On exponential groups and Maurer–Cartan spaces
HTML articles powered by AMS MathViewer
- by Alexander Berglund;
- Proc. Amer. Math. Soc. Ser. B 11 (2024), 358-370
- DOI: https://doi.org/10.1090/bproc/210
- Published electronically: July 11, 2024
- HTML | PDF
Abstract:
The purpose of this note is to give a concise account of some fundamental properties of the exponential group and the Maurer–Cartan space associated to a complete dg Lie algebra. In particular, we give a direct elementary proof that the Maurer–Cartan space is a delooping of the exponential group. This leads to a short proof that the Maurer–Cartan space functor is homotopy inverse to Quillen’s functor from simply connected pointed spaces to positively graded dg Lie algebras.References
- H. J. Baues and J.-M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977), no. 3, 219–242. MR 431172, DOI 10.1007/BF01425239
- Alexander Berglund, Rational homotopy theory of mapping spaces via Lie theory for $L_\infty$-algebras, Homology Homotopy Appl. 17 (2015), no. 2, 343–369. MR 3431305, DOI 10.4310/HHA.2015.v17.n2.a16
- A. Berglund, Rational homotopy theory, Lecture notes 2012. Available via https://staff.math.su.se/alexb/rathom2.pdf
- Alexander Berglund, Rational models for automorphisms of fiber bundles, Doc. Math. 25 (2020), 239–265. MR 4106892, DOI 10.4171/dm/746
- Urtzi Buijs, Yves Félix, Aniceto Murillo, and Daniel Tanré, Lie models in topology, Progress in Mathematics, vol. 335, Birkhäuser/Springer, Cham, [2020] ©2020. MR 4212536, DOI 10.1007/978-3-030-54430-0
- Edward B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107–209 (1971). MR 279808, DOI 10.1016/0001-8708(71)90015-6
- Y. Félix, M. Fuentes, and A. Murillo, All known realizations of complete Lie algebras coincide, arXiv:2207.10886, (2022).
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- Ezra Getzler, Lie theory for nilpotent $L_\infty$-algebras, Ann. of Math. (2) 170 (2009), no. 1, 271–301. MR 2521116, DOI 10.4007/annals.2009.170.271
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- William M. Goldman and John J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43–96. MR 972343, DOI 10.1007/BF02699127
- Vladimir Hinich, Descent of Deligne groupoids, Internat. Math. Res. Notices 5 (1997), 223–239. MR 1439623, DOI 10.1155/S1073792897000160
- Vladimir Hinich, DG coalgebras as formal stacks, J. Pure Appl. Algebra 162 (2001), no. 2-3, 209–250. MR 1843805, DOI 10.1016/S0022-4049(00)00121-3
- Andrey Lazarev and Martin Markl, Disconnected rational homotopy theory, Adv. Math. 283 (2015), 303–361. MR 3383805, DOI 10.1016/j.aim.2015.07.009
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- Martin Majewski, Rational homotopical models and uniqueness, Mem. Amer. Math. Soc. 143 (2000), no. 682, xviii+149. MR 1751423, DOI 10.1090/memo/0682
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 222892
- J. P. Pridham, Unifying derived deformation theories, Adv. Math. 224 (2010), no. 3, 772–826. MR 2628795, DOI 10.1016/j.aim.2009.12.009
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Birgit Richter, Symmetry properties of the Dold-Kan correspondence, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 1, 95–102. MR 1937795, DOI 10.1017/S0305004102006370
- D. Robert-Nicoud and B. Vallette, Higher Lie theory, arXiv:2010.10485, (2020).
Bibliographic Information
- Alexander Berglund
- Affiliation: Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
- MR Author ID: 774439
- Email: alexb@math.su.se
- Received by editor(s): June 27, 2023
- Received by editor(s) in revised form: December 31, 2023, and January 14, 2024
- Published electronically: July 11, 2024
- Additional Notes: The author was supported by the Swedish Research Council through grant no. 2021-03946.
- Communicated by: Julie Bergner
- © Copyright 2024 by the author under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Proc. Amer. Math. Soc. Ser. B 11 (2024), 358-370
- MSC (2020): Primary 55P62, 55U10
- DOI: https://doi.org/10.1090/bproc/210
- MathSciNet review: 4771859