A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements
Authors:
Barbara Baumeister, Matthew Dyer, Christian Stump and Patrick Wegener
Journal:
Proc. Amer. Math. Soc. Ser. B 1 (2014), 149-154
MSC (2010):
Primary 20F55
DOI:
https://doi.org/10.1090/S2330-1511-2014-00017-1
Published electronically:
December 31, 2014
MathSciNet review:
3294251
Full-text PDF Open Access
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: In this note, we provide a short and self-contained proof that the braid group on $n$ strands acts transitively on the set of reduced factorizations of a Coxeter element in a Coxeter group of finite rank $n$ into products of reflections. We moreover use the same argument to also show that all factorizations of an element in a parabolic subgroup of $W$ also lie in this parabolic subgroup.
- David Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, 647–683 (English, with English and French summaries). MR 2032983, DOI 10.1016/j.ansens.2003.01.001
- P. Deligne, letter to E. Looijenga, 9/3/1974. available at http://homepage.univie.ac.at/christian.stump/ Deligne_Looijenga_Letter_09-03-1974.pdf.
- F. Digne, Présentations duales des groupes de tresses de type affine $\widetilde A$, Comment. Math. Helv. 81 (2006), no. 1, 23–47 (French, with English summary). MR 2208796, DOI 10.4171/CMH/41
- Matthew J. Dyer, On minimal lengths of expressions of Coxeter group elements as products of reflections, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2591–2595. MR 1838781, DOI 10.1090/S0002-9939-01-05876-2
- Matthew Dyer, Reflection subgroups of Coxeter systems, J. Algebra 135 (1990), no. 1, 57–73. MR 1076077, DOI 10.1016/0021-8693(90)90149-I
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Kiyoshi Igusa, Exceptional sequences, braid groups and clusters, Groups, algebras and applications, Contemp. Math., vol. 537, Amer. Math. Soc., Providence, RI, 2011, pp. 227–240. MR 2799103, DOI 10.1090/conm/537/10578
- Kiyoshi Igusa and Ralf Schiffler, Exceptional sequences and clusters, J. Algebra 323 (2010), no. 8, 2183–2202. MR 2596373, DOI 10.1016/j.jalgebra.2010.02.003
- A. Hubery, H. Krause, A categorification of non-crossing partitions, arXiv:1310.1907 (2013), 30 pages
- W. N. Franzsen, R. B. Howlett, and B. Mühlherr, Reflections in abstract Coxeter groups, Comment. Math. Helv. 81 (2006), no. 3, 665–697. MR 2250859, DOI 10.4171/CMH/69
Retrieve articles in Proceedings of the American Mathematical Society, Series B with MSC (2010): 20F55
Retrieve articles in all journals with MSC (2010): 20F55
Additional Information
Barbara Baumeister
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany
MR Author ID:
350609
Email:
b.baumeister@math.uni-bielefeld.de
Matthew Dyer
Affiliation:
Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, Indiana 46556
MR Author ID:
292327
Email:
matthew.j.dyer.1@nd.edu
Christian Stump
Affiliation:
Institut für Mathematik, Freie Universität Berlin, 14195 Berlin, Germany
MR Author ID:
904921
ORCID:
0000-0002-9271-8436
Email:
christian.stump@fu-berlin.de
Patrick Wegener
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany
MR Author ID:
1091992
Email:
patrick.wegener@math.uni-bielefeld.de
Received by editor(s):
February 12, 2014
Received by editor(s) in revised form:
July 9, 2014
Published electronically:
December 31, 2014
Additional Notes:
The first and fourth authors were supported by the DFG through SFB 701 “Spectral Structures and Topological Methods in Mathematics”.
The third author was supported by the DFG through STU 563/2-1 “Coxeter-Catalan combinatorics”.
Communicated by:
Patricia L. Hersh
Article copyright:
© Copyright 2014
by the authors under
Creative Commons Attribution 3.0 License
(CC BY 3.0)