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VOLUME OF THE MINKOWSKI SUMS OF STAR-SHAPED SETS

MATTHIEU FRADELIZI, ZSOLT LÁNGI, AND ARTEM ZVAVITCH

(Communicated by Deane Yang)

Abstract. For a compact set A ⊂ Rd and an integer k ≥ 1, let us denote by

A[k] = {a1 + · · ·+ ak : a1, . . . , ak ∈ A} =
k∑

i=1

A

the Minkowski sum of k copies of A. A theorem of Shapley, Folkmann and
Starr (1969) states that 1

k
A[k] converges to the convex hull of A in Hausdorff

distance as k tends to infinity. Bobkov, Madiman and Wang [Concentration,
functional inequalities and isoperimetry, Amer. Math. Soc., Providence, RI,
2011] conjectured that the volume of 1

k
A[k] is nondecreasing in k, or in other

words, in terms of the volume deficit between the convex hull of A and 1
k
A[k],

this convergence is monotone. It was proved by Fradelizi, Madiman, Marsigli-
etti and Zvavitch [C. R. Math. Acad. Sci. Paris 354 (2016), pp. 185–189]
that this conjecture holds true if d = 1 but fails for any d ≥ 12. In this pa-
per we show that the conjecture is true for any star-shaped set A ⊂ Rd for
d = 2 and d = 3 and also for arbitrary dimensions d ≥ 4 under the condition
k ≥ (d − 1)(d − 2). In addition, we investigate the conjecture for connected
sets and present a counterexample to a generalization of the conjecture to the
Minkowski sum of possibly distinct sets in Rd, for any d ≥ 7.

1. Introduction

The Minkowski sum of two sets K,L ⊂ Rd is defined as K + L = {x + y : x ∈
K, y ∈ L}, where, for brevity, we set A[k] =

∑k
i=1 A, for any k ∈ N and any compact

set A ⊂ Rd. Since Minkowski sum preserves the convexity of the summands and
the set 1

kA[k] consists in some particular convex combinations of elements of A, the

containment 1
kA[k] ⊆ convA, and, for the special case of convex sets, the equality

1
kA[k] = convA trivially holds; here convA denotes the convex hull of A. These

observations suggest that for any compact set A, the set 1
kA[k] looks “more convex”

for larger values of k. This intuition was formalized by Starr [St1, St2], crediting
also Shapley and Folkman, and independently by Emerson and Greenleaf [EG], by
proving that the set 1

kA[k] approaches convA in Hausdorff distance as k approaches
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infinity and by giving bounds on the speed of this convergence (we refer to [FMMZ2]
for more discussion of this fact).

A further step in the investigation of the sequence
{

1
kA[k]

}
is to examine the

monotonicity of this convergence. Whereas this sequence is clearly not monotonous
in terms of containment, the main object of this paper is Conjecture 1 of Bobkov,
Madiman, Wang [BMW], relating the volumes of the elements of the sequence,
and in which vol(K) denotes the Lebesgue measure (volume) of the measurable set
K ⊂ Rd.

Conjecture 1 (Bobkov-Madiman-Wang). Let A be a compact set in Rd for some
d ∈ N. Then the sequence {

vol

(
1

k
A[k]

)}
k≥1

is nondecreasing in k.

Equivalently, Conjecture 1 asks whether for any integer k ≥ 1 and compact set
A ⊂ Rd, the following inequality holds

(1) vol

(
1

k
A[k]

)
≤ vol

(
1

k + 1
A[k + 1]

)
.

This inequality trivially holds for any compact set A if k = 1 since A ⊂ 1
2A[2]. In the

same way, it is easy to find monotone subsequences of the sequence {vol( 1kA[k])}k≥1

by the same argument; one such example is {vol( 1
2mA[2m])}m≥0. On the other

hand, even the first nontrivial case; that is, the inequality vol
(
1
2A[2]

)
≤ vol

(
1
3A[3]

)
seems to require new methods to approach. Conjecture 1 was partially resolved in
[FMMZ1,FMMZ2], where, following the approach of [GMR], the authors proved it
for any 1-dimensional compact set A, but constructed counterexamples in R

d for
any d ≥ 12. More precisely, they showed that for every k ≥ 2, there is dk ∈ N

such that for every d ≥ dk there is a compact set A ⊂ Rd such that vol
(
1
kA[k]

)
>

vol
(

1
k+1A[k + 1]

)
. In particular, one has d2 = 12, whence Conjecture 1 fails for

Rd if d ≥ 12.
Our goal is to find additional conditions on A and k under which the statement

in Conjecture 1, or more precisely when the inequality (1), is satisfied.
In the paper, for any set A ⊂ Rd we denote by dimA the dimension of the

smallest affine subspace containing A, and for any p, q ∈ Rd, we denote the closed
segment with endpoints p, q by [p, q]. To state our main result, let us recall the
following well-known concept.

Definition 1. A nonempty set S ⊂ Rd is called star-shaped with respect to a point
p if for any q ∈ S, we have [p, q] ⊆ S.

Our main result is the following.

Theorem 1. Let d ≥ 2 and k ≥ max{2, (d− 1)(d− 2)} be integers. Then for any
compact, star-shaped set S ⊂ Rd we have

vol

(
1

k + 1
S[k + 1]

)
≥ vol

(
1

k
S[k]

)
,

with equality if only if dim(S) < d or 1
kS[k] = conv(S).
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We notice that Theorem 1 establishes Conjecture 1 for star-shaped compact sets
in dimensions 2 and 3. It is worth to remark that the compact sets A constructed
in [FMMZ2] as counterexamples to Conjecture 1 are star-shaped, which makes
Theorem 1 fairly unexpected.

We prove Theorem 1 in Section 2. In Section 3 we adapt our techniques to
investigate connected sets. Our main result in this section is summarized in Theo-
rem 2. Finally, in Section 4 we collect some additional remarks and questions, and,
in particular, we construct low dimensional counterexamples to a generalization of
Conjecture 1, which also appeared in [BMW].

2. Conjecture 1 for star-shaped sets: The proof of Theorem 1

We start this section with a couple of Lemmata which are needed for the proof.
Throughout this section, we denote Xd(t) = {(x1, . . . , xd) ∈ Nd : x1 + . . .+ xd = t}
and Nd(t) = cardXd(t) to be the number of elements of Xd(t). Here and in the
rest of the paper we will denote by N the set of nonnegative integers.

Lemma 1. For any integer t ≥ 1, and d ≥ 2, we have Nd(t) =
(
t+d−1
d−1

)
.

Proof. If d = 2, then, clearly, N2(t) = t + 1 =
(
t+2−1

1

)
. On the other hand, by

induction, we have

Nd(t) =

t∑
s=0

Nd−1(s) =

t∑
s=0

(
s+ d− 2

d− 2

)
=

(
t+ d− 1

d− 1

)
.

�

Lemma 2. Let d ≥ 2 and o be the origin of Rd, (p1, . . . , pd) be a basis of Rd, and let

B =
⋃d

i=1[o, pi]. Consider a compact set M ⊂ R
d such that B[k] ⊆ M ⊆ k conv(B)

for some k ≥ max{2, (d− 1)(d− 2)}, then

(2) vol

(
1

k + 1
(M +B)

)
≥ vol

(
1

k
M

)
,

where equality holds if and only if M = k conv(B). Furthermore, if vol
(
1
kM

)
≥

vol
(

1
k+1(M +B)

)
− δ for some δ ≥ 0, then vol(M) ≥ vol (k conv(B))− C(d, k)δ,

where the constant C(d, k) = kd(1− kd

(k−d+2)(k+1)d−1 )
−1 depends only on d and k.

Proof. Since the inequality (2) is independent of a nondegenerate linear transfor-
mation applied to B and M simultaneously, we may assume that (p1, . . . , pd) is the
canonical basis of Rd. Let

V (t) = vol{(x1, . . . , xd) ∈ [0, 1]d : x1 + . . .+ xd ≤ t}.
Let Ci = i + [0, 1]d, i ∈ Zd be the unit cube cells of the lattice Zd, and set
μi = vol(Ci ∩M), and λi = vol(Ci ∩ (M +B)).

Note that for any i ∈ Xd(t), vol(Ci∩k conv(B)) is independent of i, namely it is
equal to 1, if t ≤ k−d, and to V (k−t) if t = k−d+1, . . . , k−1. A similar statement
holds for vol(Ci∩(k+1) conv(B)). The number of unit cells contained in k conv(B)
is equal to the number of the solutions of the inequality x1 + x2 + . . . + xd ≤ k,
where each variable is a positive integer, and thus, it is

(
k
d

)
. Hence, if Yd(k) denotes

the union of these cells, then we have that

(3) vol(Yd(k)) = kdV,
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where kd = k(k − 1) . . . (k − d+ 1), and V = vol(convB) = 1
d! . Thus,

(4) vol(M) = kdV +
k−1∑

t=k−d+1

∑
i∈Xd(t)

μi,

and

vol(M +B) = (k + 1)dV +
k∑

t=k−d+2

∑
i∈Xd(t)

λi.

In the following step, we give a lower bound on the λi’s depending on the values of
the μi’s. We say that i ∈ Xd(t) and i′ ∈ Xd(t+1) are adjacent if the corresponding
cells Ci and Ci′ have a common facet, or in other words, if i′ − i coincides with
one of the standard basis vectors pj . In this case we write ii′ ∈ I. Let i ∈ Xd(t),
and let S = M ∩ Ci. Then, for every j = 1, 2, . . . , d, S + pj ⊂ (M + B) ∩ Ci′ with
i′ = i+ pj . Thus, for any i ∈ Xd(t+ 1),

(5) λi ≥ max{μi′ : i
′ ∈ Xd(t) is adjacent to i}.

Note that the right-hand side of this inequality is not less than any convex com-
bination of the corresponding μi′s. Using a suitable convex combination for each
i ∈ Xd(t+ 1), we show that this inequality implies that

(6)
∑

i∈Xd(t+1)

λi ≥
t+ d

t+ 1

∑
i∈Xd(t)

μi.

Figure 1. Illustration on choosing the weights if d = 3 and t =
3. The black and empty dots represent the elements of the set
X3(3) and X3(4), respectively. Dots illustrating adjacent indices
are connected by a segment. The weight assigned to the segment
connecting the dots representing i and i′ is equal to αii′

Consider some i = (i1, i2, . . . , id) ∈ Xd(t+1). Then the indices in Xd(t) adjacent
to i are all of the form i−pj for some j = 1, 2, . . . , d. Furthermore, i−pj is adjacent
to i iff ij ≥ 1, or in other words, iff ij �= 0. Now, for any i′ ∈ Xd(t) adjacent to i
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we set αii′ =
ij
t+1 , where i − i′ = pj (cf. Figure 1). Then, since i ∈ Xd(t + 1), we

clearly have 1 =
∑d

j=1
ij
t+1 =

∑
i′∈Xd(t),ii′∈I αii′ . Thus, by (5), we have

(7) λi ≥
∑

i′∈Xd(t),ii′∈I

αii′μi′

for all i ∈ Xd(t+1). Now, let i′ ∈ Xd(t), and i′ = (i′1, i
′
2, . . . , i

′
d). Then the indices in

Xd(t+1) adjacent to i′ are exactly those of the form i′+pj for some i = 1, 2, . . . , d.
Hence,

(8)
∑

i∈Xd(t+1),ii′∈I

αii′ =

d∑
j=1

i′j + 1

t+ 1
=

t+ d

t+ 1
.

Finally, by (7) and (8)

∑
i∈Xd(t+1)

λi ≥
∑

i∈Xd(t+1)

∑
i′∈Xd(t),ii′∈I

αii′μi′ =
∑

i′∈Xd(t)

⎛
⎝ ∑

i∈Xd(t+1),ii′∈I

αii′

⎞
⎠μi′

=
t+ d

t+ 1

∑
i′∈Xd(t)

μi′ .

Using this inequality and the assumption that B[k] ⊆ M ⊆ k conv(B), we obtain

vol(M +B) ≥ (k + 1)dV +
k−1∑

t=k−d+1

t+ d

t+ 1

∑
i∈Xd(t)

μi.

Note that the sequence
{

t+d
t+1

}
, where t = 0, 1, 2, . . ., is strictly decreasing. Hence,

using the fact that if i ∈ Xd(t), then μi ≤ V (k−t), one has, for k−d+1 ≤ t ≤ k−1,

t+ d

t+ 1

∑
i∈Xd(t)

μi ≥
k + 1

k − d+ 2

∑
i∈Xd(t)

μi +

(
t+ d

t+ 1
− k + 1

k − d+ 2

)
V (k − t)Nd(t)

≥ k + 1

k − d+ 2

⎛
⎝ ∑

i∈Xd(t)

μi − V (k − t)Nd(t)

⎞
⎠+

t+ d

t+ 1
V (k − t)Nd(t).

Hence

(9) vol(M +B) ≥ (k + 1)dV +
k + 1

k − d+ 2

k−1∑
t=k−d+1

⎛
⎝ ∑

i∈Xd(t)

μi − V (k − t)Nd(t)

⎞
⎠

+

k−1∑
t=k−d+1

t+ d

t+ 1
V (k − t)Nd(t).

Observe that
∑k−1

t=k−d+1 V (k − t)Nd(t) = (kd − kd)V , since it is the volume of the
part of k conv(B) belonging to the cells that are not contained in k conv(B), and
the equality follows by (3). Similarly, since

t+ d

t+ 1
Nd(t) =

t+ d

t+ 1

(
t+ d− 1

d− 1

)
=

(
t+ d

d− 1

)
= Nd(t+ 1),
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we deduce that
k−1∑

t=k−d+1

t+ d

t+ 1
V (k− t)Nd(t) =

k∑
t′=k−d+2

V (k+1− t′)Nd(t
′) = ((k+1)d− (k+1)d)V,

since it is the volume of the part of (k + 1) conv(B) belonging to cells that are not
contained in (k + 1) conv(B). Substituting these into (9) and using (4), we obtain

vol(M +B) ≥ (k + 1)dV +
k + 1

k − d+ 2

(
vol(M)− kdV

)
+ ((k + 1)d − (k + 1)d)V

≥ k + 1

k − d+ 2
vol(M) +

(
(k + 1)d − k + 1

k − d+ 2
kd

)
V.

Thus,

(10) vol

(
1

k + 1
(M +B)

)
≥ kd

(k − d+ 2)(k + 1)d−1
vol

(
1

k
M

)

+

(
1− kd

(k − d+ 2)(k + 1)d−1

)
V.

Since vol
(
1
kM

)
≤ V , to prove the first inequality of the lemma, it is sufficient

to show that the right-hand side of (10) is a convex combination of the volumes,
namely that the second coefficient is nonnegative. This is clear if d = 2, while for
d ≥ 3 using the Binomial Theorem, one has

(k − d+ 2)(k + 1)d−1 − kd > (k − d+ 2)
(
kd−1 + (d− 1)kd−2

)
− kd

= kd−1 − (d− 1)(d− 2)kd−2,

which is nonnegative for k ≥ (d− 1)(d− 2).
Now we prove the equality case. By (10), equality in the lemma implies that

vol
(
1
kM

)
= V , or equivalently, vol(k conv(B) \M) = 0. Note that since

vol(k conv(B)) > 0,

its interior is not empty. Thus, k conv(B) is equal to the closure of its interior. On
the other hand, vol(k conv(B) \M) = 0 implies that int(k convB) ⊂ M , but as M
is compact, M = k convB follows.

Finally, if vol
(

1
k+1(M +B)

)
− δ ≤ vol

(
1
kM

)
, then in the same way (10) yields

the inequality vol(M) ≥ vol(k conv(B))− C(d, k)δ, with

(11) C(d, k) =
kd

1− kd

(k−d+2)(k+1)d−1

.

�

Proof of Theorem 1. Without loss of generality, we may assume that S is star-
shaped with respect to the origin. Let ε > 0 be an arbitrary positive number.
By Carathéodory’s theorem, we may choose a finite point set A0 ⊂ S such that
vol(conv(S)) − ε ≤ vol(conv(A0)), and without loss of generality, we may assume
that the points of A0 are in convex position. Clearly, the star-shaped set A =⋃

a∈A0
[o, a] is a subset of S, satisfying vol(conv(S))−ε ≤ vol(conv(A)). Consider a

simplicial decomposition F of the boundary of conv(A) such that all vertices of F
are vertices of conv(A). Let the (d− 1)-dimensional faces of F be F1, F2, . . . , Fm,

and for j = 1, 2, . . . ,m, let Bj =
⋃d

t=1[o, p
j
t ], where pj1, p

j
2, . . . , p

j
d are the vertices
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of Fj . Then Bj ⊆ S for all values of j, the sets conv(Bj) are mutually non-
overlapping, and conv(A) =

⋃m
j=1 conv(Bj). Finally, let Mj = S[k] ∩ (k conv(Bj)).

Then, since Bj ⊆ S, we have Bj [k] ⊆ Mj ⊆ (k conv(Bj)). Thus, Lemma 2 implies

that vol
(

1
k+1 (Mj +Bj)

)
≥ vol

(
1
kMj

)
. Thus, we have

vol

(
S[k]

k
∩ conv(A)

)
=

m∑
j=1

vol

(
S[k]

k
∩ conv(Bj)

)
=

m∑
j=1

vol

(
Mj

k

)

≤
m∑
j=1

vol

(
Mj +Bj

k + 1

)
≤ vol

(
S[k + 1]

k + 1

)
.

On the other hand, since 0 ≤ vol(conv(S))− vol(conv(A)) ≤ ε, we have

0 < vol

(
S[k]

k

)
− vol (conv(A)) ≤ ε,

implying that

(12) vol

(
S[k]

k

)
− ε ≤

m∑
j=1

vol

(
Mj

k

)
≤

m∑
j=1

vol

(
Mj +Bj

k + 1

)
≤ vol

(
S[k + 1]

k + 1

)
.

This inequality is satisfied for all positive ε, and thus, the inequality part of Theo-
rem 1 holds.

Now, assume that

vol

(
S[k]

k

)
= vol

(
S[k + 1]

k + 1

)
,

and that dim(S) = d. Then, from inequality (12) we deduce that

m∑
j=1

(
vol

(
Mj + Bj

k + 1

)
− vol

(
Mj

k

))
≤ ε.

For j = 1, 2, . . . ,m, set δj = vol
(

1
k+1(Mj + Bj)

)
− vol

(
1
kMj

)
. Then, clearly∑

δj ≤ ε. On the other hand, by Lemma 2, for every j = 1, 2, . . . ,m, we have
vol(k convBj)− vol(Mj) ≤ C(k, d)δj , where C(k, d) is defined in (11). Thus, sum-
ming on j, it follows that

εC(k, d) ≥ vol(conv(kA))− vol(S[k] ∩ conv(kA)),

implying that ε
(
kd + C(k, d)

)
≥ vol(conv(kS)) − vol(S[k]). This inequality holds

for any value ε > 0, and hence, vol(conv(S)) = vol
(
1
kS[k]

)
, or equivalently,

vol
(
conv(S) \ 1

kS[k]
)
= 0. Since conv(S) is a compact, convex set with nonempty

interior, and 1
kS[k] is compact, to show the equality conv(S) = 1

kS[k], we may
apply the argument at the end of the proof of Lemma 2. �

3. Conjecture 1 for connected sets

In the first few lemmata we collect some elementary properties of the Minkowski
sum of connected sets. Throughout this section, e1, e2 denote the elements of the
standard orthonormal basis of R2.

Lemma 3. Let A ⊂ Rd be a compact set with a connected boundary and let ∂A ⊆
B ⊆ A. Then B +B = A+A.
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Proof. We have ∂A + ∂A ⊆ B + B ⊆ A + A. Thus it is sufficient to prove that
∂A+∂A = A+A. Clearly, A+A ⊇ ∂A+∂A. We show that A+A

2 ⊆ ∂A+∂A
2 , which

then yields the assertion. Consider a point p ∈ A+A
2 . Then p is the midpoint of a

segment whose endpoints are points of A. Let χp : Rd → Rd be the reflection about

p defined by χp(x) = 2p−x, for x ∈ Rd. To prove that p ∈ ∂A+∂A
2 we need to show

that for some q ∈ ∂A, we have χp(q) ∈ ∂A. To do this, let us define fp(x) (x ∈ Rd)
as the signed distance of χp(x) from the boundary of A, where the sign is positive if
χp(x) /∈ A, and not positive if χp(x) ∈ A. Here we remark that since A is compact,
∂A is compact as well. Let x1 be a point of ∂A farthest from p. If χp(x1) ∈ A
then χp(x1) ∈ ∂A, and we are done. Thus, assume that χp(x1) /∈ A, implying that

fp(x1) > 0. Now, since p ∈ A+A
2 , we have some y ∈ A such that χp(y) ∈ A. Let

L be the line through y, p and χp(y). Let y′ and y′′ be points of L ∩ ∂A closest
to y and χp(y), respectively. Then the segments [y, y′] and [χp(y), y

′′] are included
in A. If 0 < |y′ − y| ≤ |y′′ − χp(y)|, then y′ ∈ ∂A and χp(y

′) ∈ [χp(y), y
′′] ⊂ A.

If 0 < |y′′ − χp(y)| ≤ |y′ − y|, then the same holds for y′′ in place of y′. Thus,
it follows that for some point x2 ∈ ∂A, χp(x2) ∈ A. If χp(x2) ∈ ∂A, then we are
done, and so we may assume that χp(x2) ∈ intA, which yields that fp(x2) < 0.

We have shown that fp : ∂A → R attains both a positive and a negative value
on its domain. On the other hand, since f is continuous and ∂A is connected,
fp(q) = 0 for some q ∈ ∂A, from which the assertion readily follows. �

Remark 1. Lemma 3 holds also for the boundary of the external connected com-
ponent of Rd \A in place of ∂A.

Remark 2. We note that the equality A1+A2 = ∂A1+∂A2 does not hold in general
for different compact sets A1, A2 with connected boundaries. To show it, one may
consider the sets A1 = B2

2 and A2 = εB2
2 for some sufficiently small value of ε,

where Bd
2 be the Euclidean unit ball of dimension d centered at the origin.

Remark 3. Lemma 3 does not hold if we omit the condition that ∂A is connected.
To show it, we may choose A as the union of B2

2 and a singleton {p} with |p| being
sufficiently large.

Corollary 1. If A is a compact set with a connected boundary then A + A =
A+ ∂A = ∂A+ ∂A. Thus, for any positive integer k ≥ 2, we have A[k] = ∂A[k].

Corollary 2. Let d ≥ 2 and k ≥ max{2, (d − 1)(d− 2)}. Let A be a compact set
such that ∂S ⊆ A ⊆ S for some compact, star-shaped set S ⊂ Rd. Then we have

vol

(
1

k
A[k]

)
≤ vol

(
1

k + 1
A[k + 1]

)
.

Proof. Without loss of generality, we may assume that S is star-shaped with respect
to the origin. Set S′ = S + εBd

2 for some small value ε > 0.
First, we show that ∂S′ is path-connected. Let L be a ray starting at o. Since

o ∈ intS′, L ∩ ∂S′ �= ∅. Let p ∈ L ∩ ∂S′. Then there is a point q ∈ S such that
|q − p| = ε. Now, if x is any relative interior point of [o, q], then the line through x
and parallel to [p, q] intersects [o, q] at a point at distance less than ε from x. Since
[o, q] ⊆ S, from this it follows that x ∈ S + ε intBd

2 ⊆ intS′. In other words, for
any p ∈ ∂S′, all points of [o, p] but p lie in intS′. Thus, L ∩ ∂S′ is a singleton for
any ray L starting at o.
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Let 0 < r < R such that ∂S′ ⊂ H = RBd
2 \ (r intBd

2 ). Let P : H → Sd−1 be the
central projection to Sd−1. Note that P is Lipschitz, and thus continuous on H,
and its restriction P |∂S′ to ∂S′ is bijective. On the other hand, since ∂S′ (as also
S′) are compact, this implies that the inverse of P |∂S′ is continuous, that is, ∂S′

and Sd−1 are homeomorphic. Thus, ∂S′ is path-connected.
On the other hand, ∂S ⊆ A ⊆ S implies that A′ = A + εBd

2 ⊆ S′, and ∂S′ ⊆
∂S + εSd−1 ⊆ ∂S + εBd

2 ⊆ A′. Now, we may apply Lemma 3 and Corollary 1, and
obtain that for any value of k ≥ 2, A′[k] = S′[k]. Thus, by Theorem 1 it follows
that

vol

(
A[k]

k
+ εBd

2

)
= vol

(
A′[k]

k

)
≤ vol

(
A′[k + 1]

k + 1

)
= vol

(
A[k + 1]

k + 1
+ εBd

2

)
.

On the other hand, for any compact set C the function t �→ vol(C + tBd
2 ) is con-

tinuous on [0,+∞), see for example [FM], hence limε→0+ vol
(

1
mA[m] + εBd

2

)
=

vol
(

1
mA[m]

)
, for any integer m which implies the corollary. �

Let us denote the closure of a set A ⊂ Rd by cl(A).

Proposition 1. Let γ ⊂ R2 be a simple continuous curve connecting o and e1 such
that its intersection with the x-axis is {o, e1}. Let D be the interior of the closed
Jordan curve γ ∪ [o, e1]. For i = 0, 1, let γi =

i
2e1 +

1
2γ, and Di =

i
2e1 +

1
2D. Then

cl (D \ (D0ΔD1)) ⊆ 1
2γ[2], where Δ denotes symmetric difference.

Proof. For convenience, we assume that γ lies in the half plane {y ≤ 0}. As in the
proof of Lemma 3, let χp : R2 → R2 denote the reflection about p ∈ R2 defined by
χp(x) = 2p − x, and note that p ∈ 1

2γ[2] if and only if there is some point q ∈ γ
such that χp(q) ∈ γ, or in other words, if γ ∩ χp(γ) �= ∅. Let L denote the x-axis,
Lp = χp(L), and let S be the infinite strip between L and Lp (cf. Figure 2).

Figure 2. An illustration for Proposition 1. The dashed region
belongs to 1

2γ[2]

First, observe that o, e1 ∈ γ yields that γ0 ∪ γ1 ⊂ 1
2γ[2], and γ ⊂ 1

2γ[2] trivially
holds. Thus, we need to show that if for some point p we have p ∈ D \ cl(D0 ∪D1)
or p ∈ D0 ∩D1 ∩D, then p ∈ 1

2γ[2]. We do it only for the case p ∈ D \ cl(D0 ∪D1)
since for the second case a similar argument can be applied.

Consider some point p ∈ D \ (D0 ∪ D1). Then p /∈ cl(D0 ∪ D1) yields that
χp(o) = 2p /∈ clD, and the relation χp(e1) /∈ clD follows similarly.

Case 1 (γ ⊂ S). Note that in this case χp(γ) ⊂ S. Since p ∈ D and χp(o) /∈ clD,
∂D = γ ∪ [o, e1] and [χp(o), p] ∩ [o, e1] = ∅, it follows by the continuity of γ that
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γ∩ [χp(o), p] �= ∅. Hence, by the compactness of γ, there is a point x ∈ γ∩ [χp(o), p]
closest to p. By its choice, χp(x) ∈ D ∪ γ. If χp(x) ∈ γ, we are done, and thus, we
assume that χp(x) ∈ D. This implies that χp(γ) contains both interior and exterior
points of D. On the other hand, since χp(γ) ⊂ S, this implies that χp(γ) ∩ γ �= ∅.

Case 2 (γ �⊂ S). Let γp = γ∩S, and let γ̄0 and γ̄1 denote the connected components
of γp containing o and e1, respectively. For i = 0, 1, we denote the endpoint of γ̄i
on Lp by xi. Clearly, since γ is simple and continuous, x0 is on the left-hand side
of x1, and the curve γ̄0 ∪ [x0, x1] ∪ γ̄1 ∪ [o, e1] is a Jordan curve. We denote the
interior of this curve by Dp.

Consider the case where p /∈ Dp. Then p is an exterior point of Dp, and there
is a connected component γ∗ of γp, with endpoints on Lp, that separates p from
L. Since the reflections of the endpoints of γ∗ about p lie on L, we may apply the
argument in Case 1, and obtain that ∅ �= γ∗ ∩ χp(γ

∗) ⊆ γ ∩ χp(γ). Thus, we may
assume that p ∈ Dp.

If χp(x0) ∈ [o, e1], then the continuity of γ̄0 and χp(o) /∈ clD implies that
∅ �= γ ∩ χp(γ̄0) ⊆ γ ∩ χp(γ). If χp(x1) ∈ [o, e1], then we may apply a similar
argument, and thus we may assume that χp(x0), χp(x1) /∈ [o, e1]. This implies that
either [o, p1] ⊂ [χp(x0), χp(x1)] or [χp(x0), χp(x1)] and [o, p1] are disjoint.

The relation [o, p1] ⊂ [χp(x0), χp(x1)] yields [χp(o), χp(p1)] ⊂ [x0, x1], and, by
the previous argument, we have ∅ �= χp(γ̄0)∩ γ̄1 ⊆ γ∩χp(γ). Thus, we are left with
the case where [χp(x1), χp(x2)] and [o, p1] are disjoint; without loss of generality
we may assume that χp(x1), χp(x0), o and e1 are in this consecutive order on L.
Let U be the closure of the connected component of S \ γ̄0 containing γ̄1. Then
χp(p) = p ∈ intU ∩ χp(U), implying that ∅ �= γ1 ∩ χp(γ1) ⊆ γ ∩ χp(γ). �

The proof of Lemma 4 below is based on the idea of the proof of Proposition 1,
with some necessary modifications.

Lemma 4. Let k ≥ 2, and let γ ⊂ R2 be a convex, continuous curve connecting o
and e1 such that its intersection with the x-axis is {o, e1}. Let D be the interior of
the closed Jordan curve γ ∪ [o, e1]. For i = 0, 1, . . . , k − 1, let γi =

i
ke1 +

1
kγ, and

Di =
i
k e1 +

1
kD. Then cl

(
D \ (

⋃k
i=1 Di)

)
⊆ 1

kγ[k], and for any i �= j, Di ∩Dj ⊆
1
kγ[k].

Proof. First observe that D is convex, hence Di is contained in D for all values
of i. Let us denote the x-axis by L and, for any p ∈ R2, let χk

p : R2 → R2 be

the homothety with center p and ratio − 1
k−1 defined by χk

p(x) =
k

k−1p −
x

k−1 , for

x ∈ R2. Furthermore, we set Lk
p = χk

p(L), and denote the infinite strip between L

and Lk
p by S. The assertion for k = 2 is a special case of Proposition 1. To prove it

for k ≥ 3, we apply induction on k, and assume that the lemma holds for γ[k − 1].

Let p ∈ cl
(
D \ (

⋃k
i=1 Di)

)
. Clearly, since (∂D) \ (

⋃k
i=1 Di) = γ ⊆ γ[k], we may

assume that p ∈ D. By the induction hypothesis for k−1
k γ , if p ∈ X1 = k−1

k clD,

then p ∈ k−1
k · 1

k−1γ[k−1] = 1
kγ[k−1] ⊆ 1

kγ[k]. Similarly, if p ∈ X2 = 1
ke1+

k−1
k clD,

then p ∈ 1
ke1 +

1
kγ[k − 1] ⊆ 1

kγ[k]. Thus, assume that p /∈ X1 ∪ X2, which yields

that χk
p(o) and χk

p(e1) are in the exterior of D. Let the (unique) intersection point

of [p, χk
p(o)] and γ be q1 and the (unique) intersection point of [p, χk

p(e1)] and γ
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be q2. As χk
p(q1) ∈ [o, p], the convexity of D implies that χk

p(q1) ∈ D, and the

containment χk
p(q2) ∈ D follows similarly.

Similarly like in Proposition 1, if γ ⊂ S, then by continuity, γ ∩ χk
p(γ) �= ∅,

which implies the containment p ∈ 1
kγ[k]. Assume that γ �⊂ S. Then S ∩ γ has

two connected components γ1, γ2, where we choose the indices such that o ∈ γ1,
and e1 ∈ γ2. Clearly, we have either q1 ∈ γ2, q2 ∈ γ1, or both. If q1 ∈ γ2, then
the containment relations χ(q1) ∈ D, χ(e1) /∈ clD, and χk

p(γ2) ⊂ S yield that

∅ �= γ1 ∩ χk
p(γ2) ⊂ γ ∩ χk

p(γ). If q2 ∈ γ1, then the assertion follows by a similar
argument.

Finally, we consider the case that p ∈ Di ∩Dj for some i < j. In this case the
convexity of D implies that p ∈ Ds for any i ≤ s ≤ j. This yields that there are
some distinct values i, j ≤ k − 1 or i, j ≥ 2 such that p ∈ Di ∩ Dj . Thus, the
assertion readily follows from the induction hypothesis. �

Lemma 5 is a variant of Lemma 2 for some path-connected sets in R2.

Lemma 5. Let k ≥ 2 and γ be a bounded convex curve in R2, and let γ[k] ⊆ M ⊆
k conv γ. Then

area

(
1

k
M

)
≤ area

(
1

k + 1
(M + γ)

)
.

Proof. If γ is closed, then Lemma 3 yields that 1
kγ[k] = conv γ for all k ≥ 2, which

clearly implies the statement. Assume that γ is not closed. Since the inequalities
in Lemma 5 do not change under affine transformations, we may assume that the
endpoints of γ are o and e1, and the x-axis is a supporting line of conv γ.

Let us define

D = conv γ, α = area(D ∩ (e1 +D)), and β = area (D ∩ ((e1 +D) ∪ (−e1 +D))) .

Note that 0 ≤ α ≤ β ≤ 2α. Let Di = ie1 +D for i = 0, 1, . . . , k. For 0 ≤ i ≤ k− 1,
let μi be the area of the region of M in Di that do not belong to any Dj , j �= i,
where we note that since k ≥ 2, by Lemma 4 we have that all other points of Di

belong to M . Similarly, for 0 ≤ i ≤ k, let λi be the area of the region of M + γ in
Di that do not belong to any Dj , j �= i. An elementary computation shows that

area(M) =k2 area(D)− 2(area(D)− α)− (k − 2)(area(D)− β) +

k−1∑
i=0

μi

=(k2 − k) area(D) + 2α+ (k − 2)β +
k−1∑
i=0

μi,

(13)

and similarly,

(14) area(M + γ) = (k2 + k) area(D) + 2α+ (k − 1)β +

k∑
i=0

λi.

Since o, e1 ∈ γ, we have M, e1 + M ⊆ M + γ. Thus, λ0 ≥ μ0, λk ≥ μk−1,
λ1 ≥ max{μ0 − (β − α), μ1}, λk−1 ≥ max{μk−2, μk−1 − (β − α)}, and for 2 ≤
i ≤ k − 2, λi ≥ max{μi−1, μi}. Since λi ≥ i

kμi−1 +
k−i
k μi if 2 ≤ i ≤ k − 2, and

λi ≥ i
kμi−1 +

k−i
k μi − 1

k (β − α) if i = 1 or i = k − 1, it follows that

k∑
i=0

λi ≥
k + 1

k

k−1∑
i=1

μi −
2

k
(β − α).
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Thus, by (13),

k∑
i=0

λi ≥
k + 1

k

(
area(M)− (k2 − k) area(D)− 2α− (k − 2)β

)
− 2

k
(β − α).

After substituting this into (14) and simplifying, we obtain

area(M + γ) ≥ k + 1

k
area(M) + (k + 1) area(D),

which yields

area

(
1

k + 1
(M + γ)

)
≥ k

k + 1
area

(
1

k
M

)
+

1

k + 1
area(D).

Thus, the inequality area
(
1
kM

)
≤ area(D) yields the assertion. �

In Theorem 2, by an open topological disc we mean the bounded connected
component defined by a Jordan curve, and recall that a convex body is a compact,
convex set with nonempty interior.

Theorem 2. Let k ≥ 2. Let K be a plane convex body, and let F = {Fi : i ∈ I}
be a family of pairwise disjoint open topological discs such that if Fi ∩ ∂K �= ∅ then
Fi ∩ ∂K is a connected curve and Fi is convex. Let X = K \

(⋃
i∈I Fi

)
. Then

area

(
1

k
X[k]

)
≤ area

(
1

k + 1
X[k + 1]

)
.

Proof. Clearly, we may assume that each Fi intersects K, and also for each Fi,
(∂K) \ Fi is infinite, since removing the first type discs does not change X, and if
there is some Fi such that (∂K) \Fi is finite, then X is either ∅ or a singleton, and
in both cases the statement is trivial. Thus, we have that if Fi intersects ∂K, then
the boundary of the convex set Fi∩K consists of the two connected, convex curves
Fi ∩ ∂K and K ∩ ∂Fi.

First, note that since each member of F has positive area, it has countably many
elements; indeed, for any δ > 0 there are only finitely many elements Fi of F for
which area(Fi ∩ K) ≥ δ, and thus, we may list the elements according to area.
Furthermore, since X is compact, area(X) exists.

By Lemma 3, we may assume that every member of F intersects ∂K; indeed, if
some Fi does not intersect ∂K, then ∂Fi is a compact, connected set in X, implying
that Fi ⊆ 1

k (∂Fi)[k] ⊆ 1
kX[k] for all k ≥ 2. For any i ∈ I, let γi denote the part of

∂Fi in K. Clearly, γi is a convex curve, and the segment connecting its endpoints
lies in K by convexity. As the two endpoints of γi are in ∂K, the line through them
supports K \Fi. Choose some finite subfamily Iε ⊆ I such that area (Xε \X) ≤ ε,
where Xε = K \

(⋃
i∈Iε

Fi

)
. This is possible, since for any ordering of the elements,∑

i∈I area(K ∩ Fi) is a bounded series with positive elements, and hence, it is
absolute convergent, and convex sets with small area and bounded diameter are
contained in a small neighborhood of their boundary.

For any i ∈ Iε, we set Di = Fi ∩ K, and observe that Di is a convex set
separated from Xε by the convex curve γi. Let the endpoints of γi be q1i and q2i ,
and let Di1 be the homothetic copy of Di with ratio 1

k and center i1. Furthermore,

for j = 2, 3, . . . , k, let Dij =
j−1
k

(
q2i − q1i

)
+Di1 (cf. Figure 3). Then, by Lemma 4,

1
kγi[k] ⊆

1
kXε[k] contains all points of Di belonging to none of the Dijs or to at



370 M. FRADELIZI, Z. LÁNGI, AND A. ZVAVITCH

Figure 3. An illustration for the proof of Theorem 2

least two of them. Let Mi = (X[k] ∩ (kDi)). Then Mi ⊆ conv(kDi), and thus,
Lemma 5 yields that

area

(
1

k
Mi

)
≤ area

(
1

k + 1
(Mi + γi)

)
.

On the other hand, with the notation Dε =
⋃

i∈Iε
Di, we have

area

(
1

k
X[k] ∩Dε

)
=

∑
i∈Iε

area

(
1

k
Mi

)
,

and

area

(
1

k + 1
X[k + 1] ∩Dε

)
≥

∑
i∈Iε

area

(
1

k + 1
(Mi + γi)

)
,

and thus, we have area
(
1
kX[k] ∩Dε

)
≤ area

(
1

k+1X[k + 1] ∩Dε

)
. On the other

hand, since area(Xε \ X) < ε, Xε ∪ Dε = convX, and X ⊆ Xε, we have that
area( 1

mX[m] \Dε) ≤ ε for all m ≥ 1. This implies that

area

(
1

k
X[k]

)
≤ area

(
1

k + 1
X[k + 1]

)
− ε.

This holds for all ε > 0, which yields the assertion. �

4. Additional remarks and questions

Remark 4. One can ask if the statement of Theorem 1 holds for arbitrary measure
instead of volume. The answer to this question is negative. Indeed, consider the

measure μ(K) = vol(K ∩ C), where C =
[
− 1

d ,
1
d

]d
and S =

⋃d
i=1[o, ei], where

e1, e2, . . . , ed are the vectors of the standard orthonormal basis. Then, clearly, we
have

μ

(
1

2k
S[2k]

)
=

1

2d
vol(C) > μ

(
1

2k + 1
S[2k + 1]

)
.
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Remark 5. The statement of Theorem 1 does not hold for arbitrary measures even
for rotationally invariant measures in the plane: for any value of k there is a com-

pact, star-shaped set S ⊂ R2 such that vol
(
1
kS[k] ∩B2

2

)
> vol

(
1

k+1S[k + 1] ∩B2
2

)
.

To prove this, set S = [o, e1]∪ [o, e2], and let E denote the ellipse centered at o and
containing the points (1 − 1/k, 0) and (1 − 2/k, 1/k). It is an elementary compu-
tation to check that in this case vol

(
1
kS[k] ∩ E

)
= 1

4 vol(E). On the other hand,

the boundary point (1 − 2/(k + 1), 1/(k + 1)) of 1
k+1S[k + 1] lies in int(E), which

implies that vol
(

1
k+1S[k + 1] ∩ E

)
< 1

4 vol(E). Now, if f : R2 → R
2 is defined

as the linear transformation mapping E into B2
2 , then f(S) satisfies the required

conditions.

One can use star-shaped sets together with ideas from [FMMZ2] to give a nega-
tive answer to a more general version of Conjecture 1, also from [BMW].

Conjecture 2 (Bobkov-Madiman-Wang). For any k ≥ 2, and any compact sets
A1, A2, . . . , Ak+1 in Rd, we have

vol

(
k+1∑
i=1

Ai

)1/d

≥ 1

k

k+1∑
i=1

vol

⎛
⎝∑

j �=i

Aj

⎞
⎠

1/d

.

In particular, for k = 2,

vol(A1 + A2+A3)
1/d

≥1

2

(
vol (A1 +A2)

1/d + vol (A1 +A3)
1/d + vol (A2 +A3)

1/d
)
.

(15)

Conjecture 2 is trivial for convex sets. Moreover, (15) is true when A1 = A2 and
A1 is convex. Indeed, in this case (15) is equivalent to

vol (A1 +A1 +A3)
1/d ≥ vol (A1)

1/d
+ vol (A1 +A3)

1/d
,

which follows from the Brunn-Minkowski inequality [Sch].
It was proved in [FMMZ2] that Conjecture 2 is true in R. Since an affirmative

answer to Conjecture 2 implies also Conjecture 1, the former is also false for d ≥ 12
by [FMMZ1,FMMZ2]. Here we show that Conjecture 2 is false in R

d for d ≥ 7.

Proposition 2. For any d ≥ 7, there are compact, star-shaped sets A1, A2, A3 ⊂ Rd

satisfying

vol (A1 +A2 +A3)
1/d<

1

2

(
vol (A1+A2)

1/d+vol (A1 +A3)
1/d+vol (A2 +A3)

1/d
)
.

Proof. We give the proof for d = 7 and the result follows for d > 7 by taking direct
products with a cube. Consider the sets

A1 = [0, 1]4 × {0}3;A2 = {0}4 × [0, 1]3 and A3 = ([0, a]4 × {0}3) ∪ ({0}4 × [0, b]3),

where we select a, b > 0 later. Since these sets are lower dimensional, one has
vol(A1) = vol(A2) = vol(A3) = 0. An elementary consideration shows that

vol(A1 +A3) = b3, vol(A2 +A3) = a4 and vol(A1 +A2) = 1,

and

vol(A1 +A2 +A3) = (a+ 1)4 + (b+ 1)3 − 1.
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The last step is to show that, with a = 3 and b = 6, the quantity

((a+ 1)4 + (b+ 1)3 − 1)1/7 − 1

2

(
a4/7 + b3/7 + 1

)
is negative, which gives a counterexample to (15). �
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