Pathwise integration and change of variable formulas for continuous paths with arbitrary regularity
HTML articles powered by AMS MathViewer
- by Rama Cont and Nicolas Perkowski;
- Trans. Amer. Math. Soc. Ser. B 6 (2019), 161-186
- DOI: https://doi.org/10.1090/btran/34
- Published electronically: April 10, 2019
- HTML | PDF
Abstract:
We construct a pathwise integration theory, associated with a change of variable formula, for smooth functionals of continuous paths with arbitrary regularity defined in terms of the notion of $p$th variation along a sequence of time partitions. For paths with finite $p$th variation along a sequence of time partitions, we derive a change of variable formula for $p$ times continuously differentiable functions and show pointwise convergence of appropriately defined compensated Riemann sums.
Results for functions are extended to regular path-dependent functionals using the concept of vertical derivative of a functional. We show that the pathwise integral satisfies an “isometry” formula in terms of $p$th order variation and obtain a “signal plus noise” decomposition for regular functionals of paths with strictly increasing $p$th variation. For less regular ($C^{p-1}$) functions we obtain a Tanaka-type change of variable formula using an appropriately defined notion of local time.
These results extend to multidimensional paths and yield a natural higher-order extension of the concept of “reduced rough path”. We show that, while our integral coincides with a rough path integral for a certain rough path, its construction is canonical and does not involve the specification of any rough-path superstructure.
References
- Anna Ananova and Rama Cont, Pathwise integration with respect to paths of finite quadratic variation, J. Math. Pures Appl. (9) 107 (2017), no. 6, 737–757 (English, with English and French summaries). MR 3650323, DOI 10.1016/j.matpur.2016.10.004
- Jean Bertoin, Temps locaux et intégration stochastique pour les processus de Dirichlet, Séminaire de Probabilités, XXI, Lecture Notes in Math., vol. 1247, Springer, Berlin, 1987, pp. 191–205 (French). MR 941983, DOI 10.1007/BFb0077634
- Francesca Biagini, Yaozhong Hu, Bernt Øksendal, and Tusheng Zhang, Stochastic calculus for fractional Brownian motion and applications, Probability and its Applications (New York), Springer-Verlag London, Ltd., London, 2008. MR 2387368, DOI 10.1007/978-1-84628-797-8
- Michel Bruneau, Sur la $p$-variation d’une surmartingale continue, Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78) Lecture Notes in Math., vol. 721, Springer, Berlin, 1979, pp. 227–232 (French). MR 544794
- Philippe Carmona, Laure Coutin, and Gérard Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 1, 27–68 (English, with English and French summaries). MR 1959841, DOI 10.1016/S0246-0203(02)01111-1
- R. V. Chacon, Y. Le Jan, E. Perkins, and S. J. Taylor, Generalised arc length for Brownian motion and Lévy processes, Z. Wahrsch. Verw. Gebiete 57 (1981), no. 2, 197–211. MR 626815, DOI 10.1007/BF00535489
- Rama Cont and David Antoine Fournié, Functional Itô calculus and functional Kolmogorov equations, Stochastic integration by parts and functional Itô calculus, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, [Cham], 2016, pp. 115–207. MR 3497715
- Rama Cont and David-Antoine Fournié, Change of variable formulas for non-anticipative functionals on path space, J. Funct. Anal. 259 (2010), no. 4, 1043–1072. MR 2652181, DOI 10.1016/j.jfa.2010.04.017
- L. Coutin, An Introduction to (Stochastic) Calculus with Respect to Fractional Brownian Motion, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 3–65.
- Mark Davis, Jan Obłój, and Pietro Siorpaes, Pathwise stochastic calculus with local times, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 1, 1–21 (English, with English and French summaries). MR 3765878, DOI 10.1214/16-AIHP792
- R. M. Dudley and R. Norvaiša, Concrete functional calculus, Springer Monographs in Mathematics, Springer, New York, 2011. MR 2732563, DOI 10.1007/978-1-4419-6950-7
- B. Dupire, Functional Itô calculus, Bloomberg Portfolio Research paper, (2009).
- Mohammed Errami and Francesco Russo, $n$-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes, Stochastic Process. Appl. 104 (2003), no. 2, 259–299. MR 1961622, DOI 10.1016/S0304-4149(02)00238-7
- H. Föllmer, Calcul d’Itô sans probabilités, Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) Lecture Notes in Math., vol. 850, Springer, Berlin, 1981, pp. 143–150 (French). MR 622559
- H. Föllmer, Dirichlet processes, Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980) Lecture Notes in Math., vol. 851, Springer, Berlin, 1981, pp. 476–478. MR 621001
- David Freedman, Brownian motion and diffusion, 2nd ed., Springer-Verlag, New York-Berlin, 1983. MR 686607, DOI 10.1007/978-1-4615-6574-1
- Peter K. Friz and Martin Hairer, A course on rough paths, Universitext, Springer, Cham, 2014. With an introduction to regularity structures. MR 3289027, DOI 10.1007/978-3-319-08332-2
- Mihai Gradinaru, Francesco Russo, and Pierre Vallois, Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index $H\ge \frac 14$, Ann. Probab. 31 (2003), no. 4, 1772–1820. MR 2016600, DOI 10.1214/aop/1068646366
- M. Gubinelli, Controlling rough paths, J. Funct. Anal. 216 (2004), no. 1, 86–140. MR 2091358, DOI 10.1016/j.jfa.2004.01.002
- Rajeeva L. Karandikar, On the quadratic variation process of a continuous martingale, Illinois J. Math. 27 (1983), no. 2, 178–181. MR 694639
- Terry J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), no. 2, 215–310. MR 1654527, DOI 10.4171/RMI/240
- Terry J. Lyons, Michael Caruana, and Thierry Lévy, Differential equations driven by rough paths, Lecture Notes in Mathematics, vol. 1908, Springer, Berlin, 2007. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004; With an introduction concerning the Summer School by Jean Picard. MR 2314753, DOI 10.1007/978-3-540-71285-5
- David Nualart, Stochastic calculus with respect to fractional Brownian motion, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 1, 63–78 (English, with English and French summaries). MR 2225747, DOI 10.5802/afst.1113
- Nicolas Perkowski and David J. Prömel, Local times for typical price paths and pathwise Tanaka formulas, Electron. J. Probab. 20 (2015), no. 46, 15. MR 3339866, DOI 10.1214/EJP.v20-3534
- Nicolas Perkowski and David J. Prömel, Pathwise stochastic integrals for model free finance, Bernoulli 22 (2016), no. 4, 2486–2520. MR 3498035, DOI 10.3150/15-BEJ735
- Maurizio Pratelli, A remark on the $1/H$-variation of the fractional Brownian motion, Séminaire de Probabilités XLIII, Lecture Notes in Math., vol. 2006, Springer, Berlin, 2011, pp. 215–219. MR 2790374, DOI 10.1007/978-3-642-15217-7_{8}
- L. C. G. Rogers, Arbitrage with fractional Brownian motion, Math. Finance 7 (1997), no. 1, 95–105. MR 1434408, DOI 10.1111/1467-9965.00025
- Francesco Russo and Pierre Vallois, Elements of stochastic calculus via regularization, Séminaire de Probabilités XL, Lecture Notes in Math., vol. 1899, Springer, Berlin, 2007, pp. 147–185. MR 2409004, DOI 10.1007/978-3-540-71189-6_{7}
- S. J. Taylor, Exact asymptotic estimates of Brownian path variation, Duke Math. J. 39 (1972), 219–241. MR 295434, DOI 10.1215/S0012-7094-72-03928-2
- M. Wuermli, Lokalzeiten für Martingale, diploma thesis, Universität Bonn, 1980.
Bibliographic Information
- Rama Cont
- Affiliation: Mathematical Institute, University of Oxford, Oxford, United Kingdom; and LPSM, CNRS-Sorbonne Université
- MR Author ID: 651275
- Email: Rama.Cont@maths.ox.ac.uk
- Nicolas Perkowski
- Affiliation: Max-Planck-Institute for Mathematics in the Sciences, Leipzig & Humboldt–Universität zu Berlin
- MR Author ID: 999469
- Received by editor(s): April 18, 2018
- Received by editor(s) in revised form: September 28, 2018
- Published electronically: April 10, 2019
- Additional Notes: N. Perkowski is grateful for the kind hospitality at University of Technology Sydney where this work was completed, and for financial support through the Bruti-Liberati Scholarship. N. Perkowski also gratefully acknowledges financial support by the DFG via the Heisenberg Program and Research Unit FOR 2402.
- © Copyright 2019 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 6 (2019), 161-186
- MSC (2010): Primary 60H05
- DOI: https://doi.org/10.1090/btran/34
- MathSciNet review: 3937343