The Kac formula and Poincaré recurrence theorem in Riesz spaces
HTML articles powered by AMS MathViewer
- by Youssef Azouzi, Mohamed Amine Ben Amor, Jonathan Homann, Marwa Masmoudi and Bruce A. Watson;
- Proc. Amer. Math. Soc. Ser. B 10 (2023), 182-194
- DOI: https://doi.org/10.1090/bproc/152
- Published electronically: May 3, 2023
- HTML | PDF
Abstract:
Riesz space (non-pointwise) generalizations for iterative processes are given for the concepts of recurrence, first recurrence and conditional ergodicity. Riesz space conditional versions of the Poincaré Recurrence Theorem and the Kac formula are developed. Under mild assumptions, it is shown that every conditional expectation preserving process is conditionally ergodic with respect to the conditional expectation generated by the Cesàro mean associated with the iterates of the process. Applied to processes in $L^1(\Omega ,{\mathcal A},\mu )$, where $\mu$ is a probability measure, new conditional versions of the above theorems are obtained.References
- Charalambos D. Aliprantis and Kim C. Border, Infinite-dimensional analysis, 2nd ed., Springer-Verlag, Berlin, 1999. A hitchhiker’s guide. MR 1717083, DOI 10.1007/978-3-662-03961-8
- Youssef Azouzi and Mejdi Trabelsi, $L^p$-spaces with respect to conditional expectation on Riesz spaces, J. Math. Anal. Appl. 447 (2017), no. 2, 798–816. MR 3573115, DOI 10.1016/j.jmaa.2016.10.013
- J. J. Grobler and B. de Pagter, Operators representable as multiplication-conditional expectation operators, J. Operator Theory 48 (2002), no. 1, 15–40. MR 1926042
- C. B. Huijsmans and B. de Pagter, Averaging operators and positive contractive projections, J. Math. Anal. Appl. 113 (1986), no. 1, 163–184. MR 826666, DOI 10.1016/0022-247X(86)90340-9
- P. G. Dodds, C. B. Huijsmans, and B. de Pagter, Characterizations of conditional expectation-type operators, Pacific J. Math. 141 (1990), no. 1, 55–77. MR 1028265, DOI 10.2140/pjm.1990.141.55
- Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel, Operator theoretic aspects of ergodic theory, Graduate Texts in Mathematics, vol. 272, Springer, Cham, 2015. MR 3410920, DOI 10.1007/978-3-319-16898-2
- Jacobus J. Grobler, Stopped processes and Doob’s optional sampling theorem, J. Math. Anal. Appl. 497 (2021), no. 1, Paper No. 124875, 13. MR 4192217, DOI 10.1016/j.jmaa.2020.124875
- Jonathan Homann, Wen-Chi Kuo, and Bruce A. Watson, A Koopman–von Neumann type theorem on the convergence of Cesàro means in Riesz spaces, Proc. Amer. Math. Soc. Ser. B 8 (2021), 75–85. MR 4214338, DOI 10.1090/bproc/75
- Jonathan Homann, Wen-Chi Kuo, and Bruce A. Watson, Ergodicity in Riesz spaces, Positivity and its applications, Trends Math., Birkhäuser/Springer, Cham, [2021] ©2021, pp. 193–201. MR 4383625, DOI 10.1007/978-3-030-70974-7_{9}
- Wen-Chi Kuo, Coenraad C. A. Labuschagne, and Bruce A. Watson, Discrete-time stochastic processes on Riesz spaces, Indag. Math. (N.S.) 15 (2004), no. 3, 435–451. MR 2093170, DOI 10.1016/S0019-3577(04)80010-7
- Wen-Chi Kuo, Coenraad C. A. Labuschagne, and Bruce A. Watson, Conditional expectations on Riesz spaces, J. Math. Anal. Appl. 303 (2005), no. 2, 509–521. MR 2122234, DOI 10.1016/j.jmaa.2004.08.050
- W.-C. Kuo, C. C. A. Labuschagne, and B. A. Watson, A zero-one law for Riesz space and fuzzy processes, Fuzzy Logic, Soft Computing and Computational Intelligence, vol. I, pp. 393–397, Eleventh International Fuzzy Systems Association World Congress, July 28–31, 2005, Tsinghua University Press/Springer, Beijing, 2005.
- Wen-Chi Kuo, Coenraad C. A. Labuschagne, and Bruce A. Watson, Ergodic theory and the strong law of large numbers on Riesz spaces, J. Math. Anal. Appl. 325 (2007), no. 1, 422–437. MR 2273535, DOI 10.1016/j.jmaa.2006.01.056
- Wen-Chi Kuo, Michael J. Rogans, and Bruce A. Watson, Mixing inequalities in Riesz spaces, J. Math. Anal. Appl. 456 (2017), no. 2, 992–1004. MR 3688462, DOI 10.1016/j.jmaa.2017.07.035
- W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1971. MR 511676
- Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983. MR 833286, DOI 10.1017/CBO9780511608728
- Gh. Stoica, Martingales in vector lattices, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 34(82) (1990), no. 4, 357–362. MR 1309536
- Vladimir G. Troitsky, Martingales in Banach lattices, Positivity 9 (2005), no. 3, 437–456. MR 2188530, DOI 10.1007/s11117-004-2769-1
- Bruce A. Watson, An Andô-Douglas type theorem in Riesz spaces with a conditional expectation, Positivity 13 (2009), no. 3, 543–558. MR 2511240, DOI 10.1007/s11117-008-2239-2
Bibliographic Information
- Youssef Azouzi
- Affiliation: LATAO Laboratory, Faculty of Mathematical, Physical and Natural Sciences of Tunis, Tunis-El Manar University, 2092 El Manar, Tunisia
- MR Author ID: 858092
- ORCID: 0000-0003-1560-5726
- Email: josefazouzi@gmail.com
- Mohamed Amine Ben Amor
- Affiliation: LATAO Laboratory, Faculty of Mathematical, Physical and Natural Sciences of Tunis, Tunis-El Manar University, 2092 El Manar, Tunisia
- MR Author ID: 1004295
- ORCID: 0000-0002-1286-8849
- Email: mohamedamine.benamor@ipest.rnu.tn
- Jonathan Homann
- Affiliation: School of Mathematics, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa
- MR Author ID: 1423603
- ORCID: 0000-0001-6175-893X
- Email: jmhomann@gmail.com
- Marwa Masmoudi
- Affiliation: LATAO Laboratory, Faculty of Mathematical, Physical and Natural Sciences of Tunis, Tunis-El Manar University, 2092 El Manar, Tunisia
- ORCID: 0000-0001-7133-6351
- Email: marwa_masmoudi@hotmail.com
- Bruce A. Watson
- Affiliation: School of Mathematics, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa
- MR Author ID: 649582
- ORCID: 0000-0003-2403-1752
- Email: b.alastair.watson@gmail.com
- Received by editor(s): July 22, 2022
- Received by editor(s) in revised form: November 24, 2022, November 26, 2022, and November 29, 2022
- Published electronically: May 3, 2023
- Additional Notes: This research was funded in part by the joint South Africa - Tunisia Grant (SA-NRF: SATN180717350298, Grant number 120112.)
The fifth author is the corresponding author. - Communicated by: Stephen Dilworth
- © Copyright 2023 by the authors under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)
- Journal: Proc. Amer. Math. Soc. Ser. B 10 (2023), 182-194
- MSC (2020): Primary 47B60, 37A30, 47A35, 60A10
- DOI: https://doi.org/10.1090/bproc/152
- MathSciNet review: 4583778