A note on the anisotropic Bernstein problem in ${\mathbb {R}}^3$
HTML articles powered by AMS MathViewer
- by César Rosales;
- Proc. Amer. Math. Soc. Ser. B 11 (2024), 105-114
- DOI: https://doi.org/10.1090/bproc/214
- Published electronically: May 15, 2024
- HTML | PDF
Abstract:
It was proved by Jenkins [Arch. Rational Mech. Anal. 8 (1961), 181–206] that a smooth entire graph in ${\mathbb {R}}^3$ with vanishing anisotropic mean curvature must be a plane. By using a calibration argument and a stability inequality we show here a different self-contained proof of this result, which is still valid when the anisotropic mean curvature is constant.References
- João Lucas Barbosa and Manfredo do Carmo, Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), no. 3, 339–353. MR 731682, DOI 10.1007/BF01215045
- S. Bernstein, Sur un théorème de géométrie et son application aux équations aux dérivées partielles du type elliptique, Charikov, Comm. Soc. Math. (2) 15 (1915-1917), 38–45.
- Otis Chodosh and Chao Li, Stable anisotropic minimal hypersurfaces in $\textbf {R}^4$, Forum Math. Pi 11 (2023), Paper No. e3, 22. MR 4546104, DOI 10.1017/fmp.2023.1
- Ulrich Clarenz, Enclosure theorems for extremals of elliptic parametric functionals, Calc. Var. Partial Differential Equations 15 (2002), no. 3, 313–324. MR 1938817, DOI 10.1007/s005260100128
- Ulrich Clarenz and Heiko von der Mosel, On surfaces of prescribed $F$-mean curvature, Pacific J. Math. 213 (2004), no. 1, 15–36. MR 2040248, DOI 10.2140/pjm.2004.213.15
- Tobias Holck Colding and William P. Minicozzi II, A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011. MR 2780140, DOI 10.1090/gsm/121
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
- Wenkui Du and Yang Yang, Flatness of anisotropic minimal graphs in $\mathbb {R}^{n+1}$, arXiv:2311.00166, October 2023.
- José A. Gálvez, Pablo Mira, and Marcos P. Tassi, Complete surfaces of constant anisotropic mean curvature, Adv. Math. 428 (2023), Paper No. 109137, 27. MR 4601781, DOI 10.1016/j.aim.2023.109137
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682, DOI 10.1007/978-1-4684-9486-0
- H. B. Jenkins, On two-dimensional variational problems in parametric form, Arch. Rational Mech. Anal. 8 (1961), 181–206. MR 151906, DOI 10.1007/BF00277437
- Miyuki Koiso and Bennett Palmer, Geometry and stability of surfaces with constant anisotropic mean curvature, Indiana Univ. Math. J. 54 (2005), no. 6, 1817–1852. MR 2189687, DOI 10.1512/iumj.2005.54.2613
- Connor Mooney, Entire solutions to equations of minimal surface type in six dimensions, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 12, 4353–4361. MR 4493627, DOI 10.4171/jems/1202
- Connor Mooney and Yang Yang, The anisotropic Bernstein problem, Invent. Math. 235 (2024), no. 1, 211–232. MR 4688704, DOI 10.1007/s00222-023-01222-4
- Frank Morgan, The cone over the Clifford torus in $\textbf {R}^4$ is $\Phi$-minimizing, Math. Ann. 289 (1991), no. 2, 341–354. MR 1092180, DOI 10.1007/BF01446576
- César Rosales, Compact anisotropic stable hypersurfaces with free boundary in convex solid cones, Calc. Var. Partial Differential Equations 62 (2023), no. 6, Paper No. 185, 20. MR 4610263, DOI 10.1007/s00526-023-02528-0
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Leon Simon, Equations of mean curvature type in $2$ independent variables, Pacific J. Math. 69 (1977), no. 1, 245–268. MR 454854, DOI 10.2140/pjm.1977.69.245
- Leon Simon, A Hölder estimate for quasiconformal maps between surfaces in Euclidean space, Acta Math. 139 (1977), no. 1-2, 19–51. MR 452746, DOI 10.1007/BF02392233
- Leon Simon, On some extensions of Bernstein’s theorem, Math. Z. 154 (1977), no. 3, 265–273. MR 448225, DOI 10.1007/BF01214329
- Leon Simon, The minimal surface equation, Geometry, V, Encyclopaedia Math. Sci., vol. 90, Springer, Berlin, 1997, pp. 239–272. MR 1490041, DOI 10.1007/978-3-662-03484-2_{5}
- Brian White, Existence of smooth embedded surfaces of prescribed genus that minimize parametric even elliptic functionals on $3$-manifolds, J. Differential Geom. 33 (1991), no. 2, 413–443. MR 1094464
- Sven Winklmann, Integral curvature estimates for $F$-stable hypersurfaces, Calc. Var. Partial Differential Equations 23 (2005), no. 4, 391–414. MR 2153030, DOI 10.1007/s00526-004-0306-5
Bibliographic Information
- César Rosales
- Affiliation: Departamento de Geometría y Topología and Excellence Research Unit “Modeling Nature” (MNat) Universidad de Granada, E-18071, Spain
- ORCID: 0000-0003-3681-1596
- Email: crosales@ugr.es
- Received by editor(s): November 20, 2023
- Received by editor(s) in revised form: January 25, 2024, and January 29, 2024
- Published electronically: May 15, 2024
- Additional Notes: The author was supported by the research grant PID2020-118180GB-I00 funded by MCIN/AEI/10.13039/501100011033
- Communicated by: Lu Wang
- © Copyright 2024 by the author under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License (CC BY NC ND 4.0)
- Journal: Proc. Amer. Math. Soc. Ser. B 11 (2024), 105-114
- MSC (2020): Primary 53A10
- DOI: https://doi.org/10.1090/bproc/214
- MathSciNet review: 4746435