Integral comparison of Monsky–Washnitzer and overconvergent de Rham–Witt cohomology
Authors:
Veronika Ertl and Johannes Sprang
Journal:
Proc. Amer. Math. Soc. Ser. B 5 (2018), 64-72
MSC (2010):
Primary 14F30; Secondary 14F40, 13K05
DOI:
https://doi.org/10.1090/bproc/38
Published electronically:
November 14, 2018
MathSciNet review:
3876137
Full-text PDF Open Access
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
The goal of this short note is to extend a result by Christopher Davis and David Zureick-Brown on the comparison between integral Monsky–Washnitzer cohomology and overconvergent de Rham–Witt cohomology for a smooth variety over a perfect field of positive characteristic $p$ to all cohomological degrees independent of the dimension of the base or the prime number $p$.
Résumé. Le but de ce travail est de prolonger un résultat de Christopher Davis et David Zureick-Brown concernant la comparaison entre la cohomologie de Monsky–Washnitzer entière et la cohomologie de de Rham–Witt surconvergente d’une variété lisse sur un corps parfait de charactéristique positive $p$ à tous les degrés cohomologiques indépendent de la dimension de base et du nombre premier $p$.
- Alberto Arabia, Relèvements des algèbres lisses et de leurs morphismes, Comment. Math. Helv. 76 (2001), no. 4, 607–639 (French, with English and French summaries). MR 1881700, DOI 10.1007/s00014-001-8322-y
- Christopher Davis, Andreas Langer, and Thomas Zink, Overconvergent de Rham-Witt cohomology, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 2, 197–262 (English, with English and French summaries). MR 2830387, DOI 10.24033/asens.2143
- Christopher Davis, Andreas Langer, and Thomas Zink, Overconvergent Witt vectors, J. Reine Angew. Math. 668 (2012), 1–34. MR 2948869, DOI 10.1515/CRELLE.2011.141
- Christopher Davis and David Zureick-Brown, Integral Monsky-Washnitzer cohomology and the overconvergent de Rham–Witt complex, Math. Res. Lett. 21 (2014), no. 2, 281–288. MR 3247056, DOI 10.4310/MRL.2014.v21.n2.a6
- Luc Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 501–661 (French). MR 565469, DOI 10.24033/asens.1374
- P. Monsky and G. Washnitzer, Formal cohomology. I, Ann. of Math. (2) 88 (1968), 181–217. MR 248141, DOI 10.2307/1970571
- Marius van der Put, The cohomology of Monsky and Washnitzer, Mém. Soc. Math. France (N.S.) 23 (1986), 4, 33–59 (English, with French summary). Introductions aux cohomologies $p$-adiques (Luminy, 1984). MR 865811
Retrieve articles in Proceedings of the American Mathematical Society, Series B with MSC (2010): 14F30, 14F40, 13K05
Retrieve articles in all journals with MSC (2010): 14F30, 14F40, 13K05
Additional Information
Veronika Ertl
Affiliation:
Fakultät für Mathematik, Universität Regensburg, 93053 Regensburg, Germany
MR Author ID:
1169710
Johannes Sprang
Affiliation:
Fakultät für Mathematik, Universität Regensburg, 93053 Regensburg, Germany
MR Author ID:
1038054
Keywords:
Monsky–Washnitzer cohomology,
de Rham–Witt complex,
overconvergent
Received by editor(s):
April 6, 2018
Received by editor(s) in revised form:
July 10, 2018, and July 16, 2018
Published electronically:
November 14, 2018
Additional Notes:
The first author was supported by a habilitation grant through the Bavarian government.
The second author was supported by DFG through CRC 1085.
Communicated by:
Rachel Pries
Article copyright:
© Copyright 2018
by the authors under
Creative Commons Attribution-Noncommercial 3.0 License
(CC BY NC 3.0)