construct the matrix εij = aijwj/wi (Table 7). The
largest value in Table 7 is 5.32156, which focuses
attention on a37 = 6.

How does one determine the most consistent
entry for the (3,7) position? Harker [8] has shown
that when we compute the new eigenvector w after
changing the (3,7) entry, we want the new (3,7)
entry to be w3/w7 and the new (7,3) entry to
be w7/w3. On replacing a37 by w3/w7 and a73 by
w7/w3 and multiplying by the vectorw , one obtains
the same product as one would by replacing a37

and a73 with zeros and the two corresponding
diagonal entries with two (see Table 8).

We take the Perron vector of the latter matrix
to be our w and use the now-known values of
w3/w7 and w7/w3 to replace a37 and a73 in the
original matrix. The family is now invited to
change their judgment towards this new value
of a37 as much as they can. Here the value was
a37 = 0.102/0.223 = 1/2.18, approximated by
1/2 from the AHP fundamental scale, and we
hypothetically changed it to 1/2 to illustrate the
procedure (see Table 9). If the family does not
wish to change the original value of a37, one
considers the second most inconsistent judgment
and repeats the process.

One by one, each reciprocal pairaij andaji in the
matrix is replaced by zero and the corresponding
diagonal entries aii and ajj are replaced by 2. The

principal eigenvalue λmax is then computed. The
entry with the largest resultingλmax is identified for
change as described above. This method is in use
in the ANP software program SuperDecisions [26].
The SuperDecisions software is used in teaching the
subject. Here is the link to the webpage from which
the SuperDecisions software can be downloaded,
and it is free to educators and researchers: www.
superdecisions. com. Incidentally, the name of the
software is borrowed from its use of a matrix whose
entries are matrices, the supermatrix, and is not
an attempt to sound like something extraordinary.

Alternatives in a decision may be compared
in pairs or if there are many, they can be rated
one at a time by assigning them numbers from
appropriate priority scales developed for each
criterion such as (high, medium, low), (excellent,
outstanding, very good, good, poor and very poor)
that are then compared in pairs and their priorities
derived, with each scale divided by the largest
derived eigenvector component, making the largest
value equal to one and the rest proportionately
smaller. Comparisons yield a more accurate ranking
of alternatives than rating them one at a time
because rating involves memory of an ideal that
is likely to vary among different people. If the
alternatives vary widely, then the scales developed
must reflect different orders of magnitude that are
appropriately linked together [22].

The Normalized Priority Vector is Unique
To choose the best alternative in a decision,
the priorities must be unique. There is more to
the concept of priority. When A = [wi/wj] is
consistent, Ak = nk−1A. This says how much a
criterion represented by a row of A dominates
other criteria through chains of k arcs, uniquely
determined by the single arc chains represented
by the rows of A itself. But this is not true when A
is inconsistent.

Criterion i is said to dominate criterion j in
one step if the sum of the entries in row i of A
is greater than the sum of the entries in row j .
It is convenient to use the vector e = (1, . . . ,1)T
to express this dominance: criterion i dominates
criterion j in one step if (Ae)i > (Ae)j . A criterion
can dominate another criterion in more than
one step by dominating other criteria that in
turn dominate the second criterion. Two-step
dominance is identified by squaring the matrix
and summing its rows, three-step dominance by
cubing it, and so on. Thus, criterion i dominates
criterion j in k steps if (Ake)i > (Ake)j . Criterion
i is said simply to dominate criterion j if entry i of
the vector

(3) lim
m→∞

1
m

m∑
i=1

Ake/eTAke
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Figure 4. Arrow’s four conditions.

is greater than its entry j . But this limit of averages
can be evaluated: the Perron-Frobenius Theorem
ensures that Ak/λkmax → wvT as k→∞, so

Ake/(eTAke) ≈ λkmaxw(vTe)/λkmax(eTw)(vTe)
= w as k→∞.

(4)

Since (3) is a limit of averages of terms of a
sequence that converges to the Perron vector w
of A, according to Cesaro summability [17], (3) is
actually equal to w .

More simply, a priority vector w can be used
to weight the columns of its matrix and sum the
elements in each row to obtain a new priority vector.
Such ambiguity is eliminated if we require that
a priority vector satisfy the condition Aw = cw ,
c > 0. The constant c is needed because w is
derived from absolute scale entries (invariant
under the identity transformation) and thus in
normalized form also belongs to an absolute scale.
It is easy to prove, using the biorthogonality of
left and right eigenvectors [7] that c and w must
be, respectively, the Perron value and vector of A.
With the concept of dominance, we have proved
that the Perron vector is necessary for deriving
priorities.

Should one be concerned about the often inexact
form of the judgments? Wilkinson [27] has studied
the stability of an eigenvector of a square matrix
with real coefficients. Perturbing the matrix by
adding to it the perturbation matrix ∆A yields
the following perturbation ∆w1 in the principal
eigenvector w1. The expression below involves all
the eigenvalues λi of A and all of both its left (vj)
and right (wj) eigenvectors:

∆w1 =
n∑
j=2

(vTj ∆Aw1/(λ1 − λj)vTj wj)wj .

The left and right eigenvectors v and w are in
normalized form. T indicates transposition.

The eigenvector w1 is stable when the following
hold:

(1) The perturbation ∆A is small as observing
the consistency index would ensure.

(2) λj is well separated from λ1; when A is
consistent, λ1 = n, λj = 0.

(3) The product of left and right eigenvectors
is not too large, which is the case for a consis-
tent (and near-consistent) matrix if the elements
are homogenous (compared here on the relative
dominance scale of the absolute values 1–9) with
respect to the criterion of comparison.

(4) The number of their entries is small (hence
perhaps why inconsistency becomes problematic
as to which element causes it the most for n > 7,
[13]).

The conclusion is that n must be small, and one
must compare homogeneous elements, which is in
harmony with the axioms of the AHP [18].

Synthesis of Individual Judgments into a
Representative Group Judgment
Kenneth Arrow’s Impossibility Theorem, for which
he received the Nobel Prize in 1972, stated that
it was not possible to find a representative group
judgment from the judgments of individuals
using ordinal preferences. However, if one allows
cardinal preferences and uses the geometric mean
to combine individual judgments as we do in the
AHP, it is possible. In 1983 we proved, in a paper
coauthored with Janos Aczel, that the unique way
to combine reciprocal individual judgments into
a corresponding reciprocal group judgment is by
using their geometric mean [1].

Arrow proved in his impossibility theorem,
using ordinal preferences (either A is preferred
to B or it is not) that there does not exist a
social welfare function that satisfies all four con-
ditions listed in Figure 4, at once. We showed
in April 2011 [24] in a journal of which Ar-
row is an editor that with cardinal intensities of
preference and the geometric mean to combine
the individual judgments into a representative
group judgment, a social welfare function exists
that satisfies these four conditions. Thus we have
a possibility theorem.

Validation and Diverse Uses
How do we test for the validity of the process?
One of the things we can do is to get judgments
from many people, even those who may not be
experts in decision making but who are experts
in what they do. Should the answer always match
the data available? What if the data themselves are
incorrect? What if we don’t know enough to create
a very complete structure for a decision? These
questions have been examined in the literature, but
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at best one needs to apply the process in a number
of decisions to develop confidence in its reliability.
We have provided three examples to illustrate its
accuracy when used with systematic knowledge
and understanding, of both the decisions to which it
is applied and of its limitations that revolve around
the adequacy of the structure used to represent the
decision, and the experience necessary to develop
sound and accurate judgments used in making
comparisons.

Relative Consumption of Drinks

Table 10 shows how an audience of about thirty
people, using consensus to arrive at each judgment,
provided judgments to estimate the dominance
of the consumption of drinks in the U.S. (which
drink is consumed more in the U.S. and how much
more than another drink?). The derived vector
of relative consumption and the actual vector,
obtained by normalizing the consumption given in
official statistical data sources, are at the bottom
of the table.

Optics Example

Four identical chairs were placed on a line from a
light source at the distances of nine, fifteen, twenty-
one, and twenty-eight yards. The purpose was to see
if one could stand by the light and look at the chair
and compare their relative brightness in pairs, fill
in the judgment matrix, and obtain a relationship
between the chairs and their distance from the
light source. This experiment was repeated twice
with different judges whose judgment matrices are
shown in Table 11.

The judges of the first matrix were the author’s
young children, ages five and seven at that time,
who gave their judgments qualitatively. The judge
of the second matrix was the author’s wife, also
a mathematician and not present during the
children’s judgment process. In Table 12 we give
the principal eigenvectors, eigenvalues, consistency
indices, and consistency ratios of the two matrices.

First and second trial eigenvectors of Table
12 have been compared with the last column of
Table 13 calculated from the inverse square law
of optics. How close are the eigenvectors to the
actual result for physics? We use a compatibility
index that we developed for that purpose. We take
the Hadamard product of a matrix of ratios of
the entries of one vector with the transpose of
a second matrix of the other vector. If the two
vectors are identical, each entry of the Hadamard
product would be equal to one and the sum of all
resulting entries would be equal to n2. Otherwise,
one divides the resulting sum by n2 and ensures
that the ratio is about 1.01. It is interesting and
important to observe in this example that the

Table 10. Relative consumption of drinks.

Table 11. Pairwise comparisons of the four
chairs.

Table 12. Principal eigenvectors and
corresponding measures.

numerical judgments have captured a natural law.
It would seem that they might do the same in other
areas of perception or thought, like the one on
estimating chess championship outcomes that we
show in the next example, and, more generally, in
continuous versions of these ideas.

Note the sensitivity of the results as the closest
chair is moved even closer to the light source,
for then it absorbs most of the value of the
relative index and a small error in its distance
from the source yields great error in the values.
What is noteworthy from this sensory experiment
is the observation or hypothesis that the observed
intensity of illumination varies (approximately)
inversely with the square of the distance. The more
carefully designed the experiment, the better the
results obtained from the visual observations.
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Table 13. Inverse square law of optics.

Figure 5. Criteria, factors, and players in chess
competition.

World Chess Championship Outcome Validation:
The Karpov-Korchnoi Match

The following criteria (Table 14) and hierarchy
(Figure 5) were used to predict the outcome of world
chess championship matches using judgments of
ten grandmasters in the former Soviet Union and
the United States who responded to questionnaires
mailed to them. The predicted outcomes that
included the number of games played, drawn, and
won by each player either was exactly as they
turned out later or adequately close to predict
the winner. The outcome of this exercise was
officially notarized before the match took place.
The notarized statement was mailed to the editor
of the Journal of Behavioral Sciences along with the
paper later published in May 1980. The prediction
was that Karpov would win by six to five games
over Korchnoi, which he did.

The AHP, the name of the decision process
described above, has been used in various settings
to make decisions.

This approach to prioritization provides the op-
portunity to help focus attention on the important
issues in the world and allocate resources to them
accordingly.

• Since its early development, the AHP has
been used to predict correctly, a few
months before the elections, the next
candidate to be elected for president. The
factors involved varied from election to

election depending on the domestic and
international circumstances prevailing at
the time.

• In 1986 the Institute of Strategic Studies
in Pretoria, a government-backed organiza-
tion, used the AHP to analyze the conflict
in South Africa and recommended actions
ranging from the release of Nelson Man-
dela to the removal of apartheid and the
granting of full citizenship and equal rights
to the black majority. All of these recom-
mended actions were quickly implemented
by the white government.

• A company used it in 1987 to choose the
best type of platform to build to drill for
oil in the North Atlantic. A platform costs
around three billion dollars to build, but
the demolition cost was an even more
significant factor in the decision.

• Xerox Corporation has used the AHP to
allocate close to a billion dollars to its
research projects.

• IBM used the process in 1991 in designing
its successful mid-range AS 400 computer.
IBM won the prestigious Malcolm Baldrige
award for Excellence for that effort. The
book about the AS 400 project has a
chapter devoted to how AHP was used in
benchmarking.

• The AHP has been used since 1992 in
student admissions and prior to that in mil-
itary personnel promotions and in hiring
decisions.

• The process was applied to the U. S. versus
China conflict in the intellectual property
rights battle of 1995 over Chinese individ-
uals copying music, video, and software
tapes and CD’s. An AHP analysis involving
three hierarchies for benefits, costs, and
risks showed that it was much better for
the U. S. not to sanction China. Shortly after
the study was completed, the U. S. awarded
China most-favored nation trading status
and did not sanction it.

• In sports it was used in 1995 to predict
which football team would go to the Super
Bowl and win (correct outcome, Dallas won
over my hometown, Pittsburgh). The AHP
was applied in baseball to analyze which
Padres players should be retained.

• British Airways used it in 1998 to choose
the entertainment system vendor for its
entire fleet of airplanes

• The Ford Motor Company used the AHP in
1999 to establish priorities for criteria that
improve customer satisfaction.
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Table 14. Definitions of chess factors.

• In 2001 it was used to determine the best
site to relocate the earthquake-devastated
Turkish city of Adapazari.

• A comprehensive analysis as to whether
the Unites States should develop an anti-
nuclear missile (estimated in the 1990s
to cost sixty billion dollars and strongly
opposed by scientists as technically in-
feasible) was presented to the National
Defense University (NDU) in February 2002.
In December of that year President Bush
decided to go for it. The U.S. actually devel-
oped prototypes and tested them in stages
successfully.

• An application by Professor Wiktor Adamus
of Krakow University convinced the prime
minister of Poland in 2007 not to adopt the
Euro for currency until many years later.

• An AHP application, known to the military
at the Pentagon, showed that occupying
or bombing Iran in terms of benefits,
opportunities, costs, and risks is not the
best option for security in the Middle East.

• The AHP was used to assist the Green Bay
Packers to hire the best players, perhaps
partly the reason why they won the Su-
per Bowl football championship in 2011
by beating the Pittsburgh Steelers. Other
teams, including hockey and baseball, are
also using it.

• In 1991, 2001, and 2009, AHP was used in
three studies by economists to determine
the turn-around dates of the U.S. economy
and the strength of recovery. These studies
were uncannily accurate.

• The latest application made in August
2011 was to the Israeli-Palestinian conflict
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when five top people from each side used
the AHP to reach an agreement called the
Pittsburgh Principles. One of them wrote: “I
had been in hundreds of meetings between
Israelis and Palestinians where we tried to
reach a joint statement but failed because
in most of the cases each side was trying
to score points and court his own public
opinion rather than being objective and
trying to be real and responsible.”

• The AHP is used by many organiza-
tions, including the military, to prioritize
their projects and allocate their resources
optimally according to these priorities.

Since the AHP helps one organize one’s thinking,
it can be used to deal with many decisions that
are often made intuitively. At a minimum, the
process allows one to experiment with different
criteria, structures, and judgments and also to
test the sensitivity of the outcome to changes
in both the structure [19] and the judgments. It
appears that if we know how to measure things in
relative terms according to the criteria that they
share, we can measure anything that way, and that
kind of measurement includes, as a special case,
the normalized measurement that we make in a
scientific field, in which we always have to interpret
the significance of the measurements obtained by
using expert knowledge and judgment in that field.

This work on the AHP was developed indepen-
dently of the Theory of Perron although I refer to
him abundantly. Consistent matrices automatically
satisfy Perron’s conditions, lead to his results,
and generalize to acceptably inconsistent matrices
through perturbation arguments some of which
were developed by J. H. Wilkinson [27]. We hope
that we can have another opportunity to show the
reader how the ANP works and how the discrete
mathematics of comparisons has been generalized
to the continuous case involving Fredholm’s equa-
tion whose solution produces results associated
with neural firing and synthesis.
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