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REMARKS ON THE NAVIER-STOKES EQUATIONS IN SPACE
DIMENSION n >3

JISHAN FAN AND TOHRU OZAWA

(Communicated by Catherine Sulem)

ABSTRACT. In this paper, we prove some new LP-estimates of the velocity by
the technique of LP-energy method.

1. INTRODUCTION

In this paper, we consider the Cauchy problem for the Navier-Stokes equations:

(1.1) Ou+ (u-V)u+Vr—Au=01in R" x (0,7,
(1.2) divu =0 in R" x (0,T),
(1.3) u(+,0) = up, divug =0 in R™.

Here u is the velocity field and 7 is the pressure. In this paper, both are supposed
to exist in a suitable class of function spaces on R™ x [0,T") with n > 3.
In [I], Beirao da Veiga showed the well-known estimate:

(1.4) lu O)llze < lluollLe exp{CllullFq (g 410}

for p € (n,+00) with % + % = 1, where C' > 0 is a constant depending on n, p, q.
The proof of () depends on the standard LP-energy method.

The Navier-Stokes equation (L.IJ) is written in the form of the following nonlinear
heat equation

(1.5) Ou — Au = —div(u ® u) — V.
Using the L*°-estimate of the heat equation, we have

Ls(Rnx(0,T)) T [[uo]|7 o

[l oo (rn x (0,1)) S |1t @ ul| L rnx(0,)) + |7

(1.6) S ||U||2L2S(Rnx(o,T)) + [luo |7

for s € (n +2,+00) and uy € L? N L, where we have used the Holder inequality,
the well-known relation

n
(1.7) ™= Z R;Riujuy,
J,k=1
with the Riesz operator R;, and its boundedness in L®. For other types of L>-
estimates of the velocity, we refer to [8[11].
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The estimate (L6) shows that L2 (R™x (0, T'))-control governs the uniform space-
time control, while the estimate ([4]) preserves the space integrability on both sides.
The first purpose of this paper is to broaden the range of admissible space-time
integrability on the RHS of (4] in the framework of the Serrin condition. We will
prove

Theorem 1.1. Let n > 3 and p € [4,+00). Let (q,7) satisfy % + % =1 and
r € (n,+00]. Then there exists a constant C' such that

(1) s lzn < ol €30 (Cllul o)
for any t € [0,T) and ug € LP.

Remark 1.1. By (6] and ([L8)), we give a different proof of the classic Ladyzhenskaya-
Prodi-Serrin criterion [7].

Similarly, we have

Theorem 1.2. Let n > 3 and p € (2,+00). Let (q,7) satisfy % + 7 =2 and
r € (%, +00]. Then there exists a constant C' such that

t
(1.9) lu(- O)llze < lluollLe exp (C/ |VU|qudT)
0
for any t € [0,T) and ug € LP.
Remark 1.2. Beirdo da Veiga [2] gave a different proof of Theorem

Remark 1.3. In the two dimensional case, the estimate (I9) withp =4 and ¢ =r =
2 is shown in [5]. The method depends on the div-curl lemma and the Hardy-BMO
duality.

The next purpose of this paper is to formulate the LP-bound of the velocity in
terms of the pressure or its gradient with admissible space-time integrability in the
Serrin condition as in Theorems [[LT] and

Theorem 1.3. Let n > 3 and p € (2,+00). Let (q,7) satisfy % + % =2 and
r € (§,+00]. Then there exists a constant C' such that

t

(1.10) - Ollze < ol o exp (c / ||w||%df> ,
0
t

(L11) lu- Dllze < uoll o exp (c / ||w||BModT)
0

for any t € [0,T) and up € LP.

Theorem 1.4. Let n > 3 and p € (2,+00). Let (q,7) satisfy
r € (%, +oo]. Then there exists a constant C' such that

+ % =3 and

SN

t

(1.12) [u(- D)l < lluol|Lr exp <C/ ||V7T||qrd7)
0

for any t € [0,T) and ug € LP.

Remark 1.4. Recently, Kanamaru and Yamamoto [9] show (LI2) with p = 2n.
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Remark 1.5. When r = oo and q¢ = %, one can prove the regularity criterion

2
IVl 5o

SIS

T
(1.13) / T dr < +oo
0 logh(c+ [ Vrll g )

by the method in [3,9]. Details are omitted.

2. PrRooOF oF THEOREM [L.1]

This section is devoted to the proof of Theorem [Tl We assume that the solution
is smooth and only need to show the a priori estimates. Below we consider the case
where 7 is finite since the case r = 400 is treated in a similar and simpler way.

First, we take p = 4.

Testing (LI) by |u|?u and using (L2)), we see that

1 d 4 2 2 1 212
Z&/'“‘ dx+/\u| Ve + 5 [ (9l
:/wu~V|u\2dx

2 [Vul]l 2

S lull e [l 2oy 191l e

S llullerfl=ll,

n
P

1+2
Viul*[l:

1—
S lull o Il 22

1
(2.1) < ZIVIPIZe + Cllullgelluls,
where we have used the Holder inequality, the estimate

(2.2) Imllze < Nlul?|

Ls

with 1 < s < 400 via (7)), and the Gagliardo-Nirenberg inequality

1—n n
(2:3) [oll, 225 S llollz2 " Vol

—

with n < r < +00, namely, 0 < 7 < 1. The estimate (L) with p = 4 follows by
the Gronwall lemma applied to (2.
Second, we assume p > 4.
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Testing (LI) by |u[P~2u and using (L2)), @2)), and 23], we find that

p

= — /(u . Vﬂ')\u|p72dx = /WUV|U|p72dl‘

‘/uw|u%_2V|u%dx

1d -2 P
;&/|u|pdx+/|u|p_2|Vu|2d:E+4p 5 /|V|u\5|2dx

N

p_ p
S lullr oo ul 2 =2l e [Vl * || 2

p 2 p 2(2-2 P
e N [T N L
L»p L 2

2(p_
p(2 Q)T

p p
S lullprflfel2 (], 2o V]ul 2] 22
1= D1+
S llullerllfulz (e " Vel 2 |2
pP— 2 D P
(2.4) = 2 IVlul 2 (172 + Cllullfll|ul 2 17,
provided that
1 1 1 1
2.5 -4+ — 4+ — ==
(2:5) ror. o re 2
4 2 2
(2.6) S = —(73 - 2>r2 -
P p\2 r—2

where we have used the Holder inequality with (1), 22) with s = r1, and 23)
with v = |u|%. The system of elementary equations (Z35) and (0) is solved by

(27) T =

if p > 4. The estimate (II]) with p > 4 follows by the Gronwall lemma applied to

(24).

This completes the proof.

3. PROOF OF THEOREM

We only need to show (L9). Below we consider the case where r is finite since
the case r = 400 is treated in a similar and simpler way.
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Testing (LI) by |u[?~2u and using (L2)) and Z.3), we derive

1d -2 P
;&/|u|pdx+/|u|p_2|Vu|2d:E+4p 5 /|V|u\§|2dx

p
= /WuV|u|p_2dx
S IVullzr il zes ul?=2 ) es
p, 2 2, 2(p—2)
SIVellrlllal® 174, Mul=172, .,

p
SAIVulerlilel?]? 2

r—1

p,,2-2 P,z
S IVullr il (|72 "IVl 72

(3.1) <

p— 2 P 2
< p—zllv\UIQ 172 + ClIIVullg NIl = 22,

provided that

1 1 1
(3.2) -+ —+—=1,

T3 Ty

4 2 2r
3.3 o =Z(p =2y = —
(3.3) pT“S p(P )Ta 1

where we have used the Holder inequality with (B2, (Z2) with s = r3, and the
Gagliardo-Nirenberg inequality
1—

(3-4) oll, 2 < llollg2 > Vol 22
L

r—1

with § <7 < 400, namely 0 < g= < 1, and v = lu|2. The system of elementary

equations [3:2) and [B3)) is solved by

_b_r and 7y = T
2r—1

Cp—2r—1
if p > 2. The estimate (I9) follows by the Gronwall lemma applied to (B1I).
This completes the proof.

(35) T3

4. PROOF OF THEOREM [I.J]

We only need to show the estimates (LI0) and (LII]). Below we consider the
case where r is finite since the case r = 400 is treated in a similar and simpler way.
We start with the first two equalities in () and estimate them as

1d -2
;;E/|u|pd3:—|—/|u|p72|Vu|2d:1:+4pp2 /|V|u\%|2dx

= /WUV|U|p_2d£L'

S [l V1l oz
22 1 2), 1p—2
(4.1) S el|Viul 2|72 + /T |ulP~=dx

for any 0 < e < 1.
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We use (Z2) and B3) with v = |u|% to bound the last integral in (@I) as

/”2|“|”‘2d1‘ S Nl llmllzes =2l s

2(p—2)

D
21757,

4
S Il lal#17,,

r—1

D
Sl lllul? 2 2
2, 2-2 22
S il llful= e "1V Iul =l 2.

p — — D
(4.2) < ENVIul? |7z + e 2D ml| g [[[ul? |7,

where r3 and 74 are given by (BX). The estimate (I.I0) follows by taking e small
enough in [@1) and 2) and using the Gronwall lemma on (1.
To prove (LLIT), we use the interpolation inequality [41[6,10]:

(4.3) 171, 5 < Il g IwllBmo-

We use (Z.2) with s = § and ([@3)) to bound the last integral in ([I]) as
[ e S 1 g P21,
—2
Sl g Iwllsmollulze
—2
< llullZs I lleno lull7

(4.4) < lIrlleamo [[ullz,-

Inserting (@A) into ([@1l), taking e small enough, and using the Gronwall lemma,

we arrive at (LIT)).

This completes the proof.

5. PROOF OF THEOREM [[ 4]

We only need to show the estimate (I.I2)). Below we consider the case where r
is finite since the case r = +00 is treated in a similar and simpler way.
Since we have the Sobolev inequality

(5.1) 7l e S NIVl

Ln—1

with 1 <7 < n and
(5.2) [7llemo S [IVrl|Ln,

[C12) with r» € (1,n] follows from (LI0) and (LII). Therefore, from now on
consider the case r € (n,4+00).
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We start with the first equality in (BI]) and estimate it with A = (—=A)'/2 as

par J 1Pz 17215 "
B _/A_%_;_*W'Aé*?’”‘*(\ulp‘?u)dx
S IR E L AR (w20 |
< Ml 197 - - 2u||§‘ﬁ||w|u|p u)|

3 33 (-1 A 35
< ull oo [Vl - el &30 |Vl fu] 1) 252 jul 1||2 2
1 1_n _ 1 l _,
S (V|2 ul jh 2 TR EEEE D gy 51 2
L
1
P _ r+n
(5.3) S ell|VullulE Y 2e + € 5w [Vl 25 ullf,

which implies (II2)) by taking e small enough and using the Gronwall lemma.
Here we have used (2.2)) with s = £ and the Gagliardo-Nirenberg inequalities

(5.4) 1Az~ w2, S Ixll, g IV 7L,

n

1, n i_n 1+_
(5.5) IAZFE (JulP )|, ey Sl 2U||2 2V (P22 0

p—1

~

This completes the proof.
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