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ON SMALL VALUES OF INDEFINITE DIAGONAL QUADRATIC

FORMS AT INTEGER POINTS IN AT LEAST FIVE VARIABLES

PAUL BUTERUS, FRIEDRICH GÖTZE, AND THOMAS HILLE

Abstract. For any ε > 0 we derive effective estimates for the size of a non-
zero integral point m ∈ Zd\{0} solving the Diophantine inequality |Q[m]| < ε,
where Q[m] = q1m2

1 + . . . + qdm
2
d denotes a non-singular indefinite diagonal

quadratic form in d ≥ 5 variables. In order to prove our quantitative variant
of the Oppenheim conjecture, we extend an approach developed by Birch and
Davenport to higher dimensions combined with a theorem of Schlickewei. The
result obtained is an optimal extension of Schlickewei’s result, giving bounds
on small zeros of integral quadratic forms depending on the signature (r, s), to
diagonal forms up to a negligible growth factor.

1. Introduction

The study of the size of the least non-trivial integral solution to homogeneous
quadratic Diophantine inequalities is often referred to as the quantitative Oppen-
heim conjecture; it has undergone significant developments over the past twenty
years, starting with the seminal results of Bentkus and Götze [BG97] and Eskin,
Margulis and Mozes [EMM98]. Still, at present the classical result of Birch and
Davenport [BD58b] provides the sharpest known bounds within the class of di-
agonal forms. In the present paper we consider non-singular, indefinite, diagonal
quadratic forms Q[m] := q1m

2
1 + . . . + qdm

2
d of signature (r, s) with d = r + s ≥ 5

variables and generalize the result of Birch and Davenport to this class: We signif-
icantly improve the explicit bounds, established by Birch and Davenport, in terms
of the signature (r, s) by means of Schlickewei’s work [Sch85a] on the size of small
zeros of integral quadratic forms (see Theorem 1.3). In general, we expect the
size of the least solution for real coefficients to be almost as good as for integral
coefficients and, in fact, the result obtained here reflects this heuristic viewpoint.

1.1. The result of Birch and Davenport. The proof used here extends a method
developed by Birch and Davenport [BD58b], which in turn is a refinement of the
Davenport-Heilbronn circle method [DH46]. Their approach can be used to extend
bounds on small zeros of integral forms to the real case: Birch and Davenport
proved in the case d = 5 (assuming that all of the real numbers q1, . . . , qd are of
absolute value at least one) that for any ε > 0 the Diophantine inequality

(1.1) |Q[m]| = |q1m2
1 + . . .+ qdm

2
d| < ε

is non-trivially solvable in integers and furthermore gave an effective estimate on
the size of the least solution: For any δ > 0 there is a constant Cδ > 0, depending
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on δ only, and a non-trivial integral solution m = (m1, . . . ,md) ∈ Zd \ {0} of (1.1)
lying in the elliptic shell defined by

(1.2) |q1|m2
1 + . . .+ |qd|m2

d ≤ Cδ|q1 . . . qd|1+δε−4−δ.

Here the weighted norm in (1.2) is an appropriate choice because of the scaling
properties with respect to q1, . . . , qd. More importantly, the above result implies
for d ≥ 5 and arbitrarily small ε > 0 that there exists a non-trivial solution of (1.1)
with integral m1, . . . ,md all of size O(ε−2−δ) for any fixed δ > 0.

Their proof relies essentially on results on small zeros of integral forms due to
these authors, see [BD58c]. For dimension d = 5 these bounds are in general
optimal, as noted in Remark 1.5. Actually, the main ideas for proving such bounds
are due to Cassels [Cas55], while the modifications in [BD58c] were of the same
form as (1.2) with the choice ε = 1 up to the additional dependency on δ. Indeed,
they showed that any indefinite quadratic form F [m] = f1m

2
1 + . . . + fdm

2
d in

d ≥ 5 variables with non-zero integers f1, . . . , fd admits a non-trivial lattice point
m = (m1, . . . ,md) ∈ Zd \ {0} satisfying

(1.3) f1m
2
1 + . . .+ fdm

2
d = 0 and 0 < |f1|m2

1 + . . .+ |fd|m2
d �d |f1 . . . fd|,

where we use Vinogradov’s notation � as usual. We also note here that the condi-
tion d ≥ 5 on the dimension cannot be relaxed, since it is well-known that integral
quadratic forms in four variables may fail to have non-trivial zeros.

To extend the bound (1.3) to the real case, Birch and Davenport [BD58b],
roughly speaking, analyze regular patterns in the frequency picture of the asso-
ciated counting problem by establishing rigidity in form of what we call coupled
Diophantine approximation (see Definition 3.6 for the precise meaning) and deduce
a contradiction by counting these points (i.e. establishing an upper and a lower
bound for the number of certain Diophantine approximants) under the assumption
that there are no solutions of |Q[m]| < ε in the elliptic shell defined by (1.2).

A major feature of this approach is to avoid the evaluation of the precise sizes of
the Diophantine approximants and of the absolute values of typical quadratic Weyl
sums, which are related to the approximation error via a refined Weyl inequality. In
fact, an approach, which only aims for an asymptotic approximation of the number
of integral solutions of (1.1) with a sufficiently small remainder term, is not suitable
for our purpose.

1.2. Main result: Our extension of Schlickewei’s bound. In view of Schlick-
ewei’s work [Sch85a] on the magnitude of small zeros of integral quadratic forms –
which will be the main ingredient to bound the size of the least non-trivial solution
of (1.1) – it is reasonable to expect that the exponent in the bound (1.2) can be
improved in terms of the signature (r, s) and, in fact, the main objective of the
present paper is to prove this extension of the work [BD58b].

Although the general strategy of the proof uses the approach of Birch and Dav-
enport [BD58b] as well, their technique fails without further analysis of certain arcs,
where the Weyl sums under consideration are large, if one wishes to replace (1.3)
by a better bound. To overcome this issue, we shall prove (conditionally) improved
mean value estimates for certain products of Weyl sums and iterate the coupling
argument of Birch and Davenport, as we will describe in detail in Section 1.4.

Compared to the work [Cas55] of Cassels, Schlickewei [Sch85a] showed that the
dimension, say d0, of a maximal rational isotropic subspace influences the size
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of possible solutions essentially, rather than the mere indefiniteness (i.e. d0 ≥ 1).
Moreover, by using an induction argument combined with Meyer’s theorem [Mey84]
Schlickewei derived a lower bound for d0 in terms of the signature (r, s) as well (see
Proposition 4.2). In Section 4 we combine both steps of Schlickewei’s work to deduce
the following generalization of (1.3). To state our modified variant of Schlickewei’s
result, we have to assume (w.l.o.g.) that r ≥ s (one can replace all qi by −qi).

Theorem 1.1 (Schlickewei [Sch85a]). For any non-zero integers f1, . . . , fd, of
which r ≥ 1 are positive and s ≥ 1 negative with d = r + s ≥ 5, there exist
integers m1, . . . ,md, not all zero, such that

(1.4) f1m
2
1 + . . .+ fdm

2
d = 0 and 0 < |f1|m2

1 + . . .+ |fd|m2
d �d |f1 . . . fd|

2β+1
d ,

where the exponent β is given by

(1.5) β = β(r, s) =

⎧⎪⎨⎪⎩
1
2
r
s for r ≥ s+ 3

1
2
s+2
s−1 for r = s+ 2 or r = s+ 1

1
2
s+1
s−2 for r = s

and the implicit constant in (1.4) depends on the dimension d only.

Remark 1.2. Compared to (1.3), the exponent in (1.4) is smaller for a wide range
of signatures (r, s) and in the cases, where the exponent is larger, we can restrict
Q by setting some coordinates to zero to arrive at least at the result of the case
d = 5. For example, if one has r ∼ s, then 2β ∼ 1 and therefore the exponent in
(1.4) is of order ∼ 2/d.

To simplify the analysis of (1.1), we may assume that ε = 1. Indeed, replacing
all coefficients qj by qj/ε it is sufficient to consider the solvability of the inequality

(1.6) |q1m2
1 + . . .+ qdm

2
d| < 1.

Guided by Theorem 1.1, we shall prove the following bound for the non-integral
case, which is already comparable to (1.4) up to the determinant of diag(f1, . . . , fd)
being replaced by the d-th power of the largest eigenvalue and an additional growth
rate given by (1.8).

Theorem 1.3. Let q1, . . . , qd be real numbers, of which r ≥ 1 are positive and
s ≥ 1 negative, such that |qi| ≥ ee and d = r + s ≥ 5. Then there exist integers
m1, . . . ,md, not all zero, satisfying both (1.6) and

(1.7) |q1|m2
1 + . . .+ |qd|m2

d Îd ( max
i=1,...,d

|qi|)1+2β ,

where β is defined as in (1.5). Here the implicit constant depends on d only and
A Î B stands for

(1.8) A � B1+ 20d2

log log B .

The reader may note that the growth rate is considerably improved compared

with (1.2), since we have B1+ 20d2

log log B � B1+δ for any δ > 0. This improvement is
achieved by replacing the smoothing kernel (in the application of the circle method)
by a faster decaying choice. Our result can now be summarized by the following
corollary to the main theorem.
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Corollary 1.4. Let q1, . . . , qd be as in Theorem 1.3 and let ε > 0 be arbitrary. Then
there exists a non-trivial solution (m1, . . . ,md) ∈ Zd\{0} of |q1m2

1+. . .+qdm
2
d| < ε,

whose size is of order ‖(m1, . . . ,md)‖ ÎQ ε−β.

Note that this result is an improved variant of the bound O(ε−2−δ) of Birch and
Davenport [BD58b] for higher dimensions in terms of the signature (r, s).

Remark 1.5. In 1988 Schlickewei and Schmidt [SS88] proved that Schlickewei’s
bound (in terms of the dimension d0 of a maximal rational isotropic subspace)
is qualitatively best possible. Of course, one can also ask if Schlickewei’s bound
in terms of the signature (r, s) is best possible, as was already conjectured by
Schlickewei himself in his first work [Sch85a] on small zeros. For the class of integral
quadratic forms (not necessarily diagonal) this is known for the cases r ≥ s+3 and
(3, 2), see Schmidt [Sch85b].

1.3. Related results and further remarks. In 1929 Oppenheim [Opp29] con-
jectured that for any irrational quadratic form Q, i.e. Q is not a real multiple of
a rational form, in d ≥ 5 variables the set Q[Zd] contains values arbitrarily close
to zero. The stronger version – conjecturing that it is sufficient to have d ≥ 3
variables – is due to Davenport [DH46]. Actually the density of Q[Zd] in R follows
from that Q either represents zero non-trivially or Q[Zd] contains non-zero elements
with arbitrarily small absolute values, provided that d ≥ 4 and Q is irrational, see
[Opp53a,Opp53b,Opp53c] and for instance Section 5 in [Lew73]. The validity of the
conjecture was confirmed by Birch, Davenport and Ridout [BD58a, DR59,Rid58]
for d ≥ 21 and conclusively answered in 1986 by Margulis [Mar89], using methods of
homogeneous dynamics. The first proof given by Margulis shows only the solvabil-
ity of |Q[m]| < ε, whereas the modified variant, i.e. the solvability of 0 < |Q[m]| < ε
for irrational Q, was proven by Margulis subsequently as well (responding to a ques-
tion by Borel). We refer to [Lew73] and [Mar97] for a complete historical overview
until 1997.

Remark 1.6. Baker and Schlickewei [BS87] have already used Schlickewei’s work
[Sch85a] in combination with the methods of Davenport and Ridout [DR59] to
prove the Oppenheim conjecture (for not necessary diagonal forms) in some special
cases ((i) d = 18, r = 9, (ii) n = 20, 8 ≤ 11, (iii) d = 20, 7 ≤ r ≤ 13).

Nearly a decade later Eskin, Margulis and Mozes [EMM98,EMM05] gave quan-
titative versions of these results, i.e. counting asymptotically the number of lattice
points in fixed hyperbolic shells {m ∈ Zd : a < Q[m] < b} which are restricted
to growing domains rΩ with r → ∞. Such results are called quantitative Oppen-
heim conjecture as well, but do not imply in a first instance explicit bounds on the
size of the least non-trivial integral solution to homogeneous quadratic Diophantine
inequalities: To show that the inequality |Q[m]| < ε admits a non-trivial integer
solution, whose size can be bounded, an effective error bound for the lattice re-
mainder is needed. This investigation started with the work of Bentkus and Götze
[BG97,BG99], establishing effective bounds for d ≥ 9 (however, in these works no
explicit connections between certain Theta-series and Diophantine approximation
of Q were deduced) and later continued by Götze and Margulis [GM13]. In an
upcoming revised version [BGHM19] we prove effective versions of the Oppenheim
conjecture for d ≥ 5 and non-diagonal forms, thereby deriving bounds on solutions
of |Q[m]| < ε as well, see [BGHM19, Theorem 1.3]. However, we cannot make
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use of the full strength of Schlickewei’s bounds and therefore our Theorem 1.3 for
diagonal forms, obtained in this paper, is sharper when compared to [BGHM19].

Remark 1.7. We also note that weaker results, giving upper bounds in terms of the
signature for general quadratic forms were established by Cook [Coo83], [Coo84],
and Cook and Raghavan [CR84] using a diagonalization technique of Birch and
Davenport.

Recently Bourgain [Bou16], Athreya and Margulis [AM18], and Ghosh and
Kelmer [GK18] investigated generic variants of the quantitative Oppenheim conjec-
ture. Bourgain [Bou16] proved essentially optimal results for one-parameter families
of diagonal ternary indefinite quadratic forms under the Lindelöf hypothesis by us-
ing an analytic number theory approach. Compared to [Bou16], Ghosh and Kelmer
consider in the paper [GK18] the space of all indefinite ternary quadratic forms,
equipped with a natural probability measure, and they use an effective mean er-
godic theorem for semisimple groups. In contrast, Athreya and Margulis [AM18]
applied classical bounds of Rogers for L2-norm of Siegel transforms to prove that
for every δ > 0 and almost every Q (with respect to the Lebesgue measure) with
signature (r, s), there exists a non-trival integer solution m ∈ Zd of the Diophantine

inequality |Q[m]| < ε whose size is ‖m‖ �δ,Q ε−
1

d−2+δ, if d ≥ 3.

1.4. Sketch of proof: Extended approach of Birch and Davenport. We
follow the approach of Birch and Davenport [BD58b], which is a proof by contra-
diction and consists mainly of two parts: The first step is to pick out all integral
solutions to the inequality |Q[m]| < 1 that are contained in a box of a certain size
by integrating the product of all quadratic exponential sums S1, . . . , Sd, defined by

(1.9) Sj(α) :=
∑

P<|qj |1/2mj<2dP

e(αqjm
2
j),

with a suitable kernel K. Here we write as usual e(x) = exp(2πix). Assuming that
there are no integral solutions contained in the elliptic shell defined by

(1.10) |q1|m2
1 + . . .+ |qd|m2

d ≤ 4d3P 2,

we deduce (in Lemma 2.5) that the real part of
∫∞
0

S1(α) . . . Sd(α)K(α) dα vanishes,
i.e. there are non-trivial cancellations in the product of the sums S1, . . . , Sd. To
analyze this integral, we will divide the range of integration into four parts, namely

(1.11)

0 < α <
1

(8dP )q1/2
;

1

(8dP )q1/2
< α <

1

(8dP )(q0)1/2
;

1

(8dP )(q0)1/2
< α < u(P ); u(P ) < α < ∞,

where q0, q will be defined in (2.1) and u(P ) = log(P + e)2. First we show that on
the first range the mass of the real part is highly concentrated. In fact, since α is
‘very small’, van der Corput’s lemma can be applied and shows that this part is at
least as large as the volume of the restricted hyperbolic shell

(1.12) {x ∈ Rd : |Q[x]| < 1}∩ {x ∈ Rd : P < |qj |1/2xj < 2dP for all j = 1, . . . , d}.
In comparison, the second and fourth range of the integral are negligible. Conse-
quently the mass contained in the third range – which we will call J – has to be
of the order of the volume of (1.12) and hence the integral over J is ‘large’ as well
when integrating the absolute value of the product S1, . . . , Sd, see Lemma 2.12.
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Moreover, it remains ‘large’, even if we restrict ourselves to a subregion (called F)
of J , where all factors S1, . . . , Sd are uniformly ‘large’ (see Corollary 2.15).

The second step consists in finding an upper and a lower bound for the number
Nj of specific rational approximants (xi, yi) of qiα in this subregion of the integral.
As in Birch and Davenport [BD58c], it is convenient to consider those parts of this
subregion, where for each i = 1, . . . , d both quantities Si(α) and yi are all of the
same magnitude independent of α. This can be achieved by using a localization
argument, i.e. we use a dyadic decomposition of F into � log(P )2d parts. In
particular, we can restrict ourselves to one of these sets, say G, where the integral
over G remains ‘large’ (see Lemma 3.4).

The lower bound for Ni can be derived by a standard application of the refined
Weyl inequality used here, see Corollary 3.5. To establish an upper bound, we
shall prove on G that d − k fractions xiyd/yixd are independent of α (see Lemma
3.9), where k ∈ {0, 1, 2, 3} depends on the size of β and the order of magnitude of
Sk+1, . . . , Sd (prior to that, we have already rearranged S1, . . . , Sd in a certain way,
compare (3.8)). Here Sk+1, . . . , Sd show a rigid behaviour as in the rational case.
Indeed, the previous observation gives rise to a factorization of xi and yi as

(1.13) xi = xx′
i and yi = yy′i

such that x′
i, y

′
i divide a fixed number L, which is independent of α. In such

situations (i.e. if such a factorization exists) we say that Sk+1, . . . , Sd are coupled
on G, see Definition 3.6.

The case k = 0 corresponds to Birch and Davenport’s paper [BD58b]. However,
this setting occurs only if β ≥ 2, i.e. the exponent in the bound (1.2) has to be
relatively large. In fact, the main difficulty in the present paper is to overcome this
issue: In Section 5 such factorizations are used to show that all pairs (x, y) lie in a
certain bounded set. The size of this bounded set will be substantially influenced
by the exponent β; exactly at this point we are going to apply Schlickewei’s bound
to the integral form x′

k+1y
′
k+1m

2
k+1+ . . .+x′

dy
′
dm

2
d, see Lemma 5.1 for more details

(here the factorization (1.13) allows us to factor out a/q).
As a consequence, we deduce an upper bound for the number of distinct pairs

(x, y), see Corollary 5.2. Based on this, we establish an improved mean value esti-
mate for Sk+1 . . . Sd on G, which implies better estimates for the order of magnitude
of Sk. By using this improved lower bound on Sk we will conclude that Sk, . . . , Sd

are coupled on G as well. Now, depending on k ∈ {0, 1, 2, 3}, we can iterate this
argument until k = 0 to prove that all remaining coordinates are coupled. In the
course of this, we are faced with the tedious problem of comparing Schlickewei’s
exponent (1.5) for Q and all possible restrictions of Q to certain subspaces with k
zero coordinates. This results in the number of cases listed in Appendix A. To com-
plete the proof, we deduce an inconsistent inequality (as in Birch and Davenport
[BD58b]) by establishing an upper bound for a particular Ni, which contradicts the
lower bound found previously.

2. Fourier analysis and moment estimates

Throughout the paper q1, . . . , qd denote real non-zero numbers, of which r ≥ 1
are positive and s ≥ 1 negative. We also introduce the notation

(2.1) q0 = min
j=1,...,d

|qj |, q = max
j=1,...,d

|qj | and |Q| =
d∏

j=1

|qj |.
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Moreover, the constants throughout the proofs involved in the notation � will not
be always mentioned explicitly; these will depend on d only unless stated otherwise.
We also stress the underlying assumption that d = r + s ≥ 5, since our argument
depends on the solvability of non-degenerate, integral indefinite quadratic forms
that are ‘close’ to scalar multiples of Q. We shall ultimately deduce a contradiction
from Assumption 2.1.

Assumption 2.1. Let q1, . . . , qd be as introduced in Theorem 1.3. Suppose that
for Cd > 0 the inequality

|q1m2
1 + . . .+ qdm

2
d| < 1

has no solutions in integers m1, . . . ,md, not all zero, satisfying

(2.2) |q1|m2
1 + . . .+ |qd|m2

d ≤ 4d3P 2,

where

(2.3) P = exp
{(

1 + 10d2

log logH

)
logH

}
and H = Cdq

1
2+β

and β is defined as in (1.5).

Remark 2.2. During the proof we will assume that the constant Cd > 0 in Assump-
tion 2.1 is chosen sufficiently large. This will guarantee that the error terms under
consideration are smaller (in terms of P , resp. H) than the leading term.

In this paper, we shall fix from now on a smoothing kernel K := ψ̂ with decay
rate

(2.4) |ψ̂(α)| � exp(−α/ log(α+ e)2),

where ψ is a smooth symmetric probability density supported in [−1, 1]. Compared
to [BD58b] our choice of K allows to achieve the growth rate of the bound (1.7),
since we replace the kernel by a faster decaying one. Note that the existence of
such a function ψ is guaranteed by the following Lemma 2.3 with the choice

(2.5) u(α) := log(α+ e)2.

Lemma 2.3. Let u be a positive, continuous, strictly increasing function such that

(2.6)

∫ ∞

1

1

αu(α)
dα < ∞.

Then there exists a smooth symmetric probability density ψ : R → [0,∞) such that

(i) ψ supported in [−1, 1] and ψ(0) ≥ 1/2,
(ii) ψ is increasing for α < 0 and ψ decreasing for α > 0,

(iii) |ψ̂(α)| � exp(−|α|u(|α|)−1) and ψ̂ is real-valued and symmetric.

The existence of such kernels is discussed in [BR10], see Section 10 of Chapter
2 and particularly Theorem 10.2. However, our variant cannot be found in the
literature and therefore we have included a proof in Appendix B.

Remark 2.4. The construction of such kernels is due to Ingham [Ing34] and extends
the commonly used ones in the context of the circle method (compare with Lemma
1 in [Dav56] or [BK01]) by using convergent infinite convolution products (instead
of finitely many). As a side note, we mention that Ingham also showed that the
condition (2.6) is necessary for the existence of such kernels.
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2.1. Counting via integration. The starting point of Birch and Davenport’s
approach is the following observation.

Lemma 2.5. Assumption 2.1 implies

(2.7) Re

∫ ∞

0

S1(α) . . . Sd(α)K(α) dα = 0.

Proof. Expanding the product shows that

Re

∫ ∞

0

S1(α) . . . Sd(α)K(α) dα =
1

2

∑
m1,...,md

ψ(q1m
2
1 + . . .+ qdm

2
d),

where the summation is taken over all lattice points (m1, . . . ,md) in the range

P < |qi|
1
2mi < 2dP , i = 1, . . . , d. Since these points satisfy (2.2), we must have

|q1m2
1 + . . .+ qdm

2
d| ≥ 1

by Assumption 2.1. Thus, the sum is zero because ψ is supported in [−1, 1]. �

We begin by investigating the first range in (1.11), where van der Corput’s lemma
can be applied in order to replace the exponential sums S1, . . . , Sd within a small
part of the integration domain by analogous exponential integrals.

Lemma 2.6. If

(2.8) 0 < α < (8dP )−1|qj |−1/2,

then we have

(2.9) Sj(α) = |qj |−1/2I(±α) +O(1),

where the ± sign is the sign of qj and

(2.10) I(α) =

∫ 2dP

P

e(αξ2) dξ.

Proof. Let f(x) = α|qj |x2. If P < |qj |1/2x < 2dP , then we have f ′′(x) > 0 and
0 < f ′(x) < 1/2. Hence, we can apply van der Corput’s Lemma ([Vin54], Chapter
1, Lemma 13) to get

Sj(α) =

∫ 2dP |qj |−
1
2

P |qj |−
1
2

e(αqjξ
2) dξ +O(1).

Changing the variables of integration proves (2.9). �

Lemma 2.7. For α > 0 we have

(2.11) |I(±α)| � min(P, P−1α−1).

Proof. This follows by an application of the second mean value theorem, see Lemma
3 in [BD58b]. �

The next lemma, which is a generalization of Lemma 4 in [BD58b] to dimensions
greater than five, gives an upper bound for the main integral in a small neighbor-
hood of zero.
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Lemma 2.8. We have

(2.12) Re

∫ (8dP )−1q−
1
2

0

S1(α) . . . Sd(α)K(α) dα = M1 +R1,

where the main term satisfies

(2.13) M1 � δP d−2|Q|−1/2

for some δ > 0 depending on the kernel K only and the error term is bounded by

(2.14) |R1| � P d−3q1/2|Q|−1/2.

Proof. For each j=1, . . . , d we can apply Lemma 2.6 in the domain of integration

giving Sj(α) = |qj |−
1
2 I(±α)+O(1). This together with (2.11) of Lemma 2.7 yields

Sj(α) � |qj |−
1
2 min(P, P−1α−1).

Thus, the error for replacing the product of all exponential sums Sj(α) by the

product of all |qj |−
1
2 I(±α) is∣∣∣∣ d∏

j=1

Sj(α)− |q1 . . . qd|−
1
2

d∏
j=1

I(±α)

∣∣∣∣� d−1∑
j=1

∑
{i1,...,ij}⊂{1,...,d}

min(P j , P−jα−j)

|qi1 . . . qij |
1
2

.

Since min(P, α−1P−1) > q1/2, the right hand side is bounded by

� q
1
2 |Q|− 1

2 min
(
P d−1, P−(d−1)α−(d−1)

)
.

Now, up to a small error, we can replace the sum by an integral and obtain

(2.15)

∫ (8dP )−1q−
1
2

0

S1(α) . . . Sd(α)K(α) dα

= |Q|− 1
2

∫ (8dP )−1q−
1
2

0

I(±α) . . . I(±α)K(α) dα+O(Ξ),

where

Ξ := q
1
2 |Q|− 1

2

∫ ∞

0

min(P d−1, P−(d−1)α−(d−1)) dα.

Note that the last error can be absorbed in R1 by (2.14), because it is bounded by

q
1
2 |Q|− 1

2

(∫ P−2

0

P d−1 dα+

∫ ∞

P−2

P 1−dα1−d dα

)
� q

1
2 |Q|− 1

2P d−3.

We can also extend the integration domain (of the integral on the right-hand side
of (2.15)) to ∞, since the additional error is given by

|Q|− 1
2

∫ ∞

(8dP )−1q−
1
2

I(±α) . . . I(±α)K(α) dα � |Q|− 1
2

∫ ∞

(8dP )−1q−
1
2

P−dα−d dα

� |Q|− 1
2 q

1
2P−1q

d
2−1 � |Q|− 1

2 q
1
2P d−3,

where we used that q1/2 < P . Again, this error can be absorbed in R1 by (2.14).
Next, we are going to establish a lower bound for the main term

M1 = |q1 . . . qd|−
1
2 Re
(∫ ∞

0

I(±α) . . . I(±α)K(α) dα
)
.
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Keeping in mind that K̂(α) = ψ(−α) = ψ(α), we may rewrite the main term as

M1 = 2−1|Q|− 1
2

∫ 2dP

P

. . .

∫ 2dP

P

ψ(±ξ21 ± . . .± ξ2d) dξ1 . . .dξd

= 2−d−1|Q|− 1
2

∫ 4d2P 2

P 2

. . .

∫ 4d2P 2

P 2

(η1 . . . ηd)
− 1

2ψ(±η1 ± . . .± ηd) dη1 . . .dηd.

Since ψ(0) ≥ 1/2 (see Lemma 2.3), there exists a δ ∈ (0, 1) such that

ψ(α) > 1/4 for all |α| ≤ δ.

Relabeling the variables, if necessary, we may suppose that the sign attached to η1
is + and that the sign attached to η2 is −. As can be easily verified, the region
defined by the three conditions

P 2 < ηi < 4P 2 for i = 3, . . . , d and 4(d− 1)P 2 < η2 < (4d(d− 1) + 7)P 2,

|η1 − η2 ± η3 ± . . .± ηd| < δ

is contained in the region of integration. Therefore, we get the lower bound

M1 > 2−d−3|Q|− 1
2 (2δ)(4d2P 2)−

1
2

∫ (4d(d−1)+7)P 2

4(d−1)P 2

η
− 1

2
2 dη2

(∫ 4P 2

P 2

η−
1
2 dη

)d−2

= (2−4δ)|Q|− 1
2

√
4d(d− 1) + 7−

√
4(d− 1)

d
P d−2

and the latter is at least as large as (2−4δ)|Q|−1/2P d−2. �
2.2. Mean-value estimates for quadratic exponential sums. In order to
guarantee that the (yet to be introduced) Diophantine approximation of qjα does
not vanish as well as that the resulting rational approximation of αQ has the
same signature as Q, we have to extend the upper integration limit in (2.12) from
(8dP )−1q−1/2 to (8dP )−1(q0)

−1/2. This will be done in Lemma 2.9 showing that
the contribution of this region is (roughly) of the same order as the previous error
term (2.14).

Lemma 2.9. We have

(2.16) R2 =

∫ (8dP )−1(q0)
− 1

2

(8dP )−1q−
1
2

|S1(α) . . . Sd(α)| dα � q
1
2 |Q|− 1

2P d−3(logP ).

To prove this lemma, we will utilize both Lemma 2.6 and the following moment
estimates for the quadratic Weyl sums S1, . . . , Sd under consideration.

Lemma 2.10. For any n ≥ 4 we have

(2.17)

∫ |qj |−1

0

|Sj(α)|n dα � |qj |−
n
2 Pn−2(logP ).

Proof. First, we use the trivial estimate |Sj(α)| � |qj |−1/2P to obtain∫ |qj |−1

0

|Sj(α)|n dα � |qj |−
n−4
2 Pn−4

∫ |qj |−1

0

|Sj(α)|4 dα

and subsequently we make the change of variable α = |qj |−1θ to get

(2.18)

∫ |qj |−1

0

|Sj(α)|n dα � |qj |−
n−2
2 Pn−4

∫ 1

0

∣∣∣ ∑
m∈N

e(θm2)
∣∣∣4 dθ,
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where the summation is taken over N := {m ∈ N : P < |qj |1/2m < 2dP}. Using
orthogonality reveals the underlying Diophantine equation, i.e. the integral of the
right hand side of (2.18) represents the number of solutions of

(2.19) v21 + v22 = w2
1 + w2

2,

where vi, wi ∈ N range over the interval of summation. This number can be
bounded by

(2.20)
∑
n<N

r2(n)

with N = 8d2P 2|qj |−1. Here r(n) denotes the number of representations of a
natural number n ∈ N as a sum of two squares. As mentioned in Lemma 5 of
[BD58b], the sum (2.20) is � N logN . In fact, this can be proven by translating
equation (2.19) into a multiplicative problem and afterwards applying the Dirichlet
hyperbola method. �

Remark 2.11. In the case n ≥ 10 one might appeal to the Hardy-Littlewood as-
ymptotic formula (see e.g. [Nat96], Theorem 5.7) and for n ≥ 6 we could use the
results in [CKO05] to drop the term logN as well, but this wouldn’t have any effect
on Theorem 1.3. For completeness, we also note that the best known asymptotic
formula for (2.20) can be found in [Küh93].

A variant of our Lemma 2.9 is also proved in [BD58b] under the assumption
P > |Q|1/2. The situation is even easier here, since we have P > q. This follows
directly from Assumption 2.1 and the fact that β > 1/2 or more precisely

(2.21) β ≥ 1

2

d+ 3

d− 3
if d is odd and β ≥ 1

2

d+ 2

d− 4
if d is even.

Proof of Lemma 2.9: This proof does not use any properties of the quadratic form
Q and thus we can assume that the eigenvalues are ordered, i.e. 1 ≤ |q1| ≤ |q2| ≤
. . . ≤ |qd|. In particular, q0 = |q1| and q = |qd|. We begin by splitting the interval
of integration into the d− 1 intervals

Ik = {α ∈ (0,∞) : (8dP |qk|
1
2 )−1 < α < (8dP |qk−1|

1
2 )−1},

where k = 2, . . . , d. If j ≤ k− 1, then the condition (2.8) of Lemma 2.6 is satisfied.
Therefore, combined with Lemma 2.7, we obtain for α ∈ Ik the inequality

(2.22) |Sj(α)| � |qj |−
1
2P−1α−1 + 1 � |qj |−

1
2P−1α−1.

For j ≥ k we use the trivial estimate |Sj(α)| � P |qj |−
1
2 to conclude that

|S1(α) . . . Sd(α)| � |Q|− 1
2 (Pα)1−kP d−(k−1).

If k ≥ 3, then we find the bound∫
Ik

|S1(α) . . . Sd(α)| dα � |Q|− 1
2P d−2(k−1)(P |qk|

1
2 )k−2 = |Q|− 1

2P d−2(P−1|qk|
1
2 )k−2

and this is smaller than � |Q|−1/2q1/2P d−3. Next we treat the case k = 2 corre-
sponding to the interval I2. For j = 1 the inequality (2.22) still holds and therefore

(2.23) |S1(α)| � |q1|−
1
2P−1α−1 � |q1|−

1
2 |q2|

1
2 .
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Let j = 2, . . . , d. Dividing I2 into parts of length |qj |−1, i.e. the period of Sj , gives∫
I2

|Sj(α)|d−1 dα ≤
(
1 +

|qj |
8dP |q1|

1
2

)∫ |qj |−1

0

|Sj(α)|d−1 dα �
∫ |qj |−1

0

|Sj(α)|d−1 dα,

where P ≥ q was used. Next we apply the mean value estimates, mentioned in
Lemma 2.10, to deduce that∫

I2

|Sj(α)|d−1 dα � |qj |−
d−1
2 P d−3(logP )

and use Hölder’s inequality to obtain∫
I2

|S2(α) . . . Sd(α)| dα � |q2 . . . qd|−
1
2P d−3(logP ).

Together with equation (2.23) we find∫
I2

|S1(α) . . . Sd(α)| dα � |q2|
1
2 |Q|− 1

2P d−3(logP ) � q
1
2 |Q|− 1

2P d−3(logP ). �

We end this subsection by combining the previous estimates in order to prove

Lemma 2.12. Under Assumption 2.1, we may choose Cd � 1, occurring in the
definition of P in (2.3), such that

(2.24)

∫ u(P )

(8dP )−1(q0)
− 1

2

|S1(α) . . . Sd(α)K(α)| dα � |Q|− 1
2P d−2.

In particular, we may neglect the tail of the integral using the decay of K, see
(2.4) and (2.5) for the definition of u(P ).

Proof. According to Lemmas 2.5, 2.8 and 2.9 we have

M1 +M2 +R1 +R2 +R3 = 0,

where M1 � |Q|− 1
2P d−2, |R1|+ |R2| � q

1
2 |Q|− 1

2P d−3(logP ) � |Q|− 1
2P d− 5

2 and

R3 = Re

∫ ∞

u(P )

S1(α) . . . Sd(α)K(α) dα,

M2 = Re

∫ u(P )

(8dP )−1(q0)
− 1

2

S1(α) . . . Sd(α)K(α) dα.

We can easily bound the tail R3: Using the trivial estimate |Sj(α)| � P |qj |−
1
2 and

the decay of K gives

R3 � P d|Q|− 1
2

∫ ∞

u(P )

exp(−αu(α)−1) dα � |Q|− 1
2P d−3.

Combining the previous estimates we end up with

|M1 +M2| ≤ |R1|+ |R2|+ |R3| � |Q|− 1
2P d−3

(
1 + P

1
2

)
.

Thus, we may increase Cd � 1 such that the latter term is smaller than the lower
bound for M1, and conclude that

P d−2|Q|− 1
2 � |M2| ≤

∫ u(P )

(8dP )−1(q0)
− 1

2

|S1(α) . . . Sd(α)K(α)| dα. �
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2.3. Ordering and contribution of the peaks. In the following we will show
that the main contribution to the integral (2.24) arises from a certain subregion
on which every S1, . . . , Sd is large. Before doing this, we shall fix an ordering
of S1, . . . , Sd as well, which will be necessary in order to perform the coupling
argument and its iteration. For this, we define

(2.25) J := {α ∈ (0,∞) : (8dPq
1
2
0 )

−1 < α < u(P )}
and write

(2.26) Jπ := {α ∈ J : |qπ(1)|
1
2 |Sπ(1)(α)| ≤ . . . ≤ |qπ(d)|

1
2 |Sπ(d)(α)|}

for any permutation π of the set {1, . . . , d}. Obviously, all these sets cover J
completely and since there are only finitely many permutations of {1, . . . , d} Lemma
2.12 implies

Lemma 2.13. Under Assumption 2.1, there exists a permutation π of the set
{1, . . . , d} such that

(2.27)

∫
Jπ

|S1(α) . . . Sd(α)K(α)| dα � P d−2|Q|− 1
2 .

From now on we shall fix a permutation π satisfying (2.27). With this ordering
at hand, we are in position to prove that the integral in (2.27) can be restricted to

(2.28) F := {α ∈ Jπ : |qπ(i)|
1
2 |Sπ(i)(α)| > P (u(P )2q)−κ(i) for all i = 1, . . . , d},

where κ(i) := min{i, (d− 4)}−1. Indeed, we have

Lemma 2.14. Independently of Assumption 2.1, the estimate

(2.29)

∫
Jπ\F

|S1(α) . . . Sd(α)| dα � |Q|− 1
2P d−2(logP )−1

holds, where the error term depends on the dimension d only.

Proof. First we cover the complement Jπ \F by the (not necessarily disjoint) union
of d many sets given by

Cj := {α ∈ Jπ : |qπ(j)|
1
2 |Sπ(j)(α)| ≤ P (u(P )q)−κ(j)},

where j = 1, . . . , d. If α ∈ Cj , then (2.26) implies that

|qπ(1)|1/2|Sπ(1)(α)| ≤ . . . ≤ |qπ(j)|1/2|Sπ(j)(α)|
and therefore the left hand side of (2.29), restricted to the region Cj , is bounded by

(2.30) � |qπ(1) . . . qπ(k)|−
1
2P k(u(P )2q)−1

∫ u(P )

0

|Sπ(k+1)(α) . . . Sπ(d)(α)| dα,

where k = min(j, d − 4). This choice of k permits to apply Lemma 2.10: Since Si

is a periodic function with period |qi|−1, we find∫ u(P )

0

|Si(α)|d−k dα � u(P )|qi|
∫ |qi|−1

0

|Si(α)|d−k dα

� qP d−k−2|qi|−(d−k)/2u(P )(logP ).

Thus, we can make use of Hölder’s inequality to obtain∫ u(P )

0

|Sπ(k+1)(α) . . . Sπ(d)(α)| dα � q|qπ(k+1) . . . qπ(d)|−
1
2P d−k−2u(P )(logP )
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and combined with (2.30) we conclude that∫
Jπ\F

|S1(α) . . . Sd(α)| dα � |Q|− 1
2P d−2(logP )−1. �

Everything considered, applying both Lemma 2.13 combined with Lemma 2.14,
proves the following corollary.

Corollary 2.15. Under Assumption 2.1, we may increase the constant Cd � 1,
occurring in the definition of P in (2.3), such that

(2.31)

∫
F
|S1(α) . . . Sd(α)K(α)| dα � P d−2|Q|− 1

2 .

Remark 2.16. We note that the usual proof of the Hardy-Littlewood asymptotic
formula shows that the mean value estimates, used here for products of S1, . . . , Sd,
are in general (up to log factors) best possible. In particular, one cannot improve
the exponent κ(i) without using additional information regarding the underlying
quadratic form Q[m] = q1m

2
1+. . .+qdm

2
d. To obtain better moment estimates (as in

Lemma 5.3) we need to iterate the coupling argument of Birch and Davenport and
exploit Assumption 2.1 to ‘couple’ almost all coordinates (in the sense of Definition
3.6) and afterwards count certain arcs (see Lemma 5.1, resp. Corollary 5.2).

3. First coupling via Diophantine approximation

As shown in Corollary 2.15, the integral over F is relatively large. Now we shall
split F further into parts, where the quantity Sj has a specified order of magnitude
in terms of the following Diophantine approximation: By Dirichlet’s approximation
theorem, applied to any α ∈ F and j ∈ {1, . . . , d}, there exist coprime integer pairs
(xj , yj) such that

(3.1) qjα =
xj

yj
+ ρj and 0 < yj ≤ 8dP |qj |−

1
2 ,

where the approximation error is bounded by

(3.2) |ρj | < y−1
j (8dP |qj |−

1
2 )−1.

For convenience, we introduce the following notations as well: We shall denote by
Z2
prim the set of coprime integral pairs (x, y) with y > 0 and for any α ∈ R we define

Dj(α) := {(xj , yj) ∈ Z2
prim : (xj , yj) are chosen as in (3.1) satisfying (3.2)}.

Note here, that none of x1, . . . , xd are zero, since |qj |α > |qj |(8dP )−1(q0)
− 1

2 > |ρj |
holds in the integration region F of interest and thus |xj | ≥ yj(|αqj | − |ρj |) > 0.

3.1. Refined variant of Weyl’s inequality. In order to control the magnitude
of Sj(α) in terms of the denominator yj and the approximation error ρj , corre-
sponding to the Diophantine approximation of qjα introduced previously, we need
the following (well-known) variant of Weyl’s inequality.

Lemma 3.1. If (3.1) and (3.2) hold, then we have

(3.3) |Sj(α)| � (yj)
− 1

2 (logP )min(P |qj |−
1
2 , P−1|qj |

1
2 |ρj |−1).

Lemma 3.1 can be proved along the same lines as the corollary following Lemma
9 in [BD58b]. Nevertheless, for completeness, we have included the proof here.
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Sketch of Proof: This is a corollary of the subsequent Lemma 3.2: By taking A =
P |qj |−1/2, x = xj , y = yj and replacing α by qjα we find that

Sj(α) = y−1
j

( yj∑
m=1

e(xjm
2/yj)

)∫ 2dP |qj |−1/2

P |qj |−1/2

exp(2πiρjξ
2) dξ +O(y

1/2
j log 2yj).

In view of (3.1) and (3.2) we have

y
1/2
j � y

−1/2
j P |qj |−1/2 and y

1/2
j � y

−1/2
j P−1|qj |1/2|ρj |−1.

Thus, combined with log(2yj) � log(P ), we infer that the O-term is negligible
(compared to the right side of (3.3)). To complete the proof of (3.3), one has

to use
∑yj

m=1 e(xjm
2/yj) � y

1/2
j (this result is well known, see e.g. Lemma 8 in

[BD58b]) and afterwards estimate the integral as in the proof of Lemma 2.7. �
Lemma 3.2. Suppose that A � 1 and that α ∈ R is a real number satisfying

(3.4) α =
x

y
+ ρ,

where (x, y) ∈ Z2
prim are coprime integers with

(3.5) 0 < y � A and (8d)|ρ| < y−1A−1.

Then

(3.6)
∑

A<m<2dA

e(αm2) = y−1

( y∑
m=1

e(am2/y)

)∫ 2dA

A

e(ρξ2) dξ +O(y
1
2 log 2y).

We omit the proof here since it is given in Lemma 9 of [BD58b] with the following
minor changes: The endpoints of summation and integration must be adjusted while
noting that the condition 1/(2y|ρ|) > 4dA has to be fulfilled. But this is certainly
the case because of (3.5).

Remark 3.3. The main procedure in [BD58b] is to split the sum on the left hand side
of (3.6) according to the residue classes mod q and then apply Poisson’s summation
formula to each of these sums. A well-known alternative is to use a truncated form
of the Poisson summation formula, see Lemma 4.2 and Theorem 4.1 in [Vau97].

3.2. Localization of the set F. Here we aim to further localize the region F
by using a dyadic decomposition according to the size of |S1(α)|, . . . , |Sd(α)| and
y1, . . . , yd as follows: For each j = 1, . . . , d let Tj = 2t(j) and Uj = 2u(j) denote
dyadic numbers with integer exponents t(j), u(j) ∈ Z. Corresponding to these
numbers we introduce the sets

(3.7) G(T1, . . . , Td, U1, . . . , Ud) =

⎧⎨⎩α ∈ F :

∀j∈{1, . . . , d} ∃(xj , yj) ∈ Dj(α)

s.t TjP/2 < |qj |
1
2 |Sj(α)| ≤ TjP

and Uj/2 < yj ≤ Uj

⎫⎬⎭.
In what follows we shall assume, for notational simplicity, that the coordinates are
relabeled such that (2.26) holds for the trivial permutation and, as a consequence,
we can write

(3.8) T1 � . . . � Td.

Additionally, we have only to consider those sets G(T1, . . . , Td, U1, . . . , Ud) which
are non-empty and for any α ∈ G(T1, . . . , Td, U1, . . . , Ud) one can see that

(3.9) (u(P )2q)−κ(j) < Tj < 4d,
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where we used, on the one hand, the trivial upper bound |Sj(α)| ≤ 2dP |qj |−1/2

and, on the other hand, the lower bound in (2.28). Of course, we have

Uj ≥ yj ≥ 1,

i.e. u(j) ∈ N0. Moreover, we may apply Lemma 3.1 to obtain

Tj � (yj)
− 1

2 (logP )min
(
1, P−2|qj ||ρj |−1

)
� U

− 1
2

j (logP )min
(
1, P−2|qj ||ρj |−1

)
.

Hence we find that

(3.10) Uj � (logP )2T−2
j

and

(3.11) |qj |−1|ρj | � P−2(logP )T−1
j U

−1/2
j .

Lemma 3.4. Under Assumption 2.1, there exist numbers T1, . . . , Td, U1, . . . , Ud

such that

(3.12)

∫
G(T1,...,Td,U1,...,Ud)

|S1(α) . . . Sd(α)K(α)| dα � |Q|− 1
2P d−2(logP )−2d.

Proof. On the one hand, we know from Corollary 2.15 that∫
F
|S1(α) . . . Sd(α)K(α)| dα � |Q|− 1

2P d−2.

On the other hand, (3.9) implies

1 � t(j) � − log logP − log q � − logP,

and combined with (3.10) we find

0 ≤ u(j) � log logP + |t(j)| � logP.

Hence, the minimal number of choices for T1, . . . , Td, U1, . . . , Ud to cover all F is
� (logP )2d. In particular, there is at least one choice of T1, . . . , Td, U1, . . . , Ud with∫

G(T1,...,Td,U1,...,Ud)

|S1(α) . . . Sd(α)K(α)| dα � |Q|− 1
2P d−2(logP )−2d. �

Here and subsequently, we fix a choice of such T1, . . . , Td, U1, . . . , Ud, satisfying
(3.12) of Lemma 3.4, and write

(3.13) G = G(T1, . . . , Td, U1, . . . , Ud).

Moreover, for each j ∈ {1, . . . , d} let

Nj := #{(xj , yj) ∈ Z2
prim : ∃α ∈ G such that (xj , yj) ∈ Dj(α)}

denote the number of distinct integer pairs (xj , yj) ∈ Dj(α) which arise from all
α ∈ G. The previous Lemma 3.4 leads to the next lower bound on Nj .

Corollary 3.5. For any fixed numbers T1, . . . , Td, U1, . . . , Ud, satisfying (3.12), we
have the lower bound

(3.14) Nj � (logP )−2d(T1 . . . Td)
−1(TjU

1/2
j ).
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Proof. If α ∈ G(T1, . . . , Td, U1, . . . , Ud), then (3.7) shows that

|S1(α) . . . Sd(α)| � |Q|−1/2P d(T1 . . . Td)

and therefore the bound (3.12) implies

(3.15) |G| � P−2(T1 . . . Td)
−1(logP )−2d.

At the same time, inequality (3.11) implies that for each integer pair (xi, yj) ∈
Dj(α), arising from α ∈ G, α is located in an interval of length bounded by �
P−2T−1

j U
−1/2
j . Thus |G| � Nj(P

−2T−1
j U

−1/2
j ) and together with (3.15) and a

simple rearrangement the claimed inequality (3.14) follows. �

3.3. Coupling of the rational approximants. In the following we shall establish
that at least d − 3 coordinates are coupled and later on iterate this argument to
deduce that all coordinates are coupled. To be precise, we define coupling as follows.

Definition 3.6. Let 1 ≤ j1 < . . . < jk ≤ d, where k ∈ {1, . . . , d}. We say that
the coordinates j1, . . . , jk associated to qj1 , . . . , qjk (resp. the exponential sums
Sj1 , . . . , Sjk) can be coupled if for any α ∈ G and j ∈ {j1, . . . , jk} the pairs
(xj , yj) ∈ Dj(α) are of the form

(3.16) xj = xx′
j and yj = yy′j ,

where x, y > 0 are coprime integers and x′
j , y

′
j divide some integer L ∈ N such that

L is independent of α ∈ G.

The following lemma on the number of rational approximants with bounded
denominator will be the key tool for the first coupling argument and later on for
its iteration as well.

Lemma 3.7. Let η > 0, X > 0 and θ be real numbers, such that there exist N
distinct integer pairs (x, y) satisfying

(3.17) |θx− y| < η and 0 < |x| < X.

Then either N < 24ηX or all integer pairs (x, y) have the same ratio y/x.

Proof. This is Lemma 14 in [BD58b]. �

We are going to apply this lemma with the choice x = xdyj and y = ydxj and
show, in view of the lower bound (3.14) for Nj , that the first alternative in the
above dichotomy cannot hold. To do this, we need to adapt Lemma 13 of [BD58b]
as follows.

Lemma 3.8. Let j �= l. For any α ∈ G we have

(3.18) 0 < |xl|yj � |ql|UlUju(P )

for all integral pairs (xj , yj) ∈ Dj(α), (xl, yl) ∈ Dl(α) and also

(3.19)
∣∣xlyj

qj
ql

− xjyl
∣∣� |qj |(UlUj)

1
2 (TlTj)

−1P−2(logP )2.

Proof. We recall that xi �= 0 for any i = 1, . . . , d and that the size of |xl| is of order
|ql|αyl � |xl| � |ql|αyl,

because the approximation error |ρj | is small compared to |ql|αyl, see (3.2). Thus

0 < |xl|yj � |ql|αylyj � u(P )|ql|UlUj ,
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where yjyl ≤ UjUl, see (3.7), and α < u(P ) was used. To prove (3.19), we note
first that

2α =
1

qj

xj

yj
+

ρj
qj

=
1

ql

xl

yl
+

ρl
ql
.

Hence after multiplying by ylyjqj and arranging accordingly we see that

xlyj
qj
ql

− xjyl = ylyjqj(qj
−1ρj − ql

−1ρl).

Consequently, as in the proof of Lemma 13 in [BD58b], we have∣∣∣∣xlyj
qj
ql

− xjyl

∣∣∣∣� ylyj |qj |(|q−1
j ρj |+ |q−1

l ρl|).

The inequality (3.11), that is |qi|−1|ρi| � (logP )P−2T−1
i U

−1/2
i , combined with the

definition (3.7) of Uj shows that the last term can be bounded by

� |qj |UlUj

(
T−1
j U

−1/2
j + T−1

l U
−1/2
l

)
P−2(logP )

and, in view of the relation (3.10) between Ti and Ui, this is further bounded by

� |qj |(UlUj)
1/2(TlTj)

−1P−2(logP )2.

This proves (3.19). �

The first part of Lemma 3.9 will be essential for verifying that at least d −
3 variables are coupled, whereas the second part will be used for both smaller
dimensions and quadratic forms of signature (r, s) with relatively large exponent
β(r, s) (recall that β(r, s) was introduced in Theorem 1.1).

Lemma 3.9. If d ≥ 8 and j ∈ {4, . . . , d− 1}, then for any α ∈ G we have

(3.20)
xjyd
yjxd

=
Aj

Bj
,

where (xj , yj) ∈ Dj(α), (xd, yd) ∈ Dd(α) and Bj > 0, Aj �= 0 are coprime integers
independent of α. The same holds also for the coordinates

(a) 3 ≤ j ≤ d− 1 if β ≥ 2/3 and d ≥ 7,
(b) 2 ≤ j ≤ d− 1 if β ≥ 1 and d ≥ 6,
(c) 1 ≤ j ≤ d− 1 if β ≥ 2 and d ≥ 5.

At this point the initial coupling only applies to at least d−3 coordinates because
the size of Tj can only be tamed by the first j numbers T1, . . . , Tj . Due to this,
the second alternative in Lemma 3.8 can be excluded only if j ≥ 4. The general
problem is to extract from the lower bound (3.12) information about the sums Sj

which only have a small contribution to the integral under consideration.
If j ∈ {1, 2, 3}, then the size of β becomes important (note that this is the first

time it arises) because the lower bound on Tj , stated in (3.9), has to be used (this
bound is rather weak, but the argument used there cannot be improved, see Remark
2.16). Since the size of the approximation error (3.19) crucially depends on the size
of β, this is only feasible if β is not too small.

Proof. The general strategy here is to apply Lemma 3.7 to the integers x = xdyj
and y = ydxj , where (xj , yj) ∈ Dj(α) and (xd, yd) ∈ Dd(α) for some α ∈ G. We
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only carry out the proof for j ∈ {4, . . . , d− 1} and afterwards outline the required
changes for the remaining cases (a)–(c). By Lemma 3.8 we have

|xqj/qd − y| < η and 0 < |x| < X with

X � u(P )|qd|(UdUj)u(P ) and η � |qj |(UdUj)
1
2 (TdTj)

−1P−2u(P ).

According to Lemma 3.7 either N ≤ 24ηX, where N denotes the number of distinct
integer pairs (x, y) corresponding to any α ∈ G, or all pairs (x, y) have the same
ratio y/x, independent of α, which gives the desired conclusion. We show that
the former case is impossible, provided Cd � 1 is chosen sufficiently large: In the
former case case, we have

(3.21) N ≤ 24ηX � |qdqj |(UdUj)
3
2 (TdTj)

−1P−2u(P )2

and, furthermore, the values of xd, yd are determined by the divisors of x and y.
Since there are � P ρ divisors (for any fixed ρ > 0) and xd �= 0, we find

Nd � P ρN.

Now we may use the lower bound (3.14) from Corollary 3.5 together with the upper
bound (3.21) to get

(logP )−2d(T1 . . . Td)
−1(TdU

1/2
d ) � |q1qj |(UdUj)

3/2(TdTj)
−1P−2+ρu(P ).

By (3.10) this can simplified as

(3.22) T 4
dT

4
j � q2P−2+ρ(logP )2d+5u(P )2(T1 . . . Td).

Suppose that j ∈ {4, . . . , d− 1} and d ≥ 8. In this situation we have (T1 . . . Td) �
T 4
dT

4
j , where we used T1 � . . . � Td together with Ti � 1, compare (3.9). In

conjunction with (3.22) we now deduce the inequality

T 4
dT

4
j � q2P−2+ρ(logP )2d+5u(P )2T 4

dT
4
j

and by canceling T 4
j and T 4

d on both sides we further obtain

(3.23) 1 � q2P−2+ρ(logP )2du(P )2.

Since 2β ≥ (d+ 3)/(d− 3) > 1, we can choose ρ > 0 such that 2 < (2− ρ)(1 + 2β)
and note that the right hand side of (3.23) tends to zero, compare (2.3). Thus,
after increasing Cd � 1, we find that inequality (3.23) cannot hold (note that
the implicit constant depends on d only). This contradiction shows that the first
alternative in Lemma 3.7 must hold.

In the other cases we should use Wigert’s divisor bound, i.e.

(3.24) d(n) �ε 2
(1+ε) log(n)/ log logn

if ε > 0 (for a reference, see Theorem 317 in [HW08]), regarding that |x|, |y| � P 3.
If 3 ≤ j ≤ d− 1 and d ≥ 7, then we still find that

T 4
dT

4
j � q2P−2+ 6

log log P (logP )2d+5u(P )2T 4
dT

3
j .

Canceling T 4
dT

3
j and using Tj � q−1/3u(P )−2/3, compare (3.9), gives

1 � q7/3P−2+ 6
log log P (logP )2d+5u(P )8/3.
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To deduce a contradiction again, we need at least 1 + 2β ≥ 7/3 (here the precise
definition of P in terms of H is used, compare (2.3)). The remaining cases can be
proved similarly: If 2 ≤ j ≤ d− 1 and d ≥ 6, then we obtain the inequality

T 2
j � q2P−2+ 6

log log P (logP )2d+5u(P )2.

By using Tj � q−1/2u(P )−1 we see that at least 1+ 2β ≥ 3 is required. In the last
case, i.e. 1 ≤ j ≤ d− 1 and d ≥ 5, we need 1 + 2β ≥ 5, since we only know that

T 3
j � q2P−2+ 6

log log P (logP )2d+5u(P )2

and Tj � q−1u(P )−2. �

The above lemma allows us to obtain a factorization of xj and yj as formulated
in the Definition 3.6 of the notion of ‘coupling’.

Lemma 3.10. Let I ⊂ {1, . . . , d− 1} be some set of indices. Assume that for any
α ∈ G and all j ∈ I the integral pairs (xj , yj) ∈ Dj(α), (xd, yd) ∈ Dd(α) can be
factorized as in (3.20), where Aj , Bj are coprime integers which are independent
of α (but may depend on I) and Bj > 0, Aj �= 0. Then all coordinates from the
set I ∪ {d} are coupled on G (in the sense of Definition 3.6) with corresponding
common multiple L ∈ N satisfying

(3.25) 0 < L � H10d,

where H is as in (2.3).

Proof. For any j ∈ I we can rewrite equation (3.20) as

xj

yj
=

xd

yd

Bj

Aj
,

where (xd, yd) = (xj , yj) = (Aj , Bj) = 1. This reveals the factorization

xj = sgn(xj)
|xd|

(xd, Aj)

Bj

(yd, Bj)
and yj =

yd
(yd, Bj)

|Aj |
(xd, Aj)

and this factorization allows us to define x and y by

x =
|xd|

(xd,
∏

i∈I Ai)
and y =

yd
(yd,
∏

i∈I Bi)
.

Then x and y are non-zero integers and we can further define

x′
d :=

xd

x
= sgn(xd)

(
xd,
∏
i∈I

Ai

)
and y′d :=

yd
y

=

(
yd,
∏
i∈I

Bi

)
and also

x′
j :=

xj

x
= sgn(xj)

|xd|Bj

(xd, Aj)(yd, Bj)

(
xd,
∏

i∈I Ai

)
|xd|

= sgn(xj)
Bj

(yd, Bj)

(
xd,
∏

i∈I Ai

)
(xd, Aj)

and

y′j :=
yj
y

=
yd|Aj |

(yd, Bj)(xd, Aj)

(
yd,
∏

i∈I Bi

)
yd

=
|Aj |

(yd, Aj)

(
yd,
∏

i∈I Bi

)
(yd, Bj)

.

Note that both are non-zero integral numbers and that x′
j and y′j are divisors of

L :=
∏
i∈I

|AiBi|.
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It remains to find an upper bound for K. By Lemma 3.8 we have

|AjBj | ≤ |xd|yj |xj |yd � u(P )2|q1||qj |U2
dU

2
j

and thus

L � u(P )2(d−1)q2(d−1)U
2(d−1)
d

∏
i∈I

U2
i

� u(P )2(d−1)(logP )4(d−1)q2(d−1)T
−4(d−1)
d

∏
i∈I

T−4
i ,

where we used (3.10). In view of (3.9) this is bounded by

� u(P )2(d−1) log(P )4(d−1)q2(d−1)(u(P )2q)
4(d−1)
(d−4)

+4
∑d−1

i=1 κ(i)

� u(P )16d+8 log(d)q8d+4 log(d).

Using the definition of H (see (2.3)) together with β ≥ 1/2 yields that the last
inequality chain is at most � H10d. �

Combining Lemmata 3.9 and 3.10 shows that in each of the cases of Lemma 3.9
all indices j under consideration are coupled on G with a common multiple L ∈ N

(as in the Definition 3.6) being bounded as in (3.25). Additionally, taking into
account the definition of β(r, s) for a given dimension d and given signature (r, s),
we conclude the following

Corollary 3.11. Under Assumption 2.1 the functions S4, . . . , Sd are always coupled
on G. Assuming additionally the following conditions imply that Sk+1, . . . , Sd are
coupled on G.

(i) k = 0 if d ∈ {5, 6} or r ≥ 4s,
(ii) k = 1 if 5 ≤ d ≤ 10 or r ≥ 2s and d ≥ 11,
(iii) k = 2 if 5 ≤ d ≤ 22 or r ≥ 4s/3 and d ≥ 23.

4. The rational case: Schlickewei’s bound on small zeros

In this section we shall state for the reader’s convenience the main results of
Schlickewei’s work [Sch85a] on small zeros of integral quadratic forms and after-
wards deduce Theorem 1.1 from Schlickewei’s results as well. We also note that our
proof of Theorem 1.3 and the exponent in (1.7) depend essentially on the results
presented here.

Theorem 4.1. Let F be a non-trivial quadratic form in d variables with integral
coefficients and let G be a positive definite quadratic form with real-valued coeffi-
cients. Furthermore, let d0 be maximal such that F vanishes on a rational subspace
of dimension d0. Then there exist integral points M1, . . . ,Md0

, which are linearly
independent over Q, such that F vanishes on the spanned Q-subspace and

(4.1) 0 < G(M1) · . . . ·G(Md0
) �d trace((FG−1)2)

d−d0
2 detG,

where the constant in � depends on the dimension d only.

Remark. For the latter application of this bound the explicit dependence on the
determinant is crucial. One of the reasons for this is that the lower bound (3.14)
on Nj can also be written in terms of the determinant of diag(T1, . . . , Td).
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Theorem 4.1 is Satz 2 in [Sch85a] and the proof relies on an application of
Minkowski’s second theorem on successive minima. Moreover, by using an induction
argument combined with Meyer’s theorem [Mey84], Schlickewei found the following
connection between the dimension of a maximal rational isotropic subspace and the
signature.

Proposition 4.2. Let F be a quadratic form in d variables with integral coefficients
and signature (r, s, t). Suppose that r ≥ s and r + s ≥ 5. The dimension d0 of a
maximal rational isotropic subspace is at least

(4.2) d0 ≥

⎧⎪⎨⎪⎩
s+ t if r ≥ s+ 3

s+ t− 1 if r = s+ 2 or r = s+ 1

s+ t− 2 if r = s

.

Note that the quadratic form F is allowed to be degenerate and then the triple
(r, s, t) expresses the number r of positive, s of negative and t of zero entries in its
reduced form.

Proof. See in [Sch85a], Hilfssatz in Section 4. �

Now, we can argue like Schlickewei in [Sch85a], see Folgerung 3, to deduce

Corollary 4.3. For any non-zero integers f1, . . . , fd, of which r ≥ 1 are positive
and s ≥ 1 negative with r ≥ s, d = r + s ≥ 5, there exist integers m1, . . . ,md, not
all zero, such that

(4.3)
f1m

2
1 + . . .+ fdm

2
d = 0,

0 < |f1|m2
1 + . . .+ |fd|m2

d �d |f1 . . . fd|
2β+1

d ,

where β is defined as in (1.5) and the implicit constant depends on the dimension
d only.

Proof. We apply Theorem 4.1 to the forms F (m) =
∑d

j=1 fjm
2
j and G(m) =∑d

j=1|fj |m2
j to get isotropic integral points M1, . . . ,Md0

satisfying (4.1). Let Mi =

(m1, . . . ,md) be a point with minimal weight, i.e. g(Mi) = minj∈{1,...,d0} g(Mj).
This lattice point satisfies

|f1|m2
1 + . . .+ |fd|m2

d � |f1 . . . fd|1/d0 .

If r ≥ s+ 3 or r = s+ 1, we can use the lower bound (4.2) for d0. But if r = s+ 2
or r = s, then set one variable xi, such that |fi| is maximal, to zero: It follows that
F has signature (r, s− 1) or (r− 1, s). The previous argument (applying the lower
bound (4.2) again) together with the estimate∏

j �=i

|fj | ≤ |f1 . . . fd|(d−1)/d

implies the claimed bound (4.3) in these cases as well. �

5. Iteration of the coupling argument

In Section 3.3 we showed that the functions Sk+1, . . . , Sd are coupled on G for
some k ∈ {0, 1, 2, 3} depending on the exponent β(r, s) introduced in Theorem
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1.1. Namely, the integer pairs (xi, yi) ∈ Di(α) corresponding to qiα and any i =
k+1, . . . , d are of the form

(5.1) xi = xx′
i and yi = yy′i,

with x > 0, y > 0, xi and x′
i have the same sign, x′

i | L and y′i | L, where
L is independent of α ∈ G and L � H10d. In this section we shall utilize this
observation in combination with Schlickewei’s bound on small zeros in order to
count the number of distinct pairs (x, y). For this purpose, we introduce the set
Ck(α) of all pairs (x, y) corresponding to some fixed α ∈ G and here we shall always
assume that xi and yi are factorized as in (5.1) without mentioning this explicitly.

Lemma 5.1. Suppose that the exponential sums Sk+1, . . . , Sd are coupled on G,
where k ∈ {0, 1, 2, 3}, and that the quadratic form

(5.2) Qk[m] := qk+1m
2
k+1 + . . .+ qdm

2
d

is indefinite of signature (r′, s′) with r′ + s′ = d− k ≥ 5. Then, under Assumption
2.1, the integer pairs (x, y) ∈ Ck(α), corresponding to the factorization (5.1) and
any α ∈ G, satisfy

(5.3) x2βky2βk+2� q2βk+1

P 2
(logP )u(P )2βk

⎛⎝ d∏
j=k+1

Uj

⎞⎠
4βk+2

d−k (
max

i=k+1,...,d
T−1
i U

− 1
2

i

)
,

where βk = β(r′, s′) denotes the exponent (as defined in (1.5) of Theorem 1.1)
corresponding to the signature (r′, s′) of Qk and u(P ) is chosen as in (2.5).

This lemma will be used subsequently to establish improved mean value estimates
and, as a consequence, improved lower bounds for the size of T1, . . . , Tk.

Proof. Due to the Diophantine approximation introduced in (3.1), we have for any
fixed α ∈ G and any integers mk+1, . . . ,md ∈ Z

α(qk+1m
2
k+1 + . . .+ qdm

2
d) =

x

y

( d∑
j=k+1

x′
j

y′j
m2

j

)
+

d∑
j=k+1

ρjm
2
j .

Here we change variables to mi = y′ini for any i = k + 1, . . . , d and get

(5.4) α(qk+1m
2
k+1 + . . .+ qdm

2
d) =

x

y

d∑
j=k+1

x′
jy

′
jn

2
j +

d∑
j=k+1

ρjy
′2
j n2

j .

Observe that the first term on the right hand side, neglecting the factor x/y, is an
integral quadratic form whose signature (r′, s′) coincides with that of Qk, since the
signs of x′

k+1y
′
k+1, . . . , x

′
dy

′
d are exactly equal to those of xk+1/yk+1, . . . , xd/yd and

these have the same signs as qk+1, . . . , qd. Hence, it follows from Corollary 4.3 that
there exist integers nk+1, . . . , nd, not all zero, such that

x′
k+1y

′
k+1n

2
k+1 + . . .+ x′

dy
′
dn

2
d = 0

and

(5.5) |x′
k+1y

′
k+1|n2

k+1 + . . .+ |x′
dy

′
d|n2

d �d |x′
k+1y

′
k+1 . . . x

′
dy

′
d|(2βk+1)/(d−k).

For the corresponding mk+1, . . . ,md the first part of the right hand side in (5.4)
vanishes. Thus, we find

|qk+1m
2
k+1 + . . .+ qdm

2
d| � α−1(|ρk+1|y′2k+1n

2
k+1 + . . .+ |ρd|y′2d n2

d)
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and from α|qi| � |xi|y−1
i , (5.5) and |x′

k+1y
′
k+1| � (xy)−1|qi|α−1y2j we deduce that

(5.6)

|qk+1|m2
k+1 + . . .+ |qd|m2

d � α−1xy−1|x′
k+1y

′
k+1 . . . x

′
dy

′
d|

2βk+1

d−k

� α2βkx−2βky−2βk−2|qk+1y
2
k+1 . . . qdy

2
d|

2βk+1

d−k

� α2βkx−2βky−2βk−2q2βk+1(Uk+1 . . . Ud)
4βk+2

d−k ,

where yi ≤ Ui was used in the last step. Now we shall apply Assumption 2.1, made
at the beginning: Since Qk is a restriction of Q, i.e. Qk[m] = Q[(0, . . . , 0, mk+1,
. . . , md)], we have either

(5.7) 4d3P 2 < |qk+1|m2
k+1 + . . .+ |qd|m2

d

or

(5.8) 1 ≤ |qk+1m
2
k+1 + . . .+ qdm

2
d| ≤ α−1(|ρk+1|y′2k+1n

2
k+1 + . . .+ |ρd|y′2d n2

d).

In the first case we may combine (5.7) together with (5.6) to get

P 2 � α2βkx−2βky−2βk−2q2βk+1(Uk+1 . . . Ud)
(4βk+2)/(d−k)

and in view of (3.10), that is T−1
i U

−1/2
i � logP , together with α < u(P ) we

conclude already that inequality (5.3) holds. In the second case (5.8) holds and

here we use (3.11), i.e. |ρi| � |qi|P−2(logP )T−1
i U

−1/2
i , to obtain

1 � α−1
d∑

j=k+1

|ρj |y′2j n2
j � α−1P−2(logP )

(
max

i=k+1,...,d
T−1
i U

−1/2
i

)( d∑
i=k+1

|qi|m2
i

)
,

which implies together with (5.6)

1 � α2βk−1q2βk+1

x2βky2βk+2
P−2(logP )

(
max

i=k+1,...,d
T−1
i U

−1/2
i

)
(Uk+1 . . . Ud)

4βk+2

d−k .

Finally, taking into account that 2βk ≥ 1 and α < u(P ) proves inequality (5.3). �

All pairs (x, y) ∈ Ck := {(x, y) ∈ Z2
prim : (x, y) ∈ Ck(α) for some α ∈ G} lie in a

bounded set determined by condition (5.3). Hence, we can bound the number #Ck

of all these pairs as follows.

Corollary 5.2. In the situation of Lemma 5.1, we have

(5.9) #Ck�
q
1+ 1

2βk

P
1
βk

(logP )
1

2βk u(P )

⎛⎝ d∏
j=k+1

Uj

⎞⎠
4βk+2

2βk(d−k) (
max

i=k+1,...,d
T−1
i U

− 1
2

i

) 1
2βk .

Proof. First note that the expression on the right hand side of (5.3) must be � 1,
since G is not empty. Thus, we can apply Dirichlet’s hyperbola method to see that
the number N of distinct solutions (x, y) of

x2βky2βk+2 � Z

is � Z
1

2βk . This already concludes the proof. �

We are in position to establish improved mean value estimates (conditionally
under Assumption 2.1) by controlling the sum over all (x, y) ∈ Ck with the help of
Corollary 5.2.
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Lemma 5.3. Suppose that d ≥ 5 + k and k ∈ {0, 1, 2, 3}. Then for any ρ > 0, in
the situation of Lemma 5.1, we have

(5.10)

∫
G
|Sk+1(α) . . . Sd(α)K(α)| dα �ρ P ρ P d−k−2

|qk+1 . . . qd|
1
2

q
1+ 1

2βk

P
1
βk

.

Proof. We shall decompose the integration domain G according to the covering
induced by the factorization from (5.1), which holds since Sk+1, . . . , Sd are coupled
on G: For fixed (x, y) ∈ Ck we define

Hi(x, y) := {(x′
i, y

′
i) ∈ Z2

prim : xi = xx′
i and yi = yy′i as in (5.1)

with (xi, yi) ∈ Di(α) for some α ∈ G}

and

Ji(xi, yi) := {α ∈ G : |αqiyi − xi| < |qi|1/2(8dP )−1}
in order to obtain the decomposition

LHS (5.10) ≤
∑

(x,y)∈Ck

∑
(x′

k+1,y
′
k+1)∈Hk+1(x,y)

. . .
∑

(x′
d,y

′
d)∈Hd(x,y)

I(xk+1, yk+1, . . . , xd, yd),

where

I(xk+1, yk+1, . . . , xd, yd) :=

∫
⋂d

i=k+1 Ji(xi,yi)

|Sk+1(α) . . . Sd(α)K(α)| dα.

Using the bound |Si(α)| ≤ |qi|−1/2TiP , compare the definition (3.7) of the set G,
yields

I(xk+1, yk+1, . . . , xd, yd) ≤
P d−k(logP )

|qk+1 . . . qd|1/2
(Tk+1 . . . Td)mes

(
d⋂

i=k+1

Ji(xi, yi)

)

and, since the measure of the set Ji(xi, yi) is at most � P−2(logP )T−1
i U

−1/2
i ,

Hölder’s inequality implies

I(xk+1, yk+1, . . . , xd, yd) �
P d−k−2(logP )

|qk+1 . . . qd|1/2
(Tk+1 . . . Td)

d∏
i=k+1

(T−1
i U

−1/2
i )

1
d−k .

Returning to the initial decomposition of the integral, we note that #Hi(x, y) � P ρ,
because x′

i, y
′
i are divisors of L � H10d and there are at most � P ρ divisors. Thus,

taking all together we find

LHS (5.10) � P ρP
d−k−2(logP )

|qk+1 . . . qd|1/2
(Tk+1 . . . Td)

(
d∏

i=k+1

(T−1
i U

−1/2
i )

1
d−k

)
#Ck.

Next we insert the bound (5.9), established in Corollary 5.2, and conclude that the
last equation is bounded by

� P 2ρ P d−k−2

|qk+1 . . . qd|1/2
q
1+ 1

2βk

P
1

2βk

(
max

i=k+1,...,d
T−1
i U

− 1
2

i

) 1
2βk

d∏
i=k+1

(TiU
1/2
i )1−

1
d−k ,

where we used that 4βk+2
2βk(d−k) ≤

1
2 holds provided that d ≥ 5 + k. The claim follows

now from the fact that 1
2βk

+ 1
d−k − 1 ≤ − 6

d−k+3 + 1
d−k ≤ 0 and (3.10). �
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Corollary 5.4. In the situation of Lemma 5.3, we have for any ρ > 0

(5.11) T1 . . . Tk � P−ρP
1
βk q

−1− 1
2βk .

Proof. We recall the lower bound

(5.12)

∫
G
|S1(α) . . . Sd(α)K(α)| dα � |Q|− 1

2P d−2(logP )−2d

obtained in Lemma 3.4 under Assumption 2.1. Combining (5.12) together with

|S1(α) . . . Sk(α)| ≤ |q1 . . . qk|−1/2 P k (T1 . . . Tk),

where we used the localization introduced in (3.7), and the mean value estimate
derived in Lemma 5.3 shows that

|Q|− 1
2P d−2(logP )−2d � P ρ/2|Q|− 1

2P d−2q
1+ 1

2βk P
− 1

βk (T1 . . . Tk). �

5.1. Reducing variables and corresponding signatures. Now we are in posi-
tion to prove that the remaining coordinates are coupled as well: Beginning with
S3, we will repeat the basic strategy used in the proof of Lemma 3.9, but we addi-
tionally utilize the bound (5.11). Compared to the earlier arguments, we need also
to consider ratios between β and βk with care, since simple bounds on βk (resp.
on β) are not sufficient to deduce a contradiction. This step has been moved to
Appendix A, where we address the problem to specify the possible values of βk

depending on the signature (r, s) of Q.

Lemma 5.5. Let d ≥ 8 and assume that the signature of Q is not of the form
(d− 1, 1), (d− 2, 2) or (d− 3, 3). Then, under Assumption 2.1, S3, . . . , Sd can be
coupled on G.

Proof. According to Corollary 3.11 we may assume that S4, . . . , Sd are coupled on G.
Applying Lemma 3.7 to the integers x = xdy3 and y = ydx3 with (xd, yd) ∈ Dd(α)
and (x3, y3) ∈ D3(α) and assuming that the first alternative of Lemma 3.7 holds,
yields (as in the proof of Lemma 3.9) inequality (3.22), that is

T 4
dT

4
3 � q2P−2+ρ(logP )2d+5u(P )2(T1 . . . Td) � q2P−2+ρ(logP )2d+5u(P )2(T 4

dT
3
3 ),

where in the last step we used that T1 � . . . � Td and Ti � 1. Now we can cancel
T 4
dT

3
3 and use Corollary 5.4 with k = 3 (note that the assumption on the signature

guarantees that the quadratic form (5.2) of Lemma 5.1 is indefinite) to obtain

P
1

3β3
− ρ

3 q−
1
3−

1
6β3 � T3 � q2P−2+ρ(logP )2d+5.

Rearranging the last inequality and using that q � P
2

1+2β gives

(5.13) 1 � P 2ρ(logP )2d+5u(P )2P p3(d),

where

p3(d) :=
2

(1 + 2β)

(7
3
+

1

6β3

)
−
(
2 +

1

3β3

)
.

Considering all cases in Table 1 of Appendix A we see that p3(d) < 0 and thus
inequality (5.13) cannot hold if we increase Cd > 1 and choose ρ > 0 small enough.
(Note that Corollary 5.4 holds for any ρ > 0.) To sum up, we showed that the
second alternative in Lemma 3.7 holds, i.e. there exists a factorization

x3yd
y3xd

=
A3

B3
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for all (x3, y3) ∈ D3(α), (xd, yd) ∈ Dd(α) and any α ∈ G, where A3, B3 are coprime
integers which are independent of α and B3 > 0, A3 �= 0. Finally, to conclude that
the functions S3, . . . , Sd are coupled on G, note that the assumptions of Lemma
3.10 are now satisfied for the choice I = {3, . . . , d− 1}. (The reader may note that
in each iteration step the factorization (3.20) may change if further coordinates are
coupled.) �

To proceed we need to recall some consequences of Corollary 3.11: If d ∈ {5, 6},
then part (i) implies that all exponential sums S1, . . . , Sd are coupled. If d ≥ 7,
then part (iii) implies that S3, . . . Sd are coupled if 5 ≤ d ≤ 22 or if Q has signature
(d− 1, 1), (d− 2, 2) or (d− 3, 3), since in this cases r ≥ 4s/3 is satisfied for d ≥ 23.
Hence, in view of the previous lemma, we conclude that S3, . . . , Sd are always
coupled on G.

Lemma 5.6. Let d ≥ 7 and assume that the signature of Q is not of the form
(d− 1, 1), (d− 2, 2). Then, under Assumption 2.1, S2, . . . , Sd can be coupled on G.

Proof. Based on inequality (3.22) we find again that T 2
2 � q2P−2+ρ(logP )2d+5,

where T1 � . . . Td and Ti � 1 was used as before. Next we apply Corollary
5.4 with k = 2 (again the assumptions guarantee that the quadratic form (5.2) is
indefinite) to find

P
1
β2

−ρq−1− 1
2β2 � T 2

2 � q2P−2+ρ(logP )2d+5

and after rearranging

(5.14) 1 � P 2ρ(logP )2d+5u(P )2P p2(d),

where

p2(d) :=
2

(1 + 2β)

(
3 +

1

2β2

)
−
(
2 +

1

β2

)
.

Considering again all cases in Table 1 of Appendix A shows that p2(d) < 0. Thus,
inequality (5.14) cannot hold if we increase Cd > 1 and choose ρ > 0 small enough.
Again we conclude that the second alternative in Lemma 3.7 holds. The remaining
steps are now the same as in the previous proof: We can apply Lemma 3.10 with
I = {2, . . . , d− 1}. �

By Corollary 3.11 we know that S2, . . . , Sd are coupled if 5 ≤ d ≤ 10. Hence we
may assume that d ≥ 11 and then S2, . . . , Sd are coupled as well if the signature
of Q is of the form (d − 1, 1) or (d − 2, 2). The last statement follows from (ii)
of Corollary 3.11, since r ≥ 2s holds for these cases. Thus, we have proven that
S2, . . . , Sd are coupled on G, regardless of the signature (r, s).

Lemma 5.7. Under Assumption 2.1 all functions S1, . . . , Sd are coupled on G.

Proof. By the previous discussion, we know that S2, . . . , Sd are coupled on G. We
can also assume that d ≥ 7 and that the signature of Q is not of the form (d−1, 1),
since otherwise all coordinates are coupled, see Corollary 3.11. Similar to the
previous cases, we find

(5.15) P
3
β1

−3ρq−3− 3
2β1 � T 3

1 � q2P−2+ρ(logP )2d+5,

where we removed the factor T 4
dT

1
1 (by using T1 � . . . Td and Ti � 1) and applied

Corollary 5.4 with k = 1 (the assumptions are met since Q is not of the form



28 PAUL BUTERUS, FRIEDRICH GÖTZE, AND THOMAS HILLE

(d− 1, 1)). As before, the inequality (5.15) can be rewritten as

1 � P 4ρ(logP )2d+5u(P )2P p1(d),

where

p1(d) :=
2

(1 + 2β)

(
5 +

3

2β1

)
−
(
2 +

3

β1

)
.

For every case, other than sgn(Q) = (d+3
2 , d−3

2 ), we read off from Table 1 in Ap-

pendix A that p1(d) < 0, thus yielding a contradiction. For sgn(Q) = (d+3
2 , d−3

2 )

and 2β1 = d+1
d−5 we obtain also p1(d) = − 6(d−5)

d(d+1) < 0. However, if 2β1 = d+3
d−5 , then

p1(d) = 0. In this case the (d− 1)-dimensional restriction of the quadratic form is
of signature (d+1

2 + 1, d−1
2 − 2) and hence we may remove one of the coordinates

corresponding to T2, . . . , Td to obtain a (d− 2)-dimensional restriction of our qua-
dratic form of signature (d+1

2 , d−1
2 − 2). As in Corollary 5.4 (by applying Lemma

5.3 to the aforementioned restriction of Q) we may deduce the inequality

T1Tl � P
1
β2

−ρq−1− 1
2β2 ,

for some 2 ≤ l ≤ d. Arguing again as above, we obtain

P
3
β2

−3ρq−3− 3
2β2 � T 3

1 � q2P−2+ρ(logP )2d+5u(P )2,

which implies 1 � P 4ρ(logP )2d+5u(P )2P p1(d), where

p1(d) :=
2

1 + 2β

(
5 +

3

2β2

)
−
(
2 +

3

β2

)
= −6(d− 5)

d(d+ 1)
< 0.

We reach again a contradiction. Thus, the second alternative in Lemma 3.7 is valid.
Since the previous considerations exhaust all cases, we can apply Lemma 3.10 with
I = {1, . . . , d− 1} and conclude that all coordinates are coupled on G. �

6. Proof of Theorem 1.3: Counting approximants

Finally, we are going to deduce a contradiction in form of an inconsistent in-
equality consisting of the lower bound for Nj , established in Corollary 3.5, and the
upper bound from Corollary 5.2 for the number of distinct pairs (x, y).

Proof of Theorem 1.3: As shown in Section 5.1, all coordinates can be coupled
(under Assumption 2.1) and therefore we can apply Corollary 5.2 with k = 0 –
in particular, we have Qk = Q – to find an upper bound for the number Nj of
all (xj , yj): Since x′

1, y
′
1, . . . , x

′
d, y

′
d are determined as divisors of an α-independent

number L � H10d, see Lemma 3.10, Wigert’s divisor bound (compare (3.24))
implies that

N2β
j � H

20d(d−1)
log log H (#C0)

2β

� H
20d(d−1)
log log H P−2q2β+1u(P )2β(U1 . . . Ud)

β
(

max
i=1,...,d

T−1
i U

−1/2
i

)
,

where we also used that (4β + 2)/d ≤ β, which can be checked by considering the
lower bound (2.21). Next let j �= l, where l is an index for which the maximum
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of T−1
i U

−1/2
i is attained. Combined with the lower bound on Nj , obtained in

Corollary 3.5, we find

(6.1)
(logP )−4dβ−1

(∏d
i=1 Ti

)−2β

(TjU
1
2
j )2β

� H
20d(d−1)
log log H P−2q2β+1u(P )2β

(∏d
i=1 Ui

)β
(TlU

1
2

l )−1

and this inequality can be simplified by using the notation

Vi := U
−1/2
i T−1

i (logP ).

Indeed, since Vi � 1 by (3.10), we can rewrite (6.1) as

1 � (V1 . . . Vd)
2β V −2β

j V −1
l � H− 20d

log log H u(P )2β(logP )6dβ+1

� H− 1
log log H ≤ exp

(
− logCd

log logCd

)
,

where 2β ≥ 1 was used. If Cd � 1 is chosen sufficiently large, we get a contradiction.
Thus, our initial Assumption 2.1 is false. �

Appendix A. Possible signatures and exponents

This appendix constitutes sufficient preparation for the coupling argument: We
determine all possible values of βk depending on the signature (r, s) of Q and give
upper bounds for the exponents occuring in the iteration of the coupling argument.

Even d

Sign(Q) 2β Sign(Q3) 2β3 Sign(Q2) 2β2 Sign(Q1) 2β1

(
d
2 ,

d
2

) d+2
d−4

(
d−6
2 , d2
)

d
d−6

(
d−4
2 , d

2

) (
d−2
2 , d2
)(

d−4
2 , d−2

2

) (
d−2
2 , d−2

2

) d
d−6 (

d
2 ,

d−2
2

) d+2
d−4(

d−2
2 , d−4

2

) (
d
2 ,

d−4
2

)(
d
2 ,

d−6
2

)
(
d+2
2 , d−2

2

) d+2
d−4

(
d−4
2 , d−2

2

)
d

d−6
(
d−2
2 , d−2

2

)
d

d−6
(
d
2 ,

d−2
2

)
d+2
d−4

(
d−2
2 , d−4

2

)
d

d−6
(
d
2 ,

d−4
2

) d
d−6 (

d+2
2 , d−4

2

)(
d
2 ,

d−6
2

)
d

d−6
(
d+2
2 , d−6

2

)
d+2
d−6(

d+2
2 , d−8

2

)
d+2
d−8

(
d+4
2 , d−4

2

) d+4
d−4

(
d−2
2 , d−4

2

)
d

d−6
(
d
2 ,

d−4
2

)
d

d−6
(
d+2
2 , d−4

2

)
d+2
d−4

(
d
2 ,

d−6
2

)
d

d−6
(
d+2
2 , d−6

2

) d+2
d−6 (

d+4
2 , d−6

2

)
d+4
d−6

(
d+2
2 , d−8

2

)
d+2
d−8

(
d+4
2 , d−8

2

)
d+4
d−8(

d+4
2 , d−10

2

)
d+4
d−10

(
d+2l
2 , d−2l

2

)
d+2l
d−2l

(
d+2l−6

2 , d−2l
2

)
d+2l−6
d−2l

(
d+2l−4

2 , d−2l
2

)
d+2l−4
d−2l

(
d+2l−2

2 , d−2l
2

)
d+2l−2
d−2l

l ≥ 3

(
d+2l−4

2 , d−2l−2
2

)
d+2l−4
d−2l−2

(
d+2l−2

2 , d−2l−2
2

) d+2l−2
d−2l−2 (

d+2l
2 , d−2l−2

2

)
d+2l

d−2l−2

(
d+2l−2

2 , d−2l−4
2

)
d+2l−2
d−2l−4

(
d+2l
2 , d−2l−4

2

)
d+2l

d−2l−4(
d+2l
2 , d−2l−6

2

)
d+2l

d−2l−6
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Odd d

Sign(Q) 2β Sign(Q3) 2β3 Sign(Q2) 2β2 Sign(Q1) 2β1

(
d+1
2 , d−1

2

) d+3
d−3

(
d−5
2 , d−1

2

)
d−1
d−7

(
d−3
2 , d−1

2

) (
d−1
2 , d−1

2

)(
d−3
2 , d−3

2

)
d−1
d−7

(
d−1
2 , d−3

2

) d+1
d−5 (

d+1
2 , d−3

2

) d+1
d−5(

d−1
2 , d−5

2

)
d−1
d−7

(
d+1
2 , d−5

2

)(
d+1
2 , d−7

2

)
d+1
d−7

(
d+3
2 , d−3

2

) d+3
d−3

(
d−3
2 , d−3

2

)
d−1
d−7

(
d−1
2 , d−3

2

)
d+1
d−5

(
d+1
2 , d−3

2

)
d+1
d−5

(
d−1
2 , d−5

2

)
d−1
d−7

(
d+1
2 , d−5

2

) d+1
d−5 (

d+3
2 , d−5

2

)
d+3
d−5

(
d+1
2 , d−7

2

)
d+1
d−7

(
d+3
2 , d−7

2

)
d+3
d−7(

d+3
2 , d−9

2

)
d+3
d−9

(
d+5
2 , d−5

2

) d+5
d−5

(
d−1
2 , d−5

2

)
d−1
d−7

(
d+1
2 , d−5

2

)
d+1
d−5

(
d+3
2 , d−5

2

)
d+3
d−5

(
d+1
2 , d−7

2

)
d+1
d−7

(
d+3
2 , d−7

2

) d+3
d−7 (

d+5
2 , d−7

2

)
d+5
d−7

(
d+3
2 , d−9

2

)
d+3
d−9

(
d+5
2 , d−9

2

)
d+5
d−9(

d+5
2 , d−11

2

)
d+5
d−11

(
d+2l+1

2 , d−2l−1
2

)
d+2l+1
d−2l−1

(
d+2l−5

2 , d−2l−1
2

)
d+2l−5
d−2l−1

(
d+2l−3

2 , d−2l−1
2

)
d+2l−3
d−2l−1

(
d+2l−1

2 , d−2l−1
2

)
d+2l−1
d−2l−1

l ≥ 3

(
d+2l−3

2 , d−2l−3
2

)
d+2l−3
d−2l−3

(
d+2l−1

2 , d−2l−3
2

) d+2l−1
d−2l−3 (

d+2l+1
2 , d−2l−3

2

)
d+2l+1
d−2l−3

(
d+2l−1

2 , d−2l−5
2

)
d+2l−1
d−2l−5

(
d+2l+1

2 , d−2l−5
2

)
d+2l+1
d−2l−5(

d+2l+1
2 , d−2l−7

2

)
d+2l+1
d−2l−7

Note that in both tables the last case in every row is the worst when compared
to β. Thus, considering theses cases, one can derive the following bound on the
exponent pi(d) appearing in the iteration of the coupling argument, see Lemmas
5.5–5.7.

Table 1. Bounds on the exponents p1(d), p2(d), p3(d)

Sign(Q) p3(d) ≤ p2(d) ≤ p1(d) ≤(
d
2 ,

d
2

)
− 6d−4

d(d−1) − 6(d−2)
d(d−1) − 6

d−1(
d+2
2 , d−2

2

)
− 14

3(d−1) − 4
d−1 − 6

d−1(
d+2l
2 , d−2l

2

)
, l ≥ 2 − 2(2l−1)

d − 4(l−1)
d − 2(2l−3)

d(
d+1
2 , d−1

2

)
− 16

3(d+1) − 6(d−1)
d(d+1) − 6(d−5)

d(d+1)(
d+3
2 , d−3

2

)
− 4

d − 2
d ∗(

d+2l+1
2 , d−2l−1

2

)
, l ≥ 2 − 4l

d − 2(2l−1)
d − 4(l−1)

d

Appendix B. Kernels with fast-decaying Fourier transforms

In this appendix we give a complete proof of Lemma 2.3 showing the existence
of compactly-supported kernels with fast-decaying Fourier transforms. The proof
given here is elementary and based on arguments presented in [BR10] (see Theorem
10.2).

Proof of Lemma 2.3. During this proof we write

U([−a, a]) = (2a)−11[−a,a]
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for the density function of the uniform distribution on some interval [−a, a], a > 0,
whose Fourier transform is given by

(B.1) Û([−a, a])(t) =
sin(2πat)

2πat
.

Based on this simple kernel we will construct an infinite convolution product: First
we shall make use of condition (2.6), that is

∫∞
1

1
αu(α) dα < ∞, by noting that there

exists an integer n0 ∈ N and a non-decreasing sequence of non-negative numbers
(an)n∈N given by

an =

{
e

n0u(n0)
if 1 ≤ n ≤ n0

e
nu(n) if n > n0

such that

(B.2)

∞∑
n=1

ar =
e

u(n0)
+ e

∞∑
n=n0+1

1

nu(n)
≤ 1.

It remains to check that the sequence

ψn := U([−a1, a1]) ∗ . . . ∗ U([−an, an])

is uniformly convergent and satisfies the properties claimed in Lemma 2.3. To do
this, we first verify that any ψn, n ≥ 2, is Lipschitz continuous with Lipschitz
constant 1/(4a1a2). In fact, if 0 < b ≤ a, a simple calculation shows

(B.3) U([−a, a]) ∗ U([−b, b])(t) =

⎧⎪⎨⎪⎩
0 if |t| ≥ a+ b
1
2a if |t| ≤ a− b
a+b−|t|

4ab else

.

Thus the above remark is true for n = 2. The general case follows by induction:

|un+1(s)− un+1(t)| ≤
1

2an+1

∫ an+1

−an+1

|un(s− h)− un(t− h)| dh ≤ 1

4a1a2
|t− s|.

Proceeding in the same manner, we see for any n ≥ 1 that

|un+1(t)− un(t)| ≤
1

2an+1

∫ an+1

−an+1

|un(t− h)− un(t)| dh

≤
∫ an+1

−an+1

|h|
8a1a2an+1

dh =
an+1

8a1a2
.

In view of (B.2) this shows that (ψn)n∈N is uniformly convergent, say to ψ, and
thus a continuous probability density. ψ is also symmetric, since by construction
any ψn is symmetric, and supported in [−1, 1], since ψn has compact support lying
in [−

∑n
k=1 ak,

∑n
k=1 ak] ⊂ [−1, 1], compare (B.2). By induction we also find that

ψn is a C(n−2)-function (if n ≥ 1) with

(B.4) ψ
(k+1)
n+1 (t) =

1

2an+1

(
ψ(k)
n (t+ an+1)− ψ(k)

n (t− an+1)
)

in the range 0 ≤ k ≤ n − 2. The last line implies (again by induction) that ψ
(k)
k+2

is Lipschitz continuous with growing Lipschitz constant Lk given inductively by

Lk+1 = Lk/ak+3 and L0 = 1/(4a1a2). This in turn shows that |ψ(k)
n+1(t)−ψ

(k)
n (t)| ≤

Lkan+1 for all n ≥ k+2. Thus, we have confirmed the uniform convergence of any
derivative, i.e. ψ is smooth.
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Next we prove part (ii) of Lemma 2.3 by induction: For n = 1 the statement is
trivial and for n = 2 this follows at once from (B.3). If n ≥ 3 then we have

ψ′
n+1(t) =

1

2an+1
{ψn(t+ an+1)− ψn(t− an+1)},

that is a special case of (B.4). At this point we may use the symmetry of ψn in
order to conclude that both ψ′

n+1(t) ≥ 0 if t ≤ 0 and ψ′
n+1(t) ≤ 0 if t ≥ 0 hold,

as claimed. Letting n → ∞ yields part (ii) for ψ. In particular, ψ has a global
maximum in t = 0 and it follows that 2ψ(0) ≥

∫
ψ(t) dt = 1, i.e. the second part of

(i) holds as well.
Finally, it remains to prove part (iii) of Lemma 2.3. The uniform convergence

combined with the explicit formula (B.1) implies the representation

ψ̂(t) =

∞∏
n=1

( sin(2πant)
2πant

)
as an infinite product with uniform convergence on compact sets. Note that (2.6)
necessarily implies u(t) → ∞ if t → ∞ and therefore there exists a t0 > 0 such that
u(t) ≥ 1 for all t ≥ t0. For any |t| ≥ t0 we have the bound

|ψ̂(t)| ≤
n∏

k=1

( 1

2π|akt|
)
≤ 1

|ant|n
=
(nu(n)

e|t|
)n

.

Thus, taking n = �|t|u(|t|)−1� (i.e. the integer part of |t|u(|t|)−1) yields

|ψ̂(t)| ≤
(u(n)

e|t|
)n

≤ e−n � exp{−|t|u(|t|)−1}.

In the last line we used that u is non-decreasing and that |t| ≥ n, since |t| ≥ t0.
This completes the proof of Lemma 2.3. �

References

[AM18] J. S. Athreya and G. A. Margulis, Values of random polynomials at integer points, J.
Mod. Dyn. 12 (2018), 9–16, DOI 10.3934/jmd.2018002. MR3808207

[BD58a] B. J. Birch and H. Davenport, Indefinite quadratic forms in many variables, Mathe-
matika 5 (1958), 8–12, DOI 10.1112/S0025579300001285. MR96621

[BD58b] B. J. Birch and H. Davenport, On a theorem of Davenport and Heilbronn, Acta Math.

100 (1958), 259–279, DOI 10.1007/BF02559540. MR98711
[BD58c] B. J. Birch and H. Davenport, Quadratic equations in several variables, Proc. Cam-

bridge Philos. Soc. 54 (1958), 135–138, DOI 10.1017/s0305004100033296. MR97355
[BG97] V. Bentkus and F. Götze, On the lattice point problem for ellipsoids, Acta Arith. 80

(1997), no. 2, 101–125, DOI 10.4064/aa-80-2-101-125. MR1450919
[BG99] V. Bentkus and F. Götze, Lattice point problems and distribution of values of qua-

dratic forms, Ann. of Math. (2) 150 (1999), no. 3, 977–1027, DOI 10.2307/121060.
MR1740988

[BGHM19] P. Buterus, F. Götze, T. Hille, and G. A. Margulis, Distribution of values of quadratic
forms at integral points, accepted in Invent. Math.
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