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HASSE INVARIANT FOR THE TAME BRAUER GROUP OF A

HIGHER LOCAL FIELD

ERIC BRUSSEL

Abstract. We generalize the Hasse invariant of local class field theory to the
tame Brauer group of a higher dimensional local field, and use it to study the
arithmetic of central simple algebras, which are given a priori as tensor prod-
ucts of standard cyclic algebras. We also compute the tame Brauer dimension
(or period-index bound) and the cyclic length of a general henselian-valued field
of finite rank and finite residue field.

1. Introduction

One of the seminal works of 20th century number theory was the 1932 paper [4]
by Brauer, Hasse, and Noether. The main theorems, that all Q-division algebras
are cyclic, and have equal period and index, formed a basis for the development
of class field theory, and were in turn based on Hasse’s local class field theory, in
Hasse’s 1931 article [10], see [21, 6.1]. Key to the latter was a natural isomorphism,
the Hasse invariant map

invF ∶ H2(F, μn) ∼
⟶ 1

n
Z/Z

over a local field F . This map summarizes the Brauer group over a local field,
providing not only a functorial group isomorphism, but also the index of a class,
and a structure theorem for F -division algebras, showing them all to be cyclic.

The Hasse invariant was generalized to higher dimensional local fields by Kato
in his higher local class field theory [17, Theorem 3]. Kato established a natural
isomorphism

invF ∶ Hd+1(F, μ⊗(d−1)
n ) ∼

⟶ 1
n
Z/Z

over a local field F of dimension d, by way of extending the classical reciprocity
map. The proof draws on deep results proved with Bloch using algebraic K-theory
and Kato’s deRham cohomology in characteristic p. We will have nothing more to
say about this spectacular result.

For though it was to become a cornerstone of class field theory, Hasse’s original
motivation in writing [10] was to understand the arithmetic of central simple alge-
bras over local fields [21, Remark 6.3.1]. To extend this aspect of his work, we need
to study a higher local field’s Brauer group Br(F ).

In this paper we generalize Hasse’s invariant map to the prime-to-p part of
2Br(F ) for a d-dimensional henselian-valued field F with finite residue field k.
Our generalization contains a precise index formula; a structure theorem for division
algebras, showing them to be tensor products of cyclic division algebras; and an
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algorithm for expressing the underlying division algebra of a given central simple
algebra as a tensor product of cyclic division algebras.

We also compute the Brauer dimension, cyclic length, and period-index ratio
for the tame Brauer group. Though these results are expected, and easily proved
for higher local fields, they are new for general henselian-valued fields with finite
residue field.

Our generalization of the Hasse invariant is based on a natural isomorphism

n2X(F ) ∧ Z
1(F, μn) ∼

⟶ n2Br(F )
induced by the cup product. The designation of a basis then associates to each
Brauer class a skew-symmetric matrix, so we have a (non-canonical) injective ho-
momorphism

n2Br(F ) ⟶ Altd+1( 1
n
Z/Z) .

This map is functorial with respect to basis change, so that 2-block diagonalization
on the right “diagonalizes” the Brauer class. We prove the index of the Brauer
class is the order of the pfaffian subgroup of the skew-symmetric matrix, and, like
the determinant, has an explicit formula in terms of the matrix coefficients. At the
same time we show the underlying division algebra is a tensor product of cyclic
division algebras of degrees equal to the abelian group theory invariants of the
row space of the skew-symmetric matrix. To prove our index formula we use the
valuation theoretic framework of [26]. Our methods thus generalize [26, Example
1.2.8], which was the method used by Hasse in [10] to compute the Hasse invariant
over an ordinary local field.

For example, if F = F5((t1))((t2))((t3)) is the 3-dimensional local field, and we
put t0 = [2]5, then the sum of quaternions

α = (t0, t1) + (t0, t2) + (t0, t3) + (t1, t2) + (t1, t3) + (t2, t3)
is mapped to the skew-symmetrix matrix

altt(α) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2

1
2

1
2

− 1
2

0 1
2

1
2

− 1
2

− 1
2

0 1
2

− 1
2

− 1
2

− 1
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The pfaffian formula computes a12a34 − a13a24 + a14a23 = 1/4 in Q/Z, so the index
is 4. This calculation is unexpectedly easy. In this case the index is computable in
principle from the Witt index formula for a Laurent series field, but that approach
becomes hopelessly complicated even for low values of d, and does not extend to
more general henselian fields.

Elements of Br(F ) that do not fit into our theory include the p-primary part
Br(F )p, where p = char(k), and elements of Br(F )2−2Br(F )2. The p-primary part
has a much different character, and is not even a candidate for a similar treatment.
And though when 2 ≠ p, Br(F )2 has the right number of summands to define a
map into skew-symmetric matrices, the ad hoc map is not functorial with respect
to basis change, and is therefore useless. The problem with 2-torsion could be
anticipated, since totally ramified classes (t, t)n violate “skew-symmetry” when n
is the maximal power of 2 dividing ∣μ(F )∣.

In [5] and [6] the author used the machinery of symplectic modules to derive an
index formula and minimal expression for an arbitrary class in the (tame) Brauer
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group of a strictly henselian field, that is, a henselian field whose residue field is alge-
braically closed. The central observation was that the cocycles underlying a Brauer
class define alternating forms on the Galois group. A more valuation-theoretic
treatment using symplectic modules is formalized by Tignol and Wadsworth in
[26, Chapter 7]. These ideas predated the present author’s work, and are rooted in
(more general) work by Amitsur-Rowen-Tignol ([1]), Tignol ([23]), Tignol-Amitsur
([24]), and Tignol-Wadsorth ([25]). Their methods are especially powerful when
the residue fields are algebraically closed, and much is reduced to valuation theory.
With non algebraically closed residue fields, the augmentation with Galois theoretic
methods seems necessary to obtain a comparable understanding. There remains the
problem of how to construct a group of Galois symplectic modules isomorphic to
the tame Brauer group, as outlined in [26, Chapter 7].

The paper is organized as follows. We first prove structure theorems for the
character group and Brauer group of a henselian-valued field of rank d, with finite
residue field. These results are well-known; we prove them for convenience, and use
them immediately to compute Brauer dimension and cyclic length. Then we prove
Theorem 8.6, which shows n2Br(F ) is naturally isomorphic to a wedge product,
and we define basis and basis change for this wedge product, before proving the
main results, Theorem 10.1 and Theorem 10.4, relating the arithmetic of the Brauer
group to the arithmetic of skew-symmetric matrices with coefficients in Q/Z. We
end by showing why the missing set nBr(F )−n2Br(F ) resists the same treatment,
even when F contains μn.

2. Preliminaries

Let F be a field, let n be a number invertible in F , and let m = ∣μn(F )∣.
Let Br(F ) = H

2(F, F×
sep) and X(F ) = H

1(F,Q/Z) denote the Brauer group and

character group of F , with n-torsion subgroups nBr(F ) = H
2(F, μn) and nX(F ) =

H
1(F, 1

n
Z/Z). If θ ∈ nX(F ) has order n, let F (θ)/F denote the corresponding

cyclic extension of degree n.

The coboundary map ∂ ∶ F×
sep → C

1(GF , F
×
sep), which takes an element x ∈ F

×
sep

to the function σ ↦ x
σ−1

, has kernel F
×
by Galois theory, and image B

1(GF , F
×
sep),

which equals Z
1(GF , F

×
sep) by Hilbert 90. Since n(F×

sep/F×) = F
×1/n/F×

and

nZ
1(GF , F

×
sep) = Z

1(F, μn), we have a natural isomorphism

∂ ∶ F×1/n/F× ∼
⟶ Z

1(F, μn)
We suppress the notation ∂, and write z

1/n
for the cocycle ∂(z1/n). The cobound-

aries B
1(F, μn) are the image ∂(μnF

×/F×) ≃ μn/μm, and we have a commutative
diagram

1 μn/μm F
×1/n/F×

F
×/F×n

1

0 B
1(F, μn) Z

1(F, μn) H
1(F, μn) 0

≀

n

≀ ≀

Let (t)n ∈ H
1(F, μn) denote the class of t

1/n
.
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For a prime p let μ
′
be the group of all prime-to-p roots of unity, let (Q/Z)′ be

the prime-to-p part of Q/Z, and let

ζ
∗ ∶ μ′ ∼

⟶ (Q/Z)′
be a fixed isomorphism. Put ζ

∗
n = ζ

∗∣μn
and set ζn = (ζ∗n)−1(1/n). Since μm ≤ F

×
,

ζ
∗
m is a GF -module isomorphism, and we have an induced isomorphism

ζ
∗
m ∶ H1(F, μm) ∼

⟶ H
1(F, 1

m
Z/Z)

(t)m ⟼ (t)∗m ∶= ζ
∗
m ◦ t

1/m(2.1)

If θ = (t)∗m has orderm, then F (θ) = F (t1/m) has degreem over F (see [22, XIV.2]).

2.1. Cyclic classes. If ∣θ∣ = n, the cyclic Brauer class (θ, t) ∈ Br(F ) is the cup
product θ ∪ (t)n. The cyclic class (θ, t) determines the cyclic algebra of degree n,

Δ(θ, t) ∶= {F (θ)[y] ∶ yn = t, xy = yσ(x) ∀x ∈ F (θ)}
where σ ∈ Gal(F (θ)/F ) satisfies θ(σ) = 1/n. Since the cup product is in-

duced by the tensor product, if m∣n then θ ∪ (t)m = θ ∪ (tn/m)n = ( n
m
θ, t), and(s)∗m ∪ (t)n = (s)∗m ∪ (t)m = (s, t)m. If θ = (s)∗m, then (θ, t) = (s, t)m, the symbol

Brauer class, is represented by the symbol algebra

Δ(s, t)m ∶= {F [x, y] ∶ xm = s, y
m = t, [x, y] = ζm}

The norm criterion states that (θ, t) = 0 if and only if t is a norm from F (θ). If
θ = (t)∗m then (θ, t) = (t, t)m = 0 if m is odd, and (θ,−t) = (t,−t)m = 0 if m is
even, in which case (t, t)m = (t,−1)m.

Since 1 is a norm, (θ,−1) has order dividing 2. If θ = 2θ
′
for some θ

′
, then(θ,−1) = 2(θ′,−1) = 0. Conversely if (θ,−1) = 0 then θ = 2θ

′
for some θ

′
by [3].

Thus (θ,−1) = 0 if and only if θ ∈ 2X(F ). We call this result Albert’s criterion.

2.2. 7-Term sequence. For an exact sequence 1 → N → G → G → 1 of profinite

groups, with N closed, the Hochschild-Serre spectral sequence H
p(G,H

q(N,M)) ⇒
H

p+q(G,M) yields a 7-term sequence ([18, Appendix B]), which we note for the
reader’s convenience:

0 ⟶H
1(G,M

N) ⟶ H
1(G,M) ⟶ H

1(N,M)G ⟶ H
2(G,M

N)
⟶ ker[H2(G,M) → H

2(N,M)G] ⟶ H
1(G,H

1(N,M)) ⟶ H
3(G,M

N)
3. Standard setup

3.1. Let F = (F, v) be a henselian-valued field with finite residue field k of cardi-

nality ∣k∣ = q = p
f
, and totally ordered value group ΓF ≃ Z

d
of rank d ≥ 1. In the

following,

◦ � ≠ p is a prime
◦ n is a power of �
◦ m = ∣μn(k)∣ = ∣μn(F )∣ = gcd(q − 1, n)
◦ m

′ = m/2 if m = 2
v2(q−1), and m

′ = m otherwise.
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Note m = 1 if and only if μ� /≤ F
×
, and m = n if and only if μn ≤ F

×
.

Let Fnr denote the maximal unramified extension of F , which is the strict
henselization of F , and let Ftr be the maximal tamely ramified extension of F ,
which is obtained from Fnr by adjoining all prime-to-p-th roots of elements of
F , by [26, Proposition A.22]. We identify Gk with Gal(Fnr/F ), and put G

tr
F =

Gal(Ftr/F ).
3.2. Index in the tame Brauer group. Suppose F is henselian with finite
residue field k, and D/F is a division algebra. To compute index we will use the
valuation theoretic framework of Tignol-Wadsworth’s [25] and Jacob-Wadsworth’s
[15], which we summarize.

Since k is finite, the residue division algebra D is a field extension of k, by Wed-
derburn’s Theorem. By [15, Decomposition Lemma 6.2] (see also [26, Proposition
8.59]), D ∼ S ⊗F T where S and T are nicely semiramified and totally ramified
F -division algebras, and ΓD = ΓS + ΓT by [15, Theorem 6.3]. The surjective ho-

momorphism θD ∶ ΓD/ΓF → Gal(Z(D)/k) of [8, p.96] (see [15, Proposition 1.7])

has kernel ΓT /ΓF by [15, Theorem 6.3], and it follows that [D ∶ k] = [ΓD ∶ ΓT ].
Therefore by Draxl’s Ostrowski Theorem [7, Theorem 2], if the index of D is prime-
to-char(k), then

ind(D)2 = [D ∶ F ] = [ΓD ∶ ΓT ][ΓD ∶ ΓF ]
4. Multiplicative group

Assume (3.1). With G = Gk, G = GF , N = GFnr
, and M = μn, (2.2) yields

1 ⟶ k
×/n ⟶ F

×/n ⟶ F
×
nr/n ⟶ 1

and composing with the valuation map v ∶ F×
nr/n ∼

⟶ ΓFnr
/n = ΓF /n, we obtain

the usual valuation sequence on F
×/n. This sequence splits with the choice of

a uniformizer subgroup Tn of F
×/n, which is the group generated by a basis of

uniformizers {(x1)n, . . . , (xd)n}: elements of F
×/n whose values {v(x1), . . . , v(xd)}

form a basis of ΓF /n. Since k× is a finite cyclic group and μn(k) = μm(k) ≃ μm(F ),
we have k

×/n = k
×/m ≃ Z/m. Thus

(4.1) F
×/n ≃ k

×/m × Tn ≃ μm(F ) × Tn ≃ Z/m⊕ (Z/n)d
and the natural map F

×/n → F
×
nr/n maps Tn isomorphically onto F

×
nr/n. Similarly,

the sequence

1 ⟶ k
×1/n/k× ⟶ F

×1/n/F×
⟶ F

×1/n
nr /F×

nr ⟶ 1

shows

F
×1/n/F× ≃ μmn/μm × ⟨t1/n1 , . . . , t

1/n
d ⟩ ≃ (Z/n)d+1

for a uniformizer basis {t1/n1 , . . . , t
1/n
d } for F×1/n/F×

. For since ∣k×1/n∣ = ∣ζn(q−1)∣ =
n(q − 1), k×1/n/k× has order n. If t

1/n
0 generates μmn/μm, the set {t1/n0 , . . . , t

1/n
d }

forms a basis for F
×1/n/F×

. We will say the basis is in standard form if its last d
elements make a uniformizer basis.
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5. Galois group and character group

The structure theory of the Galois group of the maximal tamely ramified exten-
sion of a local field goes back at least to Iwasawa ([13]); see [19, VII.5] for additional
background. Assume (3.1). We have a split exact sequence

1 G
tr
Fnr

G
tr
F Gk 1

s

whereby G
tr
F = Gk ⋉G

tr
Fnr

, G
tr
Fnr

≃ (Ẑ′)d, and Gk ≃ Ẑ. Let Φ0 = s(1) be a Frobenius
generator, which exponentiates by q. Let {x1, . . . , xd} be a uniformizer basis for
F , generating a subgroup T ≤ F

×
. Let {Φ1, . . . ,Φd} be a (topological) basis for

G
tr
Fnr

dual to {x1, . . . , xd}, so that for each n, x
1/n
j (Φi) = ζ

δij
n , i, j ≥ 1. Let Φ ={Φ0, . . . ,Φd} be the resulting basis for G

tr
F . Then we have the presentation

(5.1) G
tr
F = ⟨Φ0, . . . ,Φd ∶ [Φ0,Φj] = Φ

q−1
j , ∀j ≥ 1; [Φi,Φj] = e, ∀i, j ≥ 1⟩

Theorem 5.1. Assume (3.1), let Tq−1 ≤ F
×/(q−1) be a uniformizer group, and let

T
∗
q−1 = ζ

∗
q−1(Tq−1) as in (2.1). Then X(F tr/F ) ≃ X(k)×T

∗
q−1 ≃ Q/Z⊕( 1

q−1
Z/Z)⊕d

,

and

nX(F ) ≃ 1
n
Z/Z⊕ ( 1

m
Z/Z)⊕d

Proof. From (5.1) we compute [Gtr
F ,G

tr
F ] = (Gtr

Fnr
)q−1 ≃ (q − 1)Ẑ′d

, so

X(F tr/F ) = Hom(Gtr
F ,Q/Z) = Hom(Ẑ × Ẑ

′d

q−1
,Q/Z) ≃ Q/Z⊕ ( 1

q−1
Z/Z)⊕d

The first factor is X(k), and since G
tr
Fnr

/(Gtr
Fnr

)q−1 ≃ Gal(F 1/(q−1)
nr /Fnr), the second

factor is T
∗
q−1 by Kummer theory, for any uniformizer subgroup Tq−1. The last

statement is immediate. �

6. Brauer group

6.1. Brauer group of Fnr. Let F = (F, v) be henselian-valued of rank d, with
residue field k either finite, as in (3.1), or algebraically closed, in which case F is
strictly henselian. The tame Brauer group of a strictly henselian field is naturally
isomorphic to a group of alternating forms on the absolute Galois group, by [5] and
[6], giving a method for finding a minimal expression and an index formula for each
class. We prove a slight variant.

Assume μn ≤ F
×
. Let G = Gal(L/F ), where either L = F

1/n
, or L = lim

−−→
F

1/n
,

with the limit over all prime-to-p numbers n if k is algebraically closed. Then G

is isomorphic to either (Z/n)d+1, (Z/n)d, or Ẑ′d
. Let Alt(G,μn) denote the set of

continuous alternating bilinear functions on G.

Lemma 6.1. In the setup above, with μn ≤ F
×
, there is a commutative diagram

0 K H
1(F, 1

n
Z/Z)⊗H

1(F, μn) Alt(G,μn) 0

0 Ext
1
Z(G,μn) H

2(G,μn) Alt(G,μn) 0

∪

alt

[alt]
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where alt([f])(σ, τ) ∶= f(σ, τ)/f(τ, σ) for f ∈ Z
2(G,μn), and K = ker(alt). If G

is torsion-free, then [alt] is an isomorphism, and H
2(G,μn) is generated by cyclic

classes. If G = (Z/n)r, then Ext
1
Z(G,μn) ≃ μ

r
n.

Proof. The result appears in [6, Lemma 2.2, Theorem 2.4] with Q/Z in place of
1
n
Z/Z and μn. It also follows from the Universal Coefficient Theorem.
We may assume n is a power of a prime � by primary decomposition. The group

G is either isomorphic to (Z/n)r, where r = d+ 1 or d, or (Ẑ′)d if k is algebraically
closed.

Viewing H
1(F, 1

n
Z/Z)⊗H

1(F, μn) as a subgroup of Z
2(G,μn), extend alt to all

of Z
2(G,μn) by setting alt(f) = f/f̃ for all f ∈ Z

2(G,μn), where f̃(σ, τ) ∶= f(τ, σ).
It is straightforward to verify that f̃ is a 2-cocycle, because G is abelian and acts
trivially on μn. Moreover, f/f̃ is indeed an alternating form on G. For it is clear

from the definition that (f/f̃)(σ, τ) = (f/f̃)(τ, σ)−1, and the alternating sum of
the cocycle condition on f applied successively to the triples (ρ, σ, τ), (ρ, τ, σ), and(τ, ρ, σ) shows that f/f̃ is linear on the left, hence bilinear (see [2, Section 1]).

If f ∈ C
1(G,μn) then since G is abelian and acts trivially on μn, ∂f ∈ B

2(G,μn)
is in the subgroup Z

2(G,μn)sym of Z
2(G,μn) generated by elements f ∶ f = f̃ .

Therefore [alt] is well-defined on H
2(G,μn), and we have a commutative ladder

0 K H
1(F, 1

n
Z/Z)⊗H

1(F, μn) Alt(G,μn) 0

0 H
2(G,μn)sym H

2(G,μn) Alt(G,μn) 0

∪

alt

[alt]

If {(xi)n} is a basis for H1(F, μn), the elements alt((xi)∗n⊗(xj)n) for i < j are easily
seen to form a basis for Alt(G,μn), hence alt splits. Therefore [alt] splits. The

group H
2(G,μn)sym describes the abelian group-extensions of G by μn, hence it is

isomorphic to Ext
1
Z(G,μn). If G = (Z/n)r, then Ext

1
Z(G,μn) = HomZ(Zr

, μn) ≃ μ
r
n

is a standard computation; see e.g. [9, Ch.17]. If G is torsion-free then it is a direct

limit of projective Z-modules, hence Ext
1
Z(G,μn) = 0, and [alt] is an isomorphism.

Then the commutative ladder and the Snake Lemma show H
2(G,μn) is generated

by elements θ ∪ (t)n, for θ ∈ H
1(F, 1

n
Z/Z) and (t)n ∈ H

1(F, μn). �

Remark 6.2. We study the connection between H
2(G,μn) and H

2(F, μn) in Sec-
tion 12.

6.2. Brauer group of F .

Theorem 6.3. Assume (3.1). Then there is an exact sequence

0 ⟶ nH
2(Gk, F

×
nr) ⟶ H

2(F, μn) ⟶ H
2(Fnr, μm) ⟶ 0

split by a choice of uniformizer group, so that

nBr(F ) ≃ ( 1
n
Z/Z)⊕d ⊕ ( 1

m
Z/Z)⊕d(d−1)/2

Suppose χ0 ∈ nX(F ) is unramified of order n, and {(x1)n, . . . , (xd)n} is a uni-
formizer basis. Then each α ∈ nBr(F ) has a unique coordinate expression

α =
d

∑
j=1

n0j(χ0, xj) + ∑
1≤i<j≤d

mij(xi, xj)m
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Proof. This is well-known, see e.g. [26, Theorem 7.84]. Since Fnr/F is Galois, GFnr

is a closed normal subgroup of GF . Let Gk = Gal(Fnr/F ). Since H1(GFnr
, F

×
sep) = 0

by Hilbert 90, the n-torsion of the 7-term sequence (2.2) applied to M = F
×
sep yields

the inflation-restriction sequence

0 ⟶ nH
2(Gk, F

×
nr) inf

⟶ H
2(F, μn) res

⟶ H
2(Fnr, μn)Gk

By Lemma 6.1, H
2(Fnr, μn) is generated by cyclic classes (x)∗n ∪ (y)n. If{(x1)n, . . . , (xd)n} is a basis for a uniformizer subgroup Tn for F

×/n, then since

Tn ≃ F
×
nr/n, every element of H

2(Fnr, μn) is uniquely expressible in terms of the(xi)∗n ∪ (xj)n = (xi, xj)n with 1 ≤ i < j ≤ d. Thus H
2(Fnr, μn) ≃ μ

d(d−1)/2
n by

counting. The explicit action of Gk shows this is a Gk-module isomorphism. Since

μ
Gk
n = μm, it follows that H

2(Fnr, μn)Gk ≃ μ
d(d−1)/2
m , and we have an exact sequence

0 ⟶ nH
2(Gk, F

×
nr) ⟶ H

2(F, μn) ⟶ H
2(Fnr, μm) ⟶ 0

with a splitting defined by the choice of Tn ≤ F
×/n.

Since H
q(Gk, μn) = 0 for q ≥ 2, the 7-term sequence (2.2) with M = μn defines

a natural isomorphism

nH
2(Gk, F

×
nr) ∼

⟶ H
1(Gk,H

1(GFnr
, μn))

An easy computation shows that the action of Gk on H
1(GFnr

, μn) is trivial. There-
fore since H

1(GFnr
, μn) ≃ F

×
nr/n ≃ ΓF /n, we find nH

2(Gk, F
×
nr) ≃ H

1(Gk,ΓF /n) ≃⟨χ0⟩d, where χ0 ∈ X(k) is any character of order n. A tracing through the

maps shows the splitting ⟨χ0⟩d → nH
2(Gk, F

×
nr) is induced by the choice of ba-

sis {(x1)n, . . . , (xd)n} for Tn, and sends the j-th copy of χ0 to (χ0, xj). Thus

a general class is uniquely expressible as a sum ∑d
j=1 n0j(χ0, xj). We conclude

H
2(F, μn) ≃ μ

d
n × μ

d(d−1)/2
m , and ach α ∈ H

2(F, μn) is uniquely expressible in the
form

n01(χ0, x1) + n02(χ0, x2) + ⋯ + n0d(χ0, xd)
+ m12(x1, x2)m + ⋯ + m1d(x1, xd)m

⋮
+ md−1d(xd−1, xd)m

�

7. Brauer dimension and cyclic length

Definition 7.1. Let F = (F, v, k) be a valued field with residue field k.

(a) The tame cyclic length of F is the the minimum number of cyclic classes of
degree n needed to express all elements of nBr(F ), over all n invertible in
k. It is zero if Br(F ) = 0, and ∞ if no such number exists.

(b) The tame Brauer dimension of F is the supremum of the smallest d ≥ 0

such that ind(α) divides per(α)d for all tame α ∈ Br(F ), or ∞ if no such

number exists. The relation ind(α) ∣per(α)d for all α is called a period-
index bound.

(c) The maximum period-index ratio in nBr(F ) is the supremum of
ind(α)/per(α) over all α ∈ nBr(F ). It is zero if nBr(F ) = 0.
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Remark 7.2. Since a class of period n and n-cyclic length d has index at most n
d
,

Brauer dimension is bounded by cyclic length. Cyclic length and Brauer dimension
are sensitive to the presence of roots of unity. For example, all tame division
algebras over F2((t1))((t2))((t3)) are cyclic of equal period and index, whereas, as
the following example shows, F4((t1))((t2))((t3)) has elements of cyclic length 2
and unequal period and index.

Example 7.3 gives a lower bound, which turns out to be an upper bound.

Example 7.3. Assume (3.1), with n a prime-power and m ≠ 1. Let χ0 be an
unramified character of order n, and {(x1)n, . . . , (xd)n} a uniformizer basis. The
algebra

D = Δ(χ0, x1)⊗F Δ(x2, x3)m ⊗F Δ(x4, x5)m ⊗F ⋯⊗F Δ(x2r, x2r+1)m
where r = ⌊d−1

2
⌋, is a division algebra of period n and index nm

r
, and cyclic length

r + 1 = ⌊d+1
2
⌋, by [14, Corollary 2.6] and [25, Extension Lemma 1.6]. This example

is well-known.

Theorem 7.4. Assume (3.1).

(a) If k = F2, the tame Brauer dimension and cyclic length are both 1, and the
maximum period-index ratio for nBr(F ) is 1, for all (prime-to-p) n.

(b) If k ≠ F2, the tame Brauer dimension and cyclic length are both ⌊d+1
2
⌋, and

the maximum period-index ratio in nBr(F ) is m
⌊d−1

2
⌋
, where m = ∣μn(k)∣,

for all n.

Proof. The case k = F2 is immediate, since there are no tame totally ramified
classes, so nBr(F ) = {(χ0, t) ∶ t ∈ F

×/N(F (χ0)×)} for an unramified character χ0

of order n.
Now suppose k ≠ F2, so that F has a nontrivial tame root of unity and m ≠ 1

for some prime-to-p number n. We may assume without loss of generality that n
is a prime power.

Cyclic length. Suppose D ≃ D0⊗F D1⊗F ⋯⊗F Dr is a decomposition into cyclic

F -division algebras of period dividing n. Since k is finite, D/k is a finite cyclic field
extension, and since disjoint division algebras cannot have common subfields, at
most one of the Di, say D0, has a (nontrivial) unramified subfield, which maps

onto D. If D has no unramified subfields, we set D0 = F . Let T = D1⊗F ⋯⊗F Dr.
Since T is tame and has no unramified subfields, it is totally ramified. The valuation
v extends uniquely to each Di, since F is henselian, and for i ≥ 1 the ΓDi

/ΓF are

all rank 2 and mutually disjoint, so the rank of ΓT /ΓF is 2r. Since ΓD ⊂ 1
n
ΓF , the

rank of ΓD/ΓF is at most d, so 2r ≤ d. Since D0 is not inertial, ΓD0
/ΓF has rank

at least 1, so D0 can only contribute to a maximum cyclic length if d is odd, and
then we compute the maximum is 1 + (d − 1)/2 = (d + 1)/2. If d is even, then D0

isn’t necessary to achieve the maximum, which is r = d/2. Thus in any case ⌊d+1
2
⌋

is an upper bound to the cyclic length, and this is realized by Example 7.3.
Brauer dimension. Let D be an F -division algebra of period n, and as in Sec-

tion 3.2, let S and T be semiramified and totally ramified division algebras such

that D ∼ S ⊗F T , ΓD = ΓS + ΓT , and [D ∶ F ] = [ΓD ∶ ΓT ]2[ΓT ∶ ΓF ]. Since
k is finite and S is semiramified, S is cyclic of degree dividing n, and ΓD/ΓT is
cyclic of order dividing n. The group ΓT /ΓF has even rank at most d, the rank of
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1
m
ΓF /ΓF . If the rank equals d, and the minimum exponent of a summand is m0,

then ΓD/ΓT has order dividing n/m0, hence [D ∶ F ] divides n2
m

d−2
, with d even.

If the rank is less than d, then we could have ΓD/ΓT = n, and ΓT /ΓF has order

dividing m
d−1

if d is odd, and order dividing m
d−2

if d is even. Therefore [D ∶ F ]
divides n

2
m

d−1
if d is odd, n

2
m

d−2
if d is even. In any case, we find ind(D) divides

nm
⌊d−1

2
⌋
, which is the lower bound of Example 7.3. We compute from this that

the (tame) Brauer dimension is ⌊d+1
2
⌋, and the maximum period-index ratio is thus

m
⌊d−1

2
⌋
, as claimed. Note the latter remains true if m = 1. �

8. Wedge product

Since nBr(F ) is generated by cyclic classes, the cup product map

nH
1(F, 1

n
Z/Z)⊗ Z

1(F, μn) ⟶ nBr(F )
is surjective. In this section we explore the extent to which the cokernel is a wedge
product.

Example 8.1. Assume (3.1), with n a power of �. Let χ0 be the Frobenius character

of order n, set x
1/n
0 = ζ

q

n(q−1), and let {x1/n
1 , . . . , x

1/n
d } be a uniformizer basis for

F
×1/n/F×

. If we put χi = (xi)∗m for i ≥ 1 then χ = {χ0, . . . , χd} is a basis for nX(F )
by Theorem 5.1, and x = {x1/n

0 , . . . , x
1/n
d } is a basis for Z

1(F, μn) by Section (4).
In the following we will use two properties of this basis:

(a) (χ0, x0) = 0
(b) n

m
χ0 = (x0)∗m and χi = (xi)∗m

(a) is by Wedderburn’s Theorem, since (χ0, x0) is defined over the finite field k.
The first part of (b) is because n

m
χ0 and (x0)∗m are defined over k, and agree on

the Frobenius automorphism, the second part is by definition.

Theorem 8.2. Assume (3.1), with n a power of �. Let χ × x be a basis satisfying

(a),(b) of Example 8.1, put

θ =
d

∑
i=0

biχi ∈ nX(F ) and t
1/n =

d

∏
i=0

x
ci/n
i ∈ Z

1(F, μn)
and assume ∣t1/n∣ = n. Consider the equations

(8.1) b0cj = n
m
c0bj(mod n) and bicj ≡ cibj(mod m) ∀ i, j ≥ 1

(a) If θ ∈ n2X(F ) or ∣θ∣ ≠ m, then (8.1) is equivalent to (θ, t) = 0.
(b) If (8.1) holds, then (θ, t) = 0 is equivalent to θ ∈ n2X(F ) or ∣θ∣ ≠ m.

(c) Let g = gcd(∣θ∣,m). Then (8.1) implies ⟨ ∣θ∣
g
θ⟩ = ⟨(t)∗g⟩.

Proof. Compute using properties (a),(b) of Example 8.1,

(θ, t) = (∑
i=0

biχi, ∏
i=0

x
ci
i ) = (b0χ0, ∏

i=0
x
ci
i ) + (∑

i=1
biχi, x

c0
0 ) + (∑

i=1
biχi, ∏

i=1
x
ci
i )

= ∑
i=1

(b0ci − n
m
c0bi)(χ0, xi) + ∑

1≤i<j
(bicj − bjci)(xi, xj)m +∑

i=1
bici(xi, xi)m
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If θ ∈ n2X(F ) then bici(xi, xi)m = 0 for each i ≥ 1 by (2.1) and Albert’s criterion,
so (θ, t) = 0 if and only if (8.1) holds.

Suppose θ /∈ n2X(F ), so � = 2, m = 2
v2(q−1) divides ∣θ∣, and 2 ∤ bi for some

i ≥ 1. If ∣θ∣ ≠ m then ∣θ∣ = ∣b0χ0∣ > m, so n/m ∤ b0, and (8.1) implies 2∣ ci
for each i ≥ 1, hence (θ, t) = 0. Conversely, if ∣θ∣ ≠ m and (θ, t) = 0, then
m(θ, t) = ∑i=1 mb0ci(χ0, xi) = 0, and since n/m ∤ b0, and (χ0, xi) has order n, we
must have 2∣ ci for each i ≥ 1. Therefore ∑i=1 bici(xi, xi)m = 0, and (8.1) holds.
This proves (a).

Assume (8.1). If θ ∈ n2X(F ) or ∣θ∣ ≠ m then (θ, t) = 0 by (a). Conversely, if(θ, t) = 0, then because of (8.1), bici(xi)∗m ∈ n2X(F ) for each i ≥ 1 by Albert’s
criterion, and

(8.2) ciθ − bi(t)∗m = (b0ci − n
m
c0bi)χ0 +∑

j=1
(bjci − bicj)(xj)∗m = 0 (i ≥ 1)

If (θ, t) = 0 and ∣θ∣ = m, then since t
1/n

has order n, ∣θ∣ = ∣(t)∗m∣ = m hence bi, ci
are units by (8.2). Since bici(xi)∗m ∈ n2X(F ), we must have m ≠ 2

v2(q−1), hence
θ ∈ n2X(F ). This proves (b).

To prove (c), suppose (8.1), then

c0
n
m
θ − b0(t)∗m = (c0b0 − b0c0) n

m
χ0 +∑

j=1
( n
m
c0bj − b0cj)(xj)∗m = 0

If � ∤ bi for some i ≥ 0, then θ is not extendable in nX(F ), and bi(t)∗m has order m,

hence ⟨ ∣θ∣
m
θ⟩ = ⟨(t)∗m⟩ by (8.2). If θ extends to a non-extendable θ

′
in nX(F ), then

m
g

∣θ′∣
m

θ
′ = ∣θ∣

g
θ, hence ⟨ ∣θ∣

g
θ⟩ = ⟨(t)∗g⟩. Therefore (8.1) implies ⟨ ∣θ∣

g
θ⟩ = ⟨(t)∗g⟩ in any

case. �

Remark 8.3. The relations (8.1) are that the matrix

[ θ

t
1/n] = [b0 n

m
b1 ⋯ n

m
bd

c0 c1 ⋯ cd
] (mod n)

have rank one, a linear dependence condition. By Theorem 8.2(a), this “linear

dependence” is not by itself enough to imply (θ, t) = 0. For example, ifm = 2
v2(q−1),

t
1/n

is a uniformizer, and θ = (t)∗m, then (8.1) holds, but (t, t)m ≠ 0. Therefore
to achieve our goal of casting nBr(F ) as a wedge product, we will restrict to the
subgroup n2Br(F ) ≤ nBr(F ) defined by characters in n2X(F ). To that end we
have Corollary 8.4.

Corollary 8.4. Assume (3.1), and χ×x is a basis for n2X(F )×Z1(F, μn) satisfying
(a

′
) (χ0, x0) = 0.

(b
′
)

∣χi∣
g′
i
χi = (xi)∗g′

i
, where g

′
i = gcd(∣χi∣,m′), for i ≥ 0.

Suppose θ = ∑d
i=0 biχi ∈ n2X(F ) and t

1/n = ∏d
i=0 x

ci/n
i ∈ Z

1(F, μn), with ∣t1/n∣ =
n. Then (θ, t) = 0 if and only if

(8.3) b0cj = n
m′ c0bj(mod n) and bicj ≡ cibj(mod m

′
) ∀ i, j ≥ 1

If g
′ = gcd(m′

, ∣θ∣), then (8.3) implies ⟨ ∣θ∣
g′ θ⟩ = ⟨(t)∗g′⟩.
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Proof. The proof that (θ, t) = 0 is equivalent to (8.3) is exactly as in paragraph

one of Theorem 8.2’s proof, with m
′
in place of m, using (a)

′
and (b)

′
, and noting

that θ ∈ n2X(F ) by hypothesis. Similarly, if (8.3) holds then imitating the proof
of Theorem 8.2, we have

c0
n
m′ θ − b0(t)∗m′ = (c0b0 − b0c0) n

m′χ0 +∑
j=1

( n
m′ c0bj − b0cj)(xj)∗m′ = 0

ciθ − bi(t)∗m′ = (b0ci − n
m′ c0bi)χ0 +∑

j=1
(bjci − bicj)(xj)∗m′ = 0 (i ≥ 1)

If � ∤ bi for some i ≥ 0, then θ is not extendable in n2X(F ), and bi(t)∗m′ has order

m
′
, hence ⟨ ∣θ∣

m′ θ⟩ = ⟨(t)∗m′⟩. If θ extends to a non-extendable θ
′
in n2X(F ), then

m
′

g′
∣θ′∣
m′ θ

′ = ∣θ∣
g′ θ, hence ⟨ ∣θ∣

g′ θ⟩ = ⟨(t)∗g′⟩. Therefore (8.3) implies ⟨ ∣θ∣
g′ θ⟩ = ⟨(t)∗g′⟩ in

any case. �

Definition 8.5. Assume (3.1), with n a power of �.

(a) θ ∈ n2X(F ) and t
1/n ∈ Z

1(F, μn) are matched if they satisfy (8.3) with

respect to a basis satisfying (a)
′
and (b)

′
of Corollary 8.4, and we have

the normalization
∣θ∣
g′ θ = (t)∗g′ , where g

′ = gcd(∣θ∣,m′), which in the above

notation is equivalent to

b0 ≡ n∣θ∣c0(mod ng
′

∣θ∣ ) and
∣θ∣
g′ bi ≡ m

′

g′ ci(mod m
′
) (i ≥ 1)

(b) Let C ≤ n2X(F )⊗Z
1(F, μn) be the subgroup generated by elements θ⊗t

1/n
such that θ and t

1/n
are matched, and define

n2X(F )∧ Z
1(F, μn) ∶= n2X(F )⊗ Z

1(F, μn)
C

Write θ ∧ t
1/n

in place of θ ⊗ t
1/n + C.

The definition of matched pairs (θ, t1/n) is independent of the basis used in (8.3),
since (8.3) is equivalent to (θ, t) = 0 by Corollary 8.4.

Theorem 8.6. Assume (3.1), with n a power of a prime �. The cup product map

n2X(F )⊗Z
1(F, μn) ⟶ n2Br(F ) has kernel C, and induces a natural isomorphism

n2X(F ) ∧ Z
1(F, μn) ∼

⟶ n2Br(F )
Proof. Let χ×x be a basis for n2X(F )×Z

1(F, μn) of Corollary 8.4, so ∣χi∣ = m
′
for

i ≥ 1. The map n2Br(F ) ⟶ n2X(F )⊗Z
1(F, μn) defined by (χi, xj) ⟼ χi⊗x

1/n
j

for 0 ≤ i < j obviously splits the cup product map. On the other hand, if 0 ≤ i < j
we have

χj ⊗ x
1/n
i = (χj ⊗ x

1/n
i + (xi)∗m′ ⊗ x

1/n
j ) − (xi)∗m′ ⊗ x

1/n
j

= [(χj+(xi)∗m′)⊗ x
1/n
i x

1/n
j −(xi)∗m′ ⊗ x

1/n
i −χj ⊗ x

1/n
j ]−(xi)∗m′ ⊗ x

1/n
j

Since each character is in n2X(F ), the square-bracketed term is in C by Corol-

lary 8.4. Since χ⊗ x is a basis, it follows that any element of n2X(F )⊗ Z
1(F, μn)

can be expressed as a sum of an element of C and an element in the image of the
splitting map. Since C ⊂ ker(∪) by Definition 8.5 and Corollary 8.4, we must have
C = ker(∪), so we have the natural isomorphism. �
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We next generalize the basis of Example 8.1 and Corollary 8.4.

Definition 8.7. A basis θ × t for n2X(F ) × Z
1(F, μn) is matched if it consists of

matched pairs (θi, t1/ni ), as in Definition 8.5(a) (over only i = 0 if m
′ = 1), and if

m
′ ≠ n, t is in standard form, meaning {t1/n1 , . . . , t

1/n
d } is a uniformizer basis for

F
×1/n/F×

.

Remark 8.8. If θ × t is a matched basis for n2X(F ) × Z
1(F, μn), then by Corol-

lary 8.4 and Definition 8.5(a), the pairs (θi, t1/ni ) satisfy the hypotheses (a)
′
and

(b)
′
of Corollary 8.4, and θ × t may then be used to define matched elements,

by Corollary 8.4. In particular, any matched basis may be used to define C in
Definition 8.5(b).

Proposition 8.9. Assume (3.1). A matched basis χ × x induces a basis χ ∧ x for

n2X(F ) ∧ Z
1(F, μn), and a basis χ ∪ x for n2Br(F ).

Proof. If m
′ = 1 then C = ⟨χ0 ⊗ x

1/n
0 ⟩, and the χ0 ∧ x

1/n
j and (χ0, xj) for j ≥ 1

clearly form a basis for n2X(F )∧ Z
1(F, μn) and n2Br(F ). Assume m

′ ≠ 1. Let

c = {χi ⊗ x
1/n
i , (xj)∗m′ ⊗ x

1/n
k + χk ⊗ x

1/n
j ∶ 0 ≤ i ≤ d, 0 ≤ j < k ≤ d}

Since (xj)∗m′ ⊗ x
1/n
k + χk ⊗ x

1/n
j = ((xj)∗m′ + χk)⊗ x

1/n
j x

1/n
k − (xj)∗m′ ⊗ x

1/n
j − χk ⊗

x
1/n
k , ⟨c⟩ ≤ C. The elements of c are independent: Every element of n2X(F ) ⊗

Z
1(F, μn) has a unique expression of the form ∏d

j=0 ξj ⊗ x
1/n
j , for characters ξj ,

and a dependence relation

d

∑
i=0

aiχi ⊗ x
1/n
i + ∑

0≤i<j≤d
aij((xi)∗m′ ⊗ x

1/n
j + χj ⊗ x

1/n
i ) = 0

has x
1/n
0 term ξ0 = a0χ0 +∑d

j=1 a0jχj and for j ≥ 1, x
1/n
j term

ξj = ajχj + ∑
0≤i<j

aij(xi)∗m′ + ∑
0≤j<i≤d

ajiχi

Since x is a basis, each ξj is zero. Therefore since χ is a basis for n2X(F ), and
each χi appears only once in each ξj , the dependence relation is trivial. Since

∣⟨c⟩∣ = nm
′d(d+3)/2

, we conclude ⟨c⟩ = C, so c is a basis for C. Let b = {χi⊗x
1/n
j ∶

0 ≤ i < j ≤ d}. Then b ∪ c is another basis for n2X(F )⊗ Z
1(F, μn), which shows

b+C = χ∧x is a basis for the cokernel, hence that χ ∪ x is a basis for n2Br(F ). �

9. Basis change

To use exterior algebra machinery to find minimal expressions for a given class

in n2Br(F ), we need to characterize basis change matrices on n2X(F )∧Z
1(F, μn).

To this end we have Lemma 9.1, which characterizes integer matrices with well-
defined actions on finite abelian groups that have unequal invariant factors, such as

n2X(F ). It also lets us transition to coefficients in 1
n
Z/Z, which we use to define

the Hasse invariant.
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Lemma 9.1. Let G = Z/d1 ×⋯× Z/dr and
∗
G = 1

d1
Z/Z⊕⋯⊕ 1

dr
Z/Z be abelian

groups with invariant factors di, and let dij = gcd(di, dj).
(a) Each ρ ∈ Aut(G) is representable by a P = (pij) ∈ Mr(Z) that satisfies

di

dij
∣ pij.

(b) Each
∗
ρ ∈ Aut(∗G) is representable by a

∗
P = (pij) ∈ Mr(Z) that satisfies

dj

dij
∣ pij.

(c) Any P ∈ Aut(G)Z or
∗
P ∈ Aut(∗G)Z determines a ρ or

∗
ρ as in (a) or

(b), and P = (pij) and P
′ = (p′ij) determine the same ρ if and only if

pij ≡ p
′
ij(mod di).

(d) Let Aut(G)Z and Aut(∗G)Z denote the semigroups of such matrices. There
is a natural bijection

Aut(G)Z ⟷ Aut(∗G)Z
P = (pij) ⟼ ∗

P = (∗pij) = (dj

di
pij)

Q
∗ = (q∗ij) = ( di

dj
qij) ⟻ Q = (qij)

making a commutative diagram

G G

∗
G

∗
G

P

≀ ≀

∗
P

Proof. See also [11]. It is clear that any ρ ∈ Aut(G) is representable with respect
to the standard basis by an integer matrix (pij), whose ij-th entry maps Z/dj to

Z/di, which is well-defined if and only if pij is divisible by di/dij . Similarly
∗
ρ is

representable by a (∗pij), and ∗
pij ∶ 1

dj
Z/Z → 1

di
Z/Z is well-defined if and only if

∗
pij is divisible by dj/dij . Two matrices (pij) and (p′ij) determine the same ρ if

and only if [pij]di
= [p′ij]di

for each i, j, if and only if pij ≡ p
′
ij(mod di). This

proves (a), (b), and (c), and (d) follows from the commutative diagram

Z/dj Z/di
1
dj
Z/Z 1

di
Z/Z

di
dij

≀ ≀

dj

dij

�
9.1. Character bases. Assume (3.1), with n a power of �. By Theorem 5.1,

n2X(F ) ≃ Z/n if m
′ = 1, and n2X(F ) ≃ Z/n× (Z/m′)d if m

′ ≠ 1. When m
′ ≠ n, a

given basis for n2X(F ) is in standard form as in Definition 8.7, i.e., ordered with

the order-n element first. If θ and χ are bases, there is a basis change [id]θχ, and
by Lemma 9.1 it is given by a matrix R = (rij) ∈ Aut(n2X(F ))Z. If m

′ = 1,

R = [r00] with r00 prime-to-�. If m
′ ≠ 1 then n

m′ ∣ r0j for j ≥ 1. If m
′ ≠ n, r00 and

R00 are invertible (mod �), where R00 is the submatrix obtained by deleting row
and column 0.
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9.2. Matched basis change. If χ × x is a matched basis, then by Remark 8.8,

θ × t is a matched basis if and only if θ × t = χ × x(R⊕ S) for some R = (rij) and

S = (sij) satisfying

(9.1) r0jsij ≡ n
m′ s0jrij(mod n) and rijskj ≡ rkjsij(mod m

′
) (i ≥ 1, j ≥ 0)

and the normalization equations of Definition 8.5(a),

r00 ≡ s00(mod m
′
), r0j ≡ n

m′ s0j(mod n), for j ≥ 1

n
m′ ri0 ≡ si0(mod m

′
), rij ≡ sij(mod m

′
), for i, j ≥ 1

If m
′ = 1, R = [r00] is invertible, hence (9.1) implies si0 ≡ 0(mod n). We call

such R⊕ S ∈ Aut(n2X(F ))Z ⊕Aut(Z1(F, μn))Z matched basis changes, and write

R⊕ S = [id]χ×xθ×t .

If P ∈ Aut(Z1(F, μn))Z preserves standard form, and n
m′ ∣ pi0, then P

∗ ⊕ P is a

matched basis change matrix, since p
∗
i0 = m

′

n
pi0 and p

∗
0j = n

m′ p0j for i, j ≥ 1, and

p
∗
ij = pij otherwise. This type will suffice below, though it is not the most general

kind.

Proposition 9.2. Assume (3.1), with n a power of �. A matched basis change

P
∗⊕P = [id]χ×xθ×t induces on n2X(F )∧Z

1(F, μn) the basis change P
∗∧2 = [id]χ∧xθ∧t .

Proof. We ignore the “zero” basis elements of n2X(F ) when m
′ = 1, but keep the

degree-(d+ 1) matrix P
∗
in order to define P

∗∧2
. The matched bases induce bases

θ ∧ t and χ ∧ x on n2X(F ) ∧ Z
1(F, μn) by Proposition 8.9. Let P = (pij). Since

p
∗
0j = n

m′ p0j and p
∗
jl = pjl for j, l ≥ 1 by Lemma 9.1, we compute for l ≥ 1,

θ0 ∧ t
1/n
l = ∑

i=0
p
∗
i0χi ∧∏

j=0
x
pjl/n
j = ∑

i≠j
p
∗
i0pjlχi ∧ x

1/n
j

= ∑
1≤j

(p∗00pjl − p
∗
j0p0l

n
m′ )χ0 ∧ x

1/n
j + ∑

1≤i<j
(p∗i0pjl − p

∗
j0pil)χi ∧ x

1/n
j

= ∑
1≤j

(p∗00p∗jl − p
∗
j0p

∗
0l)χ0 ∧ x

1/n
j + ∑

1≤i<j
(p∗i0p∗jl − p

∗
j0p

∗
il)χi ∧ x

1/n
j

When m
′ = 1 the only nonzero entries are p

∗
00p

∗
jl χ0 ∧ x

1/n
j . For 1 ≤ k < l, when

m
′ ≠ 1,

θk ∧ t
1/n
l = ∑

1≤j
(p∗0kpjl − p

∗
jkp0l

n
m′ )χ0 ∧ x

1/n
j + ∑

1≤i<j
(p∗ikpjl − p

∗
jkpil)χi ∧ x

1/n
j

= ∑
1≤j

(p∗0kp∗jl − p
∗
jkp

∗
0l)χ0 ∧ x

1/n
j + ∑

1≤i<j
(p∗ikp∗jl − p

∗
jkp

∗
il)χi ∧ x

1/n
j

Thus the basis change is P
∗∧2

. If Q and P give the same matched basis change, then

Q ≡ P (mod n), hence Q
∗∧2

and P
∗∧2

produce the same basis change on n2X(F )×
Z
1(F, μn). Therefore the transformation is well-defined, and this completes the

proof. �
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10. Computing in 2Br(F ) with skew-symmetric matrices

By Theorem 8.6, for any n not divisible by p we have a natural isomorphism

n2X(F ) ∧ Z
1(F, μn) ∼

⟶ n2Br(F )
The bases of Proposition 8.9 determine for each element a skew-symmetric matrix,
which we will use to compute the index and decomposition into cyclic division
algebras of each Brauer class.

Theorem 10.1. Assume (3.1), with n a power of �. A matched basis χ× x deter-

mines an injective homomorphism

altχ×x ∶ n2Br(F ) ⟶ Altd+1( 1
n
Z/Z)

defined by [(χi, xj)]χ×x = 1∣χi∣ (eij − eji) for 0 ≤ i < j ≤ d. A matched basis change

P
∗ ⊕ P = [id]θ×tχ×x induces a commutative diagram

Altd+1( 1
n
Z/Z)

n2Br(F )

Altd+1( 1
n
Z/Z)

P −P
t

altχ×x

altθ×t

Conversely, congruence transformation by any P ∈ Md+1(Z) satisfying n
m′ ∣ pi0 for

i ≥ 1, and such that P is invertible (mod �), and both p00 and P00 are invertible

(mod �) when m
′ ≠ n, is induced by the matched basis change matrix P

∗ ⊕ P =[id]θ×tχ×x ∈ Aut(n2X(F ))Z ⊕Aut(Z1(F, μn))Z.
Proof. A basis χ ∧ x for n2X(F ) ∧ Z

1(F, μn) determines a map

n2X(F ) ∧ Z
1(F, μn) Altd+1( 1

n
Z/Z)

by χi∧x
1/n
j ⟼ 1∣χi∣ (eij − eji). The basis change P

∗ ⊕P = [id]θ×tχ×x induces a basis

change P
∗∧2 = [id]t∧2

x∧2 by Proposition 9.2, which on Altd+1(Z/n) is congruence

transformation by P
∗
, but on Altd+1( 1

n
Z/Z) is congruence transformation by P =

∗
P

∗
, as per Lemma 9.1. Composing with the inverse of the natural isomorphism of

Theorem 8.6 yields the result.
Conversely, congruence transformation by any P satisfying the stated conditions

is induced by the matched basis change P
∗⊕P by (9.2), Proposition 9.2, and what

was just proved. �

Remark 10.2. When F is a (1-dimensional) local field, and n is prime-to-p, identi-
fying Alt2( 1

n
Z/Z) with 1

n
Z/Z yields the (canonical) Hasse invariant map

invF ∶ nBr(F ) ∼
⟶ 1

n
Z/Z

It is canonical because the map determined by the Frobenius character χ0 and any
uniformizer give the same map into Alt2( 1

n
Z/Z): Any basis change matrix P

∗
for
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n2X(F ) that preserves χ0 and preserves the value 1(mod n) of the uniformizer has
the form

P
∗ = [1 p

∗
01

0 1
](mod n)

hence P
∗∧2 = [1]. This shows the map n2Br(F ) → Alt2( 1

n
Z/Z) ≃ 1

n
Z/Z is inde-

pendent of the basis used to define it.

We next prove the main result, that the skew-symmetric matrix assigned to a
Brauer class computes its index, via the square root of the determinant, and the
decomposition of its associated division algebra into cyclic division algebras, via a
symplectic basis.

10.1. Pfaffian. The determinant of a skew-symmetric matrix over a commutative
ring is zero if the matrix has odd degree, and it is a square if the matrix has even
degree. The positive square root is called the pfaffian. Computations over Q/Z can
be well-defined as follows.

A degree-r skew-symmetric submatrix S of a skew-symmetrix matrix A is the
submatrix obtained by intersecting some set of r rows i1, . . . , ir with the columns
i1, . . . , ir.

Definition 10.3. Suppose A ∈ Altd+1( 1
n
Z/Z).

(a) The row subgroup row(A) is the subgroup of ( 1
n
Z/Z)d+1 generated by A’s

rows.
(b) The pfaffian subgroup pfaff(A) is the subgroup of Q/Z generated by the

pfaffians of all even-degree skew-symmetric submatrices of A, computed
näıvely.

This is [5, Definition 2.7]. “Computed näıvely” means computed from an ar-
bitrary representative of A in Md+1(Q), then interpreted (mod Z). For a given
skew-symmetric A, pfaff(A) is well-defined by cofactor expansion, and is invariant
under congruence transformation by [5, Proposition 2.8, Lemma 2.9]. The isomor-
phism class of row(A) is also preserved, since congruence transformations induce

automorphisms of ( 1
n
Z/Z)d+1.

Since row(A) and pfaff(A) are invariant under congruence transformation, they
can be computed from a 2-block matrix congruent to A. Thus if

A ∼
⌊d−1

2
⌋

∑
i=0

a2i2i+1(e2i 2i+1 − e2i+12i)
for a2i2i+1 ∈ Q/Z and di = ∣a2i 2i+1∣ is the order of the i-th block, then

row(A) ≃ r

∏
i=0

1
di
Z/Z × 1

di
Z/Z

pfaff(A) = ⟨ 1
d1d2⋯dr

⟩
where r = ⌊d−1

2
⌋. The numbers d0, d0, d1, d1, . . . , dr, dr, where di ≥ 1, are the

invariant factors of the finite abelian group row(A).
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Theorem 10.4. Assume (3.1), with n a power of �. Let χ× x be a matched basis,

with respect to which α ∈ n2Br(F ) has skew-symmetric matrix altχ×x(α) = A ∈
Altd+1( 1

n
Z/Z). Then

ind(α) = ∣pfaff(A)∣
If d0, d0, . . . , dr, dr are the invariant factors of row(A), where r = ⌊d−1

2
⌋, then there

exists a matched basis θ × t for n2X(F ) × Z
1(F, μn) with respect to which

α = n
d0
(θ0, t1) + (t2, t3)d1

+⋯+ (t2r, t2r+1)dr

and α’s division algebra decomposes into cyclic division algebras

Δ(α) = Δ( n
d0
(θ0, t1))⊗F Δ((t2, t3)d1

)⊗F ⋯⊗F Δ((t2r, t2r+1)dr
)

Proof. We may assume without loss of generality that α ∈ n2Br(F ) has order n.

Suppose m
′ = 1, so m divides 2. Since χ0 ∈ n2X(F ), χ0 is unramified by

Theorem 5.1. By Theorem 6.3, α = ∑d
j=1(χ0, x

aj

j ), for some integers aj , and

altχ×x(α) = ∑d
j=1 a0j(e0j − ej0), where a0j = aj/n. Since ∣α∣ = n, at least one

of the aj is a unit (mod n). Therefore t
1/n
1 = x

a1/n
1 ⋯x

ad/n
d is part of a uniformizer

basis via a basis change on Z
1(F, μn) of the form P = [1] ⊕ P00, hence part of a

matched basis {θ0}×t obtained by P
∗⊕P . Then α = (θ0, t1), and the corresponding

central simple algebra Δ(θ0, t1) is a division algebra, since t
e
1 is a norm from F (θ0)

if and only if e
n
v(t1) ∈ ΓF (θ0) = ΓF , if and only if n∣e (see Reiner [20, Theorem

14.1, p.143]). The resulting congruence transformation on Altd+1( 1
n
Z/Z) is P − P

t

by Theorem 10.1, so that altθ×t(α) = PAP
t = 1

n
(e01 − e10). Since there is only one

2-block in altθ×t(α), the row subgroup row(A) is isomorphic to 1
n
Z/Z× 1

n
Z/Z, and

the pfaffian subgroup pfaff(A) is ⟨ 1
n
⟩ ≤ Q/Z, so ∣pfaff(A)∣ = n. This completes

the proof when m
′ = 1.

Assume m
′ ≠ 1. Any matched basis transforms into one with unramified char-

acter χ0 using a matrix of form P
∗ ⊕ P , defining the first column of P

∗
to give

an unramified χ0, using the identity for the other elements, and setting P = ∗
P

∗
.

Since the resulting congruence transformation on Altd+1( 1
n
Z/Z) in Theorem 10.1

does not affect row(A) or pfaff(A), we may assume χ0 is unramified. We now
construct a new basis θ ∧ t, with respect to which α has a “linked 2-block form”,
and such that θ0 = χ0. Let

(a) Cij(c) = I + ceij for 0 ≤ i ≠ j ≤ d
(b) Dj(u) = I + (u − 1)ejj for a unit u, and 0 ≤ j ≤ d
(c) Eij = I − eii − ejj + eij + eji for 0 ≤ i ≠ j ≤ d

When P = Cij(c) = I + ceij for i ≠ j, PAP
t
replaces the i-th row and column with

row(i) + c ⋅ row(j) and col(i) + c ⋅ col(j). When P = Dj(u), PAP
t
multiplies the

j-th row and column by u. When P = Eij , PAP
t
permutes the row/column i and

row/column j.

By “apply P ” we mean “apply the congruence transformation P ⋅ P t
”.

I. Write A = (aij), where as usual 0 ≤ i, j ≤ d. If any of the a0j are nonzero
for j ≥ 1, apply C1j(1) as necessary so that ∣a01∣ has maximal order among the
a0j . Then apply D1(u), if necessary, so that a01 = 1/∣a01∣. For each j ∶ a0j ≠ 0
and 1 < j, apply Cj1(b) as necessary, so that a0j = 0 for 1 < j. The first row
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and column of the transformed matrix A now have at most one nonzero entry, at
locations (0, 1) and (1, 0). The basis change matrix has the form P = [1] ⊕ B for
some n-invertible B ∈ Md(Z).
II. Let c = 1. Repeat for as long as c ≤ d−1 and aij ≠ 0 for some i, j ∶ c ≤ i < j ≤ d:

(a) Suppose ai0j0 has maximal order among all aij with c ≤ i < j ≤ d. If
c < i0, apply Cci0(1) as necessary so that ac j0 has this maximal order.
Note this operation does not affect ak k+1 for k < c. If c + 1 < j0, apply
Cc+1 j0(1) as necessary to that ac c+1 has maximal order among the aij
with i, j ∶ c ≤ i < j ≤ d. Then apply Dc+1(u) for a unit u(mod n) so that
ac c+1 = 1/∣ac c+1∣. The composite matrix P for these operations is again of
the form [1]⊕B.

(b) For each j ∶ c + 1 < j ≤ d such that acj ≠ 0, apply Cj c+1(b) as necessary
so that acj = 0, for all j ∶ c + 1 < j ≤ d. Row c now contains two nonzero
entries, ac c+1 and ac c−1. The composite P is again of the form [1]⊕B.

(c) Increase c by 1.

If P is the composite of all of the above transformations, P has form [1]⊕B, and

A
′ = PAP

t
has the “linked 2-block form”

A
′ =

d−1

∑
i=0

a
′
i i+1(ei i+1 − ei+1 i)

with ∣a′i i+1∣ > ∣a′i+1 i+1∣ for i ≥ 1, and a
′
i i+1 = 1/∣a′i i+1∣. By Theorem 10.1, P is

induced by the matched basis change P
∗ ⊕P = [id]χ′×x′

χ×x , so that A
′ = altx′(α), and

α = n
m1

(χ′
0, x

′
1) + (x′

1, x
′
2)m2

+⋯+ (x′
d−1, x

′
d)md

where mi+1∣mi for i ≥ 2. Since P

has the form [1]⊕B, the first column of P
∗
is e1, so χ

′
0 = χ0 is unramified.

To conserve notation, assume A is in the linked 2-block form, with respect to
the matched basis χ × x, and

(10.1) α = n
m1

(χ0, x1) + (x1, x2)m2
+⋯+ (xd−1, xd)md

where mi+1∣mi for i ≥ 2, χ0 is unramified, and mi ≥ 1. Let D be α’s F -division
algebra, and let S and T be the division algebras defined by

[S] = n
m1

(χ0, x1) , [T ] = (x1, x2)m2
+ (x2, x3)m3

+⋯+ (xd−1, xd)md

Then S is nicely semiramified and T is totally ramified, since x is in standard form,

andD ∼ S⊗F T . Since χ0 is unramified and x
1/n
1 is a uniformizer, S is isomorphic to

Δ( n
m1

χ0, x1). Thus ΓS/ΓF = ⟨ 1
m1

v(x1)⟩ + ΓF . As in Section 3.2, we will compute

ind(α) by the formula

[D ∶ F ] = [ΓD ∶ ΓF ][ΓT ∶ ΓF ]
The linked 2-block form of a skew-symmetric matrix for [T ] is put in disjoint

2-block form by applying C31(m2/m3), C53(m4/m5),⋯, C2q0+12q0−1(m2q0/m2q0+1)
in succession, where q0 = ⌈d

2
⌉ − 1, and we index the rows and column starting at

i = 1 instead of i = 0. The composite basis change matrix P00 ∈ Md(Z) determines

a uniformizer basis {t1/n1 , . . . , t
1/n
d }, by t2i−1 = x2i−1x

−m2i/m2i+1
2i+1 , and t2i = x2i, with

respect to which

[T ] = (t1, t2)m2
+ (t3, t4)m4

+⋯+ (t2r0−1, t2r0)m2r0
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where r0 = ⌊d
2
⌋. The central simple algebra corresponding to this expression is

well-known to be a division algebra, since {t1/n1 , . . . , t
1/n
d } is a uniformizer basis, cf.

Example 7.3. Therefore it is isomorphic to T . We compute

ΓT /ΓF = ⟨ 1
m2i

v(t2i−1), 1
m2i

v(t2i) ∶ 1 ≤ i ≤ ⌊d
2
⌋⟩ + ΓF

hence [ΓT ∶ ΓF ] = ∏
⌊d
2
⌋

i=1 m
2
2i, and since ΓD = ΓS + ΓT ,

ΓD/ΓF = ⟨ 1
m1

v(x1), 1
m2i

v(t2i−1), 1
m2i

v(t2i) ∶ 1 ≤ i ≤ ⌊d
2
⌋⟩ + ΓF

To compute ind(α) it remains to compute [ΓD ∶ ΓF ]. The expression of x
1/n
1

in terms of the t
1/n
i is given by the first column of the composite basis change

matrix P00 ∈ Md(Z) above. It is easy to show by induction that the first column
is e1 + m2

m3
e3 + m2m4

m3m5
e5 + ⋯ + m2m4⋯m2q0

m3m5⋯m2q0+1
e2q0+1, where q0 = ⌈d

2
⌉ − 1 = ⌊d−1

2
⌋.

Therefore

ΓD/ΓF = ⟨
⌈d
2
⌉−1
∑
i=0

m2m4⋯m2i

m1m3⋯m2i+1
v(t2i+1), 1

m2i
v(t2i−1), 1

m2i
v(t2i) ∶ 1 ≤ i ≤ ⌊d

2
⌋⟩ + ΓF

We replace the term (m2⋯m2i/m1⋯m2i+1)v(t2i+1) by 0 if it is in ΓF .
Let R ∈ Mdd+1(Z) be the relations matrix, defined by the exact sequence

Z
d+1 R

⟶ Z
d
⟶ ΓD/ΓF ⟶ 0

For example, if d = 5 and m1m3m5 > m2m4, then

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 0 0 0 0
0 0 m2 0 0 0

m1m3

m2
0 0 m4 0 0

0 0 0 0 m4 0
m1m3m5

m2m4
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and if d = 6 and m1m3m5 > m2m4,

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 0 0 0 0 0
0 0 m2 0 0 0 0

m1m3

m2
0 0 m4 0 0 0

0 0 0 0 m4 0 0
m1m3m5

m2m4
0 0 0 0 m6 0

0 0 0 0 0 0 m6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By e.g. [12, Ch. VII, Section 2, Appendix], the order of ΓD/ΓF is the largest minor
of R. We have mi+1∣mi for i ≥ 2 by construction. Thus m3m5⋯mj < m2m4⋯mj−1
for all j, and the entries in the 0-th column of R are nonincreasing as the row
position increases, and if m1m3⋯mj0/m2m4⋯mj0−1 is greater than one for some
j0, then for j < j0, m1m3⋯mj/m2m4⋯mj−1 is also greater than one. Thus the
0-th column of R has alternating nonzero entries until some row, past which it is
all zeros.

Since at most one column has more than one nonzero entry, cofactor expansion
shows every minor consists of a single term. Furthermore, by the Smith Normal
Form Theorem, since R has rank d, a minor of degree c < d cannot be larger than
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all degree-d minors. Thus [ΓD ∶ ΓF ] is the supremum of the degree-d minors, which
are each defined by a single deleted column. Deleting column 0 yields

M0 ∶= m
2
2m

2
4⋯m

2

2⌊d
2
⌋

Let j0 be the largest odd number such that m1m3⋯mj0 > m2m4⋯mj0−1. Then
the entry in row j0 − 1 is the bottom nonzero entry of column 0. Deleting column
j0 deletes mj0+1, or 1 if d is odd and j0 = d. This yields the minor

Mj0 ∶= m1m3⋯mj0

m2m4⋯mj0−1
m

2
2m

2
4⋯m

2
j0−1mj0+1m

2
j0+3m

2
j0+5⋯m

2

2⌊d
2
⌋

= m1m2m3⋯mj0+1m
2
j0+3m

2
j0+5⋯m

2

2⌊d
2
⌋

If j < j0 is also odd then m1m3⋯mj > m2m4⋯mj−1, and deleting column j + 1

yields the minor Mj = m1m2m3⋯mj+1m
2
j+3m

2
j+5⋯m

2

2⌊d
2
⌋. We compute, using

mi+1∣mi for i ≥ 2,

Mj0

Mj
=

mj+2mj+3⋯mj0mj0+1

m2
j+3m

2
j+5⋯m2

j0+1

=
mj+2mj+4⋯mj0

mj+3mj+5⋯mj0+1
≥ 1

Therefore Mj0 is largest of the minors obtained by deleting column j for odd j ≤ j0.
If j is odd and greater than j0, then deleting column j makes row j − 1 equal to
zero, and the resulting minor is zero. If j is even and greater than zero, deleting
column j removes the only nonzero entry in row j − 1, and the resulting minor is
zero. We conclude

∣ΓD/ΓF ∣ = max{M0,Mj0}
Since ∣ΓT /ΓF ∣ = M0, and [D ∶ F ] = [ΓD ∶ ΓT ][ΓD ∶ ΓF ],

[D ∶ F ] = max{M0,M
2
j0/M0}

= max{m2
2m

2
4⋯m

2

2⌊d
2
⌋,m

2
1m

2
3⋯m

2
j0m

2
j0+3m

2
j0+5⋯m

2

2⌊d
2
⌋}

Suppose that j0 < 2⌊d
2
⌋. Then by definition of j0 we have

m1m3⋯mj0mj0+2 < m2m4⋯mj0−1mj0+1

hence

m
2
1m

2
3⋯m

2
j0m

2
j0+2m

2
j0+3⋯m

2

2⌊d
2
⌋ < m

2
2m

2
4⋯m

2

2⌊d
2
⌋

Thus [D ∶ F ] = M0 in this case. Also in this case, if d is even then since mi+1∣mi

for i ≥ 2, we have

m
2
1m

2
3⋯m

2
j0+2m

2
j0+4⋯m

2
d−1 < m

2
2m

2
4⋯m

2
j0+1m

2
j0+3⋯m

2
d−2m

2
d

and if d is odd then similarly

m
2
1m

2
3⋯m

2
j0+2m

2
j0+4⋯m

2
d < m

2
2m

2
4⋯m

2
j0+1m

2
j0+3⋯m

2
d−1

On the other hand, if d is even and j0 = d − 1,

[D ∶ F ] = max{m2
2m

2
4⋯m

2
d,m

2
1m

2
3⋯m

2
d−1},
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and if d is odd and j0 = d, [D ∶ F ] = max{m2
2m

2
4⋯m

2
d−1,m

2
1m

2
3⋯m

2
d}. We conclude

that in any case

[D ∶ F ] = {max{m2
2m

2
4⋯m

2
d,m

2
1m

2
3⋯m

2
d−1} if d is even

max{m2
2m

2
4⋯m

2
d−1,m

2
1m

2
3⋯m

2
d} if d is odd

The pfaffian subgroup of altχ×x(α) is easily computed from the linked 2-block

form of α in (10.1). We obtain

pfaff(altχ×x(α)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨ 1
m1m3⋯md−1

, 1
m2m4⋯md

⟩ if d is even

⟨ 1
m1m3⋯md−2

, 1
m2m4⋯md−1

⟩ if d is odd

Thus ind(α) = ∣pfaff(altχ×x(α))∣, as desired.
We next show there exists a matched basis θ× t such that altθ×t(α) is in disjoint

2-block form. If m
′ = n then nX(F ) and Z

1(F, μn) are isomorphic by Kummer

theory, and any basis change P ⊕ P on nX(F )× Z
1(F, μn) preserves the subgroup

C of Definition 8.5, hence induces a basis change P
∧2

on nX(F ) ∧ Z
1(F, μn). The

algorithm for putting an arbitrary skew-symmetric matrix into disjoint 2-block form
with such a matrix is [5, Lemma 1.10], adapted from [16, Section 6.2], and the result
follows.

If m
′ ≠ n, then since α has order n, the term n

m1
(χ0, x1) in the linked 2-block

form (10.1) has order n, so m1 is divisible by m2, hence mi+1∣mi for all i. Applying

P = C2q0 2q0−2(m2q0−1

m2q0

)⋯C42(m3

m4
)C20(m1

m2
)

where q0 is at most ⌊d
2
⌋, then yields the desired 2-block form, leaving at most

2⌊d−1
2
⌋+ 1 nonzero factors. To check that P comes from a matched basis change as

in Theorem 10.1, it suffices to check that each factor satisfies the conditions in that
theorem. This is immediate for all but possibly C20(m1/m2). But since m2 divides

m
′
, and m1 = n, n/m′

divides the entries of the 0-th column of C20(m1/m2) below
the top, so this too satisfies the definition, and the claim is proved.

We have shown that there exists a matched basis θ × t with respect to which
altθ×t(α) is in disjoint 2-block form. The corresponding expression for α is

α = n
m1

(θ0, t1) + (t2, t3)m3
+⋯+ (t2r, t2r+1)m2r+1

where r = ⌊d−1
2
⌋. The corresponding tensor product of central simple algebras has

degree pfaff(A), which we have shown equals ind(α). Therefore
Δ( n

m1
θ0, t1)⊗F Δ(t2, t3)m3

⊗F ⋯⊗F Δ(t2r, t2r+1)m2r+1

is a division algebra. This completes the proof. �

The next result generalizes Example 7.3 to any matched basis.

Corollary 10.5. Assume (3.1), with n a power of a prime �, and either � is odd
or � = 2 and q ≡ 1(mod 2n). Let θ × t be any matched basis. Then

D = Δ(θ0, t1)⊗F Δ(t2, t3)m′ ⊗F ⋯⊗F Δ(t2r, t2r+1)m′

where r = ⌊d−1
2
⌋, is a division algebra of period n and index nm

r
, with r+1 = ⌊d+1

2
⌋

cyclic tensor factors.
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Proof. We have per(D) = n since θ0 has order n, and ind(D) = nm
r
by the pfaffian

formula. Since nm
r = deg(D), D is a division algebra, which is a tensor product

of r + 1 cyclic factors. �

Example 10.6. The disjoint 2-block form may not retain the unramified character.

Suppose m = �
3
for � an odd prime, x0 is defined over k, and

α = (x0, x1)�3 + (x1, x2)�2 + (x2, x3)�
Then

altx(α) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/�3 0 0

−1/�3 0 1/�2 0

0 −1/�2 0 1/�
0 0 −1/� 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Applying P = C20(�) gives a disjoint 2-block form: Defining t by x = tP yields

t0 = x0x
−�
2 , x1 = t1, x2 = t2, x3 = t3, and

α = (t0, t1)�3 + (t2, t3)� = (x0x
−�
2 , x1)�3 + (x2, x3)�

The new leading character (t0)∗�3 is ramified, making the index computation (�4)
nontrivial.

10.2. Pfaffian formulas. Here are the first few pfaffian formulas. Let A = (aij) ∈
Altd+1(Q/Z) and let pfaffd+1(A) denote the pfaffian. Then

pfaff2(A) = a01

pfaff4(A) = a01a23 − a02a13 + a03a12

pfaff6(A) = a01a23a45 − a01a24a35 + a01a25a34 − a02a13a45 + a02a14a35 − a02a15a34

+ a03a12a45 − a03a14a25 + a03a15a24 − a04a12a35 + a04a13a25

− a04a15a23 + a05a12a34 − a05a13a24 + a05a14a23.

Thus if alt(α) = A = (aij) ∈ Altd+1(Q/Z), then
(a) If d = 1, per(α) = ind(α) = ∣a01∣.
(b) If d = 2, per(α) = ind(α) = lcm[∣a01∣, ∣a02∣, ∣a12∣].
(c) If d = 3, per(α) = lcm[∣aij∣] and ind(α) = lcm[per(α), ∣a01a23 − a02a13 +

a03a12∣].
(d) If d = 4, per(α) = lcm{∣aij∣} and

ind(α) =lcm[per(α), ∣a01a23 − a02a13 + a03a12∣, ∣a01a24 − a02a14 + a04a12∣,∣a01a34 − a03a14 + a04a13∣, ∣a02a34 − a03a24 + a04a23∣,∣a12a34 − a13a24 + a14a23∣]
The d = 3 case is the first with unequal period and index.

Example 10.7. Suppose F =F5((x1))((x2))((x3))((x4))((x5)), the 5-dimensional
local field, x0 = [2]5, and we have a sum of quaternions

α = (2, x1) + (2, x2) + (2, x3) + (2, x4) + (2, x5) + (x1, x2) + (x1, x3) + (x1, x4)
+ (x1, x5) + (x2, x3) + (x2, x4) + (x2, x5) + (x3, x4) + (x3, x5) + (x4, x5)
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The matrix is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2

1
2

1
2

1
2

1
2

− 1
2

0 1
2

1
2

1
2

1
2

− 1
2

− 1
2

0 1
2

1
2

1
2

− 1
2

− 1
2

− 1
2

0 1
2

1
2

− 1
2

− 1
2

− 1
2

− 1
2

0 1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By the formulas above, pfaff2(A) = 1/2, pfaff4(A) = 1/4, and, since pfaff6 is an
alternating sum of an odd number of fractions 1/8, pfaff6(A) = 1/8. Therefore
per(α) = 2 and ind(α) = lcm{2, 4, 8} = 8.

Similarly, since the pfaffian always has an odd number of terms, if F =
Fp((x1))⋯((xd)), x0 generates F

×
p , and

α = ∑
0≤i<j≤d

(xi, xj)m′

then per(α) = m
′
, and ind(α) = m

′r
, where r = ⌊d+1

2
⌋.

11. Failure in the case � = 2

Example 11.1. We illustrate the failure of a Brauer class of 2-power order to
behave like an alternating form, even when F contains μn. Let F =
Fp((x1))((x2))((x3)), and let m = n = 2

v2(p−1). Let x be a basis for Z
1(F, μn), in

standard form. Let

α = (x1, x2)n + (x1, x3)n + (x2, x3)n
then

altx(α) = A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 1
n

1
n

0 − 1
n

0 1
n

0 − 1
n

− 1
n

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The pfaffian subgroup is generated by the subpfaffians of degree 1, so pfaff(A) =⟨1/n⟩, predicting an index of n. Let

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 −1 1
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
be a basis change, and define t by x = tP . By substitution,

α = (t1, t−11 t2)n + (t1, t1t3)n + (t−11 t2, t1t3)n
= (t1, t−11 )n + (t1, t2)n + (t1, t1)n + (t1, t3)n + (t−11 , t1)n
+ (t−11 , t3)n + (t2, t1)n + (t2, t3)n

= (t−11 , t1)n + (t2, t3)n
= (−1, t1)n + (t2, t3)n
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Since n = 2
v2(p−1), (−1, t1)n has order 2 by Theorem 8.2, and since the totally ram-

ified class (t2, t3)n has value group disjoint from the semiramified class (−1, t1)n,
we compute ind(α) = 2n using the methods of Theorem 10.4. If nBr(F ) behaved
like a group of skew-symmetric matrices, functorial with respect to basis change,
the new matrix would be

altt(α) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2

0 0

− 1
2

0 0 0

0 0 0 1
n

0 0 − 1
n

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
But we compute instead

PAP
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

0 0 0 1
n

0 0 − 1
n

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which is consistent, of course, with the (wrong) prediction of index n from the
pfaffian.

Summarizing, though the expression for nBr(F ) determines an ad hoc map into
the group of skew-symmetric matrices, this map appears not to be functorial with
respect to basis change on classes in nBr(F ) − n2Br(F ). This would defeat the
reason for defining the map in the first place, since it means we can’t use matrix
diagonalization to find a minimal representation for the class, and cannot produce
an index formula.

12. Obstruction when nBr(F ) ≠ n2Br(F )
Assume (3.1), with n a power of a prime �, μn ≤ F

×
, and G = Gal(F 1/n/F ).

Since μn ≤ F
×
, we substitute 1

n
Z/Z for μn using ζ

∗
n . Consider the diagram

H
2(F, 1

n
Z/Z)

H
2(G, 1

n
Z/Z) Alt(G, 1

n
Z/Z)

alt?inf

[alt]

The bottom arrow is a split surjection by Lemma 6.1. We now show [alt] factors

through H
2(F, 1

n
Z/Z) if and only if q ≡ 1(mod n

2
), i.e., μn2 ≤ F

×
. Then we show

that a natural map alt ∶ nBr(F ) ⟶ Alt(G, 1
n
Z/Z) exists if and only if n ≠ 2

v2(q−1),
as suggested by Example 11.1. In particular, we always have a map on n2Br(F ).
Proposition 12.1. Assume (3.1), with m = n a power of �. Let L = F

1/n
, and

put G = Gal(L/F ). Then we have an exact sequence

0 H
1(L, 1

n
Z/Z) H

2(G, 1
n
Z/Z) H

2(F, 1
n
Z/Z) 0

tg inf

Let [alt] ∶ H
2(G, 1

n
Z/Z) ⟶ Alt(G, 1

n
Z/Z) be the map of Lemma 6.1, let φ ={φ0, φ1, . . . , φd} be the image in G of Φ = {Φ0,Φ1, . . . ,Φd} of (5.1) under the
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projection, and let ξ be an element of H
1(L, 1

n
Z/Z). Then for i ≤ j,

[alt](tg(ξ))(φi, φj) = {− q−1
n

ξ(Φn
j ) if i = 0 < j

0 otherwise

In particular, [alt] factors through nBr(F ) if and only if q ≡ 1(mod n
2
).

Proof. Since μn ≤ F
×
, L contains all cyclic extensions of degree n by Kummer

theory, and G ≃ (Z/n)d+1 by Theorem 5.1. All elements of H
1(F, 1

n
Z/Z) and

H
2(F, 1

n
Z/Z) are split by L, by Theorem 5.1 and Theorem 6.3, respectively. There-

fore H
1(G, 1

n
Z/Z) = H

1(F, 1
n
Z/Z), and ker[H2(F, 1

n
Z/Z) → H

2(L, 1
n
Z/Z)G] =

H
2(F, 1

n
Z/Z). The 7-term sequence (2.2) applied to 1 → G

tr
L → G

tr
F → G → 1 then

yields

0 H
1(L, 1

n
Z/Z)G H

2(G, 1
n
Z/Z) H

2(F, 1
n
Z/Z)tg inf

The cup product H
1(F, 1

n
Z/Z) ⊗ H

1(F, 1
n
Z/Z) → H

2(F, 1
n
Z/Z) is onto by Theo-

rem 6.3, and since H
1(F, 1

n
Z/Z) = H

1(G, 1
n
Z/Z), this map factors through

H
2(G, 1

n
Z/Z). Therefore the map on the right is surjective, as desired.

We claim the action of G on H
1(L, 1

n
Z/Z) is trivial. Suppose ξ ∈ H

1(L, 1
n
Z/Z),

then the action is given by ξ
φi = ξ ◦ Φ

−1
i , where Φ

−1
i acts on G

tr
L by conjugation.

Since G is isomorphic to (Z/n)d+1, and G’s basis φ is the image of Φ, a general

element ∏d
i=0 Φ

ai

i ∈ G
tr
F is in G

tr
L if and only if n∣ ai for all i, and by (5.1), G

tr
L has

presentation

G
tr
L = ⟨Φn ∶ [Φn

0 ,Φ
n
j ] = Φ

n(qn−1)
j , [Φn

i ,Φ
n
j ] = e, ∀i, j ≥ 1⟩

Since Φ
n
is a basis for G

tr
L , to prove the claim it suffices to show ξ(Φ−1

i Φ
n
jΦi) =

ξ(Φn
j ) for i, j ∶ 0 ≤ i, j ≤ d, for any ξ ∈ H

1(L, 1
n
Z/Z). By (5.1),

Φ
−1
i Φ

n
jΦi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Φ
n
0 if i = j = 0

Φ
nq

−1

j if i = 0 and j > 0

Φ
q
n−1

i Φ
n
0 if i > 0 and j = 0

Φ
n
j if i, j > 0

Since nξ = 0 and q ≡ 1(mod n), we have ξ(Φnq
−1

j ) = q
−1
ξ(Φn

j ) = ξ(Φn
j ), and

ξ(Φq
n−1

i Φ
n
0 ) = (1 + q +⋯+ q

n−1)ξ(Φq−1
i ) + ξ(Φn

0 ) = nξ(Φq−1
i ) + ξ(Φn

0 ) = ξ(Φn
0 )

This proves the claim, finishing the construction of the exact sequence.

Let s ∶ ∏d
i=0 φ

ai

i ↦ ∏d
i=0 Φ

ai

i , 0 ≤ ai ≤ n − 1, be a section of the map G
tr
F → G.

By [19, Prop. 1.6.5] and [19, Thm. 2.1.7], tg(ξ) ∈ Z
2(G, 1

n
Z/Z) is defined by

tg(ξ)(σ, τ) = −ξ(s(στ)−1s(σ)s(τ)). Since [alt](tg(ξ))(φi, φj) = tg(ξ)(φi, φj) −
tg(ξ)(φj , φi), it remains to compute tg(ξ)(φi, φj) for each i, j. Using the relations
(5.1), and the fact that G is abelian, we get

s(φiφj)−1s(φi)s(φj) = {Φ−1
j Φ

−1
i ΦiΦj = e if i ≤ j or j > 0

Φ
−1
i Φ

−1
0 ΦiΦ0 = Φ

q
−1−1

i if i > j = 0
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Thus tg(ξ)(φi, φj) = 0 if i ≤ j or j > 0. Since q
−1 − 1 = −q−1(q − 1), ∣ξ∣ divides n,

and q ≡ q
−1 ≡ 1(mod n), we have for i > j = 0,

tg(ξ)(φi, φ0) = −ξ(Φ−q−1(q−1)
i ) = ξ(Φq−1

i ) = q−1
n

ξ(Φn
i ) (i > 0)

Therefore [alt](tg(ξ))(φ0, φi) = tg(ξ)(φ0, φi) − tg(ξ)(φi, φ0) = − q−1
n

ξ(Φn
i ), as

claimed.
The map [alt] ∶ H2(G, 1

n
Z/Z) → Alt(G, 1

n
Z/Z) factors through H

2(F, 1
n
Z/Z) if

and only if tg(H1(L, 1
n
Z/Z)) is contained in ker([alt]), if and only if n divides q−1

n
,

i.e., q ≡ 1(mod n
2
). �

Theorem 12.2. Assume (3.1), with m = n a power of a prime �. Let L = F
1/n

,

and set G = Gal(L/F ) ≃ (Z/n)d+1. There exists a natural injective homomorphism

alt ∶ n2Br(F ) ⟶ Alt(G, 1
n
Z/Z)

which does not extend to nBr(F ) when n = 2
v2(q−1), i.e., when nBr(F ) ≠ n2Br(F ).

Proof. We identify H
1(F, 1

n
Z/Z) ⊗ Z

1(F, μn) with H
1(F, 1

n
Z/Z) ⊗ H

1(F, 1
n
Z/Z)

using ζ
∗
n , and the basis elements χi ⊗ x

1/n
j then have form χi ⊗ χj . The subgroup

C ≤ n2X(F )⊗ nX(F ) of Theorem 8.6 has basis

{χi ⊗ χi,
∣χj ∣
m′ (χj ⊗ χk + χk ⊗ χj), 0 ≤ i ≤ d, 0 ≤ j < k ≤ d}

by the proof of Proposition 8.9. Application of alt shows C is contained in the
kernel K of Lemma 6.1, hence the natural map alt ∶ n2Br(F ) → Alt(G, 1

n
Z/Z)

exists.
We complete the proof with a lemma that isolates a basis of elements of order

2 in H
1(F, 1

n
Z/Z) ⊗ H

1(F, 1
n
Z/Z) that map to zero in Alt(G, 1

n
Z/Z) but not in

H
2(F, 1

n
Z/Z), foiling the definition of alt on H

2(F, 1
n
Z/Z) when n = 2

v2(q−1).
Lemma 12.3. Assume (3.1), with n a power of �, μn ≤ F

×
, and G = Gal(F 1/n/F ).

Let φ = {φ0, . . . , φd} be a basis for G, with dual basis φ
∗ = {φ∗

0 , . . . , φ
∗
d} in

H
1(F, 1

n
Z/Z), and consider the cup product map

∪ ∶ H1(F, 1
n
Z/Z)⊗H

1(F, 1
n
Z/Z) ⟶ H

2(G, 1
n
Z/Z)

(a) If � is odd, then φ
∗
i ∪ φ

∗
i = 0 in H

2(G, 1
n
Z/Z), ∀i ∶ 0 ≤ i ≤ d.

(b) If � = 2 then φ
∗
i ∪ φ

∗
i has order 2 in H

2(G, 1
n
Z/Z).

(c) If � = 2 then φ
∗
i ∪ φ

∗
i = 0 in H

2(G, 1
2n

Z/Z).
(d) If � = 2 then inf (φ∗

i ∪ φ
∗
i ) = 0 in H

2(F, 1
n
Z/Z) if and only if q ≡ 1(mod 2e),

where e = [ΓF (φ∗
i ) ∶ ΓF ].

Proof. Since H
1(F, 1

n
Z/Z) = H

1(G, 1
n
Z/Z), the cup product map makes sense. For

each σ ∈ G, define aσ ∶ 0 ≤ aσ < n by φi(σ) = aσ/n. Then for any σ, τ ∈ G,

aστ = {aσ + aτ if aσ + aτ < n

aσ + aτ − n if aσ + aτ ≥ n

Let Z[Z] denote the group ring of the additive group of integers. Let Z[G] be the
(additive) Z[Z]-module with the action a ⋅ b ∶= φ

a
i b for all a ∈ Z and b ∈ Z[G]. Let
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γφi
∈ Z

1(Z,Z[G]) be the 1-cocycle defined by γφi
(1) = 1. Then γφi

(0) = 0, and by
the 1-cocycle condition,

γφi
(a) = 1 + φi +⋯+ φ

a−1
i (a ∈ N)

We first prove (a). Suppose � is odd, and define β ∈ C
1(G, 1

n
Z/Z) by

β(σ) = φ
∗
i (γφi

(aσ)) − (φ∗
i ⊗ φ

∗
i )(σ, σ)

where φ
∗
i ⊗φ

∗
i is the bilinear form with values in 1

n
Z/Z, and we extend φ

∗
i to Z[G]

using the rule φ
∗
i (τ −σ) = φ

∗
i (τ)−φ

∗
i (σ). Since the action of G on 1

n
Z/Z is trivial,

∂β(σ, τ) ∶= β(σ) + β(τ) − β(στ), hence
∂β(σ, τ) = φ

∗
i (γφi

(aσ) + γφi
(aτ) − γφi

(aστ))
− (φ∗

i ⊗ φ
∗
i )(σ, σ) − (φ∗

i ⊗ φ
∗
i )(τ, τ)+ (φ∗

i ⊗ φ
∗
i )(στ, στ)

= φ
∗
i (γφi

(aσ) + γφi
(aτ) − γφi

(aστ)) + 2φ
∗
i ⊗ φ

∗
i (σ, τ)

= {φ∗
i (γφi

(aσ) − φ
aτ

i γφi
(aσ)) + 2aσaτ

n
if aσ + aτ < n

φ
∗
i (γφi

(aσ) − φ
aτ

i γφi
(aσ) − γφi

(n)) + 2aσaτ

n
if aσ + aτ ≥ n

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
n
+⋯+ aσ−1

n
− (aτ

n
+ aτ+1

n
+⋯+ aτ+aσ−1

n
) + 2aσaτ

n

if aσ + aτ < n
1
n
+⋯+ aσ−1

n
− (aτ

n
+ aτ+1

n
+⋯+ aτ+aσ−1

n
) − φ

∗
i (γφi

(n)) + 2aσaτ

n

if aσ + aτ ≥ n

= {−aσaτ

n
+ 2aσaτ

n
if aσ + aτ < n

−aσaτ

n
+ 2aσaτ

n
− φ

∗
i (γφi

(n)) if aσ + aτ ≥ n

= {aσaτ

n
if aσ + aτ < n

aσaτ

n
− n(n−1)

2n
if aσ + aτ ≥ n

If � is odd, then 2∣n − 1, so n(n − 1)/2n = 0, and ∂β = φ
∗
i ⊗ φ

∗
i . Therefore

φ
∗
i ∪ φ

∗
i = 0 in H

2(G, 1
n
Z/Z) when � is odd, proving (a).

If � = 2, then 2∣n, so n(n − 1)/2n = −1/2. The short exact sequence of trivial
G-modules

0 ⟶ 1
n
Z/Z ⟶ 1

2n
Z/Z ⟶ 1

2
Z/Z ⟶ 0

combined with the fact that G has exponent n yields the long exact sequence
fragment

0 H
1(G, 1

2
Z/Z) H

2(G, 1
n
Z/Z) H

2(G, 1
2n

Z/Z)δ

Since G ≃ (Z/n)d+1 has basis {φi ∶ 0 ≤ i ≤ d}, H1(G, 1
2
Z/Z) is generated by the

n
2
φ
∗
i , and by construction

δ(n
2
φ
∗
i )(σ, τ) = aσ + aτ − aστ

2n
= {0 if aσ + aτ < n

−1/2 if aσ + aτ ≥ n

Thus we find ∂β = φ
∗
i ⊗ φ

∗
i + δ(n

2
φ
∗
i ). Therefore φ

∗
i ∪ φ

∗
i = δ(n

2
φ
∗
i ) has order

2 in H
2(G, 1

n
Z/Z), and is trivial in H

2(G, 1
2n

Z/Z). In fact, δ(n
2
φ
∗
i ) = ∂ε, where

ε ∈ C
1(G, 1

2n
Z/Z) is defined by ε(σ) = aσ/2n ∈ 1

2n
Z/Z. This proves (b) and (c).
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Let φ
∗
i = (xi)∗n, where (xi)n ∈ F

×/n. When � = 2 we have (φ∗
i ,−xi) = (φ∗

i ,−1)+(φ∗
i , xi) = 0 in H

2(F, 1
n
Z/Z), as mentioned in (2.1), and (φ∗

i ,−1) = 0 if and only

if φ
∗
i extends to a character of order 2n, by Albert’s criterion. Suppose [ΓF (φ∗

i ) ∶
ΓF ] = e. By Theorem 5.1 we may write φ

∗
i = χ+ λ, where χ is unramified and λ is

totally ramified of order e. The character χ always extends, since it is defined over
a finite field, hence φ

∗
i extends if and only if λ extends, and by Kummer theory, λ

extends to a character of order 2e if and only if q ≡ 1(mod 2e). Therefore (φ∗
i , xi)

equals zero if and only if q ≡ 1(mod 2e), and since (φ∗
i , xi) = inf (φ∗

i ∪ φ
∗
i ), this

proves (d). �

Finish proof of Theorem 12.2. By Lemma 12.3(a) and (d), the natural map

alt ∶ nX(F )⊗ nX(F ) → Alt(G, 1
n
Z/Z)

which factors through H
2(G, 1

n
Z/Z), giving [alt], factors through H

2(F, 1
n
Z/Z) on

precisely the subgroup n2Br(F ), the elements not of the form (t, t)n when (t)∗n is

totally ramified of order n = 2
v2(q−1). Since nBr(F ) = n2Br(F ) ⇔ n ≠ 2

v2(q−1),
this completes the proof. �
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