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EIGENFUNCTION EXPANSIONS OF ULTRADIFFERENTIABLE

FUNCTIONS AND ULTRADISTRIBUTIONS. II.

TENSOR REPRESENTATIONS

APARAJITA DASGUPTA AND MICHAEL RUZHANSKY

Abstract. In this paper we analyse the structure of the spaces of coefficients
of eigenfunction expansions of functions in Komatsu classes on compact man-
ifolds, continuing the research in our paper [Trans. Amer. Math. Soc. 368
(2016), pp.8481-8498]. We prove that such spaces of Fourier coefficients are
perfect sequence spaces. As a consequence we describe the tensor structure
of sequential mappings on spaces of Fourier coefficients and characterise their
adjoint mappings. In particular, the considered classes include spaces of an-
alytic and Gevrey functions, as well as spaces of ultradistributions, yielding
tensor representations for linear mappings between these spaces on compact
manifolds.
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1. Introduction

The present paper is a continuation of our paper [4] where we have characterised
Komatsu spaces of ultradifferentiable functions and ultradistributions on compact
manifolds in terms of the eigenfunction expansions related to positive elliptic op-
erators. In particular, these classes include the spaces of analytic, Gevrey, and
smooth functions as well as the corresponding dual spaces of distributions and
ultradistributions, in both Roumieu and Beurling settings.

In particular, this extended the earlier characterisations of analytic functions on
compact manifolds in terms of the eigenfunction expansions by Seeley [23] (see also
[22]), and characterisations of Gevrey spaces and ultradistributions on tori [24] and
on compact Lie groups and homogeneous spaces [3].
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For example, if E is a positive elliptic pseudo-differential operator on a compact
manifold X without boundary and λj denotes its eigenvalues in the ascending
order, then smooth functions on X can be characterised in terms of their Fourier
coefficients:

(1.1) f ∈ C∞(X) ⇐⇒ ∀N ∃CN : |f̂(j, k)| ≤ CNλ−N
j for all j ≥ 1, 1 ≤ k ≤ dj ,

where f̂(j, k) =
(
f, ekj

)
L2 with ekj being the kth eigenfunction corresponding to the

eigenvalue λj (of multiplicity dj); see (2.1). If X and E are analytic, the result of
Seeley [23] can be reformulated as
(1.2)

f is analytic ⇐⇒ ∃L > 0 ∃C : |f̂(j, k)| ≤ Ce−Lλ
1/ν
j for all j ≥ 1, 1 ≤ k ≤ dj ,

where ν is the order of the pseudo-differential operator E. In [4] we extended
such characterisations to Gevrey classes and, more generally, to Komatsu classes of
ultradifferentiable functions and the corresponding classes of ultradistributions.

In this paper we continue this analysis showing that the appearing spaces of
coefficients with respect to expansions in eigenfunctions of positive elliptic operators
are perfect spaces in the sense of the theory of sequence spaces (see, e.g., Köthe [10]).
Consequently, we obtain tensor representations for linear mappings between spaces
of ultradifferentiable functions and the corresponding spaces of ultradistributions.
Such discrete representations in a given basis are useful in different areas of time-
frequency analysis, in partial differential equations, and in numerical investigations.
Due to possible multiplicities of eigenvalues the mappings beget the tensor structure
rather than the matrix one as it would be in the case of simple eigenvalues, and
our results are new for both situations.

Our analysis is based on the global Fourier analysis on compact manifolds which
was consistently developed in [5], with a number of subsequent applications, for
example to the spectral properties of operators [7], or to the wave equations for
the Landau Hamiltonian [20]. The corresponding version of the Fourier analysis
based on expansions with respect to biorthogonal systems of eigenfunctions of non-
self-adjoint operators has been developed in [19], with a subsequent extension in
[21].

The obtained characterisations of Komatsu classes found their applications, for
example for the well-posedness problems for weakly hyperbolic partial differential
equations [8]. The spaces of coefficients of eigenfunction expansions in Rn with re-
spect to the eigenfunctions of the harmonic oscillator have been analysed in [9] , and
the corresponding Komatsu classes have been investigated in [26]. The original Ko-
matsu spaces of ultradifferentiable functions and ultradistributions have appeared
in the works [11–13] by Komatsu (see also Rudin [18]), extending the original works
by Roumieu [17]. The universality of the spaces of Gevrey functions on the torus
has been established in [25].

The regularity properties of spaces of distributions and ultradistributions have
been analysed in [15], and their convolution properties appeared in [14].

The characterisations in terms of the eigenfunction expansions provide for de-
scriptions alternative to those using the classical Fourier analysis, with applications
in the theory of partial differential equations; see, e.g., [16]. For some other appli-
cations of this type of analysis one can see, e.g., [1, 2].

The paper in organised as follows. In Section 2 we briefly recall the constructions
leading to the global Fourier analysis on compact manifolds. In Section 3 we very
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briefly recall the relevant definitions from the theory of sequence spaces. In Section
4 we present the main results of this paper and their proofs. In Section 5 we
first recall the definitions for the Beurling version of the spaces and then give the
statement of the corresponding adjointness Theorem 4.7 in this case.

In this paper we adopt the notation N0 = N ∪ {0}.

2. Fourier analysis on compact manifolds

Let X be a closed C∞-manifold of dimension n endowed with a fixed measure
dx. We first recall an abstract statement from [5, Theorem 2.1] giving rise to the
Fourier analysis on L2(X).

Theorem 2.1. Let H be a complex Hilbert space and let H∞ ⊂ H be a dense linear
subspace of H. Let {dj}j∈N0

⊂ N and let {ekj }j∈N0,1≤k≤dj
be an orthonormal basis of

H such that ekj ∈ H∞ for all j and k. Let Hj := span{ekj }
dj

k=1, and let Pj : H → Hj

be the orthogonal projection. For f ∈ H, we denote f̂(j, k) := (f, ekj )H and let

f̂(j) ∈ Cdj denote the column of f̂(j, k), 1 ≤ k ≤ dj . Let T : H∞ → H be a linear
operator. Then the following conditions (i)-(iii) are equivalent:

(i) For each j ∈ N0, we have T (Hj) ⊂ Hj .
(ii) For each l ∈ N0 there exists a matrix σ(l) ∈ Cdl×dl such that for all ekj ,

T̂ ekj (l,m) = σ(l)mkδjl.

(iii) If in addition all ekj are in the domain of T ∗, then for each l ∈ N0 there

exists a matrix σ(l) ∈ Cdl×dl such that for all f ∈ H∞ we have

T̂ f(l) = σ(l)f̂(l).

The matrices in (ii) and (iii) coincide.
The equivalent properties (i)–(iii) follow from the condition:

(iv) For each j ∈ N0, we have TPj = PjT on H∞.
If, in addition, T extends to a bounded operator T ∈ L(H), then (iv) is

equivalent to (i)–(iii).

Under the assumptions of Theorem 2.1 we have the direct sum decomposition

H =
∞⊕
j=0

Hj , Hj = span {ekj }
dj

k=1,

and we have dj = dimHj . Here we will consider H = L2(X) for a compact manifold
X with Hj being the eigenspaces of an elliptic positive pseudo-differential operator
E.

The eigenvalues of E (counted without multiplicities) form a sequence λj , j ∈ N,
which we order so that

0 =: λ0 < λ1 < λ2 < . . . .

For each eigenvalue λj , there is the corresponding finite dimensional eigenspace Hj

of functions on X, which are smooth due to the ellipticity of E. We set

d0 := dimH0, H0 := kerE, λ0 := 0.

Since the operator E is elliptic, it is Fredholm, hence also d0 < ∞.
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We denote by Ψν
+e(X) the space of positive elliptic pseudo-differential operators

on order ν > 0 on M . Here we recall a useful relation between the sequences λj

and dj of eigenvalues of E ∈ Ψν
+e(X) and their multiplicities from [5].

Proposition 2.2. Let X be a closed manifold of dimension n, and let E ∈ Ψν
+e(X),

with ν > 0. Then there exists a constant C > 0 such that we have

dj ≤ C(1 + λj)
n
ν

for all j ≥ 1. Moreover, we also have

∞∑
j=1

dj(1 + λj)
−q < ∞ if and only if q >

n

ν
.

For f ∈ L2(X), by definition we have the Fourier series decomposition

f =

∞∑
j=0

dj∑
k=1

f̂(j, k)ekj .

The Fourier coefficients of f ∈ L2(X) with respect to the orthonormal basis {ekj }
are denoted by

(2.1) Ff(j, k) = f̂(j, k) :=
(
f, ekj

)
L2 .

We denote the space of Fourier coefficients by

(2.2) Σ = {v = (vl)l∈N0
, vl ∈ Cdl}.

Since {ekj }
1≤k≤dj

j≥0 is a complete orthonormal system of L2(X) we have the Plancherel
formula

||f ||2L2(X) =

⎛⎝ ∞∑
j=0

dj∑
k=1

|f̂(j, k)|2
⎞⎠1/2

= ||f̂ ||2l2(N0,Σ) =:

∞∑
j=0

||f̂(j)||2HS,

where we interpret f̂ as an element of the space

l2(N0,Σ) =

⎧⎨⎩h : N0 →
∏
j

Cdj : h(j) ∈ Cdj ,

∞∑
j=0

dj∑
k=1

|h(j, k)|2 < ∞

⎫⎬⎭ .

We endow l2(N0,Σ) with the norm

||h||l2(N0,Σ) =

⎛⎝ ∞∑
j=0

dj∑
k=1

|h(j, k)|2
⎞⎠1/2

.

We can think of F = FX as of the Fourier transform which is an isometry form
L2(X) onto l2(N0,Σ). The inverse of this Fourier transform can be then expressed
by

(F−1h)(x) =
∞∑
j=0

dj∑
k=1

h(j, k)ekj (x).
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If f ∈ L2(X) we can write

(2.3) f̂(j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̂(j, 1)
...
...
...
...

f̂(j, dj)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Cdj ,

thus thinking of the Fourier transforn always as a column vector. In particular, we
think of

êkj (l) =
(
êkj (l,m)

)dl

m=1

as of a column, and we notice that

êkj (l,m) = δjlδkm.

3. Sequence spaces and sequential linear mappings

We briefly recall that a sequence space E is a linear subspace of

CZ = {a = (aj)|aj ∈ C, j ∈ Z}.

The dual Ê (α-dual in the terminology of G. Köthe [10]) is a sequence space defined
by

Ê = {a ∈ CZ :
∑
j∈Z

|uj |||aj | < ∞ for all u ∈ E}.

A sequence space E is called perfect if
̂̂
E = E. A sequence space is called normal

if u = (uj) ∈ E implies |u| = (|uj |) ∈ E. A dual space Ê is normal so that any
perfect space is normal.

A pairing 〈·, ·〉E on E is a bilinear function on E × Ê defined by

〈u, v〉E =
∑
j∈Z

ujvj ∈ C,

which converges absolutely by the definition of Ê.

Definition 3.1. φ : E → C is called a sequential linear functional if there exists

some a ∈ Ê such that φ(u) = 〈u, a〉E for all u ∈ E. We abuse the notation by also
writing a : E → C for this mapping.

Definition 3.2. A mapping f : E → F between two sequence spaces is called a
sequential linear mapping if

(i) f is algebraically linear,

(ii) for any v ∈ F̂ , the composed mapping v ◦ f ∈ Ê.
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4. Tensor representations for Komatsu classes and their α-duals

Let Mk be a sequence of positive numbers such that

(M.0) M0 = 1.
(M.1) (Stability) Mk+1 ≤ AHkMk, k = 0, 1, 2, . . ..
(M.2) M2k ≤ AHk min0≤q≤k MqMk−q, k = 0, 1, 2, . . . , for some A,H > 0.

In a sequence of papers [11–13] Komatsu investigated classes of ultradifferentiable
functions on Rn associated to the sequence Mk, namely, the spaces of functions
Ψ ∈ C∞(Rn) such that for every compact K ⊂ Rn there exist h > 0 and a constant
C > 0 such that

(4.1) sup
x∈K

|∂αψ(x)| ≤ Ch|α|M|α|

holds for all multi-indices α ≥ 0. Similar to the case of usual distributions given
a space of ultradifferentiable functions satisfying (4.1) we can define a space of
ultradistributions as its dual.

We now recall the analogous definition of the Komatsu ultradifferentiable func-

tions Γ{Mk}(X) and its α-dual
[
Γ{Mk}(X)

]∧
. Here, as before, X is a compact

manifold without boundary and E ∈ Ψν
+e(X) with ν > 0.

Definition 4.1. The class Γ{Mk}(X) is the space of C∞ functions φ on X such
that there exist h > 0 and C > 0 such that we have

||Ekφ||L2(X) ≤ ChνkMνk, k = 0, 1, 2, . . . ,

where ν ∈ N is the order of the positive elliptic pseudo-differential operator E.

In [4] we have characterised the class Γ{Mk}(X) in terms of the eigenvalues of
the operator E. We assume that

(M.3) For some l, Cl > 0 we have k! ≤ Cll
kMk, for all k ∈ N0.

In what follows, for wl ∈ Cdl we write

||wl||HS :=

⎛⎝ dl∑
j=1

|(wl)j |2
⎞⎠1/2

.

Theorem 4.1 ([4]). Assume conditions (M.0), (M.1), (M.2), (M.3). Then φ ∈
Γ{Mk}(X) if and only if there exist constants C > 0 and L > 0 such that

||φ̂(l)||HS ≤ C exp{−M(Lλ
1/ν
l )} for all l ≥ 1,

where

M(r) := sup
k∈N0

log
rνk

Mνk
.

Example 4.2. As an example, for the (Gevrey-Roumieu) class of ultradifferentiable
functions

γs(X) = Γ{(k!)s}(X), 1 < s < ∞,

we have M(r) � r1/s. This is also true for s = 1, characterising the class of analytic
functions if the manifold is analytic. The class γs(X) coincides with the usual
Gevrey class of functions on a manifold X defined in terms of their localisations.
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Based on Theorem 4.1 we can then write

Γ{Mk}(X) =
{
[φ̂(l)]l∈N0

: φ ∈ C∞(X) ∃C > 0 such that

||φ̂(l)||HS ≤ C exp{−M(Lλ
1/ν
l )}∀l ≥ 1

}
.

For φ ∈ Γ{Mk}(X) we will write

φ ≈
[
φ̂(l)

]
l∈N0

so that Γ{Mk}(X) can be thought of as a sequence space, but it will be convenient
to view it as a subspace of Σ defined in (2.2), taking into account the dimensions
of the eigenspaces of the operator E.

Next we recall the definition of the α-dual of the space Γ{Mk}(X) (following [4]).
The α-dual of the space Γ{Mk}(X) of ultradifferentiable functions, denoted by

[Γ{Mk}(X)]∧, is given by⎧⎨⎩v = (vl)l∈N0
∈ Σ, vl ∈ Cdl :

∞∑
l=0

dl∑
j=1

|(vl)j ||φ̂(l, j)| < ∞ for all φ ∈ Γ{Mk}(X)

⎫⎬⎭ .

We also recall the following characterisations of the α-duals established in [4].

Theorem 4.3. Assume conditions (M.0), (M.1), (M.2), (M.3). The following
statements are equivalent:

(i) v ∈ [Γ{Mk}(X)]∧;
(ii) for every L > 0 we have

∞∑
l=0

exp
(
−M(Lλ

1/ν
l )

)
||vl||HS < ∞;

(iii) for every L > 0 there exists KL > 0 such that

||vl||HS ≤ KL exp
(
M(Lλ

1/ν
l )

)
holds for all l ∈ N0.

We will now show that the space Γ{Mk}(X) is perfect. In the proof as well as in
further proofs the following estimate will be useful:

(4.2) ||ejl ||L∞(X) ≤ Cλ
n−1
2ν

l for all l ≥ 1.

This estimate follows, for example, from the local Weyl law [6, Theorem 5.1]; see
also [5, Lemma 8.5].

Theorem 4.4. Let X be a compact manifold and assume conditions (M.0), (M.1),
(M.2), (M.3). Then Γ{Mk}(X) is a perfect space, that is, we have

Γ{Mk}(X) =
[

̂Γ{Mk}(X)
]∧

,

where[
̂Γ{Mk}(X)

]∧
=

⎧⎨⎩w = (wl)l∈N0
∈ Σ :

∞∑
l=0

dl∑
j=1

|(wl)j | |(vl)j | < ∞∀v ∈
[
Γ{Mk}(X)

]∧⎫⎬⎭ .
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To prove this we first establish the following lemma:

Lemma 4.5. We have w ∈
[

̂Γ{Mk}(X)
]∧

if and only if there exists L > 0 such

that
∞∑
l=0

exp
(
M(Lλ

1/ν
l )

)
||wl||HS < ∞.

Proof of Lemma 4.5. =⇒: For L > 0 we consider the echelon space

DL =
{
v = (vl) ∈ Σ : ∃C > 0 : |(vl)j | ≤ C exp(M(Lλ

1/ν
l ))∀1 ≤ j ≤ dl

}
,

where Σ = {v = (vl)l∈N0
, vl ∈ Cdl} is as in (2.2).

By the diagonal transform we have DL
∼= l∞, and since l∞ is a perfect space so

we have D̂L
∼= l1, and it is given by

D̂L =

⎧⎨⎩w = (wl) ∈ Σ :
∞∑
l=0

dl∑
j=1

exp(M(Lλ
1/ν
l ))|(wl)j | < ∞

⎫⎬⎭ .

By Theorem 4.3 we know that ̂Γ{Mk}(X) =
⋂

L>0 DL, and hence
[

̂Γ{Mk}(X)
]∧

=⋃
L>0 D̂L. This means that w ∈

[
̂Γ{Mk}(X)

]∧
if and only if there exists L2 > 0,

such that we have
∞∑
l=0

dl∑
j=1

exp(M(L2λ
1/ν
l ))|(wl)j | < ∞.

Let 1 ≤ p < q ≤ ∞ and let a ∈ Cd×d. Then we have the estimates

(4.3) ‖a‖�p(C) ≤ d2(
1
p−

1
q )‖a‖�q(C) and ‖a‖�q(C) ≤ d

2
q ‖a‖�p(C);

see, e.g., [3, Lemma 3.2] for a simple proof. In particular, we have d−1||a||l1 ≤
||a||HS ≤ d||a||l1 for a ∈ Cd×d. Here we also note the estimate: for every q, L > 0
and δ > 0 there exists C > 0 such that

(4.4) λq
l e

−δM
(
Lλ

1/ν
l

)
≤ C;

see, e.g., [4, (2.15)]. These estimates and Proposition 2.2 imply

∞∑
l=0

exp(M(Lλ
1/ν
l ))||wl||HS(4.5)

≤
∞∑
l=0

dl exp(M(Lλ
1/ν
l ))||wl||l1(Cdl )

≤ C
∞∑
l=0

(1 + λl)
n
ν exp(−M(Lλ

1/ν
l )) exp(2M(Lλ

1/ν
l ))||wl||l1(Cdl )

≤ C ′
∞∑
l=0

dl∑
j=1

exp(2M(Lλ
1/ν
l ))|(wl)j |

≤ C ′′
∞∑
l=0

dl∑
j=1

exp(M(L2λ
1/ν
l ))|(wl)j | < ∞,
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where L2 = L
√
AH, where A,H > 0 in (M.2). The above claim will be true if

we can show that exp(2M(Lλ
1/ν
l )) ≤ exp(M(L2λ

1/ν
l )). This follows from property

(M.2).
⇐=: Converse follows similarly using estimates (4.3). �

We can now prove Theorem 4.4.

Proof of Theorem 4.4. We always have

Γ{Mk}(X) ⊆
[

̂Γ{Mk}(X)
]∧

from the definition. So we need to prove that
[

̂Γ{Mk}(X)
]∧

⊆ Γ{Mk}(X).

Let w = (wl)l∈N0
∈
[

̂Γ{Mk}(X)
]∧

, wl =
(
wj

l

)dl

j=1
, and define

φ(x) :=
∞∑
l=0

wl · el(x) =
∞∑
l=0

dl∑
j=1

wj
l e

j
l (x),

the series makes sense because of Lemma 4.5 and estimates (4.2) and (4.4). Then
we have

φ̂(m, k) =
(
φ, ekm

)
L2

=

∫
X

φ(x)ekm(x)dx

=
∞∑
l=0

dl∑
j=1

∫
X

wj
l e

j
l (x)e

k
m(x)dx

=

∞∑
l=0

dl∑
j=1

wj
l δlmδjk = wk

m, 1 ≤ j ≤ dl, 1 ≤ k ≤ dm.(4.6)

This gives

||φ̂(m)||HS = ||wm||HS.

Now since w ∈
[

̂Γ{Mk}(X)
]∧

, by Lemma 4.5 there exists L > 0 such that

∞∑
l=0

exp
(
M(Lλ

1/ν
l )

)
||wl||HS < ∞.

Since φ̂(l) = wl, it follows that there exists C > 0 such that

||φ̂(l)||HS ≤ C exp
(
−M(Lλ

1/ν
l )

)
.

By Theorem 4.1, we have φ ∈ Γ{Mk}(X). Hence we have shown that[
̂Γ{Mk}(X)

]∧
⊆ Γ{Mk}(X).

So we have
[

̂Γ{Mk}(X)
]∧

= Γ{Mk}(X), and hence Γ{Mk}(X) is a perfect space. �

Next we proceed to prove the equivalence of two expressions for the duality.
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Lemma 4.6. Let v ∈ Γ{Mk}(X) and w ∈ Γ̂{Mk}(X); then

∞∑
k=0

||(v̂k)||HS||(wk)||HS < ∞

if and only if
∞∑
k=0

dk∑
i=1

|(v̂k)i||(wk)i| < ∞.

Proof. =⇒: The proof is straightforward, following from the estimate(
d∑

i=1

aibi

)2

�
(

d∑
i=1

a2i

)(
d∑

i=1

b2i

)
.

⇐=: We will be using the equality(
n∑

i=1

|ai|
)(

n∑
i=1

|bi|
)

=
n∑

i=1

|ai||bi|+
n∑

i=1

|ai|

⎛⎝ n∑
j=1

|bj | − |bi|

⎞⎠
for any ai, bi ∈ R, yielding

||(v̂k)||HS||(wk)||HS

≤
dk∑
i=1

|(v̂k)i|
dk∑
i=1

|(wk)i|

=

dk∑
i=1

|(v̂k)i||(wk)i|+
dk∑
i=1

|(wk)i|

⎛⎝ dk∑
j=1

|(v̂k)j | − |(v̂k)i|

⎞⎠ .(4.7)

We consider the second term in the above inequality, that is,

(4.8)

⎛⎝ dk∑
i=1

|(wk)i|

⎛⎝ dk∑
j=1

|(v̂k)j | − |(v̂k)i|

⎞⎠⎞⎠ ≤ C

(
dk∑
i=1

|(wk)i|(dke−M(Lλ
1/ν
k ))

)
,

for some C > 0 and L > 0. Then using (4.8) in (4.7) we get

(4.9)
∞∑
k=0

||(v̂k)||HS||(wk)||HS ≤
∞∑
k=0

dk∑
i=1

|(wk)i|
(
|(v̂k)i|+ Cdke

−M(Lλ
1/ν
k )

)
.

Now let |(ûk)i| = |(v̂k)i|+Cdke
−M(Lλ

1/ν
k ), for i = 1, 2, . . . , dk, and k ∈ N0. So then

we have
∞∑
k=0

||(v̂k)||HS||(wk)||HS ≤
∞∑
k=0

dk∑
i=1

|(wk)i||(ûk)i|.

Now for some C ′′ > 0 and L2 > 0, we have

||ûk||HS =

(
dk∑
i=1

(
|(v̂k)i|2 + C2d2ke

−2M(Lλ
1/ν
k ) + 2Cdk|(v̂k)i|e−M(Lλ

1/ν
k ))

))1/2

≤ C ′′e−M(L2λ
1/ν
k ),(4.10)
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i.e., u ∈ Γ{Mk}(X). This is true since(
dk∑
i=1

(
|(v̂k)i|2 + C2d2ke

−2M(Lλ
1/ν
k ) + 2Cdk|(v̂k)i|e−M(Lλ

1/ν
k )

))1/2

≤
(

dk∑
i=1

(
C2e−2M(Lλ

1/ν
k ) + C2d2ke

−2M(Lλ
1/ν
k ) + 2C2dke

−2M(Lλ
1/ν
k )

))1/2

≤
(

dk∑
i=1

C2 (1 + dk)
2
e−2M(Lλ

1/ν
k )

)1/2

≤ C(1 + dk)
3/2e−M(Lλ

1/ν
k )

≤ C ′e−
1
2M(Lλ

1/ν
k )

≤ C ′′e−M(L2λ
1/2),

where L2 = L√
AH

, with A,H are constants in condition (M.2).

Now since w ∈ Γ̂{Mk}(X), so from (4.9) we have

∞∑
k=0

||(v̂k)||HS||(wk)||HS �
∞∑
k=0

dk∑
i=1

|(wk)i||(ûk)i| < ∞,

completing the proof. �

Theorem 4.7 (Adjointness theorem). Let {Mk} and {Nk} satisfy conditions
(M.0)–(M.3). A linear mapping f : Γ{Mk}(X) → Γ{Nk}(X) is sequential if and
only if f is represented by an infinite tensor (fkjli), k, j ∈ N0, 1 ≤ l ≤ dj and

1 ≤ i ≤ dk such that for any u ∈ Γ{Mk}(X) and v ∈ Γ̂{Nk}(X) we have

(4.11)
∞∑
j=0

dj∑
l=1

|fkjli||û(j, l)| < ∞ for all k ∈ N0, i = 1, 2, . . . , dk,

and

(4.12)
∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
⎛⎝ ∞∑

j=0

fkj û(j)

⎞⎠
i

∣∣∣∣∣∣ < ∞.

Furthermore, the adjoint mapping f̂ : Γ̂{Nk}(X) → Γ̂{Mk}(X) defined by the for-

mula f̂(v) = v ◦ f is also sequential, and the transposed matrix (fkj)
t
represents f̂ ,

with f and f̂ related by 〈f(u), v〉 = 〈u, f̂(v)〉.

Let us summarise the ranges for indices in the used notation as well as give more
explanation to (4.12). For f : Γ{Mk}(X) → Γ{Nk}(X) and u ∈ Γ{Mk}(X) we write

(4.13) Cdk � f(u)k =

∞∑
j=0

fkj û(j) =

∞∑
j=0

dj∑
l=1

fkjlû(j, l), k ∈ N0,

so that

(4.14) fkjl ∈ Cdk , fkjli ∈ C, k, j ∈ N0, 1 ≤ l ≤ dj , 1 ≤ i ≤ dk,
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and

(4.15) C � (f(u)k)i = f(u)ki =

∞∑
j=0

dj∑
l=1

fkjliû(j, l), k ∈ N0, 1 ≤ i ≤ dk,

where we view fkj as a matrix, fkj ∈ Cdk×dj , and the product of the matrices has
been explained in (4.13).

Remark 4.8. Let us now briefly describe how the tensor (fkjli), k, j ∈ N0, 1 ≤ l ≤ dj ,
1 ≤ i ≤ dk, is constructed given a sequential mapping f : Γ{Mk}(X) → Γ{Nk}(X).

For every k ∈ N0 and 1 ≤ i ≤ dk, define the family vki =
(
vkij

)
j∈N0

such that each

vkij ∈ Cdj is defined by

(4.16) vkij (l) =

{
1, j = k, l = i,

0 otherwise.

Then vki ∈
[
Γ{Nk}(X)

]∧
, and since f is sequential we have vki ◦ f ∈

[
Γ{Mk}(X)

]∧
,

and we can write vki ◦ f =
(
vki ◦ f

)
j∈N0

, where (vki ◦ f)j ∈ Cdj . Then for each

1 ≤ l ≤ dj we set

(4.17) fkjli := (vki ◦ f)j(l),
the lth component of the vector (vki ◦ f)j ∈ Cdj . The formula (4.17) will be shown
in the proof of Theorem 4.7. In particular, since for φ ∈ Γ{Mk}(X) we have f(φ) ∈
Γ{Nk}(X), it will be a consequence of (4.28) and (4.29) later on that

(4.18) vki ◦ f(φ) = (f̂(φ))(k, i) =
∞∑
j=0

dj∑
l=1

fkjliφ̂(j, l),

so that the tensor (fkjli) is describing the transformation of the Fourier coefficients
of φ into those of f(φ).

Another meaning of condition (4.11) is that if for each k ∈ N0 and 1 ≤ i ≤ dk
we define

fki(j, l) := fkjli,

then fki ∈
[
Γ{Mk}(X)

]∧
. Condition (4.12) is the continuity condition saying that

for every u ∈ Γ{Mk}(X) we have that

∞∑
j=0

dj∑
l=1

fkjliû(j, l) ∈ Γ{Nk}(X).

To prove Theorem 4.7 we first establish the following lemma.

Lemma 4.9. Let (fkjli)k,j∈N0,1≤l≤dj ,1≤i≤dk
be an infinite tensor satisfying (4.11)

and (4.12). Then for any u ∈ Γ{Mk}(X) and v ∈
[
Γ{Nk}(X)

]∧
, we have

lim
n→∞

∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
⎛⎝ ∑

0≤j≤n

fkj û(j)

⎞⎠
i

∣∣∣∣∣∣ =
∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
⎛⎝ ∞∑

j=0

fkjû(j)

⎞⎠
i

∣∣∣∣∣∣ .
Proof of Lemma 4.9. Let u ∈ Γ{Mk}(X) and u ≈ (û(l))l∈N0

. Define

un :=
(
û(n)(l)

)
l∈N0
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by setting

û(n)(l) =

{
û(l), l ≤ n,

0, l > n.

Then for any w ∈ Γ̂{Mk}(X), 〈u − un, w〉 → 0 as n → ∞. This is true since∑∞
l=0 |û(l) · wl| < ∞ so that

|〈u− un, w〉| ≤
∑
l≥n

|ûl · wl| → 0

as n → ∞. Now for any u ∈ Γ{Mk}(X) and v ∈
[
Γ{Nk}(X)

]∧
and from (4.11) and

(4.12) we have

(4.19) 〈f(u), v〉 =
∞∑
k=0

(f(u))k · vk =

∞∑
k=0

⎛⎝ ∞∑
j=0

fkj û(j)

⎞⎠ · vk

=

∞∑
k=0

∞∑
j=0

dj∑
�=1

dk∑
i=1

fkj�iû(j, �)(vk)i =

∞∑
j=0

dj∑
�=1

û(j, �)

∞∑
k=0

dk∑
i=1

fkj�i(vk)i

=

∞∑
j=0

dj∑
�=1

û(j, �)

∞∑
k=0

fkj� · vk =

∞∑
j=0

û(j) · (v ◦ f)j = 〈u, v ◦ f〉,

where

Cdj � (v ◦ f)j =
{ ∞∑

k=0

fkj� · vk

}dj

�=1

, j ∈ N0,

and

v ◦ f = {(v ◦ f)j}∞j=0 .

For sequential mapping f , v ◦ f ∈
[
Γ{Mk}(X)

]∧
and

∞∑
j=0

u(j) · (v ◦ f)j = 〈u, v ◦ f〉 = (v ◦ f) (u),

so that we can write (v ◦ f) ∈ Cdjand also (v ◦ f) (u) = 〈v, f(u)〉. So for any

u ≈ (û(j))j∈N0
∈ Γ{Mk}(X) from the definition of

[
Γ{Mk}(X)

]∧
we have

∑
j∈N0

dj∑
l=1

|(v ◦ f)jl| |û(j, l)| < ∞.

Hence the series
∑∞

j=0 |(v ◦ f)j · û(j)| is convergent.
We can then conclude that v ◦ f ∈

[
Γ{Mk}(X)

]∧
and we have

〈f(u)− f(un), v〉 = 〈u− un, v ◦ f〉 → 0

as n → ∞. Therefore,

〈f(u), v〉 = lim
n→∞

〈f(un), v〉
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for all u ∈ Γ{Mk}(X) and v ∈ [Γ{Nk}(X)]∧. Hence for any u ∈ Γ{Mk}(X) and

v ∈
[
Γ{Nk}(X)

]∧
we have

lim
n→∞

∞∑
k=0

vk ·

⎛⎝ ∑
0≤j≤n

fkjû(j)

⎞⎠ =

∞∑
k=0

vk ·

⎛⎝ ∞∑
j=0

fkj û(j)

⎞⎠ ,

that is,

lim
n→∞

∞∑
k=0

dk∑
i=1

(vk)i

⎛⎝∑
j≤n

fkjû(j)

⎞⎠
i

=

∞∑
k=0

dk∑
i=1

(vk)i

⎛⎝ ∞∑
j=0

fkj û(j)

⎞⎠
i

.

Now we will use the fact that if u ∈ Γ{Mk}(X), then |u| ∈ Γ{Mk}(X) where |u| =(
|̂u|j

)
j∈N0

, |̂u|j ∈ Rdj , with

|̂u|j :=

⎡⎢⎢⎢⎣
|û(j, 1)|
|û(j, 2)|

...
|û(j, dj)|

⎤⎥⎥⎥⎦ ,

in view of the Theorem 4.4. The same is true for the dual space
[
Γ{Nk}(X)

]∧
. So

then this argument gives

lim
n→∞

∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
⎛⎝ ∑

0≤j≤n

fkj û(j)

⎞⎠
i

∣∣∣∣∣∣ =
∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
⎛⎝ ∞∑

j=0

fkjû(j)

⎞⎠
i

∣∣∣∣∣∣ .
The proof is complete. �

Proof of Theorem 4.7. Let us assume first that the mapping f : Γ{Mk}(X) →
Γ{Nk}(X) can be represented by f = (fkjli)k,j∈N0,1≤l≤dj ,1≤i≤dk

, an infinite ten-
sor such that

(4.20)
∞∑
j=0

dj∑
l=1

|fkjli||û(j, l)| < ∞ for all k ∈ N0, i = 1, 2, . . . , dk,

and

(4.21)
∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
⎛⎝ ∞∑

j=0

fkj û(j)

⎞⎠
i

∣∣∣∣∣∣ < ∞

hold for all u ∈ Γ{Mk}(X) and v ∈ [Γ{Nk}(X)]∧.
Let û1 = (û1(p))p∈N0

be such that for some j, l where j ∈ N0, 1 ≤ l ≤ dj we have

û1(p, q) =

{
1, p = j, q = l,

0 otherwise.
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Then u1 ∈ Γ{Mk}(X) so fu1 = f(u1) ∈ Γ{Nk}(X) and

(fu1)k =

∞∑
p=0

fkpû1(p)

=
∞∑
p=0

dp∑
q=1

fkpqû1(p, q)

=

dj∑
q=1

fkjqû1(j, q)

= fkjl ∈ Cdk .(4.22)

We now first show that

(̂fu)(k) =
∞∑
j=0

dj∑
l=1

fkjlû(j, l),

where fkjli ∈ C for each k, j ∈ C, 1 ≤ l ≤ dj and 1 ≤ i ≤ dk. The way in which f
has been defined we have

(fu)k =

∞∑
j=0

dj∑
l=1

fkjlû(j, l), fkjl ∈ Cdk .

Also since u ∈ Γ{Mk}(X), from our assumption we have fu ∈ Γ{Nk}(X) and fu ≈(
(̂fu)(j)

)
j∈N0

so (fu)k ≈ (̂fu)(k).

We can then write (̂fu)(k) =
∑

j

∑dj

l=1 fkjlû(j, l). Since we know that v ∈[
Γ{Nk}(X)

]∧
and fu ∈ Γ{Nk}(X), we have

∞∑
k=0

dk∑
i=1

|(vk)i||((̂fu)(k))i| =
∞∑
k=0

dk∑
i=1

|(vk)i||
∞∑
j=0

dj∑
l=1

fkjliû(j, l)| < ∞.

In particular using the definition of u1 and (4.22) we get

∞∑
k=0

dk∑
i=1

|(vk)i|
∣∣∣∣∣
∞∑
p=0

dk∑
q=1

fkpqiû1(p, q)

∣∣∣∣∣ =
∞∑
k=0

dk∑
i=1

|(vk)i||fkjli| < ∞(4.23)

for any j ∈ N0 and 1 ≤ l ≤ dj .
Now for any u ∈ Γ{Mk}(X) consider

J =
∞∑
j=0

dj∑
l=1

|
∞∑
k=0

dk∑
i=1

(vk)ifkjli||û(j, l)|.

Then we consider the series

In :=
∑
j≤n

dj∑
l=1

|
∞∑
k=0

dk∑
i=1

(vk)ifkjli||û(j, l)|,
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so that we have

In =
∑
j≤n

dj∑
l=1

|
∞∑
k=0

dk∑
i=1

(vk)ifkjli||û(j, l)|

=
∑
j≤n

dj∑
l=1

|
∞∑
k=0

dk∑
i=1

(vk)ifkjliû(j, l)|.

Let ε = (εi)1≤i≤dk
, k ∈ N0, be such that εi ∈ C and |εi| = 1 for all i and such that

|
∞∑
k=0

dk∑
i=1

(vk)ifkjli)û(j, l)| =
∞∑
k=0

dk∑
i=1

(vk)ifkjliû(j, l)εi.

Then

In =
∑
j≤n

dj∑
l=1

∞∑
k=0

dk∑
i=1

(vk)ifkjliû(j, l)εi

≤
∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
∑
j≤n

dj∑
l=1

fkjli)û(j, l)εi

∣∣∣∣∣∣ .(4.24)

It follows from Lemma 4.9 that

lim
n→∞

∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
∑
j≤n

dj∑
l=1

fkjliû(j, l)εi

∣∣∣∣∣∣
=

∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
∞∑
j=0

dj∑
l=1

fkjliû(j, l)εi

∣∣∣∣∣∣ < ∞.

Then

(4.25) J =

∞∑
j=0

dj∑
l=1

|
∞∑
k=0

dk∑
i=1

(vk)ifkjli||û(j, l)| < ∞.

So we proved that if (fkjli) satisfies

•
∑∞

j=0

∑dj

l=1 |fkjli||û(j, l)| < ∞,

•
∑∞

k=0

∑dk

i=1 |(vk)i|
∣∣∣(∑∞

j=0 fkj û(j)
)
i

∣∣∣ < ∞,

then for any u ∈ Γ{Mk}(X) and v ∈
[
Γ{Nk}(X)

]∧
we have from (4.23) and (4.25),

respectively, that is,

(i)
∑∞

k=0

∑dk

i=1 |(vk)i||fkjli| < ∞,

(ii)
∑∞

j=0

∑dj

l=1 |
∑∞

k=0

∑dk

i=1(vk)ifkjli)||û(j, l)| < ∞.

Now recall that for f : Γ{Mk}(X) → Γ{Nk}(X) we have

(f(u))k =
∞∑
j=0

dj∑
l=1

fkjlû(j, l)
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for any u ∈ Γ{Mk}(X); then for any v ∈
[
Γ{Nk}(X)

]∧
, the composed mapping

v ◦ f : Γ{Mk}(X) → C is given by

(v ◦ f)(u) =

∞∑
k=0

vk · (f(u))k =

∞∑
k=0

dk∑
i=1

(vk)i

⎛⎝ ∞∑
j=0

dj∑
l=1

fkjliû(j, l)

⎞⎠
=

∞∑
j=0

dj∑
l=1

( ∞∑
k=0

dk∑
i=1

(vk)ifkjli

)
û(j, l).(4.26)

So by (ii) we get that

|(v ◦ f)(u)| ≤
∞∑
j=0

dj∑
l=1

|
∞∑
k=0

dk∑
i=1

(vk)ifkjli||û(j, l)| < ∞.

So f̂(v) = (f̂(v)jl)j∈N,1≤l≤dj
, with f̂(v)jl =

∑∞
k=0

∑dk

i=1(vk)ifkjli ∈ [Γ{Mk}(X)]∧

(from the definition of [Γ{Mk}(X)]∧), that is, f is sequential. Then 〈f(u), v〉 =

〈u, f̂(v)〉 is also true.

Now to prove the converse part we assume that f :Γ{Mk}(X)→Γ{Nk}(X) is sequen-
tial. We have to show that f can be represented as f ≈ (fkjli)k,j∈N0,1≤l≤dj ,1≤i≤dk

and satisfies (4.11) and (4.12).
Define for k, i where k ∈ N0 and 1 ≤ i ≤ dk, the sequence uki =

(
uki
j

)
j∈N0

such

that uki
j ∈ Cdj and uki

j (l) = ûki(j, l), given by

uki
j (l) = ûki(j, l) =

{
1, j = k, l = i,

0 otherwise.

Then uki∈
[
Γ{Nk}(X)

]∧
. Now since f is sequential we have uki◦f ∈

[
Γ{Mk}(X)

]∧
and uki ◦f =

(
uki ◦ f

)
j∈N0

, where (uki ◦f)j ∈ Cdj . We denote uki ◦f =
(
fki
j

)
j∈N0

,

where fki
j = (uki ◦ f)j . Then (fki

j )j∈N0
∈
[
Γ{Mk}(X)

]∧
and fki

j ∈ Cdj .

Then for any φ ≈
(
φ̂(j)

)
j∈N0

∈ Γ{Mk}(X) we have

(4.27)

∞∑
j=0

dj∑
l=1

|fki
jl ||φ̂(j, i)| < ∞.

For φ ∈ Γ{Mk}(X) we can write f(φ) ∈ Γ{Nk}(X). We can write

f(φ) = ((f(φ))∧(p))p∈N0
.

So

uki ◦ f(φ) =

∞∑
j=0

uki
j (̂f(φ))j

=

∞∑
j=0

dj∑
l=1

uki
jl (̂f(φ))(j, l)

= (f̂(φ))(k, i) (from the definition of uki).(4.28)
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We have uki ◦ f = (fki)j ∈
[
Γ{Mk}(X)

]∧
, so

(uki ◦ f)(φ) =

∞∑
j=0

fki
j φ̂(j)

=
∞∑
j=0

dj∑
l=1

fki
jl φ̂(j, l).(4.29)

From (4.28) and (4.29) we have (f̂(φ))(k, i) =
∑∞

j=0

∑dj

l=1 f
ki
jl φ̂(j, l).

Hence (f(φ))ki =
∑∞

j=0

∑dj

l=1 f
ki
jl φ̂(j, l), k ∈ N0, and 1 ≤ i ≤ dk, that is, f is

represented by the tensor
{
(fki

jl )
}
k,j∈N0,1≤i≤dk,1≤l≤dj

.

If we denote fki
jl by fki

jl = fkjli, we can say that f is represented by the tensor

(fkjli)k,j∈N0,1≤l≤dj ,1≤i≤dk
. Also let v ∈ ̂[

Γ{Nk}(X)
]
. Since f(φ) ∈ Γ{Nk}(X) for

φ ∈ Γ{Mk}(X), then from the definition of ̂[
Γ{Nk}(X)

]
we have

∞∑
k=0

dk∑
i=1

|(vk)i|
∞∑
j=0

dj∑
l=1

fkjliφ̂(j, l)| < ∞.

This completes the proof of Theorem 4.7. �

5. Beurling class of ultradifferentiable functions

and ultradistributions

In this section we briefly summarise the counterparts of the results of the pre-
vious section for the case of Komatsu classes of Beurling type ultradifferentiable
functions and ultradistributions. For more details we refer to [4] for a more de-
tailed description of these spaces as well as of their duals and α-duals in the sense
of Köthe.

The class Γ(Mk)(X) is the space of C∞ functions φ on X such that for every
h > 0 there exists Ch > 0 such that we have

(5.1) ||Ekφ||L2(X) ≤ Chh
νkMνk, k = 0, 1, 2, . . . .

For these spaces, we replace condition (M.3) by condition

(M.3′) for every l > 0 there exists Cl > 0 such that k! ≤ Cll
kMk for all k ∈ N0.

The counterpart of [4, Theorem 4.1 and Theorem 4.3], holds for this class as
well, namely, we have

Theorem 5.1. Assume conditions (M.0), (M.1), (M.2), (M.3′). We have φ ∈
Γ(Mk)(X) if and only if for every L > 0 there exists CL > 0 such that

||φ̂(l)||HS ≤ CL exp{−M(Lλ
1/ν
l )} for all l ≥ 1.

For the dual space and for the α-dual, the following statements are equivalent:

(i) v ∈ Γ′
(Mk)

(X);

(ii) v ∈
[
Γ(Mk)(X)

]∧
;

(iii) there exists L > 0 such that we have
∞∑
l=0

exp
(
−M(Lλ

1/ν
l )

)
||vl||HS < ∞;
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(iv) there exists L > 0 and K > 0 such that

||vl||HS ≤ K exp
(
M(Lλ

1/ν
l )

)
holds for all l ∈ N0.

Again we note that given this characterisation of α-duals, one can prove that
they are perfect, in a way similar to the proof of Theorem 4.4, namely, that

(5.2)
[
Γ(Mk)(X)

]
=
([

Γ(Mk)(X)
]∧)∧

.

Finally we can state the counterpart of the adjointness Theorem 4.7.

Theorem 5.2 (Adjointness theorem Beurling case). Let {Mk} and {Nk} satisfy
conditions (M.0)–(M.3′). A linear mapping f : Γ(Mk)(X) → Γ(Nk)(X) is sequential
if and only if f is represented by an infinite tensor (fkjli), k, j ∈ N0, 1 ≤ l ≤ dj

and 1 ≤ i ≤ dk such that for any u ∈ Γ(Mk)(X) and v ∈ Γ̂(Nk)(X) we have

(5.3)

∞∑
j=0

dj∑
l=1

|fkjli||û(j, l)| < ∞ for all k ∈ N0, i = 1, 2, . . . , dk,

and

(5.4)

∞∑
k=0

dk∑
i=1

|(vk)i|

∣∣∣∣∣∣
⎛⎝ ∞∑

j=0

fkj û(j)

⎞⎠
i

∣∣∣∣∣∣ < ∞.

Furthermore, the adjoint mapping f̂ : Γ̂(Nk)(X) → Γ̂(Mk)(X) defined by the formula

f̂(v) = v ◦ f is also sequential, and the transposed matrix (fkj)
t represents f̂ , with

f and f̂ related by 〈f(u), v〉 = 〈u, f̂(v)〉.

The proof of Theorem 5.2 is similar to the corresponding proof in Theorem 4.7
for the spaces Γ{Mk}(X), so we omit the repetition.
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