Tensor quasi-random groups
HTML articles powered by AMS MathViewer
- by Mark Sellke HTML | PDF
- Proc. Amer. Math. Soc. Ser. B 9 (2022), 12-21
Abstract:
Gowers [Combin. Probab. Comput. 17 (2008), pp. 363–387] elegantly characterized the finite groups $G$ in which $A_1A_2A_3=G$ for any positive density subsets $A_1,A_2,A_3$. This property, quasi-randomness, holds if and only if $G$ does not admit a nontrivial irreducible representation of constant dimension. We present a dual characterization of tensor quasi-random groups in which multiplication of subsets is replaced by tensor product of representations.References
- Georgia Benkart, Persi Diaconis, Martin W. Liebeck, and Pham Huu Tiep, Tensor product Markov chains, J. Algebra 561 (2020), 17–83. MR 4135538, DOI 10.1016/j.jalgebra.2019.10.038
- Emmanuel Breuillard, Ben Green, Robert Guralnick, and Terence Tao, Expansion in finite simple groups of Lie type, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 6, 1367–1434. MR 3353804, DOI 10.4171/JEMS/533
- László Babai, Nikolay Nikolov, and László Pyber, Product growth and mixing in finite groups, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2008, pp. 248–257. MR 2485310
- Jean Bourgain and Péter P. Varjú, Expansion in $SL_d(\textbf {Z}/q\textbf {Z}),\,q$ arbitrary, Invent. Math. 188 (2012), no. 1, 151–173. MR 2897695, DOI 10.1007/s00222-011-0345-4
- Sean Eberhard, Product mixing in the alternating group, Discrete Anal. , posted on (2016), Paper No. 2, 19. MR 3533301, DOI 10.19086/da.610
- Jason Fulman, Card shuffling and the decomposition of tensor products, Pacific J. Math. 217 (2004), no. 2, 247–262. MR 2109933, DOI 10.2140/pjm.2004.217.247
- Jason Fulman, Convergence rates of random walk on irreducible representations of finite groups, J. Theoret. Probab. 21 (2008), no. 1, 193–211. MR 2384478, DOI 10.1007/s10959-007-0102-1
- Jason Fulman, Separation cutoffs for random walk on irreducible representations, Ann. Comb. 14 (2010), no. 3, 319–337. MR 2737322, DOI 10.1007/s00026-010-0062-5
- W. T. Gowers, Quasirandom groups, Combin. Probab. Comput. 17 (2008), no. 3, 363–387. MR 2410393, DOI 10.1017/S0963548307008826
- H. A. Helfgott, Growth and generation in $\textrm {SL}_2(\Bbb Z/p\Bbb Z)$, Ann. of Math. (2) 167 (2008), no. 2, 601–623. MR 2415382, DOI 10.4007/annals.2008.167.601
- Gerhard Heide, Jan Saxl, Pham Huu Tiep, and Alexandre E. Zalesski, Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type, Proc. Lond. Math. Soc. (3) 106 (2013), no. 4, 908–930. MR 3056296, DOI 10.1112/plms/pds062
- Christian Ikenmeyer, The Saxl conjecture and the dominance order, Discrete Math. 338 (2015), no. 11, 1970–1975. MR 3357782, DOI 10.1016/j.disc.2015.04.027
- Xin Li, Saxl conjecture for triple hooks, Discrete Math. 344 (2021), no. 6, Paper No. 112340, 19. MR 4222286, DOI 10.1016/j.disc.2021.112340
- A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3, 261–277. MR 963118, DOI 10.1007/BF02126799
- Sammy Luo and Mark Sellke, The Saxl conjecture for fourth powers via the semigroup property, J. Algebraic Combin. 45 (2017), no. 1, 33–80. MR 3591371, DOI 10.1007/s10801-016-0700-z
- Martin W. Liebeck, Aner Shalev, and Pham Huu Tiep, On the diameters of McKay graphs for finite simple groups, Israel J. Math. 241 (2021), no. 1, 449–464. MR 4242157, DOI 10.1007/s11856-021-2109-1
- Martin W. Liebeck, Aner Shalev, and Pham Huu Tiep, McKay graphs for alternating and classical groups, Trans. Amer. Math. Soc. 374 (2021), no. 8, 5651–5676. MR 4293783, DOI 10.1090/tran/8395
- G. A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators, Problemy Peredachi Informatsii 24 (1988), no. 1, 51–60 (Russian); English transl., Problems Inform. Transmission 24 (1988), no. 1, 39–46. MR 939574
- Igor Pak, Greta Panova, and Ernesto Vallejo, Kronecker products, characters, partitions, and the tensor square conjectures, Adv. Math. 288 (2016), 702–731. MR 3436397, DOI 10.1016/j.aim.2015.11.002
- László Pyber and Endre Szabó, Growth in finite simple groups of Lie type, J. Amer. Math. Soc. 29 (2016), no. 1, 95–146. MR 3402696, DOI 10.1090/S0894-0347-2014-00821-3
- Mark Sellke, Covering Irrep$({S}_n)$ with tensor products and powers, Preprint, arXiv:2004.05283, 2020.
Additional Information
- Mark Sellke
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- MR Author ID: 988911
- ORCID: 0000-0001-9166-8185
- Email: msellke@stanford.edu
- Received by editor(s): August 20, 2020
- Received by editor(s) in revised form: March 19, 2021
- Published electronically: February 7, 2022
- Communicated by: Martin Liebeck
- © Copyright 2022 by the author under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Proc. Amer. Math. Soc. Ser. B 9 (2022), 12-21
- MSC (2020): Primary 20C15
- DOI: https://doi.org/10.1090/bproc/86
- MathSciNet review: 4377265