Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
HTML articles powered by AMS MathViewer
- by Nicolás Andruskiewitsch and Guillermo Sanmarco;
- Trans. Amer. Math. Soc. Ser. B 8 (2021), 296-329
- DOI: https://doi.org/10.1090/btran/66
- Published electronically: April 1, 2021
- HTML | PDF
Abstract:
We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that except for a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Kac-Procesi quantum groups. There are two new examples, one of which can be thought of as $G_2$ at a third root of one.References
- Nicolás Andruskiewitsch, An introduction to Nichols algebras, Quantization, geometry and noncommutative structures in mathematics and physics, Math. Phys. Stud., Springer, Cham, 2017, pp. 135–195. MR 3751453
- Nicolás Andruskiewitsch and Iván Ezequiel Angiono, On Nichols algebras with generic braiding, Modules and comodules, Trends Math., Birkhäuser Verlag, Basel, 2008, pp. 47–64. MR 2742620, DOI 10.1007/978-3-7643-8742-6_{3}
- Nicolás Andruskiewitsch and Iván Angiono, On finite dimensional Nichols algebras of diagonal type, Bull. Math. Sci. 7 (2017), no. 3, 353–573. MR 3736568, DOI 10.1007/s13373-017-0113-x
- Nicolás Andruskiewitsch, Iván Angiono, Agustín García Iglesias, Akira Masuoka, and Cristian Vay, Lifting via cocycle deformation, J. Pure Appl. Algebra 218 (2014), no. 4, 684–703. MR 3133699, DOI 10.1016/j.jpaa.2013.08.008
- N. Andruskiewitsch, I. Angiono, and I. Heckenberger, On finite GK-dimensional Nichols algebras over abelian groups, Mem. Amer. Math. Soc., to appear.
- Nicolás Andruskiewitsch, Iván Angiono, and István Heckenberger, On finite GK-dimensional Nichols algebras of diagonal type, Tensor categories and Hopf algebras, Contemp. Math., vol. 728, Amer. Math. Soc., [Providence], RI, [2019] ©2019, pp. 1–23. MR 3943743, DOI 10.1090/conm/728/14653
- Nicolás Andruskiewitsch, Iván Angiono, and István Heckenberger, Liftings of Jordan and super Jordan planes, Proc. Edinb. Math. Soc. (2) 61 (2018), no. 3, 661–672. MR 3834727, DOI 10.1017/s0013091517000402
- Nicolás Andruskiewitsch, Iván Angiono, and Fiorela Rossi Bertone, The quantum divided power algebra of a finite-dimensional Nichols algebra of diagonal type, Math. Res. Lett. 24 (2017), no. 3, 619–643. MR 3696597, DOI 10.4310/MRL.2017.v24.n3.a2
- N. Andruskiewitsch and H.-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$, J. Algebra 209 (1998), no. 2, 658–691. MR 1659895, DOI 10.1006/jabr.1998.7643
- Nicolás Andruskiewitsch and Hans-Jürgen Schneider, Finite quantum groups and Cartan matrices, Adv. Math. 154 (2000), no. 1, 1–45. MR 1780094, DOI 10.1006/aima.1999.1880
- Eiichi Abe, Hopf algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. MR 594432
- Nicolás Andruskiewitsch and Hans-Jürgen Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. (2) 171 (2010), no. 1, 375–417. MR 2630042, DOI 10.4007/annals.2010.171.375
- Iván Angiono, On Nichols algebras of diagonal type, J. Reine Angew. Math. 683 (2013), 189–251. MR 3181554, DOI 10.1515/crelle-2011-0008
- Iván Ezequiel Angiono, A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 10, 2643–2671. MR 3420518, DOI 10.4171/JEMS/567
- Iván Angiono, Distinguished pre-Nichols algebras, Transform. Groups 21 (2016), no. 1, 1–33. MR 3459702, DOI 10.1007/s00031-015-9341-x
- I. Angiono, E. Campagnolo, and G. Sanmarco, Finite GK-dimensional pre-Nichols algebras of super and standard type, arXiv:2009.04863.
- Mini-Workshop: Infinite dimensional Hopf algebras, Oberwolfach Rep. 11 (2014), no. 2, 1111–1137. Abstracts from the mini-workshop held April 13–19, 2014; Organized by Ken Brown, Ken Goodearl, Tom Lenagan, and James Zhang. MR 3379364, DOI 10.4171/OWR/2014/20
- C. De Concini, V. G. Kac, and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), no. 1, 151–189. MR 1124981, DOI 10.1090/S0894-0347-1992-1124981-X
- The GAP Group, GAP – Groups, Algorithms and Programming, Version 4.9.3 (2018), http://www.gap-system.org.
- K. R. Goodearl, Noetherian Hopf algebras, Glasg. Math. J. 55 (2013), no. A, 75–87. MR 3110805, DOI 10.1017/S0017089513000517
- I. Heckenberger, Classification of arithmetic root systems, Adv. Math. 220 (2009), no. 1, 59–124. MR 2462836, DOI 10.1016/j.aim.2008.08.005
- I. Heckenberger, Lusztig isomorphisms for Drinfel′d doubles of bosonizations of Nichols algebras of diagonal type, J. Algebra 323 (2010), no. 8, 2130–2182. MR 2596372, DOI 10.1016/j.jalgebra.2010.02.013
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Vladislav Kharchenko, Quantum Lie theory, Lecture Notes in Mathematics, vol. 2150, Springer, Cham, 2015. A multilinear approach. MR 3445175, DOI 10.1007/978-3-319-22704-7
- Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834, DOI 10.1090/gsm/022
- Gongxiang Liu, A classification result on prime Hopf algebras of GK-dimension one, J. Algebra 547 (2020), 579–667. MR 4042591, DOI 10.1016/j.jalgebra.2019.12.003
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Marc Rosso, Quantum groups and quantum shuffles, Invent. Math. 133 (1998), no. 2, 399–416. MR 1632802, DOI 10.1007/s002220050249
- G. Sanmarco, Aportes a la clasificación de álgebras de Hopf punteadas de dimensión de Gelfand-Kirillov finita, Tesis doctoral, FaMAF, Un. Nac. Córdoba (2020).
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 252485
- Mitsuhiro Takeuchi, Survey of braided Hopf algebras, New trends in Hopf algebra theory (La Falda, 1999) Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 301–323. MR 1800719, DOI 10.1090/conm/267/04277
Bibliographic Information
- Nicolás Andruskiewitsch
- Affiliation: Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba. CIEM – CONICET. Medina Allende s/n (5000) Ciudad Universitaria, Córdoba, Argentina
- ORCID: 0000-0002-9163-5161
- Email: andrus@famaf.unc.edu.ar
- Guillermo Sanmarco
- Affiliation: Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba. CIEM – CONICET. Medina Allende s/n (5000) Ciudad Universitaria, Córdoba, Argentina
- MR Author ID: 1358017
- ORCID: 0000-0003-2522-0766
- Email: gsanmarco@famaf.unc.edu.ar
- Received by editor(s): February 25, 2020
- Received by editor(s) in revised form: September 29, 2020
- Published electronically: April 1, 2021
- Additional Notes: This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the first author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, in the Spring 2020 semester. The work of both authors was partially supported by CONICET, Secyt (UNC) and the Alexander von Humboldt Foundation through the Research Group Linkage Programme
- © Copyright 2021 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 8 (2021), 296-329
- MSC (2020): Primary 16T20, 17B37
- DOI: https://doi.org/10.1090/btran/66
- MathSciNet review: 4237965