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THE COHOMOLOGY OF SEMI-SIMPLE LIE GROUPS,

VIEWED FROM INFINITY

NICOLAS MONOD

Abstract. We prove that the real cohomology of semi-simple Lie groups
admits boundary values, which are measurable cocycles on the Furstenberg
boundary. This generalises known invariants such as the Maslov index on
Shilov boundaries, the Euler class on projective space, or the hyperbolic ideal
volume on spheres.

In rank one, this leads to an isomorphism between the cohomology of the
group and of this boundary model. In higher rank, additional classes appear,
which we determine completely.

1. Introduction

Let G be a connected semi-simple Lie group with finite center. The cohomology
of G (with trivial coefficients R) can be defined, and computed, by a great variety
of different methods. For instance, it is often called continuous cohomology and
denoted by H•

c(G) when realised by continuous cochains on G or on the associated
symmetric space. Continuity can be replaced by smoothness, or relaxed to local
integrability, even to just measurability.

The van Est isomorphism identifies H•
c(G) with relative Lie algebra cohomol-

ogy. This then leads to another identification with the cohomology of a space, the
so-called compact dual symmetric space. Yet another model is the algebraic coho-
mology of Wigner [Wig70a,Wig70b]. We recommend the introductions of [AM13]
and [WW15] for modern overviews of these developments, which started in the
1950s but witness contemporary progress. Classical textbooks are [Gui80,BW80].

Each model has advantages for different applications. The aim of this article
is to introduce another viewpoint, placing ourselves on the Furstenberg boundary
G/P of G. This boundary classifies the topological dynamics of G to some extent.
It is a homogeneous projective variety for G which covers all other such varieties,
among which are familiar Grassmannians supporting classical characteristic classes.
When viewed instead as a measurable G-space, this Furstenberg boundary is also
a central tool in rigidity theory ever since Furstenberg and Margulis made striking
use of it. In addition, G/P is geometrically the space of Weyl chambers at infinity,
and as such describes the generic part of the visual boundary at infinity of the
symmetric space of G.

Our first result shows that the situation is ideal for rank one groups:

Theorem A. Let G be a connected semi-simple Lie group of rank one with finite
center. Let P < G be a parabolic subgroup. Then the continuous cohomology H•

c(G)

Received by the editors December 11, 2020, and, in revised form, June 25, 2021, and June 27,
2021.

2020 Mathematics Subject Classification. Primary 22E41, 57T10.

c©2022 by the author under Creative Commons Attribution-Noncommercial 3.0 License (CC BY NC 3.0)

144

https://www.ams.org/btran/
https://www.ams.org/btran/
https://doi.org/10.1090/btran/85
https://creativecommons.org/licenses/by-nc/3.0/


THE COHOMOLOGY OF LIE GROUPS, VIEWED FROM INFINITY 145

is realised by the complex

0 −→ L(G/P )G −→ L((G/P )2)G −→ · · · −→ L((G/P )n+1)G −→ · · ·

of G-invariant measurable function classes on the Furstenberg boundary G/P .

This statement is fundamentally measurable: already for G = SL2(R), the co-
cycles cannot be made continuous on G/P , the projective line.

Remark 1.1. The analogous result for non-trivial coefficients, even unitary, does
not hold. It does not hold either for trivial coefficients when G is replaced by a
lattice in G. Examples are given below.

This indicates that the theorem does not follow immediately from a “soft” argu-
ment using appropriate (relatively) injective resolutions, or a Buchsbaum criterion,
in contrast to many other equivalent characterisations of H•

c(G).

Remark 1.2. In the rank one setting of Theorem A, Gromov showed that every coho-
mology class admits bounded representatives [Gro82, §1.2]. This implies that they
can be realised by L∞-cocycles on G/P [BM99], though it is not known whether
that complex computes the cohomology of G. Nonetheless, it can be deduced that
every cohomology class admits a representative on G/P which satisfies the cocycle
equation everywhere, not just a.e. as function class, see [Mon15], where we also
observe that this fails on certain projective varieties in higher rank. (This stands
again in contrast to the bar resolution, which admits Borel everywhere-cocycles by
Thm. 5 in [Moo76].)

Return to a general semi-simple Lie group G and denote by H•
m(G;P ) the mea-

surable cohomology on the Furstenberg boundary G/P . One reason to expect a re-
lation between H•

m(G;P ) and the cohomology of G is that the latter can be realised
by invariant differential forms on the symmetric space of G: such forms are au-
tomatically harmonic, and suitable harmonic functions have measurable boundary
values on G/P by an appropriate Fatou theorem. Notably the Knapp–Williamson
theorem [KW71] establishes this for all bounded harmonic functions, and the coho-
mology of semi-simple Lie group is conjectured since the 1970s to admit bounded
representatives [Dup79].

It turns out, however, that in higher rank the result is more involved: the iso-
morphism still holds outside of a certain range of values, and in that exceptional
range we can determine exactly the additional cohomology.

Theorem B. Let G be any connected semi-simple Lie group with finite center and
let P < G be a minimal parabolic subgroup. Then the cohomology Hq

m(G;P ) defined
by the complex

0 −→ L(G/P )G −→ L((G/P )2)G −→ · · · −→ L((G/P )q+1)G −→ · · ·

of G-invariant measurable function classes on the Furstenberg boundary G/P co-
incides with the continuous cohomology Hq

c(G) of G outside the range 3 ≤ q ≤
rank(G) + 2.

More precisely, writing r = rank(G):

• Hq
m(G;P ) ∼= Hq

c(G)⊕ ∧q−1Rr for odd 3 ≤ q ≤ r + 1;
• Hq

m(G;P ) ∼= Hq
c(G)⊕ ∧q−2Rr for even 4 ≤ q ≤ r + 2;

• Hq
m(G;P ) ∼= Hq

c(G) in all other cases.
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The proof shows that the difference between Hq
m(G;P ) and Hq

c(G) is given by a
canonical embedding of the even-dimensional cohomology H•

c(A) of a maximal split
torus A of G, with dimensions shifted according to parity. Since A is isomorphic to
Rr, its cohomology is the exterior power ∧•Rr.

We see that Theorem A is a particular case of this statement since the exceptional
range is empty for r = 1 (taking the parity of q into account).

In order to illustrate the geometric meaning of the classes appearing in the
exceptional range for H•

m(G;P ), we consider the simplest non-trivial example. Let
G = SL2(R)×SL2(R), so that r = 2; then G/P can be identified with the product
X = P1×P1 of two projective lines. According to Theorem B, the area form inR2∧
R2 gives rise to a generator for H3

m(G;P ). That is, we obtain a three-dimensional
“volume” Ω on X which is projectively invariant. The proof of Theorem B can be
coerced into giving the following explicit formula. Considering four points a, b, c, d ∈
X, assume for definiteness that the coordinates are in R with ai < bi < ci < di for
i = 1, 2. The corresponding “volume” is then

Ω(a, b, c, d) =

log[a1, b1; c1, d1] log[b2, c2; d2, a2]− log[a2, b2; c2, d2] log[b1, c1; d1, a1],

wherein [. . .] denotes the cross-ratio. The fact that Ω is indeed a cocycle is equivalent
to the fact that the bivariate function

F (x1, x2) = log x1 log(1− x2)− log x2 log(1− x1) (0 < x1, x2 < 1)

satisfies Rogers’s [Rog07] form of the Spence–Abel functional equation

F (y)− F (x) = F

(
y − x

1− x

)
− F

(
x

y

)
+ F

(
x(1− y)

y(1− x)

)
, (x, y ∈ (0, 1)2),

where all operations on x = (x1, x2) and y = (y1, y2) are understood coordinate-
wise, and the symmetry F (x) = −F (1−x) (as verified by direct computation). By
contrast, no non-zero univariate measurable function on (0, 1) can satisfy the cor-
responding requirements, as follows from [BM02b, §5] (and shifting the symmetry
by ζ(2) characterises Rogers’ s dilogarithm).

It was pointed out to me by Luc Pirio that already Rogers mentions the bivariate
F in [Rog07, pp. 178–179]; it would be interesting to write out the invariants
corresponding to all the other new cohomology classes provided by the additional
terms in Theorem B.

Remark 1.3. The proof of Theorem B also shows that the comparison map H•
cb(G) →

H•
c(G) from the continuous bounded cohomology is induced by the inclusion maps

L∞((G/P )n+1) → L((G/P )n+1), see the comment at the end of the article. We
hope that the theorem will be of some guidance towards showing that this com-
parison map is an isomorphism, as conjectured e.g. in [Mon06, Prob. A], and in
particular the boundedness conjectured by Dupont [Dup79].

Remark 1.4. It seems that the arguments used for the proof of Theorem B could be
adapted to apply to semi-simple algebraic groups over local fields, although some
changes are needed. For instance, we use below an elementary case of Kostant’s
algebraic Borel–Weil–Bott theorem, which we verify by diagonalizing an action on a
Chevalley–Eilenberg complex. This is a priori not defined in positive characteristic,
but the dynamics of the adjoint action and its contracting properties could be a
substitute. We also use a measure-theoretical tameness of the space of compact
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subgroups that needs to be justified otherwise in the non-Archimedean case. In
any event, the corresponding result is perhaps less interesting than for Lie groups
since the usual continuous cohomology of non-Archimedean semi-simple groups
vanishes anyway [Gar73, Cas74]. In relation to Remark 1.3, we conjecture that
the continuous bounded cohomology (still with trivial coefficients R) of connected
algebraic groups over non-Archimedean local fields vanishes. The case of SL2 was
recently established in [BM19].

Here are two illustrations for Remark 1.1.

Example 1.5. LetG = SL2(R). Then there is an irreducible continuous unitaryG-
representation on a Hilbert space V , the representation of smallest positive minimal
weight, such that H1

c(G, V ) is non-trivial. A similar statement holds when G is (the
connected component of) the isometry group of a real or complex hyperbolic space,
see e.g. [CCJ01] for a detailed geometric construction.

On the other hand, no non-trivial cocycle can be given by aG-invariant element ω
of L((G/P )2, V ). Indeed, the corresponding crossed homomorphism ω : G → V (i.e.
the corresponding inhomogeneous 1-cocycle) would automatically be continuous,
see Thm. 3 in [Moo76]. On the other hand, the relation between ω and ω is that

ω(g, h) = gω(g−1h)

holds a.e.; in particular ω descends to G/P and hence has compact range. But
a non-trivial affine isometric action has always unbounded orbits, indeed in the
present case it is even known that ω is proper.

Example 1.6. Let again G = SL2(R) and consider the fundamental group Γ of
a closed hyperbolic surface as a uniform lattice in G. Since the first Betti number
of the surface is non-zero, H1(Γ) does not vanish. On the other hand, every Γ-
invariant measurable function on (G/P )2 is essentially constant (and hence trivial
in cohomology). Indeed, this follows from the double ergodicity which goes back
already to [Gar83] in this setting.

We observe that the vector-valued double ergodicity introduced in [BM02a] shows
that this argument provides also an alternative proof for Example 1.5.

On previous work. Various specific examples of cocycles have long been known to
admit privileged representatives on projective varieties associated to G, which are
all quotients of the Furstenberg boundary. For instance, in degree two, the Maslov
index defined on the Langrangian Grassmannian [BG92, §C] or more generally on
the Shilov boundary [CØ01] for higher rank. In degree three, there is the Gon-
charov cocycle for the Borel class of SLn(C), see [Gon93] and [BBI18, §2]. Another
example, in even degree n, is the Euler class defined on the projective space PRn,
see [Smi, Sul76]. We use Moore’s measurable cohomology [Moo76]. The spectral
sequence that we shall examine below has been used in the special case of SL2(C)
by Bloch [Blo00, §7.4]. In bounded cohomology, cocycles on G/P can be used com-
pletely generally because P is amenable, see [BM99] and [BM02a]. Back to usual
cohomology, the case of G = SO+(1, n) was considered in [Pie18]. For that case,
Theorem A fixes an issue with the dimension shifting method in [Pie18], because
the lifting maps used in the proof cannot be chosen equivariant. More conceptually,
dimension shifting relies on long exact sequences and effaceability; whilst the latter
holds for H•

m(G;P ), the former does not. This also accounts for the exceptional
classes appearing in Theorem B.
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2. Notation and preliminaries

A major portion of the following paper is concerned with laying
firmer foundations for the theory of Borel cohomology, in the belief
that this will hasten defeat of the enemy.

Arthur Mason DuPre III [DuP68]

Given a standard measure space X and a Polish topological vector space V , we
denote by L(X,V ) the space of measurable function classes X → V . Thus we only
take into account the measure class on X, which is unique on any homogeneous
space for a locally compact group and hence will not be apparent in our notation.
The space L(X,V ) is in turn a Polish topological vector space when endowed with
the topology of convergence in measure; see [Moo76, §3]. For trivial coefficients,
classical references are [DS58, IV.11] and [Fre03, §245].

We shall need the following, established in [Moo76], Prop. 9:

Lemma 2.1. The functor L(X, ·) preserves the exactness of sequences of Polish
topological vector spaces. �

(We recall that the above statement follows readily from the fact that quotient
maps of Polish topological vector spaces admit measurable cross-sections.)

Given a second standard measure space Y , an appropriate Fubini theorem
(Thm. 1 in [Moo76]) shows that the obvious map gives a well-defined isomorphism
of topological vector spaces:

L (X,L(Y, V )) ∼= L(X × Y, V ) ∼= L (Y, L(X,V )) .

Let G be a locally compact second countable group. If X is endowed with a non-
singular G-action and V is a (jointly continuous) G-module, then so is L(X,V )
[Moo76, §3]. This is the case more generally given a measurable cocycle from
G×X to the automorphisms of V . An example of this situation is when H < G a
closed subgroup and V an H-module. We then have such a G-module L(G/H, V ),
see Prop. 17 in [Moo76].

The measurable cohomology H•
m(G, V ) is defined in [Moo76] using the inhomo-

geneous standard resolution, where cochains for Hn
m(G, V ) are L function classes

ω : Gn → V . There is a well-known isomorphism with the homogeneous resolution,
where cochains are G-invariant function classes ω : Gn+1 → V . (Invariant for the
usual action means “equivariant” as maps to V .) Using a Fubini isomorphism, the
correspondence between ω and ω is given a.e. by

ω(g0, g1, . . . , gn) = g0ω(g
−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn).

We further recall that the homogeneous (Alexander–Kolmogorov–Spanier) differ-
entials are defined by the usual alternating sums

dω(g0, . . . , gn+1) =
n+1∑
j=0

(−1)jω(g0, . . . , ĝj , . . . , gn+1),

where ĝj signifies that the variable gj has been omitted.
The measurable cohomology satisfies the following version of the Eckmann–

Shapiro lemma, see Thm. 6 in [Moo76].
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Proposition 2.2. Let G be a locally compact second countable group and H < G a
closed subgroup. For every Polish H-module V and every n ≥ 0 there is a natural
isomorphism

Hn
m(H,V ) ∼= Hn

m (G,L(G/H, V )). �
We need a basic vanishing result for compact groups:

Lemma 2.3. Let K be a compact metrisable group, X a standard measure space
and endow L(X) with the trivial K-representation. Then Hq

m(K,L(X)) vanishes
for all q > 0.

The issue here is that the coefficient space L(X) is not locally convex. Therefore,
although it is known that Hq

m coincides with the continuous cohomology in that
setting (see e.g. Rem. 4.13 in [WW15]; I am grateful to Friedrich Wagemann
for his explanations in this context), in general continuous cohomology of compact
groups is not known to vanish for Polish topological vector space modules, compare
Question 4.2 in [AM13]. Nevertheless the particular case of L(X) can be dealt with
as follows.

Proof of Lemma 2.3. The statement is well-known for trivial coefficients in R, see
e.g. [AM13, Thm. A]. (If one knows already that it is equivalent to work with H•

c ,
then an integration argument applies, as was already known in the first years of the
theory [Hu52, Thm. 2.8].) Equivalently, the (augmented) inhomogeneous resolution

0 −→ R −→ L(K) −→ L(K2) −→ · · ·
is an exact sequence. It follows, by Lemma 2.1, that the sequence

0 −→ L(X) −→ L (X,L(K)) −→ L
(
X,L(K2)

)
−→ · · ·

is also exact. Now we apply the Fubini isomorphisms

L (X,L(Kq)) ∼= L (Kq, L(X))

and conclude that the (non-augmented) sequence defining Hq
m(K,L(X)) is exact at

all q > 0. �
Finally we return to a property of L that does not involve groups:

Lemma 2.4. Given any Polish topological vector space V , the homogeneous cochain
complex

0 −→ V −→ L(X,V ) −→ L(X2, V ) −→ · · ·
is exact.

Proof. Contrary to more familiar (locally integrable) cases, we cannot construct a
homotopy by integrating over the first variable. An explicit proof would consist
in observing that the exactness in degree zero follows from Fubini, while in higher
degree a dimension shifting argument reduces it inductively to degree zero for a
more complicated V .

A lazier proof is as follows. The functor (sequence) that associates to V the
cohomology of 0 → L(X,V ) → L(X2, V ) → · · · shares three properties with the
measurable cohomology of the trivial group: it is just V in degree zero; it takes short
exact sequences to long exact sequences (by repeated applications of Lemma 2.1);
and it is effaceable. It follows (Thm. 2 in [Moo76]) that this functor is isomorphic to
the cohomology of the trivial group, whence the statement. (Of course, the proof of
the quoted statement contains a similar inductive shifting as alluded to above). �
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3. The cohomology of the minimal parabolic

We shall need the following result.

Proposition 3.1. Let G be a connected semi-simple Lie group with finite center.
Choose a maximal R-split torus A < G and a minimal parabolic subgroup P < G
containing A. Then the restriction map

Hn
c (P ) −→ Hn

c (A)

is an isomorphism for all n.
The same statement holds with a Borel subgroup in place of P .

Proof. Consider a Langlands decomposition P = MAN and the Borel subgroup
B = AN . We shall first prove that the restriction map

(∗) Hn
c (B) −→ Hn

c (A)

is an isomorphism for all n.
Note that Hq

c(N) is finite-dimensional for all q, for instance because of the van
Est isomorphism, see Cor. III §7.3 in [Gui80]. Hence it is Hausdorff, see IX §3
in [BW80]. This allows for a version of the Lyndon–Hochschild–Serre spectral
sequence, see e.g. Thm. 9.1 in[Bla79]. This is a sequence with second tableau

Ep,q
2 = Hp

c (A,Hq
c(N))

and abutting to H•
c(B). We shall show that Ep,q

2 vanishes for all q > 0; on the other

hand Ep,0
2 = Hp

c(A). Thus at least the (finite!) dimensions involved in the restric-
tion map (∗) match. This forces it to be an isomorphism because this restriction is
onto anyways: indeed, since A is a semi-direct factor of B, the restriction admits
the inflation Hn

c (A) → Hn
c (B) as a right inverse.

We turn to the vanishing of Ep,q
2 for q > 0. We claim that the natural represen-

tation of A on Hq
c(N) does not contain the trivial A-representation when q > 0.

This claim is probably well-known from Lie algebra cohomology (translating it
with the van Est isomorphism). Indeed, for complex Lie algebras it is an elementary
case of Kostant’s algebraic Borel–Weil–Bott theorem, namely the case of the trivial
weight in Thm. 5.14 of [Kos61]. (In Kostant’s notation, apply that theorem to
λ = 0, ξσ = 0 and u = b, recalling that g therein is the half-sum of positive roots,
which is only fixed by the trivial element σ of the Weyl group.) The real version has
been studied by Šilhan [Š04], but since we only need the case of the trivial weight,
complexification is not an issue.

In any case, we sketch a proof valid over R of this elementary case of Kostant’s
statement: the A-representation on H•

c(N) can be realised by the adjoint represen-
tation on the Chevalley–Eilenberg complex, which is the dual of ∧•n. Since A is
a split torus, this representation can be diagonalised. Since n is the sum of root
spaces of negative roots only, the zero weight does not occur at the cochain level
on ∧qn in non-zero degree q. More precisely, any element in the interior of the
positive Weyl chamber of A acts as a strict contraction. It follows that the zero
weight cannot occur for non-trivial cocycles on the cohomology level either.

The claim implies the desired vanishing of Ep,q
2 because any abelian group A

satisfies H•
c(A, V ) = 0 when V is a finite-dimensional representation not containing

the trivial A-representation; this follows e.g. from III §3.1 in [Gui80].
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We now turn to the restriction map of the proposition, which factors through
(∗) as

Hn
c (P ) −→ Hn

c (B) −→ Hn
c (A).

As before, the restriction is onto since A is a semi-direct factor of P and hence
the inflation Hn

c (A) → Hn
c (P ) provides a right inverse. It suffices therefore to show

that the restriction Hn
c (P ) → Hn

c (B) is injective. Since G has finite center, M is
compact and hence the normal subgroup B of P = MB is cocompact. This implies
the injectivity of the restriction Hn

c (P ) → Hn
c (B), either by a transfer argument or

by an application of the Lyndon–Hochschild–Serre spectral sequence, see Cor. III 5.2
in [Gui80]. �

We record that Proposition 3.1 also implies the following basic vanishing result
(which certainly admits simpler proofs).

Corollary 3.2. Let G be a connected semi-simple Lie group with finite center and
P < G a minimal parabolic subgroup P < G. Then the restriction map

Hn
c (G) −→ Hn

c (P )

vanishes for all n > 0.

Proof. By Proposition 3.1, it suffices to show that the restriction to a maximal
R-split torus A < P vanishes. We can assume G simple upon using the Künneth
formula (after killing the center). The image of this restriction lies within the part of
Hn

c (A) that is invariant under the normaliser of A in G since conjugation acts triv-
ially on the cohomology of the conjugating group (see e.g. I.7 and III.3 in [Gui80]).
In other words, we consider the fixed points of the Weyl group action on Hn

c (A).
By the van Est isomorphism, H•

c(A) is the dual of the exterior algebra ∧•a. Since
G is simple, the Weyl group representation on a is irreducible, see [Bou81, V§4.7].
Using an argument of Steinberg, this implies that the induced representation on
the dual of ∧•a has trivial fixed points, see Ex. 3 in [Bou81, V§2]. �

4. Modules with few points at infinity

Let G be a connected semi-simple Lie group with finite center and P < G a
minimal parabolic subgroup. Consider the homogeneous differential

d : L(G/P ) −→ L
(
(G/P )2

)
,

that is, the map given by (df)(x, y) = f(y)− f(x).

Proposition 4.1. The map

Hq
m (G,L(G/P )) −→ Hq

m

(
G,L

(
(G/P )2

))
induced by d is an isomorphism when q is odd and vanishes when q is even.

For the proof, we should clarify the meaning of the restriction H•
c(P ) → H•

c(A)
occurring in Proposition 3.1 now that we are in the measurable context of H•

m. (Here
A is a maximal R-split torus contained in P .) The terminology comes from the fact
that continuous cochains can indeed be restricted to any subgroup. However, this
does not make sense for measurable cochains up to null-sets, because subgroups are
generally null-sets; this is the case of A < P . In general, the restriction is induced
by the “forgetful” natural transformation (given by inclusion) between the functor
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of P -invariants and the functor of A-invariants. Concretely, in the setting of the
proposition, the cohomology Hq

m(P ) can be realised by the complex of P -invariants

0 −→ L(G)P −→ · · · −→ L(Gq+1)P −→ · · ·
Likewise, for Hq

m(A) we consider the complex L(Gq+1)A. Then the restriction is
induced by the inclusion maps

L(Gq+1)P −→ L(Gq+1)A.

Proof of Proposition 4.1. We shall work with an explicit formula for the induction
isomorphisms of Proposition 2.2 at the level of cochains. Namely, we first realize
the cohomology H•

m(P ) by the complex of P -invariant homogeneous maps α′ ∈
L(Gq+1)P as above. Then the corresponding G-equivariant map α in

L
(
Gq+1, L(G/P )

)G
is given by

α(g0, . . . , gq)(gP ) = α′(g−1g0, . . . , g
−1gq).

This establishes a well-defined isomorphism of cochain spaces which commutes with
the homogeneous differential on the variables in G.

Next, we recall that the Bruhat decomposition shows that there is a P -orbit
of full measure in G/P . Namely, the orbit Pw0P , where w0 is (a representative
in G of) the longest element of the Weyl group associated to A; see e.g. Cor. 1.8
in [Hel01, IX§1]. Equivalently, there is a G-orbit of full measure for the diagonal
action on (G/P )2. This orbit can be identified with G/L, where L = P ∩w0Pw−1

0 .
Since P and w0Pw−1

0 are opposite, we have L = MA, where M is a compact group
centralising A.

Explicitly, the isomorphism of G-modules between L
(
(G/P )2

)
and L(G/MA)

maps f to the function f̃ defined by f̃(gMA) = f(gP, gw0P ). We now write again
ω′ ↔ ω for the bijections on the cochain level that induce the induction isomorphism
between Hq

m(MA) and Hq
m (G,L(G/MA)).

In summary, we have isomorphisms

Hq
m

(
G,L

(
(G/P )2

)) ∼= Hq
m (G,L(G/MA)) ∼= Hq

m(MA) ∼= Hq
m(A),

where the last isomorphism follows from the compactness of M ; note that we can
implement this isomorphism by the restriction from MA to A.

Finally, it remains to identify the map Hq
m(P ) → Hq

m(A) induced by d under all
these isomorphisms. If we still denote it by d, then we compute

(dα′)(g0, . . . , gq) = α′(w−1
0 g0, . . . , w

−1
0 gq)− α′(g0, . . . , gq).

On the other hand, right multiplication of any cochains on G is G-homotopic to the
identity (this well-known fact can be established e.g. as in [Gui80, I§7]). Therefore,
the above map has the same effect on cohomology as

α′(w−1
0 g0w0, . . . , w

−1
0 gqw0)− α′(g0, . . . , gq),

which amounts to Adw0
res − res, wherein res denotes the restriction from P to

A and Adw0
refers to the Weyl group action on Hq

m(A). Since w0 is the longest
element, it acts by −1 on A. In particular, it acts trivially on Hq

m(A) when q is even
and by −1 when q is odd (e.g. because Hq

m(A) is isomorphic to the dual of ∧qa).
Thus, the map in the statement of the proposition vanishes indeed when q is even.
When q is odd, we find −2res, which is an isomorphism by Proposition 3.1. �
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Since we shall need it again, we single out the following observation from the
above proof. Note that now α is not assumed to be a cocycle, although ω is.

Lemma 4.2. Let q be even and let

ω : Gq+1 −→ L
(
(G/P )2

)
be a cocycle in the homogeneous resolution for the right hand side in Proposition 4.1.
Suppose that ω = dα for some G-equivariant map

α : Gq+1 −→ L(G/P ).

Then ω is trivial in cohomology.

Proof. The above calculations show that ω = dα, viewed as an element of Hq
m(A),

satisfies Adw0
ω = −ω. Since w0 acts as the identity on cohomology for q even, this

shows that ω is trivial. �
Finally, we record what happens to Proposition 4.1 in the elementary case where

we have even less points at infinity:

Proposition 4.3. The map

Hq
m(G) −→ Hq

m (G,L(G/P ))

induced by the inclusion of constants R → L(G/P ) vanishes for all q > 0.

Proof. A much simpler computation than above shows that the induction isomor-
phism intertwines this map to the restriction from Hq

m(G) to Hq
m(P ). The statement

now follows from Corollary 3.2. �

5. Modules with more points at infinity

Proposition 5.1. Let G be a connected semi-simple Lie group with finite center
and P < G a minimal parabolic subgroup. Then

Hq
m (G,L ((G/P )p)) = 0

when p ≥ 3 and q > 0.

Proof. We claim that the stabiliser in G of almost every point in (G/P )p is compact;
it suffices to prove the claim for p = 3.

Then shalt thou count to three, no more, no less. Three shall be the number
thou shalt count, and the number of the counting shall be three.

Book of Armaments, Chap. 2, verses 9–21

Consider a Langlands decomposition P = MAN , where N is the unipotent
radical of P and A is a maximal R-split torus of A contained in P . The stabiliser
of a point in (G/P )3 is the intersection of three minimal parabolics P0, P1, P2.

As in the proof of Proposition 4.1, we recall that the Bruhat decomposition gives
a P -orbit Pw0P of full measure in G/P , where w0 is the longest element of the Weyl
group. Moreover, this cell can be written as Nw0P , and actually N parametrizes
this cell; see e.g. [Kna02, 8.45] or Cor. 1.9 in [Hel01, IX§1].

Upon conjugating, we may assume P0 = P and P1 = w0Pw−1
0 ; therefore P2 can

be parametrised by n ∈ N as P2 = nP1n
−1. Then P0 ∩P1 = MA because they are

opposite parabolics, and

P0 ∩ P2 = nP0n
−1 ∩ nP1n

−1 = nMAn−1.
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Thus P0∩P1∩P2 = MA∩nMAn−1. The claim now follows from the fact that, for
generic n ∈ N , the intersection A ∩ nAn−1 is trivial. Since A normalizes N with
A ∩N trivial, the latter fact reduces to the fact that n has trivial centraliser in A
for generic n, which is apparent on the root space decomposition.

According to the claim, almost every G-orbit in (G/P )p is of the form G/K
for some compact subgroup K < G. There are at most countably many conju-
gacy classes in G of such subgroups. Indeed, by Cartan’s fixed point theorem we
can assume that K belongs to some fixed maximal compact subgroup K0, and
even within a compact Lie group conjugacy has countably many classes, see e.g.
Cor. 1.7.27 in [Pal60]. Moreover, the G-action on (G/P )p is smooth in the Borel
sense since it has locally closed orbits (see e.g. [Zim84, §3]). In conclusion, the
Glimm–Effros theorem (see Thm. 2.9 in [Eff65]) implies that there is a measurable
G-isomorphism between (G/P )p and a disjoint countable union of G-spaces of the
form G/Kj ×Xj , where Kj < G is a compact subgroup and Xj is some measure
space with trivial G-action.

It follows that L ((G/P )p) is the (unrestricted) product over j of the G-modules
L(G/Kj ×Xj). Therefore, to trivialize any class in Hq

m (G,L ((G/P )p)), it suffices
to show that each Hq

m (G,L(G/Kj ×Xj)) vanishes, recalling that q > 0. Apply-
ing the induction isomorphism (Proposition 2.2), this amounts to the vanishing of
Hq

m (Kj , L(Xj)), which holds by virtue of Lemma 2.3. �

6. Proof of the theorems

We now undertake the proof of Theorem B, recalling that the latter contains
Theorem A.

For the remaining of the text, let G be a connected semi-simple Lie group with
finite center. Choose a maximal R-split torus A < G and a minimal parabolic
subgroup P < G containing A and consider the Langlands decomposition P =
MAN , where N is the unipotent radical of P .

The strategy is to work with the hypercohomology spectral sequence associated
to the (augmented) complex of G-modules L ((G/P )q). Since we will need explicit
computations of higher differentials, we give a complete description from scratch,
as follows. Consider the bi-complex given for p, q ≥ 0 by the G-invariants

Cp,q = L
(
Gp+1 × (G/P )q

)G
.

The two differential maps are given by the homogeneous differentials on the vari-
ables in Gp+1 and (G/P )q+1 respectively, up to a sign convention. To minimize

confusion, we denote them by d↑, �d respectively. Specifically, given an element in
Cp,q, we define its first differential in Cp+1,q under the Fubini isomorphism by

d↑ : L
(
Gp+1, L ((G/P )q)

)G −→ L
(
Gp+2, L ((G/P )q)

)G
.

Thus, this is the homogeneous resolution for

Hp
m (G,L ((G/P )q)) .

The second differential �d is defined analogously on the variables in G/P by consid-
ering the homogeneous differential

L
(
(G/P )q, L

(
Gp+1

))G −→ L
(
(G/P )q+1, L

(
Gp+1

))G
but additionally it is affected with the sign (−1)p+1.
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A bi-complex is a standard setup for first quadrant spectral sequences; classical
references compatible with our notations are [GM96, III.7] or [BT82, III.14]. In par-
ticular we have two spectral sequences IE, IIE starting with the second, respectively
first, differential defined above.

The first computation is routine:

Proposition 6.1. These spectral sequences converge to zero.

Proof. The point is that the first spectral sequence collapses immediately (and
the limits always coincide since they both compute the cohomology of the total
complex). Explicitly, IE

p,q
1 is by definition the cohomology of the second differential

Cp,q−1 −→ Cp,q −→ Cp,q+1

as defined above (with the convention Cp,−1 = 0). Using the isomorphism with the
inhomogeneous model for fixed p, this amounts to

L
(
Gp, L((G/P )q−1)

)
−→ L (Gp, L((G/P )q)) −→ L

(
Gp, L((G/P )q+1)

)
(with still the homogeneous differential for q, up to a sign). By Lemma 2.4, the
sequence with homogeneous differential

0 −→ R −→ L(G/P ) −→ L
(
(G/P )2

)
−→ L

(
(G/P )3

)
−→ · · ·

is exact. This then implies, by Lemma 2.1, that IE
p,q
1 is trivial for all q. �

From now on we only work with the second spectral sequence IIE, which we
simply denote by E. Recall that Ep,q

1 is defined by the first differential, but by
convention p and q are permuted to that in view of our definitions we have Ep,q

1 =
Hq

m (G,L ((G/P )p)). Recall also that the differential dr on page r ≥ 1, which defines

Er+1, maps Ep,q
r to Ep+r,q−r+1

r and that d1 is induced by �d.
The results of the previous sections give us the following information.

Proposition 6.2.

(i) Ep,q
1 = 0 for all p ≥ 3 and q > 0.

(ii) E0,q
2 = E0,q

1 = Hq
m(G) for all q > 0.

(iii) Ep,q
2 = 0 for p = 1, 2 and all odd q.

(iv) E1,q
2 = E1,q

1
∼= Hq

m(P ) and E2,q
2 = E2,q

1
∼= Hq

m(A) for all even q.

(v) Ep+1,0
2 is the cohomology of the d↑-complex L

(
(G/P )p+1

)G
for all p > 0.

Proof. Point (i) is Proposition 5.1.
Point (ii) follows from Proposition 4.3.
For point (iii), fix q odd and consider the complex defining Ep,q

2 for various p:

0 −→ E0,q
1 −→ E1,q

1 −→ E2,q
1 −→ E3,q

1 −→ · · · .

We have already noted that E0,q
1 → E1,q

1 is the zero map and that E3,q
1 vanishes.

Thus the point is equivalent to saying that E1,q
1 → E2,q

1 is an isomorphism, which
was established in Proposition 4.1.

Similarly, Proposition 4.1 implies point (iv) in even degree.

Finally, point (v) follows from Ep+1,0
1 = H0

m

(
G,L

(
(G/P )p+1

))
. �
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The last ingredient that we need in order to understand the higher differentials
is:

Proposition 6.3. The map d2 : E
0,q+1
2 → E2,q

2 vanishes for all even q.

(In the special case q = 0, our identifications above already imply that both E0,1
2

and E2,0
2 vanish.)

Proof of Proposition 6.3. Let η ∈ Cq+1,0 be a cocycle representing an element of
E0,q+1

2 = E0,q+1
1 = Hq+1

m (G). We recall how to obtain an element ω ∈ Cq,2 repre-

senting the image d2[η] in E2,q
2 = E2,q

1
∼= Hq

m(A).

The fact that [η] is in the kernel of E0,q+1
1 → E1,q+1

1 means that �dη is a cobound-

ary. Thus there is α ∈ Cq,1 such that d↑α = �dη. Consider the element ω = �dα of
Cq,2. This is a cocycle because the bi-complex structure implies

d↑ω = d↑ �dα = −�dd↑α = −�d�dη = 0.

Now Lemma 4.2 shows that [ω] vanishes indeed in E2,q
1 . �

Summarising Propositions 6.2 and 6.3, the third page E3 vanishes except possibly
at the following coordinates:

• E0,q
3 = Hq

m(G) for all q > 0;

• Ep+1,0
3 is the cohomology of the d↑-complex L

(
(G/P )p+1

)G
for all p > 0;

• E1,q
3

∼= Hq
m(P ) and E2,q

3
∼= Hq

m(A) for all even q > 0.

Since the spectral sequence converges to zero, the most immediate consequence
is that d3 establishes an isomorphism between H2

m(G) and H2
m(G;P ). Further

consequences are that for every even q > 0:

• dq+1 gives embeddings of Hq
m(P ) into Hq+1

m (G;P ) and of Hq
m(A) into

Hq+2
m (G;P );

• dq+2 yields an isomorphism between Hq+1
m (G) and the cokernel of Hq

m(P )
in Hq+1

m (G;P );
• dq+3 yields an isomorphism between Hq+2

m (G) and the cokernel of Hq
m(A)

in Hq+2
m (G;P ).

This completes the proof of Theorem B if we recall that Hq
m(P ) ∼= Hq

m(A) by
Proposition 3.1. Indeed, since A ∼= Rr, its cohomology is the exterior power ∧•Rr

(after identifying it with its dual).
Finally, we justify a statement made in Remark 1.3, namely: the comparison

map H•
cb(G) → H•

c(G) from the continuous bounded cohomology is induced by the
inclusion maps L∞((G/P )n+1) → L((G/P )n+1). Consider the subspace Cp,q

b ⊆
Cp,q of bounded function classes:

Cp,q
b = L∞ (

Gp+1 × (G/P )q
)G

.

This gives us a sub-bi-complex of Cp,q and therefore the inclusions induce mor-
phisms of spectral sequences for both spectral sequences. The first spectral sequence
associated to Cp,q

b collapses for reasons entirely parallel to those indicated in Propo-
sition 6.1, the technical ingredients of Lemma 2.4 and Lemma 2.1 being replaced
by analogues for bounded cohomology (spelled out explicitly e.g. as Lemma 8.2.5
and 7.5.5 in [Mon01]). In the second spectral sequence for Cp,q

b , which we denote
by Ep,q

b , we have

Ep,q
b,1 = Hq

cb (G,L∞ ((G/P )p)) .
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It follows that Ep,q
b,1 vanishes for all p > 0 and q > 0 because P is an amenable

group and hence L∞((G/P )p) is injective in the relevant homological sense [Mon01,
Thm. 5.7.1]. We conclude that the differentials induce isomorphisms between
Hn

cb(G) and the cohomology of the complex

· · · −→ L∞ (
(G/P )n+1

)G −→ · · · .

The existence of this isomorphism is well-known, but now we have the additional
information that it is induced by the differentials of Ep,q

b , which are compatible with
our morphisms of spectral sequences. Therefore, this isomorphism is indeed inter-
twined (via the inclusion maps) with the map from Hn

m(G) to Hq
m(G;P ) provided

by the spectral sequence Ep,q in the proof of Theorem B, as claimed.
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