Segre-degenerate points form a semianalytic set
HTML articles powered by AMS MathViewer
Abstract:
We prove that the set of Segre-degenerate points of a real-analytic subvariety $X$ in ${\mathbb {C}}^n$ is a closed semianalytic set. It is a subvariety if $X$ is coherent. More precisely, the set of points where the germ of the Segre variety is of dimension $k$ or greater is a closed semianalytic set in general, and for a coherent $X$, it is a real-analytic subvariety of $X$. For a hypersurface $X$ in ${\mathbb {C}}^n$, the set of Segre-degenerate points, $X_{[n]}$, is a semianalytic set of dimension at most $2n-4$. If $X$ is coherent, then $X_{[n]}$ is a complex subvariety of (complex) dimension $n-2$. Example hypersurfaces are given showing that $X_{[n]}$ need not be a subvariety and that it also need not be complex; $X_{[n]}$ can, for instance, be a real line.References
- Janusz Adamus, Serge Randriambololona, and Rasul Shafikov, Tameness of complex dimension in a real analytic set, Canad. J. Math. 65 (2013), no. 4, 721–739. MR 3071076, DOI 10.4153/CJM-2012-019-4
- M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series, vol. 47, Princeton University Press, Princeton, NJ, 1999. MR 1668103, DOI 10.1515/9781400883967
- Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342, DOI 10.1007/BF02699126
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
- Daniel Burns and Xianghong Gong, Singular Levi-flat real analytic hypersurfaces, Amer. J. Math. 121 (1999), no. 1, 23–53. MR 1704996, DOI 10.1353/ajm.1999.0002
- Henri Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77–99 (French). MR 94830, DOI 10.24033/bsmf.1481
- Klas Diederich and John E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 107 (1978), no. 2, 371–384. MR 477153, DOI 10.2307/1971120
- Klas Diederich and Emmanuel Mazzilli, Real and complex analytic sets. The relevance of Segre varieties, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 3, 447–454. MR 2466436
- Arturo Fernández-Pérez, Levi-flat hypersurfaces tangent to projective foliations, J. Geom. Anal. 24 (2014), no. 4, 1959–1970. MR 3261727, DOI 10.1007/s12220-013-9404-y
- Francesco Guaraldo, Patrizia Macrì, and Alessandro Tancredi, Topics on real analytic spaces, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 1013362, DOI 10.1007/978-3-322-84243-5
- Jiří Lebl, Singular set of a Levi-flat hypersurface is Levi-flat, Math. Ann. 355 (2013), no. 3, 1177–1199. MR 3020158, DOI 10.1007/s00208-012-0821-1
- Stanislas Łojasiewicz, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1965. Available at http://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf.
- S. I. Pinchuk, R. G. Shafikov, and A. B. Sukhov, Dicritical singularities and laminar currents on Levi-flat hypersurfaces, Izv. Ross. Akad. Nauk Ser. Mat. 81 (2017), no. 5, 150–164 (Russian, with Russian summary); English transl., Izv. Math. 81 (2017), no. 5, 1030–1043. MR 3706863, DOI 10.4213/im8582
- S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), no. 1, 53–68. MR 463482, DOI 10.1007/BF01390203
- H. Whitney and F. Bruhat, Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv. 33 (1959), 132–160 (French). MR 102094, DOI 10.1007/BF02565913
- Hassler Whitney, Complex analytic varieties, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972. MR 0387634
Additional Information
- Jiří Lebl
- Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
- MR Author ID: 813143
- ORCID: 0000-0002-9320-0823
- Email: lebl@okstate.edu
- Received by editor(s): April 2, 2021
- Received by editor(s) in revised form: August 2, 2021, and August 12, 2021
- Published electronically: April 12, 2022
- Additional Notes: The author was supported in part by Simons Foundation collaboration grant 710294.
- Communicated by: Harold P. Boas
- © Copyright 2022 by the author under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Proc. Amer. Math. Soc. Ser. B 9 (2022), 159-173
- MSC (2020): Primary 32C07; Secondary 32B20, 14P15
- DOI: https://doi.org/10.1090/bproc/99
- MathSciNet review: 4407043