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A HYPERPLANE RESTRICTION THEOREM AND
APPLICATIONS TO REDUCTIONS OF IDEALS

GIULIO CAVIGLIA

(Communicated by Claudia Polini)

Abstract. Green’s general hyperplane restriction theorem gives a sharp up-
per bound for the Hilbert function of a standard graded algebra over an infinite
field K modulo a general linear form. We strengthen Green’s result by showing
that the linear forms that do not satisfy such estimate belong to a finite union
of proper linear spaces. As an application we give a method to derive varia-
tions of the Eakin-Sathaye theorem on reductions. In particular, we recover
and extend results by O’Carroll on the Eakin-Sathaye theorem for complete
and joint reductions.

Introduction

Let R =
⊕

d∈N
Rd be a standard graded algebra over an infinite field K. A

well-known result of Green [Gr1] provides an upper bound for the dimension of
the graded component of degree d of R/lR, where l is a linear form, in terms of
the dimension of the graded component of degree d of R. Such a bound is satisfied
generically, in the sense that it holds for any linear form in a certain non-empty
Zariski open set U ⊆ A(R1). This estimate, known as general hyperplane restriction
theorem, is one of the most useful results in the study of Hilbert functions of graded
algebras. It plays a central role in modern proofs of many classical theorems on
Hilbert functions; Macaulay’s characterization of all the possible Hilbert functions
of standard graded algebras, Gotzmann’s persistence theorem and Gotzmann’s reg-
ularity theorem [Go] are among those (see for instance [Gr1], [BrHe, Section 4.2
and 4.3], and [Gr2, Section 3]).

One of the main results of this paper is a strengthening of the general hyperplane
restriction theorem. We show, in Theorem 1.15, that the Zariski open set of linear
forms satisfying Green’s bound contains the complement of a finite union of proper
linear subspaces. The technical aspect of this result is discussed in Section 1 where
a more general statement, Theorem 1.11, is presented.

The central part of the proof of Theorem 1.11 follows closely Green’s original
paper [Gr2], with the main difference that we underline the key-properties (see
Definition 1.2) needed in order to build up the inductive steps of the argument.
Even though these properties are rather technical, the most common situations in
which they are satisfied are quite simple, and allows us to derive Theorem 1.15.
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The goal of the first half of this paper, as mentioned above, is to provide a
method to substitute the genericity condition for the linear form with a weaker
assumption. The following example will perhaps give the reader some motivation
of why a modification of Green’s result is desirable. Assume for instance that the
standard graded algebra R in Green’s result is a quotient of the following toric
algebra:

S = K[XiYj |1 ≤ i ≤ n1, 1 ≤ j ≤ n2] ∼= K[T1, . . . , Tn1n2 ]/I.

For such an algebra it is reasonable to expect that a linear form of R which is the
image of the product of a general linear form in the Xi’s and a general linear form
in the Yj ’s may satisfy Green’s bound. We will show, as a simple consequence of
Theorem 1.11, that this is in fact the case, even though such an element is not
general since linear forms of this kind belong to a non-trivial Zariski closed set.

In the second half of the paper we provide an application of Theorem 1.15 to
the theory of reductions of ideals in local rings. Let (A,m) be a local ring and
let I ⊂ A be an ideal. A reduction of I is an ideal J ⊂ I such that In+1 = JIn

for some non-negative integer n. The notion of reduction, which was introduced
by Northcott and Rees in [NR], has been widely used in many areas, including
multiplicity theory and the theory of blow-up rings. We refer the reader to the
dedicated chapter in [HuSw].

Green’s general hyperplane restriction theorem can be employed (see [Ca1], or
[HuSw, Section 8.6]) to give a short proof of the Eakin-Sathaye theorem (see [EaSa],
[Sa] and also [HoTr]) a well known result on reduction of ideals. Precisely, when
|R/m| = ∞, the main theorem of [EaSa] says that for an integer p large enough so
that the number of generators of (Ii) is smaller than

(
i+p
p

)
, there exists a reduction

(h1, . . . , hp) of I such that Ii = (h1, . . . , hp)Ii−1.
The result of [EaSa] has been generalized by O’Carroll [O] (see also [BrEp] and

[GoSuVe]) to the case of complete and joint reductions in the sense of Rees. It is
worth to note that the elements h1, . . . , hp can be chosen to correspond to general
linear forms of the fiber cone ring R =

⊕
i≥0 I

i/mIi. Theorem 1.11, by strength-
ening Green’s general hyperplane theorem, has the direct consequence of allowing
for variations of the Eakin-Sathaye theorem. Specifically, the weakening of the hy-
pothesis on the general linear forms allows us to recover and extend O’Carroll’s
results to a broader range of situations (see Section 2).

The content of this paper, with the exception of the main result Theorem 1.15,
is taken from Chapter 8 of the author’s Ph.D. thesis [Ca2].

1. A hyperplane restriction theorem

Let R be a standard graded algebra over an infinite field K. We can write R
as A/I, where A = K[X1, . . . , Xn] and I is a homogeneous ideal. In the following,
when we say that a property (P ) is satisfied by r general linear forms of R we mean
that there exists a non-empty Zariski open set U ⊆ A(R1)r such that any r-tuple
in U consists of r linear forms satisfying (P ).

Recall that given a positive integer d, any other non-negative integer c can then
be uniquely expressed in term of d as c =

(
kd

d

)
+

(
kd−1
d−1

)
+ · · · +

(
k1
1
)
, where the

ki’s are non-negative and strictly decreasing, i.e. kd > kd−1 > · · · > k1 ≥ 0.
This way of writing c is called the d’th Macaulay representation of c, and the ki’s
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are called the d’th Macaulay coefficients of c. The integer c〈d〉 is defined to be
c〈d〉 =

(
kd−1

d

)
+
(
kd−1−1
d−1

)
+ · · · +

(
k1−1

1
)
.

Mark Green proved the following:

Theorem 1.1 (General hyperplane restriction theorem). Let R be a standard
graded algebra over an infinite field K, let d be a degree and let l be a general
linear form of R. Then

(1.1) dimK(R/lR)d ≤ (dimK Rd)〈d〉.

The above result was first proved in [Gr1] with no assumption on the charac-
teristic of the base field K. For the case when char(K) = 0, a more combinatorial
and perhaps simpler proof can be found in [Gr2]; it uses generic initial ideals and it
gives at the same time a proof of Macaulay’s estimate on Hilbert functions. Despite
the extensive literature, I am not aware of any argument based solely on generic
initial ideals that would derive (1.1) in any characteristic.

It is important to recall that the numerical bound (1.1) can be also interpreted
in the following way: let A = K[X1, . . . , Xn] and let I ⊂ A be a homogeneous ideal.
Define I lex ⊂ A to be the unique lex-segment ideal with the same Hilbert function as
I. Let c be the dimension, as a K-vector space, of (A/I)d. By definition we also have
that dimK(A/I lex)d = c. It is possible to show that dimK(A/(I lex + (Xn))d = c〈d〉.
For any degree d, the general hyperplane restriction theorem is equivalent to the
statement that if l is general then

(1.2) dimK(A/I + (l))d ≤ dimK(A/I lex + (Xn))d.

The inequality (1.2) has been generalized by several authors. Aldo Conca [Co] has
proved that when characteristic of K is zero and l1, . . . , lr are general linear forms
one has

dimK Tori(A/I,A/(ln, . . . , lr))d(1.3)

≤ dimK Tori(A/I lex, A/(Xn, . . . , Xr))d for all i and d.

Conca’s result, when i = 0, corresponds to the characteristic zero case of Green’s
theorem. Unfortunately, the method used in [Co] requires the use of general initial
ideals which are also strongly stable and, as mentioned above, this puts some re-
strictions on the possible characteristic of K. In a different direction Herzog and
Popescu [HP] and Gasharov [Ga] extended (1.2) by showing that the next inequality
holds for a general form f of A of degree c

(1.4) dimK(A/I + (f))d ≤ dimK(A/I lex + (Xc
n))d.

Further generalizations in this direction can be found in [CaMu].
The goal of the remaining part of this section is to show how the assumption of

generality on the linear form satisfying (1.1), or equivalently (1.2), can be relaxed.
We first introduce some notation.

Let R be a standard graded algebra; we denote by m its homogeneous maximal
ideal and let l = l1, . . . , lr be a sequence of linear forms. For every 0 ≤ m ≤ r and
every sequence o = o1, . . . , om of m = |o| letters in the set {c, s}, we construct an
ideal Il,o by recursively considering colons and sums of the above linear forms.

When o is empty we let Il,o = (0) and when o equals c or s we set Il,o to be
(0) : l1 and (l1) respectively. In general if ō = o1, . . . , oi and o = ō, oi+1 we set
Il,o to be Il,ō : li+1 or Il,ō + (li+1) depending on whether oi+1 is c or s. We also
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let |o|c and |o|s be, respectively, the number of letters c and of letters s in o. For
simplicity, whenever it is clear from the context what the sequence l is, we will just
write Io instead of Il,o.

Definition 1.2. We say that l1, . . . , lr satisfy property (Gr,d), meaning they are
suitable for a hyperplane restriction theorem in degree d > 0, if for every sequence
o = o1, . . . , oi with 0 ≤ i ≤ r, the following hold:

(i) If m �⊆ Io and i < r, then li+1 �∈ Io,
(ii) If i = r and |o|c < d then m ⊆ Io,
(iii) If i ≤ r − 2 then dimK(Io,c,s)d−|o|c−1 ≤ dimK(Io,s,c)d−|o|c−1.

Remark 1.3. Let n = dimK R1. If property (i) holds, then property (ii) is automat-
ically satisfied whenever r ≥ n+ d− 1 and clearly in this case l1, . . . , lr generate m.
Property (iii) is implied by the next stronger condition.

(iv) If i ≤ r − 2 then dimK(Io,c,s)d−|o|c−1 = dimK((Io : li+2) + li+1)d−|o|c−1.

To see that this is the case, notice that (Io : li+2) + (li+1) ⊆ Io,s,c and thus (iv)
gives:

dimK(Io,c,s)d−|o|c−1 = dimK((Io : li+2) + li+1)d−|o|c−1 ≤ dimK(Io,s,c)d−|o|c−1.

While at first sight the properties (Gr,d) may not seem easy to verify, there
are however several situations when it is not hard to find linear forms satisfying
them. For instance, let r = n + d − 1, and assume that the linear forms l1, . . . , lr
span m and that for each o the Hilbert functions of the ideals Io at the degrees
between 0 and d−|o|c−1 do not depend on the order of the l1, . . . , lr. This implies
immediately (i) and (iv); hence l1, . . . , lr satisfy (Gr,d). We summarize the above
considerations in Lemma 1.4.

Lemma 1.4. Let n = dimK R1, d be a degree, r ≥ n+ d− 1, and l1, . . . , lr linear
forms of R generating m. If for every sequence o = c1, . . . , ci with 0 ≤ i ≤ r, and
for every j ∈ {0, . . . , d − |o|c − 1} we have that dimK(Io)j is independent of the
order of the ls’s then l1, . . . , lr satisfy (Gr,d).

We complete our discussion of the properties (Gr,d) with the following two
results, which show a simple case in which the assumptions of Lemma 1.4 are
satisfied. The experts will be able to see why the conclusions of Proposition 1.5
and Corollary 1.6 are straightforward. We include them for the sake of exposition
together with some concise explanations.

Proposition 1.5. Let R = K[X1, . . . , Xn]/J be a standard graded algebra over
an infinite field K. Let V ⊂ A(R1) be an irreducible variety and assume that
V r = V × · · · × V , is irreducible as well. Then for every sequence of r linear
forms of R that is a sequence of r general points of V , and for every sequence
o = o1, . . . , oi with 0 ≤ i ≤ r, the Hilbert function of Io is well defined; equivalently
there exists a non-empty Zariski open subset of V r on which the Hilbert function
of Io is constant.

Proof. We consider the coordinate ring of V, say SV = K[Y1, . . . , Yn]/IV and more
generally the coordinate ring SV r = K[Y1,1, . . . , Y1,n, . . . , Yr,1, . . . , Yr,n]/IV r of V r.
By assumption V and V r are irreducible; hence their defining ideals IV and IV r

are prime. Let K be the fraction field of SV r . For every a, b we denote with ya,b the
image in K of Ya,b. Let l̃ be image in R⊗KK of the sequence of linear forms l1, . . . , lr
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of K[X1, . . . , Xn], where, for a = 1, . . . , r, we have set la = ya,1X1 + · · · + ya,nXn.
There is a standard way, using Gröbner bases, to explicitly compute a reduced
Gröbner basis, for instance with respect to the reverse lexicographic order, of the
pre-image in K[X1, . . . , Xn] of the ideal Ĩl,o ⊆ R ⊗K K. We consider all the non-
zero coefficients α1, . . . , αq of all the monomials appearing in all the polynomials
involved in such computation. We let Uj be the non-empty Zariski open set of V r

where the rational function αj does not vanish. The desired Zariski open subset
is U = ∩q

jUj which is not empty since V r is irreducible. By construction, for any
point in U the initial ideal of the pre-image of Io in K[X1, . . . , Xn] is always the
same and therefore the Hilbert function of Io is constant as well. �

As a consequence of the above proof we get the following fact.

Corollary 1.6. With the same assumptions as Proposition 1.5, for every sequence
of r linear forms of R that is a sequence of general points of V , and for every
sequence o = o1, . . . , oi with 0 ≤ i ≤ r the Hilbert function of Io is independent of
the order of the linear forms.

Proof. In the proof of Proposition 1.5 we constructed a non-empty Zariski open
set U by means of a Gröbner basis computation of the pre-image in K[X1, . . . , Xn]
of the ideal Ĩl,o ⊆ R ⊗K K. By reordering the sequence of linear forms l̃, for every
given permutation σ ∈ Sn we get a non-empty Zariski open set Uσ where the
Hilbert function of Iσ(l),o is independent of the choice of l ∈ Uσ. By assumption V r

is irreducible; hence Ū = ∩σ∈SUσ is a non-empty Zariski open set. For every point
l ∈ Ū the Hilbert function of Io is independent of the order of the linear forms in
l. �

Remark 1.7. Regarding the hypotheses of the above results, notice that when V ⊂
A(R1) is an irreducible variety, it is possible to conclude that V r is irreducible as
well provided that K is algebraically closed or alternatively, with no assumption on
K, provided that the defining ideal of V is homogeneous.

In Examples 1.8 and 1.9 and one can apply Lemma 1.4 to derive the property
(Gr,d).

Example 1.8. Let R = K[X,Y, Z]/I be a standard graded algebra over an alge-
braically closed field K. Then for a general choice of λ1, . . . , λd+2 ∈ K the linear
forms li = X + λiY + λ2

iZ satisfy (Gr,d).

Example 1.9. Let R be a standard graded algebra, dimK R1 = n and assume
|K| = ∞. The r linear forms, with r ≥ d+ n− 1, in each of the cases below satisfy
(Gr,d). These examples are relevant to the next section and will correspond to
variations of the Eakin-Sathaye theorem. All the homomorphisms mentioned below
are assumed to send the monomials generating each sub-algebra to forms of R1.

(A) With no further assumptions on R the r linear forms can be chosen to be
general.

(B) Assume R to be the homomorphic image of the Segre ring:

S = K[X1,i1 ·X2,i2 · · ·Xs,is |1 ≤ i1 ≤ n1, . . . , 1 ≤ is ≤ ns].

Then the r linear forms can be chosen to be the images of l1 · · · ls, where li
is a general linear form of K[Xi,1, . . . , Xi,ni

].
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(C) Assume that char(K) = 0 and that R is the homomorphic image of the
Veronese ring: S = K[Xa1

1 · · ·Xas
s |

∑s
i=1 ai = b and ai ≥ 0]. Then the r

linear forms can be chosen to be the images of lb, where l is a general linear
form of K[X1, . . . , Xs].

(D) Assume that char(K) = 0 and that R is the homomorphic image of Segre
products of Veronese rings:

S = K

⎡
⎢⎢⎣ ∏

1≤i≤s
1≤j≤ni

X
ai,j

i,j such that
∑
j

ai,j = bi and ai,j ≥ 0

⎤
⎥⎥⎦ .

Then the r linear forms can be chosen to be the images of lb11 · · · lbss , where
the li’s are general linear forms of K[Xi,1, . . . , Xi,ni

].
(E) Assume that char(K) = 0 and that R is the homomorphic image of the

following toric ring:
S = K[Xi1 · · ·Xis |1 ≤ i1 ≤ n1, . . . , 1 ≤ is ≤ ns and n1 ≤ n2 ≤ · · · ≤ ns].

Then the r linear forms can be chosen to be the images of l1(l1+ l2) · · · (l1+
l2 + · · · + ls), where the li’s are general linear forms of K[Xni−1, . . . , Xni

].

Proof. In all of the above cases it is straightforward to verify that the r linear
forms generate the homogeneous maximal ideal of R; this is the step that forces
assumptions on the characteristic of K. To conclude the proof it is enough to show
that for every sequence o = c1, . . . , ci with 0 ≤ i ≤ r the Hilbert function of Io is
well defined (i.e. constant on a Zariski open set) and independent of the order of
the linear forms. We can follow the same outline of the proof of Proposition 1.5
and Corollary 1.6. All cases are quite similar and for the sake of the exposition we
only show (C).

Write R as S/I where S is the Veronese ring and S ∼= K[Z1, . . . , Z(b+s−1
s−1 )]/J . Let

K be the fraction field of the polynomial ring K[y1,1, . . . , y1,s, . . . , yr,1, . . . , yr,s]. Let
l̃ be the sequence of linear forms of the ring S ⊗K K defined as l̃1

b
, . . . , l̃r

b where,
for j = 1, . . . , r, we have set l̃j = yj,1X1 + · · · + yj,sXs. Fix a permutation σ ∈ Sr

and a sequence of operations o = c1, . . . , ci for some i, 0 ≤ i ≤ r. We can compute
algorithmically, by standard methods, a reduced Gröbner basis for the pre-image
in K[Z1, . . . , Z(b+s−1

s−1 )] of the ideal Iσl,o ⊂ R ⊗K K where σl is the image of σ̃l in
R ⊗K K. Let α1, . . . , αq be all the non-zero coefficients of all the monomials in all
the polynomials of K[Z1, . . . , Z(b+s−1

s−1 )] involved in such computation. The field K

is infinite and A(Ksr) is irreducible, so we let Ui be the non-empty Zariski open set
of A(Ksr) where the rational functions αi are defined and do not vanish. By setting
Uσ,o = ∩q

iUi we get a non-empty Zariski open set of A(Ksr) where the algorithm
runs, roughly speaking, in an identical manner returning the same initial ideal no
matter what point of Uσ,o is chosen as sequence of r linear forms. To conclude we
let U , the desired Zariski open set of r general linear forms, to be the intersection
of all the Uσ,o’s. �

Remark 1.10. Note that the characteristic assumption in the above (C),(D) and
(E) is essential. For instance, let R = K[X2

1 , X1X2, X
2
2 ]/(X2

1 , X
2
2 ) ∼= K[Z1, Z2, Z3]/

(Z1, Z3, Z
2
2 − Z1Z3) and assume char(K) = 2. This corresponds to the case s = 2

and b = 2 of example (C). The square of a general linear form of K[X1, X2] can be
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written as X2
1 + λX2

2 and it has a zero image in R. Property (2) of (Gr,d) is not
satisfied. Moreover, a zero linear form clearly does not satisfy Green’s estimate.

We can now prove the desired hyperplane restriction theorem. Our proof follows
the same outline of the classical result of Green [Gr2].

Theorem 1.11. Let R be a standard graded algebra and let l1, . . . , lr be linear
forms satisfying (Gr,d). Then

dimK(R/(l1))d ≤ (dimK(Rd))〈d〉.

Proof. We let Ii,j to be the set of all ideals Il,o with l = l1, . . . , lr and such that
|o| = i ≤ r and |o|c = j. It is sufficient to prove the following.

Claim 1.12. For every I ∈ Ii,j with 0 ≤ i < r and 0 ≤ j < d we have

(1.5) dimK(R/(I + (li+1)))d−j ≤ (dimK(R/I)d−j)〈d−j〉.

First of all, we show that the claim holds for all the ideals in Ii,j provided i = r−1
or j = d − 1. By part (ii) of (Gr,d) when I ∈ Ir−1,j and j < d by assumption,
we get m ⊆ I + (lr). Hence (R/(I + (lr)))d−j = 0 and the inequality (1.5) holds.
If I ∈ Ii,j and j = d − 1 the inequality (1.5) becomes trivial when m ⊆ I and
otherwise it becomes dimK(R/(I + (li+1)))1 ≤ dimK(R/I)1 − 1 which follows from
part (i) of (Gr,d).

We do a decreasing induction on the double index of Ii,j . Let I ∈ Ii,j with i < r−1
and j < d− 1. By induction we know that (1.5) holds for (I + (li+1)) ∈ Ii+1,j and
for (I : li+1) ∈ Ii+1,j+1.

Consider the sequence:

0 → R

(I + (li+1)) : li+2
(−1) ·li+2−−−→ R

I + (li+1)
→ R

I + (la+1) + (la+2)
→ 0.

Let d̄ = d− j.
By looking at the graded component of degree d̄ we get:

dimK

(
R

I + (li+1)

)
d̄

= dimK

(
R

(I + (li+1)) : li+2

)
d̄−1

+ dimK

(
R

I + (li+1) + (li+2)

)
d̄

.

Property (iii) of (Gr,d) implies

dimK

(
R

(I + (li+1)) : li+2

)
d̄−1

≤ dimK

(
R

(I : li+1) + (li+2)

)
d̄−1

,

and by using the inductive assumption on I : li+1 and on I + (li+1) we deduce that

dimK

(
R

I + (li+1)

)
d̄

≤
(

dimK

(
R

I : li+1

)
d̄−1

)
〈d̄−1〉

+
(

dimK

(
R

I + (li+1)

)
d̄

)
〈d̄〉

.

To simplify the notation, set c = dimK(R/I)d̄ and cH = dimK(R/(I + (li+1)))d̄.
From the short exact sequence

0 → R

I : li+1
(−1) li+1−−→ R

I
→ R

I + (li+1)
→ 0,
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we know that dimK

(
R

I:li+1

)
d̄−1

= c − cH ; therefore the above upper bound for

dimK

(
R

I+(li+1)

)
d̄

becomes:

(1.6) cH ≤ (cH)〈d̄〉 + (c− cH)〈d̄−1〉.

Write cH =
(kd̄

d̄

)
+
(kd̄−1
d̄−1

)
+· · ·+

(
kδ

δ

)
. The inequality of the claim, which is cH ≤ c〈d̄〉,

is trivial when cH = 0; hence we can assume kδ ≥ δ. Furthermore notice that
cH ≤ c〈d̄〉 is equivalent to c ≥

(kd̄+1
d̄

)
+

(kd̄−1
d̄−1

)
+ · · · +

(
kδ+1

δ

)
. If the claim fails we

have:

(1.7) c− cH <

(
kd̄

d̄− 1

)
+
(
kd̄−1

d̄− 2

)
+ · · · +

(
kδ

δ − 1

)
.

We use (1.6) to derive a contradiction. There are two cases to consider.
If δ = 1 then (1.7) becomes c− cH ≤

( kd̄

d̄−1

)
+
(kd̄−1
d̄−2

)
+ · · · +

(
k2
1
)
.

Thus

(c− cH)〈d̄−1〉 ≤
(
kd̄ − 1
d̄− 1

)
+
(
kd̄−1 − 1
d̄− 2

)
+ · · · +

(
k2 − 1

1

)
and

(cH)〈d̄〉 ≤
(
kd̄ − 1

d̄

)
+
(
kd̄−1 − 1
d̄− 1

)
+ · · · +

(
k2 − 1

2

)
+
(
k1 − 1

1

)
.

By adding these two inequalities, (1.6) gives

cH ≤
(
kd̄
d̄

)
+
(
kd̄−1

d̄− 1

)
+ · · · +

(
k2

2

)
+
(
k1 − 1

1

)
< cH ,

which is a contradiction.
When δ > 1 we can apply the function (−)〈d̄−1〉 to both sides of (1.7). Since

kδ > δ−1 the last term of the right hand side stays positive, and the strict inequality
is preserved. We get

(c− cH)〈d̄−1〉 <

(
kd̄ − 1
d̄− 1

)
+
(
kd̄−1 − 1
d̄− 2

)
+ · · · +

(
kδ − 1
δ − 1

)
.

By adding the last inequality to (cH)〈d̄〉 ≤
(kd̄−1

d̄

)
+
(kd̄−1−1

d̄−1

)
+· · ·+

(
kδ−1

δ

)
we obtain

the following contradiction

cH <

(
kd̄
d̄

)
+
(
kd̄−1

d̄− 1

)
+ · · · +

(
kδ
δ

)
= cH .

�

A direct consequence of Theorem 1.11 is Corollary 1.13.

Corollary 1.13. Let R be a standard graded algebra and let l1, . . . , lr be linear
forms satisfying (Gr,d), and let the Macaulay representation of dimK(Rd) be(
kd

d

)
+
(
kd−1
d−1

)
+ · · · +

(
k1
1
)
. Then for any p such that 1 ≤ p ≤ r we have

dimK(R/(l1, . . . , lp))d ≤
(
kd − p

d

)
+
(
kd−1 − p

d− 1

)
+ · · · +

(
k1 − p

1

)
.

Proof. By Theorem 1.11 we have dimK(R/(l1))d ≤
(
kd−1

d

)
+
(
kd−1−1
d−1

)
+ · · ·+

(
k1−1

1
)
.

Note that the images of l2, . . . , lr satisfy (Gr,d) for R/(l1). Thus we apply Theorem
1.11 and obtain the result by induction. �
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We combine Corollary 1.13, Corollary 1.6 and Remark 1.7 in the following result.

Theorem 1.14. Let R = K[X1, . . . , Xn]/I be a standard graded algebra and let
V ⊂ A(R1) be an irreducible variety spanning A(R1). Assume that K is alge-
braically closed or that the defining ideal of V is homogeneous. Then for any p
linear forms of R that are general points of V we have:

dimK(R/(l1, . . . , lp))d ≤
(
kd − p

d

)
+
(
kd−1 − p

d− 1

)
+ · · · +

(
k1 − p

1

)
.

We are now ready to prove our main theorem, which is a description of the
open set where Green’s estimate holds. It is important to note that we make no
assumption on the field K.

Theorem 1.15 (Hyperplane restriction). Let R be a standard graded algebra over
a field K, and let A(R1) be the affine space of linear forms of R1. There exist
finitely many proper linear subspaces L1, . . . , Lm of A(R1) such that for any form
l �∈ (∪Li) we have:

dimk(R/lR)d ≤ (dimK Rd)〈d〉.

Proof. When K is finite the result is trivial because A(R1) is itself a finite union of
proper linear subspaces. We assume that K is infinite. Note that the set of all linear
forms not satisfying the above inequality is a Zariski closed set, say V (I), of A(R1)
which is defined by the vanishing of a certain ideal of minors I ⊆ Sym(R1). Notice
that I is a homogeneous ideal. Assume by contradiction that V (I) is not contained
in any finite union of proper linear subspaces; hence there exists an irreducible
component, say V (P ), spanning A(R1). The prime ideal P is homogeneous and by
Theorem 1.14 a general point in V (P ) satisfies Green’s estimate, which is absurd.

�

2. Variations of the Eakin-Sathaye theorem

By using the rings described in Example 1.9 we can now prove a few versions of
the Eakin-Sathaye theorem.

Theorem 2.1. Let (A,m) be a local ring with infinite residue field K. Let I be an
ideal of A. Let i and p be positive integers. If the number of minimal generators
of Ii, denoted by v(Ii), satisfies v(Ii) <

(
i+p
i

)
then

(a) (Eakin-Sathaye) There are elements h1, . . . , hp in I such that Ii =
(h1, . . . , hp)Ii−1.

Moreover:
(b) (O’Carroll) If I = I1 · · · Is, where Ij’s are ideals of A, the elements hj’s

can be chosen of the form l1 · · · ls with li ∈ Ii.
(c) Assume char(K) = 0. If I = Jb , where J is an ideal of A, the elements

hj’s can be chosen of the form lb with l ∈ J.

(d) Assume char(K) = 0. If I = Ib11 · · · Ibss , where Ij’s are ideals of A, the
elements hj can be chosen of the form lb11 · · · lbss with li ∈ Ii.

(e) Assume char(K) = 0. If I = I1(I1 + I2) · · · (I1 + · · · + Is), where Ij’s are
ideals of A, the elements hj can be chosen of the form l1(l1 + l2) · · · (l1 +
· · · + ls) with li ∈ Ii.
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Proof. First of all, note that since v(Ii) is finite, without loss of generality we can
assume that I is also finitely generated: in fact, if H ⊆ I is a finitely generated
ideal such that Hi = Ii the result for H implies the one for I. Similarly, we can
also assume that the ideals Ij of (b), (d) and (e) and the ideal J of (c) are finitely
generated. By the use of Nakayama’s Lemma, we can replace I by the homogeneous
maximal ideal of the fiber cone R =

⊕
i≥0 I

i/mIi. Note that R is a standard graded
algebra finitely generated over the infinite field R/m = K. Moreover, the algebras
R of (a), (b), (c), (d), and (e) satisfy the properties of the Example 1.9 parts (A),
(B), (C), (D), and (E) respectively. Let l1, . . . , lr as in Example 1.9 and assume
also that p ≤ r. The theorem is proved if we can show that (R/(l1, . . . , lp))i = 0.
Note that

dimK Ri ≤
(
i + p

i

)
−1 =

(
i + p− 1

i

)
+
(
i + p− 2
i− 1

)
+· · ·+

(
i + p− j

i− j + 1

)
+· · ·+

(
p

1

)
.

The last equality can be proved directly or alternatively one can order the arrays
of Macaulay coefficients by using the lexicographic order and observe that (i +
p, 0, . . . , 0) is preceded by (i+ p− 1, i + p− 2, . . . , p). By Corollary 1.13 we deduce

dimK(R/(l1, . . . , lp))i ≤
(
i− 1
i

)
+
(
i− 2
i− 1

)
+ · · · +

(
0
1

)
.

The term on the right hand side is zero and therefore the theorem is proved. �
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