Arc index of pretzel knots of type

By Hwa Jeong Lee and Gyo Taek Jin

Abstract

We computed the arc index for some of the pretzel knots with , and at most one of is even. If , then the arc index equals the minimal crossing number . If and , then . If and , then .

1. Arc presentation

Let be a diagram of a knot or a link . Suppose that there is a simple closed curve meeting in distinct points which divide into arcs with the following properties:

(1)

Each has no self-crossing.

(2)

If crosses over at a crossing, then and it crosses over at any other crossings with .

(3)

For each , there exists an embedded disk such that and .

(4)

, for distinct and .

Then the pair is called an arc presentation of with arcs, and is called the axis of the arc presentation. Figure 1 shows an arc presentation of the trefoil knot. The thick round curve is the axis. It is known that every knot or link has an arc presentation Reference 3Reference 4. For a given knot or link , the minimal number of arcs in all arc presentations of is called the arc index of , denoted by .

By removing a point from away from , we may identify with the -axis and each with a vertical half plane along the -axis. This shows that an arc presentation is equivalent to an open-book presentation.

Figure 2.

An open-book presentation of the right-handed trefoil knot

\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.5pt} \begin{picture}(50,50)(-25,-25) \qbezier(0.,0.)(0.6554286300,0.000091492)(1.305261921,0.085551386) \qbezier(1.305261921,0.085551386)(1.955071329,0.171192699)(2.588190451,0.340741737) \qbezier(2.588190451,0.340741737)(3.221262214,0.510467524)(3.826834325,0.761204675) \qbezier(3.826834325,0.761204675)(4.432336411,1.012110881)(5.,1.339745960) \qbezier(5.,1.339745960)(5.567572098,1.667539511)(6.087614288,2.066466596) \qbezier(6.087614288,2.066466596)(6.607545088,2.465538852)(7.071067810,2.928932190) \qbezier(7.071067810,2.928932190)(7.534461147,3.392454911)(7.933533403,3.912385710) \qbezier(7.933533403,3.912385710)(8.332460488,4.432427900)(8.660254040,5.) \qbezier(8.660254040,5.)(8.987889120,5.567663591)(9.238795325,6.173165675) \qbezier(9.238795325,6.173165675)(9.489532475,6.778737785)(9.659258263,7.411809549) \qbezier(9.659258263,7.411809549)(9.828807301,8.044928670)(9.914448614,8.694738078) \qbezier(9.914448614,8.694738078)(9.999908508,9.344571368)(10.,10.) \qbezier(10.,10.)(9.999908508,10.65542863)(9.914448614,11.30526192) \qbezier(9.914448614,11.30526192)(9.828807301,11.95507133)(9.659258263,12.58819045) \qbezier(9.659258263,12.58819045)(9.489532475,13.22126222)(9.238795325,13.82683432) \qbezier(9.238795325,13.82683432)(8.987889120,14.43233641)(8.660254040,15.) \qbezier(8.660254040,15.)(8.332460488,15.56757210)(7.933533403,16.08761429) \qbezier(7.933533403,16.08761429)(7.534461147,16.60754509)(7.071067810,17.07106781) \qbezier(7.071067810,17.07106781)(6.607545088,17.53446115)(6.087614288,17.93353340) \qbezier(6.087614288,17.93353340)(5.567572098,18.33246049)(5.,18.66025404) \qbezier(5.,18.66025404)(4.432336411,18.98788912)(3.826834325,19.23879532) \qbezier(3.826834325,19.23879532)(3.221262214,19.48953248)(2.588190451,19.65925826) \qbezier(2.588190451,19.65925826)(1.955071329,19.82880730)(1.305261921,19.91444861) \qbezier(1.305261921,19.91444861)(0.6554286300,19.99990851)(0.,20.) \qbezier(0.,-10.)(0.6554286300,-9.999908508)(1.305261921,-9.914448614) \qbezier(1.305261921,-9.914448614)(1.955071329,-9.828807301)(2.588190451,-9.659258263) \qbezier(2.588190451,-9.659258263)(3.221262214,-9.489532476)(3.826834325,-9.238795325) \qbezier(3.826834325,-9.238795325)(4.432336411,-8.987889119)(5.,-8.660254040) \qbezier(5.,-8.660254040)(5.567572098,-8.332460489)(6.087614288,-7.933533404) \qbezier(6.087614288,-7.933533404)(6.607545088,-7.534461148)(7.071067810,-7.071067810) \qbezier(7.071067810,-7.071067810)(7.534461147,-6.607545089)(7.933533403,-6.087614290) \qbezier(7.933533403,-6.087614290)(8.332460488,-5.567572100)(8.660254040,-5.) \qbezier(8.660254040,-5.)(8.987889120,-4.432336409)(9.238795325,-3.826834325) \qbezier(9.238795325,-3.826834325)(9.489532475,-3.221262215)(9.659258263,-2.588190451) \qbezier(9.659258263,-2.588190451)(9.828807301,-1.955071330)(9.914448614,-1.305261922) \qbezier(9.914448614,-1.305261922)(9.999908508,-0.6554286315)(10.,0.) \qbezier(10.,0.)(9.999908508,0.6554286315)(9.914448614,1.305261922) \qbezier(9.914448614,1.305261922)(9.828807301,1.955071330)(9.659258263,2.588190451) \qbezier(9.659258263,2.588190451)(9.489532475,3.221262215)(9.238795325,3.826834325) \qbezier(7.933533403,6.087614290)(7.534461147,6.607545089)(7.071067810,7.071067810) \qbezier(7.071067810,7.071067810)(6.607545088,7.534461148)(6.087614288,7.933533404) \qbezier(6.087614288,7.933533404)(5.567572098,8.332460489)(5.,8.660254040) \qbezier(5.,8.660254040)(4.432336411,8.987889119)(3.826834325,9.238795325) \qbezier(3.826834325,9.238795325)(3.221262214,9.489532476)(2.588190451,9.659258263) \qbezier(2.588190451,9.659258263)(1.955071329,9.828807301)(1.305261921,9.914448614) \qbezier(1.305261921,9.914448614)(0.6554286300,9.999908508)(0.,10.) \qbezier(0.,-20.)(0.6554286300,-19.99990851)(1.305261921,-19.91444861) \qbezier(1.305261921,-19.91444861)(1.955071329,-19.82880730)(2.588190451,-19.65925826) \qbezier(2.588190451,-19.65925826)(3.221262214,-19.48953248)(3.826834325,-19.23879532) \qbezier(3.826834325,-19.23879532)(4.432336411,-18.98788912)(5.,-18.66025404) \qbezier(5.,-18.66025404)(5.567572098,-18.33246049)(6.087614288,-17.93353340) \qbezier(6.087614288,-17.93353340)(6.607545088,-17.53446115)(7.071067810,-17.07106781) \qbezier(7.071067810,-17.07106781)(7.534461147,-16.60754509)(7.933533403,-16.08761429) \qbezier(7.933533403,-16.08761429)(8.332460488,-15.56757210)(8.660254040,-15.) \qbezier(8.660254040,-15.)(8.987889120,-14.43233641)(9.238795325,-13.82683432) \qbezier(9.238795325,-13.82683432)(9.489532475,-13.22126222)(9.659258263,-12.58819045) \qbezier(9.659258263,-12.58819045)(9.828807301,-11.95507133)(9.914448614,-11.30526192) \qbezier(9.914448614,-11.30526192)(9.999908508,-10.65542863)(10.,-10.) \qbezier(10.,-10.)(9.999908508,-9.344571368)(9.914448614,-8.694738078) \qbezier(9.914448614,-8.694738078)(9.828807301,-8.044928670)(9.659258263,-7.411809549) \qbezier(9.659258263,-7.411809549)(9.489532475,-6.778737785)(9.238795325,-6.173165675) \qbezier(7.933533403,-3.912385710)(7.534461147,-3.392454911)(7.071067810,-2.928932190) \qbezier(7.071067810,-2.928932190)(6.607545088,-2.465538852)(6.087614288,-2.066466596) \qbezier(6.087614288,-2.066466596)(5.567572098,-1.667539511)(5.,-1.339745960) \qbezier(5.,-1.339745960)(4.432336411,-1.012110881)(3.826834325,-0.761204675) \qbezier(3.826834325,-0.761204675)(3.221262214,-0.510467524)(2.588190451,-0.340741737) \qbezier(2.588190451,-0.340741737)(1.955071329,-0.171192699)(1.305261921,-0.085551386) \qbezier(1.305261921,-0.085551386)(0.6554286300,-0.000091492)(0.,0.) \qbezier(0.,20.)(-0.4910488796,19.99999140)(-0.9810469362,19.96788385) \qbezier(-0.9810469362,19.96788385)(-1.471043868,19.93575914)(-1.957892882,19.87167292) \qbezier(-1.957892882,19.87167292)(-2.444739636,19.80756966)(-2.926354830,19.71177921) \qbezier(-2.926354830,19.71177921)(-3.407966654,19.61597189)(-3.882285676,19.48888739) \qbezier(-3.882285676,19.48888739)(-4.356600236,19.36178629)(-4.821591980,19.20395194) \qbezier(-4.821591980,19.20395194)(-5.286578186,19.04610132)(-5.740251488,18.85819299) \qbezier(-5.740251488,18.85819299)(-6.193918197,18.67026878)(-6.634330356,18.45309112) \qbezier(-6.634330356,18.45309112)(-7.074734898,18.23589805)(-7.500000000,17.99038106) \qbezier(-7.500000000,17.99038106)(-7.925256498,17.74484918)(-8.333553494,17.47204419) \qbezier(-8.333553494,17.47204419)(-8.741840937,17.19922490)(-9.131421432,16.90030011) \qbezier(-9.131421432,16.90030011)(-9.520991466,16.60136167)(-9.890187226,16.27759711) \qbezier(-9.890187226,16.27759711)(-10.25937165,15.95381963)(-10.60660172,15.60660172) \qbezier(-10.60660172,15.60660172)(-10.95381963,15.25937165)(-11.27759711,14.89018723) \qbezier(-11.27759711,14.89018723)(-11.60136167,14.52099147)(-11.90030010,14.13142144) \qbezier(-11.90030010,14.13142144)(-12.19922490,13.74184094)(-12.47204418,13.33355350) \qbezier(-12.47204418,13.33355350)(-12.74484918,12.92525650)(-12.99038106,12.50000000) \qbezier(-12.99038106,12.50000000)(-13.23589805,12.07473490)(-13.45309112,11.63433035) \qbezier(-13.45309112,11.63433035)(-13.67026878,11.19391820)(-13.85819299,10.74025149) \qbezier(-13.85819299,10.74025149)(-14.04610132,10.28657819)(-14.20395194,9.821591981) \qbezier(-14.20395194,9.821591981)(-14.36178629,9.356600243)(-14.48888739,8.882285676) \qbezier(-14.48888739,8.882285676)(-14.61597189,8.407966662)(-14.71177921,7.926354832) \qbezier(-14.71177921,7.926354832)(-14.80756966,7.444739645)(-14.87167292,6.957892883) \qbezier(-14.87167292,6.957892883)(-14.93575914,6.471043878)(-14.96788385,5.981046938) \qbezier(-14.96788385,5.981046938)(-14.99999140,5.491048875)(-15.,5.) \qbezier(-15.,5.)(-14.99999140,4.508951125)(-14.96788385,4.018953062) \qbezier(-14.96788385,4.018953062)(-14.93575914,3.528956122)(-14.87167292,3.042107117) \qbezier(-14.87167292,3.042107117)(-14.80756966,2.555260355)(-14.71177921,2.073645168) \qbezier(-14.71177921,2.073645168)(-14.61597189,1.592033338)(-14.48888739,1.117714324) \qbezier(-13.45309112,-1.634330353)(-13.23589805,-2.074734904)(-12.99038106,-2.500000000) \qbezier(-12.99038106,-2.500000000)(-12.74484918,-2.925256501)(-12.47204418,-3.333553496) \qbezier(-12.47204418,-3.333553496)(-12.19922490,-3.741840940)(-11.90030010,-4.131421435) \qbezier(-11.90030010,-4.131421435)(-11.60136167,-4.520991469)(-11.27759711,-4.890187228) \qbezier(-11.27759711,-4.890187228)(-10.95381963,-5.25937165)(-10.60660172,-5.60660172) \qbezier(-10.60660172,-5.60660172)(-10.25937165,-5.95381963)(-9.890187226,-6.27759711) \qbezier(-9.890187226,-6.27759711)(-9.520991466,-6.60136167)(-9.131421432,-6.90030011) \qbezier(-9.131421432,-6.90030011)(-8.741840937,-7.19922490)(-8.333553494,-7.47204419) \qbezier(-8.333553494,-7.47204419)(-7.925256498,-7.74484918)(-7.500000000,-7.99038106) \qbezier(-7.500000000,-7.99038106)(-7.074734898,-8.23589805)(-6.634330356,-8.45309112) \qbezier(-6.634330356,-8.45309112)(-6.193918197,-8.67026878)(-5.740251488,-8.85819299) \qbezier(-5.740251488,-8.85819299)(-5.286578186,-9.04610132)(-4.821591980,-9.20395194) \qbezier(-4.821591980,-9.20395194)(-4.356600236,-9.36178629)(-3.882285676,-9.48888739) \qbezier(-3.882285676,-9.48888739)(-3.407966654,-9.61597189)(-2.926354830,-9.71177921) \qbezier(-2.926354830,-9.71177921)(-2.444739636,-9.80756966)(-1.957892882,-9.87167292) \qbezier(-1.957892882,-9.87167292)(-1.471043868,-9.93575914)(-0.9810469362,-9.96788385) \qbezier(-0.9810469362,-9.96788385)(-0.4910488796,-9.99999140)(0.,-10.) \qbezier(0.,10.)(-0.4910488796,9.99999140)(-0.9810469362,9.96788385) \qbezier(-0.9810469362,9.96788385)(-1.471043868,9.93575914)(-1.957892882,9.87167292) \qbezier(-1.957892882,9.87167292)(-2.444739636,9.80756966)(-2.926354830,9.71177921) \qbezier(-2.926354830,9.71177921)(-3.407966654,9.61597189)(-3.882285676,9.48888739) \qbezier(-3.882285676,9.48888739)(-4.356600236,9.36178629)(-4.821591980,9.20395194) \qbezier(-4.821591980,9.20395194)(-5.286578186,9.04610132)(-5.740251488,8.85819299) \qbezier(-5.740251488,8.85819299)(-6.193918197,8.67026878)(-6.634330356,8.45309112) \qbezier(-6.634330356,8.45309112)(-7.074734898,8.23589805)(-7.500000000,7.99038106) \qbezier(-7.500000000,7.99038106)(-7.925256498,7.74484918)(-8.333553494,7.47204419) \qbezier(-8.333553494,7.47204419)(-8.741840937,7.19922490)(-9.131421432,6.90030011) \qbezier(-9.131421432,6.90030011)(-9.520991466,6.60136167)(-9.890187226,6.27759711) \qbezier(-9.890187226,6.27759711)(-10.25937165,5.95381963)(-10.60660172,5.60660172) \qbezier(-10.60660172,5.60660172)(-10.95381963,5.25937165)(-11.27759711,4.890187228) \qbezier(-11.27759711,4.890187228)(-11.60136167,4.520991469)(-11.90030010,4.131421435) \qbezier(-11.90030010,4.131421435)(-12.19922490,3.741840940)(-12.47204418,3.333553496) \qbezier(-12.47204418,3.333553496)(-12.74484918,2.925256501)(-12.99038106,2.500000000) \qbezier(-12.99038106,2.500000000)(-13.23589805,2.074734904)(-13.45309112,1.634330353) \qbezier(-13.45309112,1.634330353)(-13.67026878,1.193918203)(-13.85819299,0.740251488) \qbezier(-13.85819299,0.740251488)(-14.04610132,0.286578192)(-14.20395194,-0.178408019) \qbezier(-14.20395194,-0.178408019)(-14.36178629,-0.643399757)(-14.48888739,-1.117714324) \qbezier(-14.48888739,-1.117714324)(-14.61597189,-1.592033338)(-14.71177921,-2.073645168) \qbezier(-14.71177921,-2.073645168)(-14.80756966,-2.555260355)(-14.87167292,-3.042107117) \qbezier(-14.87167292,-3.042107117)(-14.93575914,-3.528956122)(-14.96788385,-4.018953062) \qbezier(-14.96788385,-4.018953062)(-14.99999140,-4.508951125)(-15.,-5.) \qbezier(-15.,-5.)(-14.99999140,-5.491048875)(-14.96788385,-5.981046938) \qbezier(-14.96788385,-5.981046938)(-14.93575914,-6.471043878)(-14.87167292,-6.957892883) \qbezier(-14.87167292,-6.957892883)(-14.80756966,-7.444739645)(-14.71177921,-7.926354832) \qbezier(-14.71177921,-7.926354832)(-14.61597189,-8.407966662)(-14.48888739,-8.882285676) \qbezier(-14.48888739,-8.882285676)(-14.36178629,-9.356600243)(-14.20395194,-9.821591981) \qbezier(-14.20395194,-9.821591981)(-14.04610132,-10.28657819)(-13.85819299,-10.74025149) \qbezier(-13.85819299,-10.74025149)(-13.67026878,-11.19391820)(-13.45309112,-11.63433035) \qbezier(-13.45309112,-11.63433035)(-13.23589805,-12.07473490)(-12.99038106,-12.50000000) \qbezier(-12.99038106,-12.50000000)(-12.74484918,-12.92525650)(-12.47204418,-13.33355350) \qbezier(-12.47204418,-13.33355350)(-12.19922490,-13.74184094)(-11.90030010,-14.13142144) \qbezier(-11.90030010,-14.13142144)(-11.60136167,-14.52099147)(-11.27759711,-14.89018723) \qbezier(-11.27759711,-14.89018723)(-10.95381963,-15.25937165)(-10.60660172,-15.60660172) \qbezier(-10.60660172,-15.60660172)(-10.25937165,-15.95381963)(-9.890187226,-16.27759711) \qbezier(-9.890187226,-16.27759711)(-9.520991466,-16.60136167)(-9.131421432,-16.90030011) \qbezier(-9.131421432,-16.90030011)(-8.741840937,-17.19922490)(-8.333553494,-17.47204419) \qbezier(-8.333553494,-17.47204419)(-7.925256498,-17.74484918)(-7.500000000,-17.99038106) \qbezier(-7.500000000,-17.99038106)(-7.074734898,-18.23589805)(-6.634330356,-18.45309112) \qbezier(-6.634330356,-18.45309112)(-6.193918197,-18.67026878)(-5.740251488,-18.85819299) \qbezier(-5.740251488,-18.85819299)(-5.286578186,-19.04610132)(-4.821591980,-19.20395194) \qbezier(-4.821591980,-19.20395194)(-4.356600236,-19.36178629)(-3.882285676,-19.48888739) \qbezier(-3.882285676,-19.48888739)(-3.407966654,-19.61597189)(-2.926354830,-19.71177921) \qbezier(-2.926354830,-19.71177921)(-2.444739636,-19.80756966)(-1.957892882,-19.87167292) \qbezier(-1.957892882,-19.87167292)(-1.471043868,-19.93575914)(-0.9810469362,-19.96788385) \qbezier(-0.9810469362,-19.96788385)(-0.4910488796,-19.99999140)(0.,-20.) \mythicklines\put(0,-25){\line(0,1){50}} \end{picture}

Given a link , let denote the minimal crossing number of .

Theorem 1.1 (Jin-Park).

A prime link is nonalternating if and only if

2. Kauffman polynomial

The Kauffman polynomial of an oriented knot or link is defined by

where is a diagram of , the writhe of and the polynomial determined by the rules K1, K2 and K3.

(K1)

where is the trivial knot diagram.

(K2)

For any four diagrams , , and which are identical outside a small disk in which they differ as shown below,

\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.0pt} \begin{picture}(160,50)(0,-15) \put( 0,10){\line(0,-1){10}}\put( 0,10){\line(1,1){10}}\put(10,20){\line(0,1){10}} \put( 0,20){\line(0,1){10}} \qbezier( 0,20)( 0,20)( 3,17)\qbezier( 7,13)(10,10)(10,10) \put(10,10){\line(0,-1){10}} \put( 1,-10){$D_+$} \put(50,10){\line(0,-1){10}} \qbezier(50,10)(50,10)(53,13)\qbezier(57,17)(60,20)(60,20) \put(60,20){\line(0,1){10}} \put(50,20){\line(0,1){10}}\put(50,20){\line(1,-1){10}}\put(60,10){\line(0,-1){10}} \put(51,-10){$D_-$} \put(100, 0){\line(0,1){30}}\put(110, 0){\line(0,1){30}} \put(101,-10){$D_0$} \put(150, 0){\line(0,1){10}}\put(160, 0){\line(0,1){10}} \put(150,10){\line(1,0){10}}\put(150,20){\line(1,0){10}} \put(150,20){\line(0,1){10}}\put(160,20){\line(0,1){10}} \put(150,-10){$D_\infty$} \end{picture}

we have the relation

(K3)

For any three diagrams , and which are identical outside a small disk in which they differ as shown below,

\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.0pt} \begin{picture}(110,50)(0,-15) \put(0,30){\line(0,-1){10}} \qbezier(0,20)(0,20)(3,17)\qbezier(7,13)(10,10)(10,10) \put(10,10){\line(0,-1){10}} \put(0,30){\line(1,0){10}} \put(0,0){\line(0,1){10}} \put(0,10){\line(1,1){10}} \put(10,20){\line(0,1){10}} \put(1,-10){$D_+$} \put(50,30){\line(0,-1){30}} \put(50,30){\line(1,0){10}} \put(60,0){\line(0,1){30}} \put(52,-10){$D$} \put(100,30){\line(0,-1){10}} \put(100,20){\line(1,-1){10}} \put(110,10){\line(0,-1){10}} \put(100,30){\line(1,0){10}} \put(100,0){\line(0,1){10}} \qbezier(100,10)(100,10)(103,13)\qbezier(107,17)(110,20)(110,20) \put(110,20){\line(0,1){10}} \put(101,-10){$D_-$} \end{picture}

we have the relation

For a connected sum and a split union of two diagrams, satisfies the following properties:

(K4)

If is a connected sum of and , then

(K5)

If is the split union of and , then

The Laurent degree in the variable of the Kauffman polynomial is denoted by and defined by the formula

Notice that for any diagram of . The following theorem gives an important lower bound for the arc index.

Theorem 2.1 (Morton-Beltrami).

Let be a link. Then

If is nonsplit and alternating, then the equality holds so that . This is shown by Bae and Park Reference 1 using arc presentations in the form of wheel diagrams.

3. Pretzel knots

Given a sequence of integers , we connect two disjoint disks by bands with half twists, , so that the boundary of the resulting surface is a link as shown in Figure 3. This link is called the pretzel link of type and denoted by .

In the case , the pretzel links satisfy the following properties:

Proposition 3.1.

Let , , and be nonzero integers.

(1)

The link type of is independent of the order of .

(2)

is a knot if and only if at most one of is an even number.

In this work, we compute the arc index for the pretzel knots with . By Proposition 3.1(1), we may assume that . By Theorem 3.2, we know that is a minimal crossing diagram of , i.e., .

Theorem 3.2 (Lickorish-Thistlethwaite).

If a link admits a reduced Montesinos diagram having crossings, then cannot be projected with fewer than crossings.

This work was motivated by Theorem 3.3 which is a special case of Theorem 1.1.

Theorem 3.3 (Beltrami-Cromwell).

If is a knot with , then

By computing and finding arc presentations of with the minimum number of arcs for various values of , and , we obtained sharper results.

4. Main results

Theorem 4.1.

If is a knot with , then

Theorem 4.2.

If is a knot with , , then

Theorem 4.3.

If is a knot with , , then

Theorem 4.4.

If is a knot with , , then

Theorem 4.5.

If is a knot with , then

5. Arc presentations of

Proposition 5.1.

If is a knot with , then has an arc presentation with arcs.

Proof.

Figure 4 shows a pretzel diagram of and its arc presentation with arcs. The thick curve is the axis of the arc presentation which cuts the knot at 1 place in the leftmost box, places in the second, 2 places in the third, and places in the fourth. The arcs of the knot satisfy the four properties of an arc presentation.

тЦа
Proposition 5.2.

If is a knot with and , then has an arc presentation with arcs.

Proof.

For each of , Figure 5 shows a pretzel diagram of and its arc presentation with arcs. The thick curve is the axis of the arc presentation which cuts the knot at places in the leftmost box, places in the second, and places in the third. The arcs of the knot satisfy the four properties of an arc presentation.

тЦа
Proposition 5.3.

If is a knot with and , then has an arc presentation with arcs.

Proof.

In Figure 6, the diagram (a) shows a pretzel diagram of with and . The diagram (b) is obtained from (a) by two applications of the Reidemeister move of type 3. The diagram (c) shows an arc presentation with arcs. The diagram (d) is obtained from (c) by isotoping the arc labeled over the axis so that there are only arcs. Each of the seven boxes, from left to right, contains , , , , , , and arcs, respectively.

тЦа

6. The Kauffman polynomial of the pretzel knots

For any link diagram , the polynomial is of the form

where are integers with , and тАЩs are polynomials in with integer coefficients such that and . To simplify our computation of we use the notation

where and are the highest degree terms in and , respectively. For example, we write

We also use the notation for when .

Figure 7.

Links , , and

\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.0pt} \begin{picture}(50,80) \put(5,80){\line(1,0){40}} \qbezier(5,80)(0,80)(0,75)\qbezier(5,70)(0,70)(0,75) \qbezier(45,80)(50,80)(50,75)\qbezier(45,70)(50,70)(50,75) \put(15,70){\line(1,0){20}} \put( 5,10){\line(0,1){5}} \put(15,10){\line(0,1){5}} \put(15,15){\line(-1,1){10}} \qbezier(5,15)(7,17)(8,18) \qbezier(12,22)(13,23)(15,25) \put(15,25){\line(-1,1){10}} \qbezier(5,25)(7,27)(8,28) \qbezier(12,32)(13,33)(15,35) \put( 9,35){$\vdots$}\put(12,39){$-m$} \put(15,45){\line(-1,1){10}} \qbezier(5,45)(7,47)(8,48) \qbezier(12,52)(13,53)(15,55) \put(15,55){\line(-1,1){10}} \qbezier(5,55)(7,57)(8,58) \qbezier(12,62)(13,63)(15,65) \put( 5,65){\line(0,1){5}} \put(15,65){\line(0,1){5}} \put(35,10){\line(0,1){60}} \put(45,10){\line(0,1){60}} \put(5,0){\line(1,0){40}} \qbezier(5,0)(0,0)(0,5)\qbezier(5,10)(0,10)(0,5) \qbezier(45,0)(50,0)(50,5)\qbezier(45,10)(50,10)(50,5) \put(15,10){\line(1,0){20}} \end{picture} \renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.0pt} \begin{picture}(50,80) \put(5,80){\line(1,0){40}} \qbezier(5,80)(0,80)(0,75)\qbezier(5,70)(0,70)(0,75) \qbezier(45,80)(50,80)(50,75)\qbezier(45,70)(50,70)(50,75) \put(15,70){\line(1,0){20}} \put( 5,10){\line(0,1){60}} \put(15,10){\line(0,1){60}} \put(35,10){\line(0,1){5}} \put(45,10){\line(0,1){5}} \put(35,15){\line(1,1){10}} \qbezier(45,15)(43,17)(42,18) \qbezier(38,22)(37,23)(35,25) \put(35,25){\line(1,1){10}} \qbezier(45,25)(43,27)(42,28) \qbezier(38,32)(37,33)(35,35) \put(39,35){$\vdots$}\put(47,39){$n$} \put(35,45){\line(1,1){10}} \qbezier(45,45)(43,47)(42,48) \qbezier(38,52)(37,53)(35,55) \put(35,55){\line(1,1){10}} \qbezier(45,55)(43,57)(42,58) \qbezier(38,62)(37,63)(35,65) \put(35,65){\line(0,1){5}} \put(45,65){\line(0,1){5}} \put(5,0){\line(1,0){40}} \qbezier(5,0)(0,0)(0,5)\qbezier(5,10)(0,10)(0,5) \qbezier(45,0)(50,0)(50,5)\qbezier(45,10)(50,10)(50,5) \put(15,10){\line(1,0){20}} \end{picture} \renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.0pt} \begin{picture}(50,80) \put(5,80){\line(1,0){40}} \qbezier(5,80)(0,80)(0,75)\qbezier(5,70)(0,70)(0,75) \qbezier(45,80)(50,80)(50,75)\qbezier(45,70)(50,70)(50,75) \put(15,70){\line(1,0){20}} \put( 5,10){\line(0,1){5}} \put(15,10){\line(0,1){5}} \put(15,15){\line(-1,1){10}} \qbezier(5,15)(7,17)(8,18) \qbezier(12,22)(13,23)(15,25) \put(15,25){\line(-1,1){10}} \qbezier(5,25)(7,27)(8,28) \qbezier(12,32)(13,33)(15,35) \put( 9,35){$\vdots$}\put(12,39){$-m$} \put(15,45){\line(-1,1){10}} \qbezier(5,45)(7,47)(8,48) \qbezier(12,52)(13,53)(15,55) \put(15,55){\line(-1,1){10}} \qbezier(5,55)(7,57)(8,58) \qbezier(12,62)(13,63)(15,65) \put( 5,65){\line(0,1){5}} \put(15,65){\line(0,1){5}} \put(35,10){\line(0,1){5}} \put(45,10){\line(0,1){5}} \put(35,15){\line(1,1){10}} \qbezier(45,15)(43,17)(42,18) \qbezier(38,22)(37,23)(35,25) \put(35,25){\line(1,1){10}} \qbezier(45,25)(43,27)(42,28) \qbezier(38,32)(37,33)(35,35) \put(39,35){$\vdots$}\put(47,39){$n$} \put(35,45){\line(1,1){10}} \qbezier(45,45)(43,47)(42,48) \qbezier(38,52)(37,53)(35,55) \put(35,55){\line(1,1){10}} \qbezier(45,55)(43,57)(42,58) \qbezier(38,62)(37,63)(35,65) \put(35,65){\line(0,1){5}} \put(45,65){\line(0,1){5}} \put(5,0){\line(1,0){40}} \qbezier(5,0)(0,0)(0,5)\qbezier(5,10)(0,10)(0,5) \qbezier(45,0)(50,0)(50,5)\qbezier(45,10)(50,10)(50,5) \put(15,10){\line(1,0){20}} \end{picture}

Let the polynomial be defined by , andтБаFootnote1

1

тАЩs are the ChebyshevтАЩs polynomials of the second type.

тЬЦ
Lemma 6.1.

Let be nonnegative integers. Then

More precisely,

Proof.

Using the skein relations K1, K2, and K3, we have the following

Let be a vertical integer tangle which has times half-twists in the positive or negative direction according to the sign of for an integer . , , , and are exemplified in . In the sublemma below, we use the following simplified notation:

Sublemma.

For and , we have

Proof of Sublemma.

As shown below, equation Equation 6.1 holds when .

Suppose that equation Equation 6.1 holds for for some . Then

This proves that equation Equation 6.1 holds for . In a similar manner, we can prove that equation Equation 6.2 holds for .тЦа

For and , using equations Equation 6.1 and Equation 6.2 on and respectively, we obtain

Since is an invariant under regular isotopy of diagrams, we have

This completes the proof.

тЦа
Lemma 6.2.

More precisely, for and

and for

Proof.

Since , we have . Therefore the formula about follows from Lemma 6.1.

Now we consider the formula about . Three cases with or follow from K1, K2, K3, and Lemma 6.1. The other case is derived by equation (Equation 6.1). For , we have

This completes the proof.

тЦа
Proposition 6.3.

for , and .

Proof.

For , we show that

Using K1, K2, K3 and Lemmas 6.1 and 6.2, we obtain

which prove the first two cases of (Equation 6.3). Now we show the third case of (Equation 6.3) by an induction on . For , we have

and for , inductively, we have

where indicates that the lowest -degree of is not smaller than .

This completes the proof.

тЦа
Proposition 6.4.

for and .

Proof.

We show that

Using equation (Equation 6.2) and Lemmas 6.1 and 6.2, we obtain

Using K1, K2, K3 and the results above, we obtain

and, for , inductively, we have

This completes the proof.

тЦа
Proposition 6.5.

for .

Proof.

Using equation (Equation 6.1) and K1, K3 and Lemma 6.1, we obtain

Using equation (Equation 6.2) and the above two formulas, for we obtain

This completes the proof.

тЦа
Proposition 6.6.

for and .

Proof.

Using equation (Equation 6.2) and Lemmas 6.1 and 6.2, we obtain

This completes the proof.

тЦа

7. Proofs of main results and comments

Theorem 4.1 is proved by Proposition 5.1. Table 1 shows that the upper bound тАШтАЩ for the arc index in Theorem 4.1 is best possible. It also shows that the lower bound тАШтАЩ in Theorem 2.1 is best possible.

The proof of Theorem 4.2 is a combination of Propositions 5.2 and 6.3. The proof of Theorem 4.3 is a combination of Propositions 5.2 and 6.4. The proof of Theorem 4.4 is a combination of Propositions 5.3 and 6.6. The proof of Theorem 4.5 is a combination of Propositions 5.3 and 6.5. Table 2 shows that the upper bound тАШтАЩ is best possible but the lower bound тАШтАЩ may not be best possible.

Acknowledgment

The authors would like to thank the referee for valuable comments and suggestions.

Figures

Figure 1.

An arc presentation of the right-handed trefoil knot

\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.0pt} \begin{picture}(60,60) \put(0,0){\line(1,0){40}} \put(0,0){\line(0,1){40}} \put(40,0){\line(0,1){17}} \put(40,23){\line(0,1){37}} \put(40,60){\line(-1,0){20}} \put(20,60){\line(0,-1){17}} \put(20,37){\line(1,-1){17}} \put(37,20){\line(1,0){23}} \put(60,20){\line(0,1){20}} \put(60,40){\line(-1,0){17}} \put(37,40){\line(-1,0){37}} \mythicklines\qbezier(28.5,28.5)(50,28.5)(50,40) \qbezier(28.5,28.5)(28.5,50)(40,50) \qbezier(50,40)(50,50)(40,50) \end{picture}
Figure 3.

Pretzel links and

\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.0pt} \begin{picture}(140,80) \put(5,80){\line(1,0){130}} \qbezier(5,80)(0,80)(0,75)\qbezier(5,70)(0,70)(0,75) \qbezier(135,80)(140,80)(140,75)\qbezier(135,70)(140,70)(140,75) \put(15,70){\line(1,0){20}}\put(45,70){\line(1,0){20}}\put(75,70){\line(1,0){15}}\put(95,69.4){$\ldots$}\put(110,70){\line(1,0){15}} \put( 5,10){\line(0,1){5}} \put(15,10){\line(0,1){5}} \put( 5,15){\line(1,1){10}} \qbezier(15,15)(13,17)(12,18) \qbezier( 8,22)( 7,23)( 5,25) \put( 5,25){\line(1,1){10}} \qbezier(15,25)(13,27)(12,28) \qbezier( 8,32)( 7,33)( 5,35) \put( 9,35){$\vdots$}\put(17,39){$p_1$} \put( 5,45){\line(1,1){10}} \qbezier(15,45)(13,47)(12,48) \qbezier( 8,52)( 7,53)( 5,55) \put( 5,55){\line(1,1){10}} \qbezier(15,55)(13,57)(12,58) \qbezier( 8,62)( 7,63)( 5,65) \put( 5,65){\line(0,1){5}} \put(15,65){\line(0,1){5}} \put(35,10){\line(0,1){5}} \put(45,10){\line(0,1){5}} \put(35,15){\line(1,1){10}} \qbezier(45,15)(43,17)(42,18) \qbezier(38,22)(37,23)(35,25) \put(35,25){\line(1,1){10}} \qbezier(45,25)(43,27)(42,28) \qbezier(38,32)(37,33)(35,35) \put(39,35){$\vdots$}\put(47,39){$p_2$} \put(35,45){\line(1,1){10}} \qbezier(45,45)(43,47)(42,48) \qbezier(38,52)(37,53)(35,55) \put(35,55){\line(1,1){10}} \qbezier(45,55)(43,57)(42,58) \qbezier(38,62)(37,63)(35,65) \put(35,65){\line(0,1){5}} \put(45,65){\line(0,1){5}} \put(65,10){\line(0,1){5}} \put(75,10){\line(0,1){5}} \put(65,65){\line(0,1){5}} \put(75,65){\line(0,1){5}} \put(69,35){$\vdots$} \put(95,37){$\cdots$} \put(125,10){\line(0,1){5}} \put(135,10){\line(0,1){5}} \put(125,15){\line(1,1){10}} \qbezier(135,15)(133,17)(132,18) \qbezier(128,22)(127,23)(125,25) \put(125,25){\line(1,1){10}} \qbezier(135,25)(133,27)(132,28) \qbezier(128,32)(127,33)(125,35) \put(129,35){$\vdots$}\put(137,39){$p_n$} \put(125,45){\line(1,1){10}} \qbezier(135,45)(133,47)(132,48) \qbezier(128,52)(127,53)(125,55) \put(125,55){\line(1,1){10}} \qbezier(135,55)(133,57)(132,58) \qbezier(128,62)(127,63)(125,65) \put(125,65){\line(0,1){5}} \put(135,65){\line(0,1){5}} \put(5,0){\line(1,0){130}} \qbezier(5,0)(0,0)(0,5)\qbezier(5,10)(0,10)(0,5) \qbezier(135,0)(140,0)(140,5)\qbezier(135,10)(140,10)(140,5) \put(15,10){\line(1,0){20}}\put(45,10){\line(1,0){20}}\put(75,10){\line(1,0){15}}\put(95,9.5){$\ldots$}\put(110,10){\line(1,0){15}} \end{picture} \renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.0pt} \begin{picture}(80,80) \put(5,80){\line(1,0){70}} \qbezier(5,80)(0,80)(0,75)\qbezier(5,70)(0,70)(0,75) \qbezier(75,80)(80,80)(80,75)\qbezier(75,70)(80,70)(80,75) \put(15,70){\line(1,0){20}}\put(45,70){\line(1,0){20}} \put( 5,10){\line(0,1){5}} \put(15,10){\line(0,1){5}} \put(15,15){\line(-1,1){10}} \qbezier(5,15)(7,17)(8,18) \qbezier(12,22)(13,23)(15,25) \put(15,25){\line(-1,1){10}} \qbezier(5,25)(7,27)(8,28) \qbezier(12,32)(13,33)(15,35) \put( 9,35){$\vdots$}\put(12,39){$-p$} \put(15,45){\line(-1,1){10}} \qbezier(5,45)(7,47)(8,48) \qbezier(12,52)(13,53)(15,55) \put(15,55){\line(-1,1){10}} \qbezier(5,55)(7,57)(8,58) \qbezier(12,62)(13,63)(15,65) \put( 5,65){\line(0,1){5}} \put(15,65){\line(0,1){5}} \put(35,10){\line(0,1){5}} \put(45,10){\line(0,1){5}} \put(35,15){\line(1,1){10}} \qbezier(45,15)(43,17)(42,18) \qbezier(38,22)(37,23)(35,25) \put(35,25){\line(1,1){10}} \qbezier(45,25)(43,27)(42,28) \qbezier(38,32)(37,33)(35,35) \put(39,35){$\vdots$}\put(47,39){$q$} \put(35,45){\line(1,1){10}} \qbezier(45,45)(43,47)(42,48) \qbezier(38,52)(37,53)(35,55) \put(35,55){\line(1,1){10}} \qbezier(45,55)(43,57)(42,58) \qbezier(38,62)(37,63)(35,65) \put(35,65){\line(0,1){5}} \put(45,65){\line(0,1){5}} \put(65,10){\line(0,1){5}} \put(75,10){\line(0,1){5}} \put(65,15){\line(1,1){10}} \qbezier(75,15)(73,17)(72,18) \qbezier(68,22)(67,23)(65,25) \put(65,25){\line(1,1){10}} \qbezier(75,25)(73,27)(72,28) \qbezier(68,32)(67,33)(65,35) \put(69,35){$\vdots$}\put(77,39){$r$} \put(65,45){\line(1,1){10}} \qbezier(75,45)(73,47)(72,48) \qbezier(68,52)(67,53)(65,55) \put(65,55){\line(1,1){10}} \qbezier(75,55)(73,57)(72,58) \qbezier(68,62)(67,63)(65,65) \put(65,65){\line(0,1){5}} \put(75,65){\line(0,1){5}} \put(5,0){\line(1,0){70}} \qbezier(5,0)(0,0)(0,5)\qbezier(5,10)(0,10)(0,5) \qbezier(75,0)(80,0)(80,5)\qbezier(75,10)(80,10)(80,5) \put(15,10){\line(1,0){20}}\put(45,10){\line(1,0){20}} \end{picture}
Figure 4.

An arc presentation of

\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(70,110)(0,-10) \put(0,90){\line(1,0){7}} \put(13,90){\line(1,0){17}} \put(40,90){\line(1,0){17}} \put(63,90){\line(1,0){7}} \put(10,100){\line(1,0){50}} \put(0, 0){\line(0,1){40}} \put(10,10){\line(0,1){30}} \put(10,40){\line(-1,1){10}} \qbezier(0,40)(2,42)(4,44) \qbezier(6,46)(8,48)(10,50) \put(0,50){\line(0,1){40}} \put(10,50){\line(0,1){50}} \put(30,10){\line(0,1){5}} \put(40,10){\line(0,1){5}} \put(30,15){\line(1,1){10}} \qbezier(40,15)(38,17)(36,19) \qbezier(34,21)(32,23)(30,25) \put(30,25){\line(1,1){10}} \qbezier(40,25)(38,27)(36,29) \qbezier(34,31)(32,33)(30,35) \qbezier(30,35)(31,36)(33,38) \qbezier(40,35)(39,36)(37,38) \qbezier[5](35,40)(35,45)(35,50) \qbezier(30,55)(31,54)(33,52) \qbezier(40,55)(39,54)(37,52) \put(30,55){\line(1,1){10}} \qbezier(40,55)(38,57)(36,59) \qbezier(34,61)(32,63)(30,65) \put(30,65){\line(1,1){10}} \qbezier(40,65)(38,67)(36,69) \qbezier(34,71)(32,73)(30,75) \put(30,75){\line(1,1){10}} \qbezier(40,75)(38,77)(36,79) \qbezier(34,81)(32,83)(30,85) \put(30,85){\line(0,1){5}} \put(40,85){\line(0,1){5}} \put(60,10){\line(0,1){5}} \put(70, 0){\line(0,1){15}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){25}} \put(70,75){\line(0,1){15}} \put(10,10){\line(1,0){20}} \put(40,10){\line(1,0){20}} \put(0,0){\line(1,0){70}} \end{picture} \renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(70,110)(0,-10) \put(0,90){\line(1,0){7}} \put(13,90){\line(1,0){17}} \put(40,90){\line(1,0){17}} \put(63,90){\line(1,0){7}} \put(10,100){\line(1,0){50}} \put(0, 0){\line(0,1){40}} \put(10,10){\line(0,1){30}} \put(10,40){\line(-1,1){10}} \qbezier(0,40)(2,42)(4,44) \qbezier(6,46)(8,48)(10,50) \put(0,50){\line(0,1){40}} \put(10,50){\line(0,1){50}} \put(30,10){\line(0,1){5}} \put(40,10){\line(0,1){5}} \put(30,15){\line(1,1){10}} \qbezier(40,15)(38,17)(36,19) \qbezier(34,21)(32,23)(30,25) \put(30,25){\line(1,1){10}} \qbezier(40,25)(38,27)(36,29) \qbezier(34,31)(32,33)(30,35) \qbezier(30,35)(31,36)(33,38) \qbezier(40,35)(39,36)(37,38) \qbezier[5](35,40)(35,45)(35,50) \qbezier(30,55)(31,54)(33,52) \qbezier(40,55)(39,54)(37,52) \put(30,55){\line(1,1){10}} \qbezier(40,55)(38,57)(36,59) \qbezier(34,61)(32,63)(30,65) \put(30,65){\line(1,1){10}} \qbezier(40,65)(38,67)(36,69) \qbezier(34,71)(32,73)(30,75) \put(30,75){\line(1,1){10}} \qbezier(40,75)(38,77)(36,79) \qbezier(34,81)(32,83)(30,85) \put(30,85){\line(0,1){5}} \put(40,85){\line(0,1){5}} \put(60,10){\line(0,1){5}} \put(70, 0){\line(0,1){15}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){25}} \put(70,75){\line(0,1){15}} \put(10,10){\line(1,0){20}} \put(40,10){\line(1,0){20}} \put(0,0){\line(1,0){70}} \mythicklines\qbezier(10,75)(35,75)(60,75) \qbezier(60,75)(45,70)(60,65) \qbezier(60,65)(45,60)(60,55) \qbezier(60,55)(55,55)(53,52) \qbezier[3](53,40)(53,45)(53,50) \qbezier(60,35)(55,35)(53,38) \qbezier(60,25)(45,30)(60,35) \qbezier(35,25)(15,25)(30,35) \qbezier(35,25)(45,25)(60,25) \qbezier(30,35)(25,35)(23,38) \qbezier(10,75)(20,70)(30,65) \qbezier(30,65)(15,60)(30,55) \qbezier(30,55)(25,55)(23,52) \qbezier[3](23,40)(23,45)(23,50) \thicklines\qbezier[4](7,78)(10,78)(13,78)\qbezier[4](7,72)(10,72)(13,72)\qbezier[4](7,72)(7,75)(7,78)\qbezier[4](13,72)(13,75)(13,78) \qbezier[4](27,78)(30,78)(33,78)\qbezier[4](27,22)(30,22)(33,22)\qbezier[38](27,22)(27,50)(27,78)\qbezier[38](33,22)(33,50)(33,78) \qbezier[4](37,78)(40,78)(43,78)\qbezier[4](37,22)(40,22)(43,22)\qbezier[38](37,22)(37,50)(37,78)\qbezier[38](43,22)(43,50)(43,78) \qbezier[4](57,78)(60,78)(63,78)\qbezier[4](57,22)(60,22)(63,22)\qbezier[38](57,22)(57,50)(57,78)\qbezier[38](63,22)(63,50)(63,78) \end{picture}
Figure 5.

Arc presentations of for

\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(70,120)(0,-20) \put(0,90){\line(1,0){7}} \put(13,90){\line(1,0){17}} \put(40,90){\line(1,0){17}} \put(63,90){\line(1,0){7}} \put(10,100){\line(1,0){50}} \put(0, 0){\line(0,1){15}} \put(10,10){\line(0,1){5}} \put(10,15){\line(-1,1){10}} \qbezier(0,15)(2,17)(4,19) \qbezier(6,21)(8,23)(10,25) \put(10,25){\line(-1,1){10}} \qbezier(0,25)(2,27)(4,29) \qbezier(6,31)(8,33)(10,35) \put(0,75){\line(0,1){15}} \put(10,75){\line(0,1){25}} \qbezier(10,35)(9,36)(7,38) \qbezier(0,35)(1,36)(3,38) \qbezier[5](5,40)(5,45)(5,50) \qbezier(10,55)(9,54)(7,52) \qbezier(0,55)(1,54)(3,52) \put(10,55){\line(-1,1){10}} \qbezier(0,55)(2,57)(4,59) \qbezier(6,61)(8,63)(10,65) \put(10,65){\line(-1,1){10}} \qbezier(0,65)(2,67)(4,69) \qbezier(6,71)(8,73)(10,75) \put(30,10){\line(0,1){30}} \put(40,10){\line(0,1){30}} \put(30,40){\line(1,1){10}} \qbezier(40,40)(38,42)(36,44) \qbezier(34,46)(32,48)(30,50) \put(30,50){\line(0,1){25}} \put(40,50){\line(0,1){25}} \put(30,75){\line(1,1){10}} \qbezier(40,75)(38,77)(36,79) \qbezier(34,81)(32,83)(30,85) \put(30,85){\line(0,1){5}} \put(40,85){\line(0,1){5}} \put(60,10){\line(0,1){5}} \put(70, 0){\line(0,1){15}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){25}} \put(70,75){\line(0,1){15}} \put(10,10){\line(1,0){20}} \put(40,10){\line(1,0){20}} \put(0,0){\line(1,0){70}} \put(0,-15){\hbox to 78pt{\hfill$q=2$\hfill}} \end{picture} тАБ\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(70,120)(0,-20) \put(0,90){\line(1,0){7}} \put(13,90){\line(1,0){17}} \put(40,90){\line(1,0){17}} \put(63,90){\line(1,0){7}} \put(10,100){\line(1,0){50}} \put(0, 0){\line(0,1){15}} \put(10,10){\line(0,1){5}} \put(10,15){\line(-1,1){10}} \qbezier(0,15)(2,17)(4,19) \qbezier(6,21)(8,23)(10,25) \put(10,25){\line(-1,1){10}} \qbezier(0,25)(2,27)(4,29) \qbezier(6,31)(8,33)(10,35) \put(0,75){\line(0,1){15}} \put(10,75){\line(0,1){25}} \qbezier(10,35)(9,36)(7,38) \qbezier(0,35)(1,36)(3,38) \qbezier[5](5,40)(5,45)(5,50) \qbezier(10,55)(9,54)(7,52) \qbezier(0,55)(1,54)(3,52) \put(10,55){\line(-1,1){10}} \qbezier(0,55)(2,57)(4,59) \qbezier(6,61)(8,63)(10,65) \put(10,65){\line(-1,1){10}} \qbezier(0,65)(2,67)(4,69) \qbezier(6,71)(8,73)(10,75) \put(30,10){\line(0,1){30}} \put(40,10){\line(0,1){30}} \put(30,40){\line(1,1){10}} \qbezier(40,40)(38,42)(36,44) \qbezier(34,46)(32,48)(30,50) \put(30,50){\line(0,1){25}} \put(40,50){\line(0,1){25}} \put(30,75){\line(1,1){10}} \qbezier(40,75)(38,77)(36,79) \qbezier(34,81)(32,83)(30,85) \put(30,85){\line(0,1){5}} \put(40,85){\line(0,1){5}} \put(60,10){\line(0,1){5}} \put(70, 0){\line(0,1){15}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){25}} \put(70,75){\line(0,1){15}} \put(10,10){\line(1,0){20}} \put(40,10){\line(1,0){20}} \put(0,0){\line(1,0){70}} \mythicklines\qbezier(10,75)(35,75)(60,75) \qbezier(60,75)(45,70)(60,65) \qbezier(60,65)(45,60)(60,55) \qbezier(60,55)(55,55)(53,52) \qbezier[3](53,40)(53,45)(53,50) \qbezier(60,35)(55,35)(53,38) \qbezier(60,25)(45,30)(60,35) \put(10,25){\line(1,0){50}} \qbezier(10,35)(15,35)(17,38) \qbezier(10,25)(25,30)(10,35) \qbezier(10,75)(25,70)(10,65) \qbezier(10,65)(25,60)(10,55) \qbezier(10,55)(15,55)(17,52) \qbezier[3](17,40)(17,45)(17,50) \thicklines\qbezier[4](7,78)(10,78)(13,78)\qbezier[4](7,22)(10,22)(13,22)\qbezier[38](7,22)(7,50)(7,78)\qbezier[38](13,22)(13,50)(13,78) \qbezier[10](27,78)(35,78)(43,78)\qbezier[10](27,22)(35,22)(43,22)\qbezier[38](27,22)(27,50)(27,78)\qbezier[38](43,22)(43,50)(43,78) \qbezier[4](57,78)(60,78)(63,78)\qbezier[4](57,22)(60,22)(63,22)\qbezier[38](57,22)(57,50)(57,78)\qbezier[38](63,22)(63,50)(63,78) \end{picture} \renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(70,120)(0,-20) \put(0,90){\line(1,0){7}} \put(13,90){\line(1,0){17}} \put(40,90){\line(1,0){17}} \put(63,90){\line(1,0){7}} \put(10,100){\line(1,0){50}} \put(0, 0){\line(0,1){15}} \put(10,10){\line(0,1){5}} \put(10,15){\line(-1,1){10}} \qbezier(0,15)(2,17)(4,19) \qbezier(6,21)(8,23)(10,25) \put(10,25){\line(-1,1){10}} \qbezier(0,25)(2,27)(4,29) \qbezier(6,31)(8,33)(10,35) \put(0,75){\line(0,1){15}} \put(10,75){\line(0,1){25}} \qbezier(10,35)(9,36)(7,38) \qbezier(0,35)(1,36)(3,38) \qbezier[5](5,40)(5,45)(5,50) \qbezier(10,55)(9,54)(7,52) \qbezier(0,55)(1,54)(3,52) \put(10,55){\line(-1,1){10}} \qbezier(0,55)(2,57)(4,59) \qbezier(6,61)(8,63)(10,65) \put(10,65){\line(-1,1){10}} \qbezier(0,65)(2,67)(4,69) \qbezier(6,71)(8,73)(10,75) \put(30,10){\line(0,1){5}} \put(40,10){\line(0,1){5}} \put(30,15){\line(1,1){10}} \qbezier(40,15)(38,17)(36,19) \qbezier(34,21)(32,23)(30,25) \put(30,25){\line(1,1){10}} \qbezier(40,25)(38,27)(36,29) \qbezier(34,31)(32,33)(30,35) \put(30,35){\line(0,1){40}} \put(40,35){\line(0,1){40}} \put(30,75){\line(1,1){10}} \qbezier(40,75)(38,77)(36,79) \qbezier(34,81)(32,83)(30,85) \put(30,85){\line(0,1){5}} \put(40,85){\line(0,1){5}} \put(60,10){\line(0,1){5}} \put(70, 0){\line(0,1){15}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){25}} \put(70,75){\line(0,1){15}} \put(10,10){\line(1,0){20}} \put(40,10){\line(1,0){20}} \put(0,0){\line(1,0){70}} \put(0,-15){\hbox to 78pt{\hfill$q=3$\hfill}} \end{picture} тАБ\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(70,120)(0,-20) \put(0,90){\line(1,0){7}} \put(13,90){\line(1,0){17}} \put(40,90){\line(1,0){17}} \put(63,90){\line(1,0){7}} \put(10,100){\line(1,0){50}} \put(0, 0){\line(0,1){15}} \put(10,10){\line(0,1){5}} \put(10,15){\line(-1,1){10}} \qbezier(0,15)(2,17)(4,19) \qbezier(6,21)(8,23)(10,25) \put(10,25){\line(-1,1){10}} \qbezier(0,25)(2,27)(4,29) \qbezier(6,31)(8,33)(10,35) \put(0,75){\line(0,1){15}} \put(10,75){\line(0,1){25}} \qbezier(10,35)(9,36)(7,38) \qbezier(0,35)(1,36)(3,38) \qbezier[5](5,40)(5,45)(5,50) \qbezier(10,55)(9,54)(7,52) \qbezier(0,55)(1,54)(3,52) \put(10,55){\line(-1,1){10}} \qbezier(0,55)(2,57)(4,59) \qbezier(6,61)(8,63)(10,65) \put(10,65){\line(-1,1){10}} \qbezier(0,65)(2,67)(4,69) \qbezier(6,71)(8,73)(10,75) \put(30,10){\line(0,1){5}} \put(40,10){\line(0,1){5}} \put(30,15){\line(1,1){10}} \qbezier(40,15)(38,17)(36,19) \qbezier(34,21)(32,23)(30,25) \put(30,25){\line(1,1){10}} \qbezier(40,25)(38,27)(36,29) \qbezier(34,31)(32,33)(30,35) \put(30,35){\line(0,1){40}} \put(40,35){\line(0,1){40}} \put(30,75){\line(1,1){10}} \qbezier(40,75)(38,77)(36,79) \qbezier(34,81)(32,83)(30,85) \put(30,85){\line(0,1){5}} \put(40,85){\line(0,1){5}} \put(60,10){\line(0,1){5}} \put(70, 0){\line(0,1){15}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){25}} \put(70,75){\line(0,1){15}} \put(10,10){\line(1,0){20}} \put(40,10){\line(1,0){20}} \put(0,0){\line(1,0){70}} \mythicklines\qbezier(10,75)(35,75)(60,75) \qbezier(60,75)(45,70)(60,65) \qbezier(60,65)(45,60)(60,55) \qbezier(60,55)(55,55)(53,52) \qbezier[3](53,40)(53,45)(53,50) \qbezier(60,35)(55,35)(53,38) \qbezier(60,25)(45,30)(60,35) \qbezier(10,25)(35,25)(60,25) \qbezier(10,35)(15,35)(17,38) \qbezier(10,25)(25,30)(10,35) \qbezier(10,75)(25,70)(10,65) \qbezier(10,65)(25,60)(10,55) \qbezier(10,55)(15,55)(17,52) \qbezier[3](17,40)(17,45)(17,50) \thicklines\qbezier[4](7,78)(10,78)(13,78)\qbezier[4](7,22)(10,22)(13,22)\qbezier[38](7,22)(7,50)(7,78)\qbezier[38](13,22)(13,50)(13,78) \qbezier[10](27,78)(35,78)(43,78)\qbezier[10](27,22)(35,22)(43,22)\qbezier[38](27,22)(27,50)(27,78)\qbezier[38](43,22)(43,50)(43,78) \qbezier[4](57,78)(60,78)(63,78)\qbezier[4](57,22)(60,22)(63,22)\qbezier[38](57,22)(57,50)(57,78)\qbezier[38](63,22)(63,50)(63,78) \end{picture}
Figure 6.

Arc presentations of with and

\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(90,115)(-15,-15) \put(0,90){\line(1,0){7}} \put(13,90){\line(1,0){17}} \put(40,90){\line(1,0){17}} \put(63,90){\line(1,0){7}} \put(10,100){\line(1,0){50}} \put(0,0){\line(0,1){15}} \put(10,-10){\line(0,1){7}} \put(10,3){\line(0,1){12}} \put(10,15){\line(-1,1){10}} \qbezier(0,15)(2,17)(4,19) \qbezier(6,21)(8,23)(10,25) \put(10,25){\line(-1,1){10}} \qbezier(0,25)(2,27)(4,29) \qbezier(6,31)(8,33)(10,35) \put(0,75){\line(0,1){15}} \put(10,75){\line(0,1){25}} \qbezier(10,35)(9,36)(7,38) \qbezier(0,35)(1,36)(3,38) \qbezier[5](5,40)(5,45)(5,50) \qbezier(10,55)(9,54)(7,52) \qbezier(0,55)(1,54)(3,52) \put(10,55){\line(-1,1){10}} \qbezier(0,55)(2,57)(4,59) \qbezier(6,61)(8,63)(10,65) \put(10,65){\line(-1,1){10}} \qbezier(0,65)(2,67)(4,69) \qbezier(6,71)(8,73)(10,75) \put(30,0){\line(0,1){5}} \put(40,0){\line(0,1){5}} \put(30,5){\line(1,1){10}} \qbezier(40,5)(38,7)(36,9) \qbezier(34,11)(32,13)(30,15) \put(30,15){\line(1,1){10}} \qbezier(40,15)(38,17)(36,19) \qbezier(34,21)(32,23)(30,25) \put(30,25){\line(1,1){10}} \qbezier(40,25)(38,27)(36,29) \qbezier(34,31)(32,33)(30,35) \qbezier(30,35)(31,36)(33,38) \qbezier(40,35)(39,36)(37,38) \qbezier[5](35,40)(35,45)(35,50) \qbezier(30,55)(31,54)(33,52) \qbezier(40,55)(39,54)(37,52) \put(30,55){\line(1,1){10}} \qbezier(40,55)(38,57)(36,59) \qbezier(34,61)(32,63)(30,65) \put(30,65){\line(1,1){10}} \qbezier(40,65)(38,67)(36,69) \qbezier(34,71)(32,73)(30,75) \put(30,75){\line(1,1){10}} \qbezier(40,75)(38,77)(36,79) \qbezier(34,81)(32,83)(30,85) \put(30,85){\line(0,1){5}} \put(40,85){\line(0,1){5}} \put(60,-10){\line(0,1){7}} \put(60,3){\line(0,1){12}} \put(70,0){\line(0,1){15}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){25}} \put(70,75){\line(0,1){15}} \put(0,0){\line(1,0){30}} \put(40,0){\line(1,0){30}} \put(10,-10){\line(1,0){50}} \put(-15,82){(a)} \end{picture} \renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(90,115)(-15,-15) \put(0,100){\line(1,0){30}} \put(40,100){\line(1,0){30}} \put(10,80){\line(1,0){50}} \put(0,-10){\line(0,1){25}} \put(10,10){\line(0,1){5}} \put(10,15){\line(-1,1){10}} \qbezier(0,15)(2,17)(4,19) \qbezier(6,21)(8,23)(10,25) \put(10,25){\line(-1,1){10}} \qbezier(0,25)(2,27)(4,29) \qbezier(6,31)(8,33)(10,35) \put(0,75){\line(0,1){25}} \put(10,75){\line(0,1){5}} \qbezier(10,35)(9,36)(7,38) \qbezier(0,35)(1,36)(3,38) \qbezier[5](5,40)(5,45)(5,50) \qbezier(10,55)(9,54)(7,52) \qbezier(0,55)(1,54)(3,52) \put(10,55){\line(-1,1){10}} \qbezier(0,55)(2,57)(4,59) \qbezier(6,61)(8,63)(10,65) \put(10,65){\line(-1,1){10}} \qbezier(0,65)(2,67)(4,69) \qbezier(6,71)(8,73)(10,75) \put(30,-10){\line(0,1){5}} \put(40,-10){\line(0,1){5}} \put(30,-5){\line(1,1){10}} \qbezier(40,-5)(38,-3)(36,-1) \qbezier(34,1)(32,3)(30,5) \put(30,5){\line(0,1){10}} \put(40,5){\line(0,1){10}} \put(30,15){\line(1,1){10}} \qbezier(40,15)(38,17)(36,19) \qbezier(34,21)(32,23)(30,25) \put(30,25){\line(1,1){10}} \qbezier(40,25)(38,27)(36,29) \qbezier(34,31)(32,33)(30,35) \qbezier(30,35)(31,36)(33,38) \qbezier(40,35)(39,36)(37,38) \qbezier[5](35,40)(35,45)(35,50) \qbezier(30,55)(31,54)(33,52) \qbezier(40,55)(39,54)(37,52) \put(30,55){\line(1,1){10}} \qbezier(40,55)(38,57)(36,59) \qbezier(34,61)(32,63)(30,65) \put(30,65){\line(1,1){10}} \qbezier(40,65)(38,67)(36,69) \qbezier(34,71)(32,73)(30,75) \put(30,75){\line(0,1){3}} \put(40,75){\line(0,1){3}} \put(30,82){\line(0,1){3}} \put(40,82){\line(0,1){3}} \put(30,85){\line(1,1){10}} \qbezier(40,85)(38,87)(36,89) \qbezier(34,91)(32,93)(30,95) \put(30,95){\line(0,1){5}} \put(40,95){\line(0,1){5}} \put(60,10){\line(0,1){5}} \put(70,-10){\line(0,1){25}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){5}} \put(70,75){\line(0,1){25}} \put(0,-10){\line(1,0){30}} \put(40,-10){\line(1,0){30}} \put(10,10){\line(1,0){17}} \put(33,10){\line(1,0){4}} \put(43,10){\line(1,0){17}} \put(-15,82){(b)} \end{picture}\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(90,135)(-15,-20) \put(0,100){\line(1,0){30}} \put(40,100){\line(1,0){30}} \put(10,80){\line(1,0){50}} \put(0,-10){\line(0,1){25}} \put(10,10){\line(0,1){5}} \put(10,15){\line(-1,1){10}} \qbezier(0,15)(2,17)(4,19) \qbezier(6,21)(8,23)(10,25) \put(10,25){\line(-1,1){10}} \qbezier(0,25)(2,27)(4,29) \qbezier(6,31)(8,33)(10,35) \put(0,75){\line(0,1){25}} \put(10,75){\line(0,1){5}} \qbezier(10,35)(9,36)(7,38) \qbezier(0,35)(1,36)(3,38) \qbezier[5](5,40)(5,45)(5,50) \qbezier(10,55)(9,54)(7,52) \qbezier(0,55)(1,54)(3,52) \put(10,55){\line(-1,1){10}} \qbezier(0,55)(2,57)(4,59) \qbezier(6,61)(8,63)(10,65) \put(10,65){\line(-1,1){10}} \qbezier(0,65)(2,67)(4,69) \qbezier(6,71)(8,73)(10,75) \put(30,-10){\line(0,1){5}} \put(40,-10){\line(0,1){5}} \put(30,-5){\line(1,1){10}} \qbezier(40,-5)(38,-3)(36,-1) \qbezier(34,1)(32,3)(30,5) \put(30,5){\line(0,1){10}} \put(40,5){\line(0,1){10}} \put(30,15){\line(1,1){10}} \qbezier(40,15)(38,17)(36,19) \qbezier(34,21)(32,23)(30,25) \put(30,25){\line(1,1){10}} \qbezier(40,25)(38,27)(36,29) \qbezier(34,31)(32,33)(30,35) \qbezier(30,35)(31,36)(33,38) \qbezier(40,35)(39,36)(37,38) \qbezier[5](35,40)(35,45)(35,50) \qbezier(30,55)(31,54)(33,52) \qbezier(40,55)(39,54)(37,52) \put(30,55){\line(1,1){10}} \qbezier(40,55)(38,57)(36,59) \qbezier(34,61)(32,63)(30,65) \put(30,65){\line(1,1){10}} \qbezier(40,65)(38,67)(36,69) \qbezier(34,71)(32,73)(30,75) \put(30,75){\line(0,1){3}} \put(40,75){\line(0,1){3}} \put(30,82){\line(0,1){3}} \put(40,82){\line(0,1){3}} \put(30,85){\line(1,1){10}} \qbezier(40,85)(38,87)(36,89) \qbezier(34,91)(32,93)(30,95) \put(30,95){\line(0,1){5}} \put(40,95){\line(0,1){5}} \put(60,10){\line(0,1){5}} \put(70,-10){\line(0,1){25}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){5}} \put(70,75){\line(0,1){25}} \put(0,-10){\line(1,0){30}} \put(40,-10){\line(1,0){30}} \put(10,10){\line(1,0){17}} \put(33,10){\line(1,0){4}} \put(43,10){\line(1,0){17}} \mythicklines\qbezier(10,65)(20,65)(40,65) \qbezier(40,65)(55,60)(40,55) \qbezier(40,55)(45,55)(47,52) \qbezier[3](47,40)(47,45)(47,50) \qbezier(40,35)(45,35)(47,38) \qbezier(40,25)(55,30)(40,35) \qbezier(40,25)(50,25)(70,25) \qbezier(70,25)(85,30)(70,35) \qbezier(70,35)(75,35)(77,38) \qbezier[3](77,40)(77,45)(77,50) \qbezier(70,55)(85,60)(70,65) \qbezier(70,55)(75,55)(77,52) \qbezier(70,65)(100,115)(50,115) \qbezier(50,115)(0,115)(30,85) \qbezier(30,85)(-10,105)(-15,45) \qbezier(-15,45)(-10,-15)(30,5) \qbezier(30,5)(22,5)(20,10) \qbezier(10,25)(18,25)(20,10) \qbezier(10,35)(15,35)(17,38) \qbezier(10,25)(25,30)(10,35) \qbezier(10,65)(25,60)(10,55) \qbezier(10,55)(15,55)(17,52) \qbezier[3](17,40)(17,45)(17,50) \put(2,94){$x$} \put(-15,92){(c)} \end{picture}\renewcommand{\arraystretch}{1} \setlength{\unitlength}{1.1pt} \begin{picture}(90,135)(-15,-20) \put(20,105){\line(1,0){30}} \put(40,100){\line(1,0){8}} \put(52,100){\line(1,0){18}} \put(10,79){\line(1,0){50}} \put(0,81){\line(1,0){50}} \put(0,-10){\line(0,1){25}} \put(10,10){\line(0,1){5}} \put(10,15){\line(-1,1){10}} \qbezier(0,15)(2,17)(4,19) \qbezier(6,21)(8,23)(10,25) \put(10,25){\line(-1,1){10}} \qbezier(0,25)(2,27)(4,29) \qbezier(6,31)(8,33)(10,35) \put(0,75){\line(0,1){6}} \put(10,75){\line(0,1){4}} \qbezier(10,35)(9,36)(7,38) \qbezier(0,35)(1,36)(3,38) \qbezier[5](5,40)(5,45)(5,50) \qbezier(10,55)(9,54)(7,52) \qbezier(0,55)(1,54)(3,52) \put(10,55){\line(-1,1){10}} \qbezier(0,55)(2,57)(4,59) \qbezier(6,61)(8,63)(10,65) \put(10,65){\line(-1,1){10}} \qbezier(0,65)(2,67)(4,69) \qbezier(6,71)(8,73)(10,75) \put(30,-10){\line(0,1){5}} \put(40,-10){\line(0,1){5}} \put(30,-5){\line(1,1){10}} \qbezier(40,-5)(38,-3)(36,-1) \qbezier(34,1)(32,3)(30,5) \put(30,5){\line(0,1){10}} \put(40,5){\line(0,1){10}} \put(30,15){\line(1,1){10}} \qbezier(40,15)(38,17)(36,19) \qbezier(34,21)(32,23)(30,25) \put(30,25){\line(1,1){10}} \qbezier(40,25)(38,27)(36,29) \qbezier(34,31)(32,33)(30,35) \qbezier(30,35)(31,36)(33,38) \qbezier(40,35)(39,36)(37,38) \qbezier[5](35,40)(35,45)(35,50) \qbezier(30,55)(31,54)(33,52) \qbezier(40,55)(39,54)(37,52) \put(30,55){\line(1,1){10}} \qbezier(40,55)(38,57)(36,59) \qbezier(34,61)(32,63)(30,65) \put(30,65){\line(1,1){10}} \qbezier(40,65)(38,67)(36,69) \qbezier(34,71)(32,73)(30,75) \put(30,75){\line(0,1){3}} \put(40,75){\line(0,1){3}} \put(30,82){\line(0,1){3}} \put(40,82){\line(0,1){3}} \put(30,85){\line(1,1){10}} \qbezier(40,85)(38,87)(36,89) \put(34,91){\line(-1,1){14}} \put(40,95){\line(0,1){5}} \put(50,81){\line(0,1){24}} \put(60,10){\line(0,1){5}} \put(70,-10){\line(0,1){25}} \put(60,15){\line(1,1){10}} \qbezier(70,15)(68,17)(66,19) \qbezier(64,21)(62,23)(60,25) \put(60,25){\line(1,1){10}} \qbezier(70,25)(68,27)(66,29) \qbezier(64,31)(62,33)(60,35) \qbezier(60,35)(61,36)(63,38) \qbezier(70,35)(69,36)(67,38) \qbezier[5](65,40)(65,45)(65,50) \qbezier(60,55)(61,54)(63,52) \qbezier(70,55)(69,54)(67,52) \put(60,55){\line(1,1){10}} \qbezier(70,55)(68,57)(66,59) \qbezier(64,61)(62,63)(60,65) \put(60,65){\line(1,1){10}} \qbezier(70,65)(68,67)(66,69) \qbezier(64,71)(62,73)(60,75) \put(60,75){\line(0,1){4}} \put(70,75){\line(0,1){25}} \put(0,-10){\line(1,0){30}} \put(40,-10){\line(1,0){30}} \put(10,10){\line(1,0){17}} \put(33,10){\line(1,0){4}} \put(43,10){\line(1,0){17}} \mythicklines\qbezier(10,65)(20,65)(40,65) \qbezier(40,65)(55,60)(40,55) \qbezier(40,55)(45,55)(47,52) \qbezier[3](47,40)(47,45)(47,50) \qbezier(40,35)(45,35)(47,38) \qbezier(40,25)(55,30)(40,35) \qbezier(40,25)(50,25)(70,25) \qbezier(70,25)(85,30)(70,35) \qbezier(70,35)(75,35)(77,38) \qbezier[3](77,40)(77,45)(77,50) \qbezier(70,55)(85,60)(70,65) \qbezier(70,55)(75,55)(77,52) \qbezier(70,65)(100,115)(50,115) \qbezier(50,115)(0,115)(30,85) \qbezier(30,85)(-10,105)(-15,45) \qbezier(-15,45)(-10,-15)(30,5) \qbezier(30,5)(22,5)(20,10) \qbezier(10,25)(18,25)(20,10) \qbezier(10,35)(15,35)(17,38) \qbezier(10,25)(25,30)(10,35) \qbezier(10,65)(25,60)(10,55) \qbezier(10,55)(15,55)(17,52) \qbezier[3](17,40)(17,45)(17,50) \put(-15,92){(d)} \thicklines\qbezier[4](-3,8)(0,8)(3,8)\qbezier[4](-3,2)(0,2)(3,2)\qbezier[4](-3,2)(-3,5)(-3,8)\qbezier[4](3,2)(3,5)(3,8) \qbezier[4](7,68)(10,68)(13,68)\qbezier[4](7,22)(10,22)(13,22)\qbezier[30](7,22)(7,45)(7,68)\qbezier[30](13,22)(13,45)(13,68) \qbezier[4](17,108)(20,108)(23,108)\qbezier[4](17,8)(20,8)(23,8)\qbezier[66](17,8)(17,58)(17,108)\qbezier[66](23,8)(23,58)(23,108) \qbezier[4](27,88)(30,88)(33,88)\qbezier[4](27,2)(30,2)(33,2)\qbezier[58](27,2)(27,45)(27,88)\qbezier[58](33,2)(33,45)(33,88) \qbezier[4](37,68)(40,68)(43,68)\qbezier[4](37,22)(40,22)(43,22)\qbezier[30](37,22)(37,45)(37,68)\qbezier[30](43,22)(43,45)(43,68) \qbezier[4](57,28)(60,28)(63,28)\qbezier[4](57,22)(60,22)(63,22)\qbezier[4](57,22)(57,25)(57,28)\qbezier[4](63,22)(63,25)(63,28) \qbezier[4](67,68)(70,68)(73,68)\qbezier[4](67,22)(70,22)(73,22)\qbezier[30](67,22)(67,45)(67,68)\qbezier[30](73,22)(73,45)(73,68) \end{picture}
Table 1.

Examples of Theorem 4.1

Pretzel knot DT NameтБаFootnote2
2

The Dowker-Thistlethwaite name. See Reference 10.

тЬЦ
arc index
7
9
11
11
Table 2.

Examples of Theorem 4.5

Pretzel knot DT Namearc index
10
12

Mathematical Fragments

Theorem 1.1 (Jin-Park).

A prime link is nonalternating if and only if

Theorem 2.1 (Morton-Beltrami).

Let be a link. Then

Proposition 3.1.

Let , , and be nonzero integers.

(1)

The link type of is independent of the order of .

(2)

is a knot if and only if at most one of is an even number.

Theorem 3.2 (Lickorish-Thistlethwaite).

If a link admits a reduced Montesinos diagram having crossings, then cannot be projected with fewer than crossings.

Theorem 3.3 (Beltrami-Cromwell).

If is a knot with , then

Theorem 4.1.

If is a knot with , then

Theorem 4.2.

If is a knot with , , then

Theorem 4.3.

If is a knot with , , then

Theorem 4.4.

If is a knot with , , then

Theorem 4.5.

If is a knot with , then

Proposition 5.1.

If is a knot with , then has an arc presentation with arcs.

Proposition 5.2.

If is a knot with and , then has an arc presentation with arcs.

Proposition 5.3.

If is a knot with and , then has an arc presentation with arcs.

Lemma 6.1.

Let be nonnegative integers. Then

More precisely,

Sublemma.

For and , we have

Lemma 6.2.

More precisely, for and

and for

Proposition 6.3.

for , and .

Equation (6.3)
Proposition 6.4.

for and .

Proposition 6.5.

for .

Proposition 6.6.

for and .

References

Reference [1]
Yongju Bae and Chan-Young Park, An upper bound of arc index of links, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 3, 491тАУ500, DOI 10.1017/S0305004100004576. MR1780500 (2002f:57009),
Show rawAMSref \bib{BP2000}{article}{ author={Bae, Yongju}, author={Park, Chan-Young}, title={An upper bound of arc index of links}, journal={Math. Proc. Cambridge Philos. Soc.}, volume={129}, date={2000}, number={3}, pages={491--500}, issn={0305-0041}, review={\MR {1780500 (2002f:57009)}}, doi={10.1017/S0305004100004576}, }
[2]
Elisabetta Beltrami and Peter R. Cromwell, Minimal arc-presentations of some nonalternating knots, Topology Appl. 81 (1997), no. 2, 137тАУ145, DOI 10.1016/S0166-8641(97)00024-2. MR1481138 (98h:57012),
Show rawAMSref \bib{B-C1997}{article}{ author={Beltrami, Elisabetta}, author={Cromwell, Peter R.}, title={Minimal arc-presentations of some nonalternating knots}, journal={Topology Appl.}, volume={81}, date={1997}, number={2}, pages={137--145}, issn={0166-8641}, review={\MR {1481138 (98h:57012)}}, doi={10.1016/S0166-8641(97)00024-2}, }
Reference [3]
H. Brunn, ├Ьber verknotete Kurven, Mathematiker-Kongresses Zurich 1897, Leipzig (1898) 256тАУ259.
Reference [4]
Peter R. Cromwell, Embedding knots and links in an open book. I. Basic properties, Topology Appl. 64 (1995), no. 1, 37тАУ58, DOI 10.1016/0166-8641(94)00087-J. MR1339757 (96g:57006),
Show rawAMSref \bib{C1995}{article}{ author={Cromwell, Peter R.}, title={Embedding knots and links in an open book. I. Basic properties}, journal={Topology Appl.}, volume={64}, date={1995}, number={1}, pages={37--58}, issn={0166-8641}, review={\MR {1339757 (96g:57006)}}, doi={10.1016/0166-8641(94)00087-J}, }
[5]
Peter R. Cromwell and Ian J. Nutt, Embedding knots and links in an open book. II. Bounds on arc index, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 2, 309тАУ319, DOI 10.1017/S0305004100074181. MR1357047 (96m:57011),
Show rawAMSref \bib{CN1996}{article}{ author={Cromwell, Peter R.}, author={Nutt, Ian J.}, title={Embedding knots and links in an open book. II. Bounds on arc index}, journal={Math. Proc. Cambridge Philos. Soc.}, volume={119}, date={1996}, number={2}, pages={309--319}, issn={0305-0041}, review={\MR {1357047 (96m:57011)}}, doi={10.1017/S0305004100074181}, }
[6]
Gyo Taek Jin and Wang Keun Park, Prime knots with arc index up to 11 and an upper bound of arc index for non-alternating knots, J. Knot Theory Ramifications 19 (2010), no. 12, 1655тАУ1672, DOI 10.1142/S0218216510008595. MR2755494 (2012d:57006),
Show rawAMSref \bib{J-P2010}{article}{ author={Jin, Gyo Taek}, author={Park, Wang Keun}, title={Prime knots with arc index up to 11 and an upper bound of arc index for non-alternating knots}, journal={J. Knot Theory Ramifications}, volume={19}, date={2010}, number={12}, pages={1655--1672}, issn={0218-2165}, review={\MR {2755494 (2012d:57006)}}, doi={10.1142/S0218216510008595}, }
[7]
W. B. R. Lickorish and M. B. Thistlethwaite, Some links with nontrivial polynomials and their crossing-numbers, Comment. Math. Helv. 63 (1988), no. 4, 527тАУ539, DOI 10.1007/BF02566777. MR966948 (90a:57010),
Show rawAMSref \bib{L-T1988}{article}{ author={Lickorish, W. B. R.}, author={Thistlethwaite, M. B.}, title={Some links with nontrivial polynomials and their crossing-numbers}, journal={Comment. Math. Helv.}, volume={63}, date={1988}, number={4}, pages={527--539}, issn={0010-2571}, review={\MR {966948 (90a:57010)}}, doi={10.1007/BF02566777}, }
[8]
Hugh R. Morton and Elisabetta Beltrami, Arc index and the Kauffman polynomial, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 1, 41тАУ48, DOI 10.1017/S0305004197002090. MR1474862 (98i:57015),
Show rawAMSref \bib{morton-beltrami}{article}{ author={Morton, Hugh R.}, author={Beltrami, Elisabetta}, title={Arc index and the Kauffman polynomial}, journal={Math. Proc. Cambridge Philos. Soc.}, volume={123}, date={1998}, number={1}, pages={41--48}, issn={0305-0041}, review={\MR {1474862 (98i:57015)}}, doi={10.1017/S0305004197002090}, }
[9]
Reference [10]
Table of Knot Invariants, http://www.indiana.edu/~knotinfo/

Article Information

MSC 2010
Primary: 57M27 (Invariants of knots and 3-manifolds)
Secondary: 57M25 (Knots and links in )
Author Information
Hwa Jeong Lee
Department of Mathematics, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea
Address at time of publication: Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
hjwith@cau.ac.kr, hjwith@kaist.ac.kr
MathSciNet
Gyo Taek Jin
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
trefoil@kaist.ac.kr
MathSciNet
Additional Notes

The first author was supported in part by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2010-0024630).

The second author was supported in part by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-0027989).

Communicated by
Daniel Ruberman
Journal Information
Proceedings of the American Mathematical Society, Series B, Volume 1, Issue 12, ISSN 2330-1511, published by the American Mathematical Society, Providence, Rhode Island.
Publication History
This article was received on , revised on , , , and published on .
Copyright Information
Copyright 2014 by the authors under Creative Commons Attribution-Noncommercial 3.0 License (CC BY NC 3.0)
Article References
  • Permalink
  • Permalink (PDF)
  • DOI 10.1090/S2330-1511-2014-00015-8
  • MathSciNet Review: 3284701
  • Show rawAMSref \bib{3284701}{article}{ author={Lee, Hwa Jeong}, author={Jin, Gyo Taek}, title={Arc index of pretzel knots of type $(-p, q, r)$}, journal={Proc. Amer. Math. Soc. Ser. B}, volume={1}, number={12}, date={2014}, pages={135-147}, issn={2330-1511}, review={3284701}, doi={10.1090/S2330-1511-2014-00015-8}, }

Settings

Change font size
Resize article panel
Enable equation enrichment

Note. To explore an equation, focus it (e.g., by clicking on it) and use the arrow keys to navigate its structure. Screenreader users should be advised that enabling speech synthesis will lead to duplicate aural rendering.

For more information please visit the AMS MathViewer documentation.