Kronecker positivity and 2-modular representation theory
HTML articles powered by AMS MathViewer
- by C. Bessenrodt, C. Bowman and L. Sutton;
- Trans. Amer. Math. Soc. Ser. B 8 (2021), 1024-1055
- DOI: https://doi.org/10.1090/btran/70
- Published electronically: December 10, 2021
- HTML | PDF
Abstract:
This paper consists of two prongs. Firstly, we prove that any Specht module labelled by a 2-separated partition is semisimple and we completely determine its decomposition as a direct sum of graded simple modules. Secondly, we apply these results and other modular representation theoretic techniques on the study of Kronecker coefficients and hence verify Saxl’s conjecture for several large new families of partitions. In particular, we verify Saxl’s conjecture for all irreducible characters of $\mathfrak {S}_n$ which are of 2-height zero.References
- Christine Bessenrodt and Christopher Bowman, Multiplicity-free Kronecker products of characters of the symmetric groups, Adv. Math. 322 (2017), 473–529. MR 3720803, DOI 10.1016/j.aim.2017.10.009
- Christine Bessenrodt, Critical classes, Kronecker products of spin characters, and the Saxl conjecture, Algebr. Comb. 1 (2018), no. 3, 353–369. MR 3856528, DOI 10.5802/alco
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484. MR 2551762, DOI 10.1007/s00222-009-0204-8
- Jonathan Brundan and Alexander Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math. 222 (2009), no. 6, 1883–1942. MR 2562768, DOI 10.1016/j.aim.2009.06.018
- Jonathan Brundan, Alexander Kleshchev, and Weiqiang Wang, Graded Specht modules, J. Reine Angew. Math. 655 (2011), 61–87. MR 2806105, DOI 10.1515/CRELLE.2011.033
- Matthias Christandl, Brent Doran, and Michael Walter, Computing multiplicities of Lie group representations, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science—FOCS 2012, IEEE Computer Soc., Los Alamitos, CA, 2012, pp. 639–648. MR 3186652
- Matthias Christandl, M. Burak Şahinoğlu, and Michael Walter, Recoupling coefficients and quantum entropies, Ann. Henri Poincaré 19 (2018), no. 2, 385–410. MR 3748296, DOI 10.1007/s00023-017-0639-1
- Matthias Christandl, Aram W. Harrow, and Graeme Mitchison, Nonzero Kronecker coefficients and what they tell us about spectra, Comm. Math. Phys. 270 (2007), no. 3, 575–585. MR 2276458, DOI 10.1007/s00220-006-0157-3
- Matthias Christandl and Graeme Mitchison, The spectra of quantum states and the Kronecker coefficients of the symmetric group, Comm. Math. Phys. 261 (2006), no. 3, 789–797. MR 2197548, DOI 10.1007/s00220-005-1435-1
- Joseph Chuang, Hyohe Miyachi, and Kai Meng Tan, A $v$-analogue of Peel’s theorem, J. Algebra 280 (2004), no. 1, 219–231. MR 2081930, DOI 10.1016/j.jalgebra.2004.04.017
- Craig J. Dodge and Matthew Fayers, Some new decomposable Specht modules, J. Algebra 357 (2012), 235–262. MR 2905253, DOI 10.1016/j.jalgebra.2012.01.035
- Stephen Donkin and Haralampos Geranios, Decompositions of some Specht modules I, J. Algebra 550 (2020), 1–22. MR 4053571, DOI 10.1016/j.jalgebra.2019.12.017
- Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348. MR 1881922, DOI 10.1007/s002220100171
- Matthew Fayers, Reducible Specht modules, J. Algebra 280 (2004), no. 2, 500–504. MR 2089249, DOI 10.1016/j.jalgebra.2003.09.053
- Matthew Fayers, Irreducible Specht modules for Hecke algebras of type $\textbf {A}$, Adv. Math. 193 (2005), no. 2, 438–452. MR 2137291, DOI 10.1016/j.aim.2004.06.001
- Matthew Fayers, On the irreducible Specht modules for Iwahori-Hecke algebras of type A with $q=-1$, J. Algebra 323 (2010), no. 6, 1839–1844.
- Matthew Fayers and Sinéad Lyle, Some reducible Specht modules for Iwahori-Hecke algebras of type $A$ with $q=-1$, J. Algebra 321 (2009), no. 3, 912–933. MR 2488560, DOI 10.1016/j.jalgebra.2008.11.006
- Matthew Fayers and Sinéad Lyle, The reducible Specht modules for the Hecke algebra $\scr {H}_{\Bbb {C},-1}(\mathfrak {S}_n)$, J. Algebraic Combin. 37 (2013), no. 2, 201–241. MR 3011340, DOI 10.1007/s10801-012-0360-6
- Matthew Fayers and Liron Speyer, Generalised column removal for graded homomorphisms between Specht modules, J. Algebraic Combin. 44 (2016), no. 2, 393–432. MR 3533560, DOI 10.1007/s10801-016-0674-x
- Eugenio Giannelli, John Murray, and Joan Tent, Alperin-McKay natural correspondences in solvable and symmetric groups for the prime $p=2$, Ann. Mat. Pura Appl. (4) 197 (2018), no. 4, 999–1016. MR 3829558, DOI 10.1007/s10231-017-0712-x
- Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier, On the category $\scr O$ for rational Cherednik algebras, Invent. Math. 154 (2003), no. 3, 617–651. MR 2018786, DOI 10.1007/s00222-003-0313-8
- Gerhard Heide, Jan Saxl, Pham Huu Tiep, and Alexandre E. Zalesski, Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type, Proc. Lond. Math. Soc. (3) 106 (2013), no. 4, 908–930. MR 3056296, DOI 10.1112/plms/pds062
- Christian Ikenmeyer, The Saxl conjecture and the dominance order, Discrete Math. 338 (2015), no. 11, 1970–1975. MR 3357782, DOI 10.1016/j.disc.2015.04.027
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828, DOI 10.1007/BFb0067708
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, MA, 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Gordon James, Sinéad Lyle, and Andrew Mathas, Rouquier blocks, Math. Z. 252 (2006), no. 3, 511–531. MR 2207757, DOI 10.1007/s00209-005-0863-0
- Gordon James and Andrew Mathas, Hecke algebras of type $\textbf {A}$ with $q=-1$, J. Algebra 184 (1996), no. 1, 102–158. MR 1402572, DOI 10.1006/jabr.1996.0251
- Gordon James and Andrew Mathas, A $q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3) 74 (1997), no. 2, 241–274. MR 1425323, DOI 10.1112/S0024611597000099
- Gordon James and Andrew Mathas, The irreducible Specht modules in characteristic $2$, Bull. London Math. Soc. 31 (1999), no. 4, 457–462. MR 1687552, DOI 10.1112/S0024609399005822
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347. MR 2525917, DOI 10.1090/S1088-4165-09-00346-X
- A. Klyachko, Quantum marginal problem and representations of the symmetric group, arXiv:0409113, (2004).
- Alexander Kleshchev and David Nash, An interpretation of the Lascoux-Leclerc-Thibon algorithm and graded representation theory, Comm. Algebra 38 (2010), no. 12, 4489–4500. MR 2764833, DOI 10.1080/00927870903386536
- Masao Kiyota, Tetsuro Okuyama, and Tomoyuki Wada, The heights of irreducible Brauer characters in 2-blocks of the symmetric groups, J. Algebra 368 (2012), 329–344. MR 2955236, DOI 10.1016/j.jalgebra.2012.07.001
- Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205–263. MR 1410572, DOI 10.1007/BF02101678
- Ivan Losev, Proof of Varagnolo-Vasserot conjecture on cyclotomic categories $\mathcal {O}$, Selecta Math. (N.S.) 22 (2016), no. 2, 631–668. MR 3477332, DOI 10.1007/s00029-015-0209-7
- Sammy Luo and Mark Sellke, The Saxl conjecture for fourth powers via the semigroup property, J. Algebraic Combin. 45 (2017), no. 1, 33–80. MR 3591371, DOI 10.1007/s10801-016-0700-z
- Sinéad Lyle, Some $q$-analogues of the Carter-Payne theorem, J. Reine Angew. Math. 608 (2007), 93–121. MR 2339470, DOI 10.1515/CRELLE.2007.054
- Gwendolen Murphy, On decomposability of some Specht modules for symmetric groups, J. Algebra 66 (1980), no. 1, 156–168. MR 591250, DOI 10.1016/0021-8693(80)90117-9
- Jørn B. Olsson, McKay numbers and heights of characters, Math. Scand. 38 (1976), no. 1, 25–42. MR 409625, DOI 10.7146/math.scand.a-11614
- Jørn B. Olsson, Combinatorics and representations of finite groups, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 20, Universität Essen, Fachbereich Mathematik, Essen, 1993. MR 1264418
- Igor Pak, Greta Panova, and Ernesto Vallejo, Kronecker products, characters, partitions, and the tensor square conjectures, Adv. Math. 288 (2016), 702–731. MR 3436397, DOI 10.1016/j.aim.2015.11.002
- Igor Pak and Greta Panova, Bounds on certain classes of Kronecker and $q$-binomial coefficients, J. Combin. Theory Ser. A 147 (2017), 1–17. MR 3589885, DOI 10.1016/j.jcta.2016.10.004
- R. Rouquier, $2$-Kac–Moody algebras, arXiv:0812.5023, 2008.
- Raphaël Rouquier, $q$-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), no. 1, 119–158, 184 (English, with English and Russian summaries). MR 2422270, DOI 10.17323/1609-4514-2008-8-1-119-158
- Raphaël Rouquier, Peng Shan, Michela Varagnolo, and Eric Vasserot, Categorifications and cyclotomic rational double affine Hecke algebras, Invent. Math. 204 (2016), no. 3, 671–786. MR 3502064, DOI 10.1007/s00222-015-0623-7
- Liron Speyer, Decomposable Specht modules for the Iwahori-Hecke algebra $\scr {H}_{\Bbb {F},-_1}(\mathfrak {S}_n)$, J. Algebra 418 (2014), 227–264. MR 3250450, DOI 10.1016/j.jalgebra.2014.07.011
- Richard P. Stanley, Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295–319. MR 1754784
- C. Stroppel and B. Webster, Quiver Schur algebras and $q$-Fock space, arXiv:1110.1115, 2011.
- Michela Varagnolo and Eric Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), no. 2, 267–297. MR 1722955, DOI 10.1215/S0012-7094-99-10010-X
- Ben Webster, Rouquier’s conjecture and diagrammatic algebra, Forum Math. Sigma 5 (2017), Paper No. e27, 71. MR 3732238, DOI 10.1017/fms.2017.17
Bibliographic Information
- C. Bessenrodt
- Affiliation: Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, D-30167 Hannover, Germany
- MR Author ID: 36045
- Email: bessen@math.uni-hannover.de
- C. Bowman
- Affiliation: Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom
- MR Author ID: 922280
- Email: Chris.Bowman-Scargill@york.ac.uk
- L. Sutton
- Affiliation: Okinawa Institute of Science and Technology, Okinawa, Japan 904-0495
- MR Author ID: 1289714
- ORCID: 0000-0003-2607-9557
- Email: louise.sutton@oist.jp
- Received by editor(s): August 2, 2019
- Received by editor(s) in revised form: September 2, 2020
- Published electronically: December 10, 2021
- Additional Notes: The second author would like to thank both the Alexander von Humboldt Foundation and the Leibniz Universität Hannover for financial support and an enjoyable summer. The third author was supported by Singapore MOE Tier 2 AcRF MOE2015-T2-2-003.
- © Copyright 2021 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 8 (2021), 1024-1055
- MSC (2020): Primary 05E10, 20C30
- DOI: https://doi.org/10.1090/btran/70
- MathSciNet review: 4350547