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RELATED PROBLEMS
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Abstract. A Latin square of order n is an n × n array filled with n sym-
bols such that each symbol appears only once in every row or column and
a transversal is a collection of cells which do not share the same row, col-
umn or symbol. The study of Latin squares goes back more than 200 years

to the work of Euler. One of the most famous open problems in this area
is a conjecture of Ryser-Brualdi-Stein from 60s which says that every Latin
square of order n × n contains a transversal of order n − 1. In this paper we
prove the existence of a transversal of order n−O(logn/ log logn), improving
the celebrated bound of n − O(log2 n) by Hatami and Shor. Our approach
(different from that of Hatami-Shor) is quite general and gives several other
applications as well. We obtain a new lower bound on a 40-year-old conjec-
ture of Brouwer on the maximum matching in Steiner triple systems, showing
that every such system of order n is guaranteed to have a matching of size
n/3 − O(logn/ log logn). This substantially improves the current best result

of Alon, Kim and Spencer which has the error term of order n1/2+o(1). Finally,
we also show that O(n logn/ log logn) many symbols in Latin arrays suffice to
guarantee a full transversal, improving on a previously known bound of n2−ε.
The proofs combine in a novel way the semi-random method together with the

robust expansion properties of edge-coloured pseudorandom graphs to show
the existence of a rainbow matching covering all but O(logn/ log logn) ver-
tices. All previous results, based on the semi-random method, left uncovered
at least Ω(nα) (for some constant α > 0) vertices.

1. Introduction

A Latin square of order n is an n× n array filled with n symbols so that every
symbol appears only once in each row and in each column. A transversal is a
collection of cells of the Latin square which do not share the same row, column
or symbol. A full transversal is a transversal of order n. The study of Latin
squares goes back to the work of Euler [13] in the 18th century, who asked a
question equivalent to “for which n is there an n × n Latin square which can
be decomposed into n disjoint full transversals?”. Well-known examples of Latin
squares are multiplication tables of finite groups. Latin squares have connections
to 2-dimensional permutations, design theory, finite projective planes and error
correcting codes.
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It is easy to see that there are many Latin squares without full transversals (for
example the addition table of the group Z4), and it is a hard problem to determine
when full transversals exist. This question is very difficult even in the case of
multiplication tables of finite groups. In 1955 Hall and Paige [15] conjectured that
the multiplication table of a group G has a full transversal exactly if the 2-Sylow
subgroups of G are trivial or non-cyclic. It took 50 years to establish this conjecture
and its proof is based on the classification of finite simple groups (see [29] and the
references therein). Very recently an alternative proof of this conjecture was found
for large groups using tools from analytic number theory [12]. The most famous
open problem on transversals in general Latin squares is the following conjecture
of Ryser, Brualdi and Stein [10, 25, 27].

Conjecture 1.1. Every n×n Latin square has a transversal of order n−1. More-
over, if n is odd it has a full transversal.

Most research towards the Ryser-Brualdi-Stein conjecture has focused on prov-
ing that all n × n Latin squares have large transversals (trying to get as close to
n − 1 as possible). Here Koksma [19] found transversals of size 2n/3 + O(1) and
Drake [11] improved this to 3n/4 + O(1). The first asymptotic proof of the con-
jecture was obtained by Brouwer, de Vries, and Wieringa [9] and independently by
Woolbright [30] who found transversals of size n−√

n. This was improved in 1982

by Shor [26] to n − O(log2 n). His paper had a mistake which was later rectified,
using the original approach, by Hatami and Shor [16]. For the last, nearly forty
years, this was the best known bound for the Ryser-Brualdi-Stein conjecture. Our
first theorem improves this result as follows.

Theorem 1.2. There exists a constant k such that every n×n Latin square contains
a transversal of order n− k logn

log logn .

A Latin array is an n × n square filled with an arbitrary number of symbols
such that no symbol appears twice in the same row or column. Latin arrays are
natural extensions of Latin squares, and also have been extensively studied. A
familiar example of such an array is a multiplication table between elements of two
subsets of equal size in some group. It is generally believed that extra symbols
in a Latin array should help to find full transversals. Motivated by this Akbari
and Alipour [2] conjectured that any Latin array of order n with at least n2/2
different symbols contains a full transversal. Progress towards this conjecture was
independently obtained by Best, Hendrey, Wanless, Wilson and Wood [7] (who

showed that (2−
√
2)n2 symbols suffice) and Barát and Nagy [6] (who showed that

3n2/4 symbols suffice). Very recently Montgomery, Pokrovskiy, Sudakov [22] and
Keevash and Yepremyan [17] independently showed that n2−ε many symbols suffice
to guarantee a full transversal. Here we substantially improve these results.

Theorem 1.3. There exists a constant k such that every n × n Latin array filled
with kn log n/ log log n many symbols contains a full transversal.

It is worth pointing out that the problem of Akbari and Alipour is closely related
to finding transversals in Latin squares, namely Conjecture 1.1. In particular, the
last theorem implies Theorem 1.2. Indeed, start with an n×n Latin square and then
substitute distinct new symbols in the first k log n/ log log n rows, such that every
symbol is used only once. Then Theorem 1.3 guarantees us a full transversal. Since
this transversal can use at most k log n/ log log n cells from the first k log n/ log log n
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rows, upon removing these we are left with a transversal of the original Latin square
which has size n− k log n/ log log n.

All the above results and problems can be rephrased as statements about match-
ings in hypergraphs. To see this, we construct from an n × n Latin square L
the following 3-uniform hypergraph H on 3n vertices. The vertices of H are
V (H) = R ∪ C ∪ S, where R is the rows of L, C is the columns of L, and S is
the symbols of L. There is an edge in H for every entry of L. If the (i, j)-th entry
of L has symbol s, then {i, j, s} is a hyperedge of H. It is easy to check that under
this transformation, the hypergraph we obtain is n-regular, there is exactly one
edge containing a given pair of vertices, and that transversals in L correspond to
matchings in H.

The problem of finding nearly perfect matchings in regular hypergraphs has a
long history in discrete mathematics and such results have many applications to
other problems as well. For example Rödl [24] proved the Erdős-Hanani conjecture
on existence of approximate designs by essentially showing that regular hypergraphs
with bounded codegrees have nearly-perfect matchings. This paper introduced the
celebrated technique of “Rödl’s nibble” which is a versatile approach for finding
large matchings in hypergraphs in semi-random manner. One famous example of
a regular hypergraph with bounded codegress is a Steiner triple system, which is a
3-uniform hypergraph on n vertices in which every pair of vertices is in a unique
edge. The existence of such triple systems was established by Kirkman in 1847. By
definition, this hypergraph is (n− 1)/2-regular and has all codegrees equal to one.
The problem of existence of large matchings in Steiner triple systems was posed
about forty years ago by Brouwer [8].

Conjecture 1.4. Every Steiner triple system of order n contains a matching of
size (n− 4)/3.

Over the years this conjecture attracted a lot of attention. Wang [28] showed
that every Steiner triple system has a matching of size 2n/9 − O(1). Lindner
and Phelps [20] found a matching of size 4n/15 − O(1). Brouwer [8] obtained the
first asymptotic result by finding matchings of size n/3 − O(n2/3). Using a clever
refinement of Rödl’s nibble combined with large deviation inequalities, Alon, Kim,
and Spencer [3] obtained the best current bound. They show the existence of a

matching covering all but O(n1/2 log3/2 n) vertices. Here we improve this twenty
year old result and obtain the first sub-polynomial upper bound on the number of
vertices uncovered by the maximum matching.

Theorem 1.5. There is a constant k such that every Steiner triple system S on n
vertices has a matching of size at least n/3− k log n/ log log n.

Our methods combine in a novel way the Rödl’s nibble together with the ro-
bust expansion properties of edge-coloured pseudorandom graphs and apply in
far more general settings than any of the above theorems and conjectures. The
main technical theorem we prove can be used to show that 3-uniform hypergraphs
satisfying certain pseudorandomness properties have a matching covering all but
O(logn/ log log n) vertices. All previous comparable theorems left nα vertices un-
covered.
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1.1. Proof ideas.

Coloured graphs and rainbow matchings. Although our main results are about
transversals in Latin arrays/squares and matchings in hypergraphs, all our proofs
will take place in a different setting. This will be the setting of finding rain-
bow matchings in properly edge-coloured complete bipartite graphs. Recall that a
proper edge-colouring of a graph is one where all edges incident to the same vertex
have different colours. A matching in a coloured graph is rainbow if all its edges
have different colours. A linear hypergraph is a hypergraph in which every pair
of vertices lies in at most one edge. In this paper we will use extensively that the
following three kinds of objects are equivalent:

• An n× n Latin array filled with m symbols.
• A linear 3-partite, 3-uniform hypergraph with partition sizes (n, n,m).
• A properly edge-coloured complete bipartite graph Kn,n with m colours.

The connection between Latin arrays and linear hypergraphs was already de-
scribed in the introduction. To see the reduction to coloured graphs consider an
n× n Latin array L filled with m symbols. Using it we can construct the following
proper edge-colouring of Kn,n. Label the vertices of Kn,n by {x1, . . . , xn, y1, . . . ,
yn}, and join xi to yj with a colour � edge whenever the ij-th entry of L is �. This
is a proper edge-colouring with m colours due to the properties of Latin arrays. A
size t transversal in the Latin array corresponds to a rainbow matching with t edges
in Kn,n. Note that in case of Latin squares we have m = n in the above statement.
Thus under this transformation, Theorem 1.2 is equivalent to the following.

Theorem 1.6. There exists a constant k such that every properly n-edge-coloured
Kn,n has a rainbow matching of size n− k logn

log logn .

Similarly Theorem 1.3 has the following equivalent form.

Theorem 1.7. There exists a constant k such that every properly edge-coloured
Kn,n with kn logn

log log n colours has a rainbow perfect matching.

Although, as we already mentioned in the previous section, this theorem can be
used to prove Theorem 1.6, we deduce both of them from a more general result
about matchings in properly edge-coloured “typical” (i.e., both edges and colours
have some pseudorandom properties) graphs which we obtain in Section 4.

The reduction of finding large matchings in a Steiner triple system S to a graph
problem is slightly more subtle, and the details can be found in Section 6. The main
idea is to randomly select a tripartition (A,B,C) of S and consider only the edges
that respect this tripartition. The first two parts induce a properly edge-coloured
graph G where we think of the colour of an edge ab with a ∈ A, b ∈ B to be c ∈ C if
abc ∈ S. Note that any rainbow matching in G induces a matching of the same size
in S. The graph G turns out to be typical in this coloured setting we mentioned
above, and we can also guarantee |A| = |B| = |C| = n/3. Thus from our general
result (more precisely, Corollary 4.6) it follows that G contains a rainbow matching
of size n/3−O(logn/ log log n), and therefore, S has a matching of the same size.

Rödl Nibble and expansion. Rödl introduced a method called “Rödl’s nibble”, which
can be used to find matchings in a wide variety of settings. In particular it applies
in the setting of Theorem 1.6 to give a rainbow matching of size n−O(n1−α) (for
some small constant α > 0). Our ideas very much build on this result. At a high
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level, our proof consists of starting with a matching produced by Rödl’s nibble and
then modifying it to get a matching of size n − O(logn/ log log n). Although our
methods apply for all coloured pseudorandom graphs let us demonstrate its main
ideas for the simplest case, Kn,n.

The basic idea of Rödl’s nibble is to construct a matching in several steps, each
time taking a collection of random edges. To imitate this idea in our setting, given
a properly edge-coloured Kn,n, we fix q ∈ (0, 1) and select every edge of Kn,n

with probability q/n. Then we delete all edges which share vertices or colours with
other selected edges. This will certainly produce a rainbow matching. The matching
produced like this is often called a “bite”. How big will it be? Unfortunately not
very big. The expected number of edges in the bite will be qn(1− q/n)3(n−1) which
is roughly qne−3q for large n. So the maximum size of the matching would be
n/3e achieved by q = 1/3. Rödl’s brilliant idea was to perform several small bites
one after another, deleting the vertices/colours used in each bite from the rest of
the graph. Although after the first bite, the remaining graph will no longer be
complete; it still turns out to be possible to repeatedly bite until the remainder has
size < O(n1−α). This is based on the phenomenon that edges/vertices not used on
each bite have pseudorandomness properties.

Our key new idea is to show that this matching has nice “expansion” properties.
In fact, we only need to analyse these properties for the first bite. The structure of
our proof is the following:

(S1) Obtain a rainbow matching M0 via the first bite and show it satisfies certain
expansion properties.

(S2) Delete vertices and colours of M0 from Kn,n. The remaining graph will
still have pseudorandomness properties with respect to both colours and
vertices; therefore we can extend M0 to a larger rainbow matching M of
size n− n1−α. This step is done via using Rödl’s nibble as a black box on
coloured pseudorandom graphs.

(S3) The expansion properties that M0 had can be transferred to M which will
allow us to do switching-type arguments to increase M as long as we have
Ω(log n/ log log n) unused colours outside of M . We do this iteratively,
starting from M and obtaining a new matching of size one bigger at ev-
ery step. The simplest “switching-type argument” we would have liked to
employ here is to increase the matching using rainbow augmenting paths,
that is, a rainbow path which starts and ends at an unmatched vertex and
whose edges alternate between edges of M and edges of colours outside M .
If such a path P exists, then the symmetric difference MΔP is a larger
rainbow matching. Unfortunately, in general we cannot guarantee to find
such paths, so instead we employ a more complicated argument using a
combination of alternating paths & cycles (see the discussion at the start
of Section 4).

(S4) We can guarantee that the switching paths and cycles mentioned in (S3)
are of length O(logn/ log log n). This guarantees that the matchings at
steps i and i + 1 are not too “far” from each other in edit distance, more
precisely, |Mi�Mi+1| = O(logn/ log log n). Because of this after O(n1−α)
steps, |Mi�M | ≤ O(n1−α log n/ log log n) � |M |; thus Mi will still have
the expansion properties which guarantees we can find the alternating
paths/cycles to do switchings along. Because of this as long as there are



NEW BOUNDS FOR RYSER’S CONJECTURE AND RELATED PROBLEMS 293

Ω(log n/ log log n) many unused colours we may repeat the steps and af-
ter at most O(n1−α) times we get a rainbow matching of size at least
n−O(logn/ log log n).

The major part of this paper is devoted to establishing (S1) in Section 3. Next
we discuss the notion of expansion we study. Our approach is heavily inspired by
the idea that a “randomly chosen matching will satisfy pseudorandomness proper-
ties”. The pseudorandomness property that we use is very different from the ones
previously used in nibble-type proofs. It can be summarised as “the union of a ran-
dom matching together with an arbitrary nearly regular graph D will have strong
expansion properties”. Here is a simplified version of what we prove:

Lemma 1.8. Let 0 < q � 1, 1 � d, q−1 � d ≤
√
n. Given Kn,n properly

edge-coloured by n colours, let H be its subgraph formed by choosing every edge
independently with probability q/n. Delete all edges of H which share vertices or
colours with other edges of H and let M0 be the resulting rainbow matching. Then
with high probability

(E1) every collection D of d colours in Kn,n, and every set S of n/q4d vertices
there are at least (1 − q)n vertices that can be reached from S by a D-M0

alternating path of length three, i.e., a path whose first and last edge is in
D and the middle edge is in M0.

Notice that (E1) only provides expansion for large sets S but for our purposes
we need it to hold for all sets. After we extend the matching M0 to a larger rainbow
matching M of size roughly n − n1−α as described in (S2) we are able to iterate
(E1) if we restrict to larger collections of colours and longer paths. In particular,
we obtain the following refinement of (E1) with respect to M .

(E2) For d = log n/ log log n and any collection D of d colours there exists a set
of vertices V0 of size at most qn such that the following holds. Every vertex
not in V0 can reach all but qn vertices via D−M alternating rainbow paths
of length O(logn/ log log n).

Note that (E2) also implies that between any two vertices of Kn,n lying in dif-
ferent sides of the bipartition there is a D −M alternating rainbow path of length
O(logn/ log log n). This property is enough to perform the modifications described
in (S3). We find an alternating rainbow path to extend the matching M by one
edge at a time much like in standard proofs of say Hall’s matching theorem. In
the applications of (E2) we let D to be the set of unused colours on M . The con-
dition |D| = Ω(log n/ log log n) allows us to do iterations and also tells us when
the process must stop and the enlargement of the matching is no longer possible.
The reason why we need this many unused colours is because the length of the
alternating paths, used to perform the switching-type arguments, can be as large
as Ω(log n/ log log n), and we need to guarantee that these paths are rainbow. So
we can repeat (S3) until the number of unused colours on M is O(logn/ log log n).

2. Preliminaries

We will use asymptotic “�” notation to state our intermediate lemmas. When
we write “δ � ε” in the statement of a result, it means “for all ε > 0 and sufficiently
small δ > 0, the following statement is true”. In particular “n−1 � ε” means “for
all ε > 0 and sufficiently large n, the following is true”. When we chain several
inequalities like this, the quantity on the left is small relative to all constants on
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the right. For example “n−1 � δ � ε” means “for all ε > 0, there is a δ0 such that
for positive δ < δ0 and sufficiently large n, the following is true”. Sometimes we
will abuse this notation and write “n � ε−1” to mean “n−1 � ε”.

For any positive reals a, b ∈ R, we use “x = a± b” to mean “a− b ≤ x ≤ a+ b”.
We also use the same notation with more than one instance of “±”. We will write
expressions of the form “f = g”, where f and g are functions involving, one or
more instances of “±”. To interpret such an expression, first define max± f to be
the maximum value of f taken over all possible assignments of +/− to each “±”
symbol. Similarly define min± f . Then we say that “f = g” if max± f ≤ max± g
and min± f ≥ min± g are both true. A useful example of this is that for q � n−1

we have (1 − q/n)±n = 1 ± 2q. To see this notice that 1 − 2q ≤ (1 − q/n)n ≤
(1− q/n)−n ≤ 1 + 2q. Note that this “=” relation is not symmetric in general —
for example “1± 0.1 = 1± 0.2” is true while “1± 0.2 = 1± 0.1” is false.

For a graph G, the set of edges of G is denoted by E(G) and the set of vertices
of G is denoted by V (G). The set of neighbours of v is denoted by NG(v), and
dG(v) = |NG(v)|. For a coloured graph G and a colour c, denote by EG(c) the set
of edges of colour c in G, and denote VG(c) for the set of vertices touching colour
c edges. In all of these, we omit the “G” subscript when the graph G is clear
from context. For a properly edge-coloured graph G, let C(G) be the set of colours
appearing on the edges of G, C ⊆ C(G) and v ∈ V (G) we denote by NC(v) the set
of vertices w such that vw ∈ E(G) and c(vw) ∈ C. For a graph G, a set of vertices
A, let G[A] denote the induced subgraph of G on A. For a coloured graph G, a
set of colours C ⊆ C(G), we let G[C] to be the subgraph of G induced by edges of
colours in C.

Let G,H be graphs on the same vertex set V . We say that a path x1x2 . . . xt is
G-H alternating if, for odd i, xixi+1 ∈ E(G) and for even i, xixi+1 ∈ E(H) (or in
other words, the first edge is in G, and thereafter the edges alternate between G
and H). For a set S ⊆ V (G ∪H), we use N t

G,H(S) to denote the set of vertices v
to which there is a G-H alternating path of length t from some s ∈ S.

2.1. Probabilistic tools. Here we gather basic probabilistic tools that we use.
We use the Chernoff bounds. Most of these can be found in textbooks on the
probabilistic method such as [21].

Lemma 2.1 (Chernoff bounds, [21]). Given a binomially distributed variable X ∈
Bin(n, p) for all 0 < a ≤ 3/2 we have

P[|X − E[X]| ≥ aE[X]] ≤ 2e−
a2

3 E[X].

Given a product space Ω =
∏n

i=1 Ωi and a random variable X : Ω → R we make
the following definitions.

• Suppose that there is a constant c such that changing ω ∈ Ω in any one
coordinate changes X(ω) by at most c. Then we say that X is c-Lipschitz.

• Suppose that for any s ∈ N and ω ∈ Ω with X(ω) ≥ s there is a set I ⊆ {1,
. . . , n} with |I| ≤ rs such that every ω′ which agrees with ω on coordinates
in I also has X(ω′) ≥ s. Then we say that X is r-certifiable.

We’ll use the following two versions of Azuma’s inequality.
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Lemma 2.2 (Azuma’s inequality, [5,21]). For a product space Ω =
∏n

i=1 Ωi and a
c-Lipschitz random variable X : Ω → R, we have

P (|X − E(X)| > t) ≤ 2e
−t2

nc2 .

Lemma 2.3 (Azuma’s inequality for 0/1 product spaces, [3, 18]). Let Ω = {0, 1}n
with the ith coordinate of an element of Ω equal to 1 with probability pi. Let X be
a c-Lipschitz random variable on Ω. Set σ2 = c2

∑n
i=1 pi(1− pi). For all t ≤ 2σ/c,

we have

P (|X − E(X)| > tσ) ≤ 2e
−t2

4 .

We’ll also use the following version of Talagrand’s inequality.

Lemma 2.4 (Talagrand inequality, [21]). For a product space Ω =
∏n

i=1 Ωi and a
c-Lipschitz, r-certifiable random variable X : Ω → R, we have

P

(
|X − E(X)| > t+ 60c

√
rE(X)

)
≤ 4e

−t2

8c2rE(X) .

We say a bipartite graph G with parts X,Y is (ε, p, n)-regular if

(P1) |X| = |Y | = n(1± n−ε),
(P2) for every v, d(v) = pn(1± n−ε).

Furthermore, G is (ε, p, n)-typical if

(P3) for every u, v ∈ X or u, v ∈ Y we have |N(u) ∩N(v)| = p2n(1± n−ε).

A bipartite graph G with bipartition (X,Y ) and colour set C is called coloured
(ε, p, n)-regular/ coloured (ε, p, n)-typical if it is properly edge-coloured and the
following hold:

(P4) G is (uncoloured) (ε, p, n)-regular/(ε, p, n)-typical.
(P5) Define GX,C to be the bipartite graph with vertex bipartition (X,C), where

xc is an edge for x ∈ X, c ∈ C if there exists some y ∈ Y such that
xy ∈ E(G) and c(xy) = c. Define GY,C analogously. We require both GX,C

and GY,C to be a coloured (ε, p, n)-regular/(ε, p, n)-typical.

Note that a coloured (ε, p, n)-regular graph G is coloured (ε, p, n)-regular if addi-
tionally |C(G)| = (1±n−ε)n and every colour c ∈ C(G) has |EG(c)| = (1±n−ε)pn.
Similarly, a properly edge-coloured (ε, p, n)-typical graph is coloured (ε, p, n)-typical
if these happen and additionally every pair of colours c, c′ have |VG(c)∩VG(c

′)∩X| =
(1± n−ε)p2n and |VG(c) ∩ VG(c

′) ∩ Y | = (1± n−ε)p2n.
Frankl and Rödl [14] (also Pippenger, unpublished) showed that for all γ � ε �

n−1 every n-vertex hypergraph with (1 ± ε)pn degrees and codegrees at most one
has a matching of order (1−γ)n. A corollary of this is that every coloured (γ, p, n)-
regular graph has a rainbow matching of order (1 − γ)n (to see this, associate
a hypergraph with the (γ, δ, n)-regular graph as explained in the introduction and
apply their theorem). We’ll need the following standard version (which appeared in
the literature before) of this result where the error term γn is polynomially related
with n.

Lemma 2.5. Let n−1 � γ � ε and n−1 � p ≤ 1. Every coloured (ε, p, n)-regular
bipartite graph G has a rainbow matching of size n− n1−γ.

Proof. Notice that G is balanced bipartite with parts of size (1 ± n−ε)n, every
vertex has degree (1± n−ε)pn, and every colour occurs at most (1+ n−ε)pn times.
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Now the lemma is strictly weaker than Lemma 4.6 from [22] (applied with n =
n, γ = n−ε, δ = p, p = n−γ , � = 1). �

Lemma 2.6 shows that a random subgraph of a typical bipartite graph is typ-
ical. There are two notions of what “random subgraph” means here. The most
important one is to consider the subgraph formed by deleting every vertex/colour
independently with fixed probability (case (a) below). We use the second case in
Section 6 to reduce the problem of finding large matchings in Steiner systems to
finding large matchings in special typical graphs.

Lemma 2.6. Let n−1 � p, q, ε ≤ 1. Let G be a coloured (ε, p, n)-typical bipartite
graph with bipartition X,Y and colour set C such that |X| = |Y | = |C| = n. Let
X ′ ⊆ X,Y ′ ⊆ Y,C ′ ⊆ C be random sets obtained as follows:

(a) Every vertex/colour ends up in X ′, Y ′, C ′ independently with probability q.
(b) Suppose we can label X = {x1, . . . , xn}, Y = {y1, . . . , yn}, C = {c1, . . . ,

cn} such that if xiyj is an edge of G of colour ck then all i, j, k must be
distinct. Form X ′, Y ′, C ′ by choosing disjoint set of indices IX , IY , IC ⊆
[n] such that independently every i ∈ [n] is placed in IX , IY and IC with
probability q and in none of them with probability 1 − 3q. Set X ′ = {xi :
i ∈ IX}, Y ′ = {yi : i ∈ IY }, C ′ = {ci : i ∈ IC}

Let H be formed by colour C ′ edges going from X ′ to Y ′. Then with probability at

least 1− e−n1−ε/2

, H is coloured (ε/8, qp, qn)-typical.

Proof. We will show that with probability 1 − 1
3e

−n1−ε/2

, H is (uncoloured)
(ε/8, qp, qn)-typical. By symmetry between X,Y,C, the same proof shows that
HX,C and HY,C are (ε/8, qp, qn)-typical. Thus we will have that with probability

1 − e−n1−ε/2

all of H, HX,C , and HY,C are (ε/8, qp, qn)-typical, or equivalently H
is coloured (ε/8, qp, qn)-typical. To give a unified proof of both statements (a), (b)
we will use Azuma’s inequality.

Let u, v be two vertices on the same side of G, and y ∈ NG(u)∩NG(v). Without
loss of generality, we may suppose that u, v ∈ X, y ∈ Y . Notice that in both (a)
and (b) we have P(u ∈ X ′) = q, P(c(uy) ∈ C ′, y ∈ Y ′) = q2, and P(c(uy), c(vy) ∈
C ′, y ∈ Y ′) = q3. Indeed, here we use that c(uy) ∈ C ′, c(vy) ∈ C ′, and y ∈ Y ′

are independent events which is true in case (a) trivially. For case (b), suppose
y = yi, c(uy) = cj , c(vy) = ck, it is enough to show that all three indices i, j, k
are distinct. Indeed, since uy, vy ∈ E(G), it follows that i and k, and j and k
are distinct. Finally, j and k are distinct since the edge-colouring is proper. Since
G is (ε, p, n)-typical, we have |X|, |Y | = (1 ± n−ε)n, |NG(u)| = (1 ± n−ε)pn and
|NG(u) ∩NG(v)| = (1± n−ε)p2n. Thus we have

E[|X ′|],E[|Y ′|] = (1± n−ε)qn

E[|NC′(u) ∩ Y ′|] = (1± n−ε)q2pn, for all u ∈ X

E[|NC′(u) ∩NC′(v) ∩ Y ′|] = (1± n−ε)q3p2n, for all u, v ∈ X.

Notice that these random variables are all 2-Lipschitz and are each affected by
at most 3(1 + n−ε)n ≤ 4n coordinates. By Azuma’s inequality we get that for

t = q3p2n1−ε/8/2 with probability 1−2e−t2/16n ≥ 1−e−n1−3ε/8

, each one of them are
within t of their expectations. By taking union bound over all vertices and colours

we obtain that with probability at least 1−(n+n−ε)3e−n1−3ε/8 ≥ 1− 1
3e

−n1−ε/2

they
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are all simultaneously within t of their expectations. So now the result follows from
the definition of (ε/8, qp, qn)-typicality and the fact that t+n1−ε < q3p2n1−ε/8. �

We will need the following result about typical graphs. It is a bipartite variation
of Lemma 5.5 from [22] (see also Lemma 2.1 in [4]), whose proof is straightforward
from the original version.

Lemma 2.7. Let n ∈ N, ε, p, γ ∈ (0, 1] with 8n−ε ≤ γ. Then every (ε, p, n)-typical
bipartite graph H with sides X,Y satisfies the following. For every pair of subsets
A ⊆ X, B ⊆ Y with |B| ≥ γ−1p−2:

|e(A,B)− p|A||B|| ≤ 2|A| 12 |B|γ 1
2n

1
2 p.

Proof. Let AdjH be the adjacency matrix of H, and let M = AdjH − pJ , where
J is the appropriately-sized all-ones matrix. Notice that for every pair of distinct
vertices y, y′ ∈ Y , we have

(1)

∑
v∈X

My,vMy′,v = dH(y, y′)− p(d(y) + d(y′)) + p2|X|

≤ (1 + n−ε)p2n− 2(1− n−ε)p2n+ p2(1 + n−ε)n

≤ γp2n/2.

Next notice that we have

∣∣e(A,B)− p|A||B|
∣∣2 =

⎛
⎝∑

x∈A

∑
y∈B

Mx,y

⎞
⎠

2

≤ |A|
∑
x∈A

⎛
⎝∑

y∈B

Mx,y

⎞
⎠

2

≤ |A|
∑
x∈X

⎛
⎝∑

y∈B

Mx,y

⎞
⎠

2

= |A|
∑
x∈X

⎛
⎝∑

y∈B

M2
x,y

⎞
⎠+ |A|

∑
x∈X

⎛
⎝ ∑

y �=y′∈B

Mx,yMx,y′

⎞
⎠

≤ |X||A||B|+ |A|
∑

y �=y′∈B

(∑
x∈X

Mx,yMx,y′

)

(1)

≤ (1 + n−ε)n|A||B|+ |A|
∑

y �=y′∈B

γp2n

2

≤ (1 + n−ε)n|A||B|+ |A||B|2γp2n/2
≤ 2|A||B|2γp2n.

Here the first inequality comes from the Cauchy-Schwarz inequality and the last
inequality comes from |B| ≥ γ−1p−2. Taking square roots gives the result. �

Next we show that the above result implies that for a coloured typical graph G
and any set of d many colours in G, the subgraph of G induced by the edges of
colours in D can have at most O(n/d) many vertices of small degree, for d = O(nε).
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Lemma 2.8. Let n−1 � p, ε ≤ 1, 16 ≤ 8p2d ≤ nε. Suppose G is a coloured
(ε, p, n)-typical bipartite graph with bipartition (X,Y ) and colour set C. Then for
any set of d colours D the subgraph G[D] ⊆ G induced by edges of colours in D has
at most ≤ 32p−2n/d many vertices of degree less than pd/2.

Proof. Let J be the set of vertices in G[D] of degree less than pd/2. We will show
that |J ∩X| ≤ 16p−2n/d. Similarly one can prove that |J ∩Y | ≤ 16p−2n/d. Recall
GX,C is defined on the vertex bipartition (X,C) where we put an edge xc if there
is some y ∈ Y such that xy ∈ E(G) and c(xy) = c. By definition of coloured
typical graphs, GX,C is (ε, p, n)-typical; hence we can apply Lemma 2.7 to the set
J ∩X ⊆ X and D ⊆ C with γ = p−2d−1 (so that |D| ≥ γ−1p−2). We obtain

p|J ∩X|d− 2p|J ∩X|1/2dγ1/2n1/2 ≤ eGX,C
(J ∩X,D) < |J ∩X|pd/2.

From here it follows that |J ∩X| ≤ 16γn ≤ 16p−2n/d. �

3. Expansion and its properties

The proof of our main technical theorem, which we present in this section, is
based on finding a nearly spanning randomized rainbow matching M which “ex-
pands” in some sense. We then show that these expansion properties can be used to
alter M via a series of switchings along alternating paths to obtain a new matching
covering all but O(logn/ log log n) vertices.

3.1. Typical coloured graphs are expanding. In this subsection we prove that
every typical graph has a large matching which is “expanding” with respect to any
small collection of colours. First we define what we mean by expanding. Since by
itself a matching is clearly not an expanding graph, we will always speak about
expansion properties of a union of two graphs, one of which will always be a match-
ing. Let G,H be two graphs. Recall that for a set S ⊆ V (G) ∪ V (H), we use
N t

G,H(S) to denote the set of vertices v to which there is a length t path from some
s ∈ S whose edges alternate between G and H with the first edge belonging to G.
Definition 3.1 is key in this paper.

Definition 3.1 (Expander). For a matching M and a bipartite graph D we say
that (D,M) is a (d,A, ε, n)-expander if every vertex set S ⊆ X or S ⊆ Y with
|S| ≥ An/d has a subset S′ with |S′| = An/d2 and |N4

D,M (S′)| ≥ (1 − ε)n, where

(X,Y ) is the bipartition of D ∪M with |X|, |Y | ≥ An/d.

Note that, since in this definition the last edge on the 4-edge path is from M ,
it follows that if (D,M) is a (d,A, ε, n)-expander then |M | ≥ (1 − ε)n. We also
want to point out few additional subtleties. First, it would be more natural to ask
|N2

D,M (S)| ≥ (1 − ε)n. However, it is not true that the second neighbourhoods

expand (see details in the proof sketch of Lemma 3.2). Second, we have a stronger
requirement that S has a subset of size Θ(n/d2) which expands. This is done for
the following two technical purposes.

We are able to show that every coloured pseudorandom graph G has a random
rainbow matching such for any subgraph D induced by edges of any collection of
d = log n/ log log n many colours, every S of size roughly n/d expands (in the above
sense) with probability at least 1− e−|S| (see Lemma 3.8). Then we would like to
claim, by taking the union bound, that with high probability all sets S expand
simultaneously. Unfortunately, when taking this approach, the probability that
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there is some S which does not expand is at most roughly
(

n
|S|

)
e−|S| � 1. Instead,

for each non-expanding set S we find a smaller set S′ of size |S|/d which “captures”
the expansion properties of S. Now the union bound gives us that the probability
that some set S does not expand is at most

(
n

|S|/d
)
e−|S| � 1. (This idea is similar

to the applications of containers widely used in studying H-free graphs for fixed
H, where one shows that there is a collection of containers of bounded size which
contain all H-free graphs of certain size).

The second reason to have a smaller subset S′ which captures the expansion of
S is for finding rainbow D − M alternating paths between almost all x ∈ X and
y ∈ Y (see Section 3.2 for details). Let’s assume S ⊆ Y . As the first step to achieve
this, we need to show that almost all vertices y ∈ Y have some rainbow alternating
D−M path of length four starting at some s ∈ S and ending at y. Furthermore, we
need that each of these paths avoids a prescribed set of colours and vertices of order
εd. Since |N4

D,M (S′)| = (1 − o(1))n for each y ∈ Y there is a D − M -alternating

path that starts at some s ∈ S′ and ends at y. Some of these paths can be bad
if either they are not rainbow or they do not avoid the prescribed set of vertices
and colours. The number of such bad paths is at most roughly εd2|S′|, where |S′|
factor comes for the choice of starting vertex in S′, εd comes from using a forbidden
vertex or a colour and the second d factor is due to the fact that Δ(D) ≤ d (see
Lemma 3.14). So using that |S′| ≈ n/d2 we conclude that the number of bad paths
is at most εn.

The main result of this section is to prove the following expansion properties of
coloured typical bipartite graphs.

Lemma 3.2 (Main expansion lemma). Let n−1 � q � p ≤ 1, n−1 � γ � ε � 1
and n−ε/2 ≤ d−1 � q. Suppose G is a coloured (ε, p, n)-typical bipartite graph.
Then there is a randomized rainbow matching M in G with the following property.

For any bipartite graph D on the same biparition as G with Δ(D) ≤ d and at

most 96p−2n/d vertices of degree less than pd/6, with probability at least 1−2e−n1−ε

the following hold:

(i) |M | ≥ (1− n−γ)n,
(ii) (D,M) is a (d, q−4, q, n)-expander.

The proof of Lemma 3.2 is technical. Here we present a quick sketch. The
randomized matching M in Lemma 3.2 will be composed of two bits — M0 and
M1. First we choose M0 by picking every edge in G with probability q/n and
deleting all colour and vertex collisions, for some 0 < q � 1. This matching will
be of size roughly qn and will satisfy certain “expansion” properties in second and
third neighbourhoods which we describe next. Fix some D as in the statement of
Lemma 3.2 and suppose (X,Y ) is the bipartition of M0 ∪ D. We first show that
M0 has the following property:

• Second neighbourhood expansion: For each set S ⊆ X or S ⊆ Y
of size roughly n/d we have |N2

M0,D
(S)| = (1 − o(1))n with probability

1− e−O(|S|)(see Lemma 3.8).

The above property simply means for say S ⊆ X that if we follow edges coming
out of S that belong to M0 and then follow the edges of D we reach almost all of
X. Notice that we cannot prove that the second neighbourhood is large for all sets
S simultaneously. Indeed, let D be a disjoint union of complete bipartite graphs of
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size d on X,Y with |X| = |Y | = n. Now let M0 be any perfect matching on Kn,n.
Now let H be any union of disjoint Kd,d’s in D. If we let S = V (H) ∩ X, then
|N2

D,M (S)| = |NM (V (H) ∩ Y )| = |S| that is S won’t expand. Note that it doesn’t
matter whether we follow the edges in the order of M and then D or otherwise.
Indeed, take S′ = NM (S), then |N2

M,D(S′)| = |ND(S)| = |S| = |S′|. However, if we

look at the same example in the third neighbourhood, that is N3
D,M (S) and let’s

assume |S| = n/d then if M was a randomly picked perfect matching, it is likely
that N2

D,M (S) will hit a vertex from each Kd,d outside of H thus resulting N3
D,M (S)

being almost all of X. And this is what we prove; using the second neighbourhood
expansion and that M0 is picked randomly, we show that with high probability all
large sets S have expansion in their third neighbourhood.

• Third neighbourhood expansion: With high probability, all sets S ⊆ X
or S ⊆ Y of size roughly n/d will have subsets S′ of size roughly n/d2 and
|N3

D,M0
(S′)| = (1− o(1))n (see Lemma 3.9).

Finally notice that to obtain the expansion in the fourth neighbourhood in the sense
of Definition 3.1, M0 is not enough, as it is only of size roughly qn. That is why
we need to extend M0 to a nearly spanning rainbow matching. Let H be obtained
from G by deleting vertices and colours of M0. Since G was coloured regular and
M0 was picked randomly, H will be coloured regular as well (Lemma 3.10). We
find a nearly spanning rainbow matching M1 in H, which by definition of H, will
be edge and colour disjoint from M0. This is done by applying Lemma 2.5 to H,
which gives a rainbow matching M1 of size roughly n− |M0| − n1−γ . Then, taking
M = M0 ∪M1, for any nearly regular graph D on V (G) with high probability we
obtain that all large sets will expand as in the Definition 3.1.

We start with an easy lemma exhibiting a feature of nearly-regular graphs.

Lemma 3.3. For κ ≤ 1 ≤ d, let D be a bipartite graph with bipartition (X,Y ) and
Δ(D) ≤ d. Let S ⊆ X or S ⊆ Y be a set with |S| ≥ 2d such that every s ∈ S
satisfies dD(s) ≥ κd. Then there exists a set S′ ⊆ S such that |S′| ≤ |S|/d and
|ND(S′)| ≥ κ|S|/4.

Proof. Take the maximal collection of vertex-disjoint stars of size κd/2 in D whose
centers are in S and let F be the vertex set of their union. We are done if |F ∩X| ≥
|S|/2d. Indeed, in this case any set S′ ⊆ S containing |S|/2d many of the centers
of the stars of F satisfies the lemma. So, we may assume |F ∩X| < |S|/2d. Since
dD(x) ≥ κd for every x, by maximality of F , we have |ND(x) ∩ F | ≥ κd/2 for all
x ∈ S \ F . On the other hand, since Δ(D) ≤ d, for any y ∈ Y ∩ F , |ND(y)| ≤ d.
Thus,

κd

2
|S \ F | ≤ e(S \ F, Y ∩ F ) ≤ d|Y ∩ F |.

This implies

|Y ∩ F | ≥ κ

2
|S \ F | = κ

2
(|S| − |X ∩ F |) > κ|S|

4
,

where in the last inequality we used |F ∩X| < |S|/2d and d ≥ 1. Now S′ = F ∩X
has |S′| < |S|/2d and |ND(S′)| ≥ |Y ∩ F | > κ|S|/4 as required. �
Lemma 3.4. Let n−1 � q � p ≤ 1, n−1 � ε < 1 and q−1 � d ≤ qn/8. Let
G, D be two bipartite graphs on the same vertex set with bipartition (X,Y ) such
that G is coloured (ε, p, n)-typical, Δ(D) ≤ d and all but at most 96p−2n/d vertices
have degrees less than pd/6 in D. Let H be derived from G by picking every edge
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independently with probability q2/n. Let S ⊆ X or S ⊆ Y with |S| = n
dq3 . Then

with probability at least 1− e−q7|S| we have |N2
H,D(S)| ≥ (1− q)n.

Proof. Let J be the set of vertices v ∈ X ∪ Y such that dD(v) < pd/6. Without
loss of generality, let us assume S ⊆ X. Denote B = {x ∈ X \ J : eG(ND(x), S) ≤
p2d|S|/30}.

Claim 3.5. |B| ≤ qn/4.

Proof. Suppose, for contradiction, that |B| > qn/4. By Lemma 3.3 there is B′ ⊆ B
with |B′| ≤ |B|/d such that |ND(B′)| ≥ p|B|/24 > pqn/96. We apply Lemma 2.7
with γ2.7 = pq/9600 and obtain

eG(ND(B′), S) ≥ p|ND(B′)||S| − 2p|ND(B′)| 12 |S|(γn) 1
2

>
4

5
p|ND(B′)||S| ≥ 1

30
p2|B||S|.

On the other hand, by the definition of B′ we have eG(ND(B′), S) ≤ p2d|S|/30 ·
|B′| ≤ p2 |B||S|

30 , which is a contradiction. �

Claim 3.6. For every x ∈ X \ (B ∪ J), P[x �∈ N2
H,D(S)] ≤ q/4.

Proof. For each such x, define the set Sx = {s ∈ S : |NG(s) ∩ ND(x)| ≥ p2d/60}.
Using x /∈ B we get

p2d|S|
30

< eG(ND(x), S) ≤ |Sx||ND(x)|+ |S \ Sx|
p2d

60
≤ d|Sx|+

p2d|S|
60

,

implying that |Sx| ≥ p2|S|/60.
Now we compute the probability of the event x /∈ N2

H,D(S).

P[x /∈ N2
H,D(S)]

= P[∀s ∈ S, ∀y ∈ ND(x) ∩NG(s) we have sy �∈ E(H)]

=
∏
s∈S

∏
y∈ND(x)∩NG(s)

P[sy �∈ E(H)] =
∏
s∈S

(
1− q2

n

)|ND(x)∩NG(s)|

≤
∏
s∈Sx

(
1− q2

n

)|ND(x)∩NG(s)|
≤

∏
s∈Sx

(
1− q2

n

)p2d/60

≤
∏
s∈Sx

e−p2q2d/60n ≤ (e−p2q2d/60n)p
2|S|/60 = e−p4q−1/3600 ≤ q/4.

Here the second equation comes from independence of the events “sy ∈ E(H)”, the
first inequality comes from Sx ⊆ S, the second one from the definition of Sx, the
third one comes from 1− x ≤ e−x, the fourth one comes from |Sx| ≥ p2|S|/60, and
the last one holds since q � p ≤ 1. �

By linearity of expectation we have E[|N2
H,D(S)|] ≥ (1− q/4)(|X| − |B| − |J |) ≥

(1 − q/4)(n − n1−ε − qn/4 − 96p−2n/d) ≥ (1 − q/2)n. Notice that the random
variable |N2

H,D(S)| is defined on the product space Ω consisting of all the edges in

G from S to Y , where the probability of every coordinate being one is q2/n. This
product space has e(S, Y ) = |S|pn(1± n−ε) coordinates. Notice that |N2

H,D(S)| is
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d-Lipchitz, thus we can apply Lemma 2.3. Let σ2 = d2
∑

i∈Ω

(
1− q2

n

)
q2

n . Note

that
qd
√
p|S|
2

≤ σ = qd

√∑
i∈Ω

(
1− q2

n

)
1

n
≤ 2qd

√
p|S|.

So let t = q3
√
|S|/4. Note that td ≤ 2σ and σt ≤ (2qd

√
p|S|)(q3

√
|S|/4) ≤ qn/2,

since |S| = n/dq3. Thus by Azuma’s inequality we have:

P[|N2
H,D(S)| ≤ (1− q)n] ≤ P[|N2

H,D(S)| ≤ E[|N2
H,D(S)|]− σt]

≤ 2e−t2/4 = 2e−q6|S|/64 ≤ e−q7|S|.

�
The graph H produced by the previous lemma won’t generally be a matching

or a rainbow subgraph. Lemma 3.7 estimates how many of its edges conflict with
other edges due to a vertex or a colour collision.

Lemma 3.7. Let n−1 � q � p ≤ 1, n−1 � ε < 1. Let G be a bipartite graph
with bipartition (X,Y ) such that G is coloured (ε, p, n)-regular. Let H be derived
from G by picking every edge independently with probability q/n, let M ⊆ H be
consisting of edges which don’t share any vertices or colours with other edges in H,
define H ′ := H −M . Then for any set S ⊆ X with |S| ≥ q−3,

P(|NH′(S)| ≥ 5q2|S|) ≤ e−q3|S|.

Proof. Let xy ∈ E(G). For xy to be in M we need xy ∈ H and also e �∈ H for all
edges e sharing a vertex or a colour with xy. Thus

P[xy ∈ M ] =
q

n

(
1− q

n

)dG(x)+dG(y)+|EG(c)|−3

=
q

n

(
1− q

n

)3pn(1±n−ε)−3

=
q

n

(
1− q

n

)3pn

(1± 4qpn−ε).

Here the second equation uses coloured (ε, p, n)-regularity, and the third equation

comes from (1− q/n)±3pn1−ε−3 = (1± 4qpn−ε). This gives

P[xy ∈ E(H ′)] = P[xy ∈ E(H)]− P[xy ∈ E(M)]

≤ q

n

(
1−

(
1− q

n

)3pn

(1− 4qpn−ε)

)
≤ 3q2p

n
+ 4q2pn−1−ε ≤ 4q2

n
,

which implies E[|NH′(S)|] ≤ 4q2|S|. Notice |NH′(S)| is 3-Lipschitz since adding or
removing an edge e from H can affect at most two neighbouring edges or one edge
of the same colour to be in H or not. |NH′(S)| is also 2-certifiable. Our product
space is Ω = (x1, x2, . . . , x|e(G)|), where each xi = 1 if the ith edge is in H. Suppose
the current outcome of H is described by ω ∈ Ω. Thus if |NH′(S)| ≥ s then we can
take I to be as follows. Note that for each edge e appearing in |NH′(S)| there exists
an edge e′ of the same colour or sharing a vertex with e which appears in H. We
let I to be the coordinate of all edges e in NH′(S) and coordinates of corresponding
e′’s. This will guarantee that with respect to any ω′ that agrees with ω on I must
have |NH′(S)| ≥ s. Thus we can apply Talagrand’s inequality with t = q2|S|/2,
r = 2, c = 3. We use that 60 · 3

√
2 · 4q2|S| ≤ q2|S|/2 since q � 1 and |S| ≥ q−3 to

get

P[|NH′(S)| > 5q2|S|] ≤ 4e
− (q2|S|/2)2

8·9·2·4q2|S| ≤ e−q3|S|. �
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Finally we are ready to prove our first lemma guaranteeing expansion in the
second neighbourhood N2

M,D(S) of large sets S for a randomized rainbow matching
M and a nearly regular graph D.

Lemma 3.8. Let n−1 � q � p ≤ 1, n−1 � ε < 1 and q−1 � d ≤ qn/8. Let G, D
be two bipartite graphs on the same vertex set with bipartition (X,Y ) such that G
is coloured (ε, p, n)-typical, Δ(D) ≤ d and all but at most 96p−2n/d vertices have
degrees less than pd/6 in D. Let H be obtained from G by picking every edge with
probability q2/n, let M ⊆ H be consisting of edges which don’t share any vertices
or colours with other edges in H. If S ⊆ X with |S| = n

dq3 then with probability at

least 1− 2e−q6n/d we have |N2
M,D(S)| ≥ (1− 6q)n.

Proof. By Lemma 3.4 we have that |N2
H,D(S)| ≤ (1− q)n with probability at most

e−q7|S|. By Lemma 3.7 applied with q3.7 = q2 we have |NH\M (S)| ≥ 5q4|S| with
probability at most e−q6|S|. By the union bound, we get that with probability at

least 1− 2e−q6|S| both of these events don’t happen.
Since |NH\M (S)| < 5q4|S| and Δ(D) ≤ d, we have that at most 5dq4|S| many

edges of D touch NH\M (S). Thus,

|N2
M,D(S)| ≥ |N2

H,D(S)| − |N2
H\M,D(S)| ≥ (1− q)n− 5dq4|S| = (1− 6q)n.

�

The next lemma builds on Lemma 3.8 and guarantees expansion in the third
neighbourhood for subsets of size roughly n/d2.

Lemma 3.9. Let n−1 � q � p ≤ 1, n−1 � ε < 1 and q−1 � d ≤
√
n. Let G, D

be two bipartite graphs on the same vertex set with bipartition (X,Y ) such that G
is coloured (ε, p, n)-typical, Δ(D) ≤ d and all but at most 96p−2n/d vertices have
degrees less than pd/6 in D. Let H be obtained from G by picking every edge with
probability q2/n and define M ⊆ H to be consisting of edges which don’t share any

vertices or colours with other edges in H. Then with probability ≥ 1− e−q7n/d the
following holds.

For any S ⊆ X or S ⊆ Y with |S| ≥ 25n
pq3d there exists S′ ⊆ S such that

|S′| = 24n
pq3d2 such that |N3

D,M (S′)| ≥ (1− 6q)n.

Proof. Let J be the set of vertices v ∈ X ∪ Y with dD(v) ≤ pd/6. By assumption
|J | ≤ 96p−2n/d ≤ n

dpq3 since q � p. Without loss of generality let us assume

S ⊆ X. Since |S| ≥ 25n
pq3d by throwing away at most n

pq3d vertices we may assume

S ∩ J = ∅ and |S| ≥ 24n
pq3d .

By Lemma 3.3, there is a set S′ ⊆ S with |S′| ≤ 24n/pq3d2 such that |ND(S′)| ≥
n/dq3. By adding extra vertices from S to S′ we may assume |S′| = 24n/pq3d2. Fix
one such set S′ for each S. We say that S′ is bad if it has |N3

D,M (S′)| < (1− 6q)n.

To prove the lemma it is sufficient to show that with probability ≥ 1 − e−q7n/d,
there are no bad sets S′.

Let S′ ⊆ X with |S′| = 24n
pq3d2 and |ND(S′)| ≥ n/dq3. By Lemma 3.8 (applied to a

subset of ND(S′) of order exactly n/dq3), with probability at least 1−2e−q6n/d, we
have |N2

M,D(ND(S′))| ≥ (1− 6q)n. Recall that “N3
D,M (S′)” means we are looking
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at edges going out of S′ to be in the order of D, M and D, thus N2
M,D(ND(S′)) =

N3
D,M (S′). So we have shown that P(S′ is bad) ≤ 2e−q6n/d. By taking a union

bound over all S′ ⊆ X, with |S′| = 24n
pq3d2 and using d � q−1, we obtain

P[∃ bad S′] ≤
(

n+ n−ε

24n/pq3d2

)
· 2e−q6n/d ≤ 2

(
2en

24n/pq3d2

) 24n
pq3d2

e−q6n/d

≤ 2e
−q6n/d+ 24n

pq3d2
log pq3d2

≤ 2e−q6n/2d.

Similarly, the probability that there exists a bad S′ ⊆ Y is at most 2e−q6n/2d. Thus

with probability at least 1− e−q7n/d there are no bad S′ ⊆ X ∪ Y . �

In the next lemma we show that if we have a coloured regular graph G then if
we pick a random rainbow matching and delete all of its edges and colours from
the graph G then the remaining graph is still a coloured regular graph.

Lemma 3.10. Let n−1 � p, q, ε with ε � 1, q ≤ 1/2, and p ≤ 1. Let G be coloured
(ε, p, n)-regular bipartite graph with bipartition (X,Y ). Let M be a random rainbow
matching obtained from G by picking every edge with probability q/n and deleting
all colour and vertex collisions. Let H be G with vertices and colours of M deleted.
Then there are numbers m > n/2, p′ > p/2 such that with probability at least

1− e−n1−ε

, the graph H is (ε/10, p′,m)-regular.

Proof. Let d = pn and α =
(
1− q

n

)3d
q. We will see that every edge of G ends up

in M with probability roughly α/n. Denote xH = |X ∩ V (H)|, yH = |Y ∩ V (H)|,
and cH = |C(H)|. For any vertex v ∈ G, let dH(v) = |NC(H)(v) ∩ V (H)|, and
note that for vertices v ∈ H this is just their degree in H. Similarly, for any colour
c ∈ G, let eH(c) = |EG(c) ∩ E(H)|, and note that for colours c ∈ C(H) this is just
the number of edges they have in H. We need to show that with probability at

least 1− e−n1−ε

the following hold for appropriately chosen p′ and m:

(P1) xH , yH = m(1±m−ε/10),
(P2) cH = m(1±m−ε/10),
(P3) dH(v) = p′m(1±m−ε/10), for every v ∈ V (H),
(P4) eH(c) = p′m(1±m−ε/10), for every c ∈ C(H).

Claim 3.11.

• E[xH ],E[yH ] = n(1− pα)(1± n−ε/5),
• E[dH(v)] = pn(1− pα)2(1± n−ε/6) for every vertex v ∈ V (G),
• E[cH ] = n(1− pα)(1± n−ε/5),
• E[eH(c)] = pn(1− pα)2(1± n−ε/6) for every colour c ∈ C(G).

Proof. By the symmetry between vertices and colours, it is enough to show that
the first two hold. We estimate several probabilities. At various points, to bound

errors we use that for any positive constant k, (1− q/n)±kpn1−ε

= (1± n−ε/2) and
(1± n−ε)k = 1± n−ε/2 (which holds as long as n−1 � q, ε, p). For a colour c edge
xy, let F (xy) be the set of edges of G \xy sharing a colour or vertex with xy. Note
that since G is coloured (ε, p, n)-regular, we have

|F (xy)| = dG(x) + dG(y) + |EG(c)| − 3 = 3d(1± 2n−ε).
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• The probability that an edge is in M:
We say an edge e ∈ G is chosen if it was picked at the first step when

generating M (with probability q/n). By definition of M , e ∈ M exactly
when e is chosen and none of the edges from F (e) are chosen. This has
probability

P[e ∈ M ] =
q

n

(
1− q

n

)|F (e)|
=

q

n

(
1− q

n

)3d(1±2n−ε)

=
α

n
(1± n−ε/2).

• The probability that a pair of edges are both in M: Let f, e be a
pair of edges which don’t share any vertices or a colour. Notice that

|F (e) ∪ F (f)| = |F (e)|+ |F (f)| ± 2 = 6d(1± 3n−ε).

By definition of M , we have e, f ∈ M exactly when e, f are chosen and none
of the edges of F (e) ∪ F (f) are chosen which happens with probability

P[e, f ∈ M ] =
( q

n

)2 (
1− q

n

)|F (e)∪F (f)|

=
( q

n

)2 (
1− q

n

)6d(1±3n−ε)

=
α2

n2
(1± n−ε/2).

• The probability that a vertex/colour is in M: For any v, we have

P[v ∈ M ] =
∑

y∈NG(v)

P[vy ∈ M ] = dG(v)
α

n
(1± n−ε/2)

= pα(1± n−ε/2)2 = pα(1± n−ε/4).

By the symmetry between vertices and colours, we also have P[c ∈ C(M)] =
pα(1± n−ε/4) for every colour c.

• For an edge uv, the probability that u or c(uv) is in M : Fix an edge
uv. We first estimate the probability that “u ∈ M and c(uv) ∈ M”. Notice
that there are two ways this can happen — either uv ∈ M or there are
three distinct vertices, w, x, y such that uw, xy ∈ M with c(xy) = c(uv).
We will see that the probability of the first event is negligible compared to
the second. For an edge uv, let J(uv) ⊆ E(G)× E(G) be the set of pairs
(uw, xy) as described above. We have

(dG(u)− 1)(|EG(c(uv))| − 2) ≤ |J(uv)| ≤ dG(u)|EG(c(uv))|.

This implies |J(uv)| = p2n2(1± n−ε)3 which implies

P[u ∈ M, c(uv) ∈ M ] = P[vu ∈ M ] +
∑

(e,f)∈J(uv)

P[e, f ∈ M ]

=
α

n
(1± n−ε/2) + (pn)2

α2

n2
(1± n−ε/2)4 = p2α2(1± n−ε/5),

where in the last equality we used that α ≈ e−3pqq and so α/n � p2α2n−ε/2,
as long as n is sufficiently large. Thus,

P[u ∈ M or c(uv) ∈ M ] = P[u ∈ M ] + P[c(uv) ∈ M ]− P[u ∈ M, c(uv) ∈ M ]

=
(
2pα− p2α2

)
(1± n−ε/5).
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Finally we are ready to estimate the expectations in the claim. By linearity of
expectation,

E[xH ] =
∑

v∈X

P(v �∈ M) = n(1± n−ε)(1− pα(1± n−ε/4)) = n(1− pα)(1± n−ε/5).

E[dH(v)] =
∑

u∈NG(v)

(1− P[u ∈ M or c(vu) ∈ M ])

= pn(1± n−ε)(1− (2pα+ p2α2)(1± n−ε/5)) = pn(1− pα)2(1± n−ε/6).

�

Fix m = (1 − pα)n and p′ = p(1 − pα). Notice that we may assume m > n/2
and p′ > p/2 as we can guarantee pα < pq ≤ 1/2, since n is sufficiently large.

Notice that the random variables xH , yH , cH , dH(v), and eH(c) depend on the
probability space Ω = {0, 1}E(G) with every coordinate being 1 with probability
q/n. All these variables are 3-Lipshitz. Set σ2 = 32

∑
e∈E(G) q/n(1 − q/n) and

notice that
9pqn

4
< σ2 = 9pqn(1− q/n)(1± n−ε)2 < 10pqn.

Set t = n1/2−ε/3. Note that t ≤ 2σ/3 and tσ < 3n1−ε/3, since n is sufficiently large.
By Lemma 2.3 we have

P

[
|xH − E[xH ]| > 3n1−ε/3

]
< 2e−

n
1− 2ε

3
4 <

e−n1−ε

n3
.

Similarly one can show that each of the random variables yH , cH , dH(v), and

eH(c) are within 3n1−ε/3 of their expectations with probability at least 1− e−n1−ε

n3 . If
we take a union bound over all vertices and colours, we can guarantee that xH , yH ,
cH , dH(v), and eH(c) are simultaneously all within 3n1−ε/3 of their expectations
for all c and v. To conclude that (P1)–(P4) hold, it remains to check that 3n1−ε/3+
mn−ε/6 ≤ m1−ε/10. �

We now prove the main result of this section.

Proof of Lemma 3.2. Fix q̂ = (25p−1q4)1/3. Note that q̂ � p since q � p. Suppose
G has bipartition (X,Y ). Let M0 be generated by picking every edge of G with
probability q̂2/n and deleting all vertex and colour collisions. Let H be obtained
from G by removing the vertices and colours of M0. By Lemma 3.10, with proba-

bility at least 1−e−n1−ε

we have that H is (ε/10, p′,m)-regular for some suitable p′

and m. When H is (ε/10, p′,m)-regular, by Lemma 2.5, there is a rainbow match-
ing M1 in H of size ≥ m−m1−2γ . Note that |V (H)∩X| = |X|− |M0| and when H
is (ε/10, p′,m)-regular we have |V (H)∩X| = m(1±m−ε/10). Therefore, it follows
that m ≥ |X| − |M0| −m1−ε/10 ≥ n − |M0| − n1−ε − n1−ε/10, which implies that
|M1 ∪M0| ≥ m−m1−2γ + |M0| ≥ n− 2n1−ε/10 − n1−2γ ≥ n− 2n1−2γ ≥ n− n1−γ ,
since γ � ε. We will show that the conclusion of the lemma holds for the ran-
domized rainbow matching M = M0 ∪ M1. Notice that with probability at least

1− e−n1−ε

we have

E1: |M | ≥ (1− n−γ)n.

Let D be a bipartite graph with the same bipartition as G having Δ(G) ≤ d and
at most ≤ 96p−1n/d vertices of degrees less than pd/6. We can apply Lemma 3.9

to M0, G, and D and obtain that with probability at least 1− e−q̂7n/d we have
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E2: For any S ⊆ X or S ⊆ Y with |S| ≥ 25n
dpq̂3 there exists S′ ⊆ S such that

|S′| = 24n
pq̂3d2 such that |N3

D,M0
(S′)| ≥ (1− 6q̂)n.

So with probability at least 1 − e−n1−ε − e−q̂7n/d ≥ 1 − 2e−n1−ε

both events E1
and E2 happen. Clearly (i) holds then, let us show that (ii) holds as well. Let
D be as earlier and without loss of generality assume S ⊆ X with |S| ≥ n

dq4 .

Then since q � p it follows that |S| ≥ 25n
dpq̂3 . Since E2 holds there exists S′ ⊆ S

such that |S′| = 24n
pq̂3d2 ≥ 24n/25q4d2 such that |N3

D,M0
(S′)| ≥ (1 − 6q̂)n. Since

|X \M | ≤ n+ n1−ε − (n− n1−γ) ≤ 2n1−γ , it follows that

|N4
D,M (S′)| ≥ |N3

D,M0
(S′)| − |X \M | ≥ (1− 6q̂)n− 2n1−γ ≥ (1− q)n,

where the last inequality holds since q � p. Finally we can always add extra vertices
of S \ S′ to S′ to make it exactly of size n/q4d2. This finishes the proof. �

3.2. Switchings via expansion. The main result of this section is the lemma
below which is our main tool for doing switchings. It says that if we have two
expanders (D1,M) and (D2,M) such that D1 and D2 are two bipartite graphs on
the same vertex set then almost all pairs of vertices lying in the opposite sides of the
bipartition of the graphD1∪D2∪M have a short rainbow (D1∪D2)−M -alternating
path between them.

Lemma 3.12. Let d−1/2 ≤ A−1 ≤ ε/100 � 1 and further, d log d ≥ 8A2 log n.
Suppose we are given two bipartite graphs D1, D2 and a rainbow matching M on
the bipartition (X,Y ) with Δ(D1),Δ(D2) ≤ d, M ∪D1∪D2 properly edge-coloured,
C(M), C(D1), C(D2) pairwise disjoint, and |X|, |Y | < (2 − 4ε)n. If for both
i = 1, 2, (Di,M) is a (d,A, ε, n)-expander then there is a set B ⊆ X ∪ Y of at
most 4An/d vertices, such that for all u, v �∈ B lying in the opposite sides of the
bipartition, there is a (D1 ∪D2)-M -alternating rainbow path from u to v of length

at most 8� log n
log (d/4A)�.

The alternating paths found by the above lemma will be used to go from one
rainbow matching to another. When proving the existence of large rainbow match-
ings in typical graphs, we will start from some rainbow matching and iteratively
do such switchings, eventually enlarging the original rainbow matching to one of a
desired size. We need a simple lemma which claims that if we have an expander
(D,M) then any “small” perturbation of the matching M will keep the expansion
properties. (In applications of this lemma “small” would mean sub-polynomial.)

Lemma 3.13. Suppose we are given two matchings M1,M2 and a bipartite graph
D with Δ(D) ≤ d, all on the same bipartition (X,Y ). If (D,M1) is a (d,A, ε, n)-
expander and |M1�M2| < εn/10d2 then (D,M2) is a (d,A, 2ε, n)-expander.

Proof. Let S ⊆ X or Y with |S| ≥ An/d. Since (D,M1) is a (d,A, ε, n)-expander,
there is a subset S′ ⊆ S with |S′| = An/d2 such that |N4

D,M1
(S′)| ≥ (1− ε)n. By

definition, for each v ∈ N4
D,M (S′) there is a D-M1-alternating path of length four

from S′ to v. We call such an alternating D-M1 path of length four bad if it uses
any vertex from V (M1) \ V (M2) and good otherwise. The number of bad paths is
at most 5Δ(D)2|V (M1) \ V (M2)| ≤ 10|M1�M2|d2 < εn. Indeed, there are 5 ways
to choose which vertex of the path of length four is in V (M1) \ V (M2) and then
at most Δ(D)2 ways to choose D-M1-alternating path which has this vertex in the
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correct position. Hence there are at least (1− 2ε)n good paths. Every good path
is an alternating D-M2 path, and so we have |N4

D,M2
(S′)| ≥ (1− 2ε)n. �

We say a path P in an edge-coloured graph G avoids a vertex subset V ′ ⊆ V (G)
if it doesn’t contain any vertex from V ′. Similarly, P avoids a colour subset C ′ ⊆
C(G) if it does not contain any edge of colours from C ′. To prove Lemma 3.12 we
first show that given an expander (D,M) such that D and M are colour disjoint,
all large sets S “expand” in the following coloured fashion: almost every vertex
in v ∈ V (D) ∪ V (M) can be reached from some s ∈ S via a rainbow D − M -
alternating path of length four and additionally, this path avoids some small set
of forbidden colours and vertices prescribed to s a priori (Lemma 3.14). Then
we apply this iteratively to obtain a similar expansion property for smaller sets
(Lemma 3.15). Finally via applying this iteration multiple times we show that
almost all vertices can reach almost all vertices via rainbow D − M -alternating
paths of length O(logn/ log log n) (Lemma 3.16).

Lemma 3.14. Let d−1/2 ≤ A−1 ≤ ε/100 � 1. Suppose we are given a bipartite
graph D with Δ(D) ≤ d, M a rainbow matching such that M ∪ D has bipartition
(X,Y ), is properly edge-coloured, and C(M) and C(D) are disjoint. Let C =
C(D) ∪ C(M), V = V (D) ∪ V (M). If (D,M) is a (d,A, ε, n)-expander, then for
any S ⊆ X or Y with |S| = An/d and any collections of “forbidden” colours and
vertices {C(s) ⊆ C|s ∈ S}, {V (s) ⊆ V |s ∈ S} with |C(s)| ≤ A−2d, |V (s)| ≤ A−2d,
s /∈ V (s) for all s ∈ S the following holds. There are at least (1 − 2ε)n vertices
v ∈ V for which there is a D-M -alternating rainbow path Pv of length four going
from some sv ∈ S to v and avoiding C(sv) and V (sv).

Proof. Since (D,M) is a (d,A, ε, n)-expander there exists S′ ⊆ S of order An/d2

such that |N4
D,M (S′)| ≥ (1 − ε)n. For every v ∈ N4

D,M (S′), there is some s ∈ S′

and a D-M -alternating path Pv of length four going from s to v. We say that Pv

is bad if either Pv is not rainbow, or Pv doesn’t avoid C(s), V (s). We say Pv is
good otherwise. We will show that the total number of bad paths among all the
paths {Pv}v∈V is at most εn. Note that this would be enough for the conclusion
of the lemma as we can take the final vertex set to be {v ∈ N4

D,M (S′)|Pv is good}.
To count the total number of bad paths Pv, we count for all s ∈ S′ how many bad
paths start at s.

Fix a vertex s ∈ S′. Notice that a bad D-M alternating path sxyzw must satisfy
at least one of the following:

• sxyzw is not rainbow. Since D ∪ M is properly edge-coloured, and M is
rainbow and colour disjoint from D, this happens only when c(sx) = c(yz).
There are at most Δ(D) ≤ d such D-M alternating paths starting from s,
since there are at most d choices for x and at most one for all the other
vertices.

• Some vertex among x, y, z, w is from V (s). The number of such D-M
alternating paths is at most 4|V (s)|d. Indeed, there are at most four choices
for which some vertex among x, y, z, w is in V (s). Then |V (s)| choices to
specify that vertex v. Now suppose x = v then there is at most one choice
for y depending if x is covered by the matching M or not, at most d choices
for z since Δ(D) ≤ d and finally at most one choice for w. So there are at
most d such paths with x = v. Similar argument applies if y = v or z = v
or w = v.
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• Some edge among sx, xy, yz, zw has a colour appearing in C(s). The
number of such D-M alternating paths is at most 4|C(s)|d. Again, there
are 4|C(s)| choices to specify which one of the edges sx, xy, yz, zw has
colour c ∈ C(s). Suppose we are counting the number of paths sxyzw with
c(sx) = c. Since the colouring is proper there is at most one edge of colour
c coming out of s therefore at most one choice for vertex x. Then there is at
most one choice for y, depending if x is covered by the matching M or not,
at most d choices for z since Δ(D) ≤ d and finally at most one choice for w.
A similar analysis with the same bound will apply if c(xy) = c, c(yz) = c
or c(zw) = c.

Thus the total number of bad paths starting at s is ≤ 8A−2d2+d ≤ 9A−2d2 (using
d−1/2 ≤ A−1). Summing over all s ∈ S′, we get that the total number of bad paths
is at most 9A−2d2|S′| = 9A−1n ≤ εn as desired. �

Recall that N t
D,M (S) denotes the set of vertices to which there is a D-M -

alternating path of length t starting in S. We use N̂ t
G,H(S) to denote the set

of vertices to which there is a D-M -alternating rainbow path of length t starting
in S.

Lemma 3.15. Let d−1/2 ≤ A−1 ≤ ε/100 � 1 and t ≤ A−2d/4. Suppose we
are given a bipartite graph D with Δ(D) ≤ d, M a rainbow matching such that
M ∪D has bipartition (X,Y ), is properly edge-coloured, and C(M) and C(D) are
disjoint. If (D,M) is a (d,A, ε, n)-expander then for every set of vertices S ⊆ X

or Y with |N̂4t
D,M (S)| ≥ (1 − 2ε)n there is S′ ⊆ S with |S′| = �2A|S|/d� and

|N̂4t+4
D,M (S)| ≥ (1− 2ε)n.

Proof. For each v ∈ N̂4t
D,M (S), by definition there exists sv ∈ S and a D-M -

alternating rainbow path Pv of length 4t from sv to v. For each v fix such sv and
Pv. For each s ∈ S, let p(s) be the number of paths Pv starting at s. We have∑

s∈S p(s) = |N̂4t
D,M (S)| ≥ (1 − 2ε)n. Let S′ ⊆ S be a subset of size �2A|S|/d�

with
∑

s∈S′ p(s) maximum. By averaging, 1
|S′|

∑
s∈S′ p(s) ≥ 1

|S|
∑

s∈S p(s). Thus

|N̂4t
D,M (S′)| ≥

∑
s∈S′ p(s) ≥ |S′|

|S|
∑

s∈S p(s) ≥ (1− 2ε)2An/d ≥ An/d.

Let T ⊆ N̂4t
D,M (S′) be a subset of size exactly An/d. To each vertex v ∈ T , assign

forbidden sets of colours and vertices C(v) := C(Pv), V (v) := V (Pv) \ {v}, and
note that |C(v)|, |V (v)| ≤ 4t ≤ A−2d. By Lemma 3.14, we get (1 − 2ε)n vertices
u together with rainbow D − M -alternating paths Qu of length four from some
vu ∈ T such that Qu avoids C(vu) and V (vu). It is easy to check that for each u,
Pvu ∪ Qu is a rainbow D −M -alternating path of length 4t + 4. This finishes the
proof. �

Lemma 3.16. Let d−1/2 ≤ A−1 ≤ ε/100 � 1 and further, d log d ≥ 8A2 log n.
Suppose we are given a bipartite graph D with Δ(D) ≤ d, M a rainbow matching
such that M ∪D has bipartition (X,Y ), is properly edge-coloured, and C(M) and

C(D) are disjoint. If (D,M) is a (d,A, ε, n)-expander then for t = � log n
log (d/4A)�, all

but possibly at most 2An/d vertices v ∈ V (M) ∪ V (D) satisfy

|N̂4t
D,M (v)| ≥ (1− 2ε)n.
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Proof. Suppose the lemma is false. Then without loss of generality, there are at
least An/d vertices v ∈ X such that |N̂4t

D,M (v)| < (1 − 2ε)n. Let. Let S0 ⊆ X be
this set of vertices.

Choose S1 ⊆ S0 to be of size exactly �An/d�. Then by Lemma 3.14 it follows

that |N̂4
D,M (S1)| ≥ (1 − 2ε)n (we assign C(s) = V (s) = ∅ for all s ∈ S1). Now

we can iteratively apply Lemma 3.15 and obtain sets S1 ⊇ S2 ⊇ · · · ⊇ St with
|N̂4i

D,M (Si)| ≥ (1 − 2ε)n and |Si| = �2A|Si−1|/d� such that |St| = 1. Indeed,

note that |S1| ≤ 4An/d and for all i ≥ 2, |Si| ≤ 4A|Si−1|/d. Moreover, the
iterative steps can be applied because i ≤ t ≤ 2 log n/ log d ≤ A−2d/4. Therefore

for t = � logn
log (d/4A)� we must have |St| ≤ 1, but since Si is always non-empty we have

|St| = 1. Thus there is a vertex s ∈ St with |N̂4t
M,D(s)| ≥ (1 − 2ε)n, contradicting

the definition of S0. �

We now prove the main lemma of this section.

Proof of Lemma 3.12. Set t = � logn
log d/4A�. By applying Lemma 3.16 first with

(D1,M) and then with (D2,M) we obtain a set B of order at most 4An/d such that

all vertices outside B have |N̂4t
Di,M

(v)| ≥ (1−2ε)n for i = 1, 2. Now let u ∈ X, v ∈ Y

be two vertices outside B, then |N̂4t
D1,M

(u)| ≥ (1−2ε)n and |N̂4t
D2,M

(v)| ≥ (1−2ε)n.

Notice that N̂4t
D1,M

(u) ⊆ X∩V (M) and N̂4t
D2,M

(v) ⊆ Y ∩V (M) (since these sets are

defined by even length alternating paths from u and v). For any x ∈ N4t
D1,M

(u), by
definition, there is a rainbow D1 −M -alternating path going from u to x of length
4t whose last edge is in M , call this path Pux. Similarly, for any y ∈ N4t

D1,M
(v),

there is a rainbow D2 −M -alternating path going from v to y of length 4t whose
last edge is in M , call this Pvy. We claim that there is a pair x ∈ X, y ∈ Y such
that xy ∈ M is the last edge of Pux and Pvy. Indeed, otherwise we will have

(2 − 4ε)n ≤ |N̂4t
D1,M

(u)| + |N̂4t
D2,M

(v)| ≤ |M | ≤ |X|, |Y | < (2 − 4ε)n, a contradic-

tion. So Pux ∪ Pvy is a rainbow walk which must contain a rainbow (D1 ∪ D2)-
M -alternating path from u to v of length at most 8t. (In fact, since u, v lie in the
opposite sides of the bipartition, this path must be of odd length). �

4. Large matchings in coloured typical graphs

In this section, we combine previous ones to show that typical graphs have large
rainbow matchings. We prove the following technical theorem which will imply all
our other theorems.

Theorem 4.1. Let n−1 � k−1 � p ≤ 1, n−1 � ε < 1 and fix d = k logn
log logn .

Suppose that we have graphs G ⊆ H with the following properties:

• H is properly edge-coloured, bipartite with bipartition (X,Y ) such that
|X| = |Y | = n, and every vertex v ∈ V (H) has |NH(v) ∩ V (G)| ≥ 0.3pn.

• G is coloured (ε, p, n)-typical with at least n+ 6d colours.

Then H has a rainbow perfect matching.

The full power of the above theorem will only be used to prove our results about
generalized Latin arrays. For our results about Latin squares and Steiner systems,
a weakening of this result stated as Corollary 4.6 will be sufficient.

The above theorem is proved using the approach described in the Introduction
(see Section 1.1, (S1)–(S4)). Note that there are two graphs in the assumption of
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Theorem 4.1. Inside the typical graph G, we find a randomized rainbow matching
M of size n − n1−γ with expansion properties with respect to any collection D
of d colours of the graph G. By these expansion properties we know that almost
all x ∈ X and y ∈ Y have short rainbow D −M -alternating paths between them
in G (Lemma 3.12). Below think of D being some subset of unused colours on
G, sometimes these colours can come from the graph H. We iteratively increase
the size of the matching until we get a perfect rainbow matching in H. At each
step we obtain a rainbow matching M i of size |M i−1| + 1, such that the edit
distance between each M i and M is still sufficiently small. This guarantees that
the expansion properties that M originally had are still preserved for M i. Note
that since G has at least n+ 6d colours we always have at least Ω(logn/ log log n)
unused colours outside of M .

For rather technical reasons, to perform switchings, we first randomly split G
into three graphs G1, G2, G3 and find randomized large matchings M1 ⊆ G1,M2 ⊆
G2,M3 ⊆ G3 in these subgraphs using Lemma 3.2. We set M = M1 ∪M2 ∪M3 to
get a matching of size n− n1−γ . The advantage of splitting like this is that it now
gives us three disjoint matchings with expansion properties which will be useful for
finding disjoint alternating paths/cycles for switching purposes. Such alternating
paths are found using Lemma 3.12. The way we use alternating paths/cycles for
enlarging the matching is illustrated in Figure 1. The idea is to first fix two vertices
x0, y0 which we want to add to the matching. Imagine x0 and y0 had edges x0y

′
1

and y0x
′
1 going to M1 of colours still unused on M = M1 ∪M2 ∪M3. Assume x′

1

is matched to y1 in M1 and y′1 is matched to x1 in M1. Suppose between x1 and
y1 we could find an alternating D −M rainbow path P (this is true for almost all
x1 and y1). Then we could switch the M -edges to non-M -edges and vice versa on
the path P ∪{x0y

′
1, x1y

′
1, y0x

′
1, x

′
1y1}. This would increase the size of the matching

M by one immediately. However, we cannot guarantee that such x′
1, y

′
1 will be

present in G1, that is, such that c2 := c(x0y
′
1), c3 := c(y0x

′
1) /∈ C(M). But we can

always guarantee that a choice of x′
1 and y′1 will be present such that c2 appears

on M2 and c3 appears on M3. So then if say x2y2 is the c2-edge in M2, by the
expansion properties of M2 we know there is a D − M -alternating rainbow path
between x2 and y2 which together with the edge x2y2 induces an alternating cycle
along which if we “switch”, that is, we make all the non-edges of M2 edges of M2

and vice versa, M2 remains to be rainbow. We apply the same argument to kick
out the colour c3 from G3. Now colours c2 and c3 become available to use in the
matching, and thus we can do the aforementioned switching along the edges of the
path P ∪ {x0y

′
1} ∪ {y0x′

1}, thus increasing the matching M by size one. Finally
note that at each step |M i�M i+1| = O(logn/ log log n), since we switch along
at most three paths/cycles of O(logn/ log log n) length. Because of this after at
most O(n1−γ) steps, |M i�M | ≤ O(n1−γ log n/ log log n) � |M |; thus M i will still
have the expansion properties, therefore we can iterate this approach by having M i

instead of M .

Proof of Theorem 4.1. We can assume that ε � 1 since any (ε, p, n)-typical graph
is also (ε′, p, n)-typical for all ε′ < ε. Choose auxiliary constants q = k−1/9, γ
satisfying n−1 � γ � ε.

We call colours of G large. Notice that by coloured (ε, p, n)-typicality of G, large
colours have (1±n−ε)n edges and so there are less than n1+ε large colours. Denote
C0 = C(H) \ C(G).
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Partition V (G) and C(G) into three sets V1, V2, V3 and C1, C2, C3 with each
vertex/colour ending up in each Vi/Ci independently with probability 1/3. For
i, j = 1, 2, 3 we let Gi,j to be the subgraph induced by the vertex set Vi and by the
colour set Cj . We also denote by Gi = Gi,i.

Claim 4.2. With positive probability

(i) For all i, j ∈ {1, 2, 3}, Gi,j is (ε/8, p/3, n/3)-typical.
(ii) For all i, j ∈ {1, 2, 3}, every vertex v ∈ V (H) satisfies |NCi∪C0

(v) ∩ Vj | ≥
pn/40.

Proof. By Lemma 2.6 (a) applied with q2.6 = 1/3, with probability at least 1 −
e−n1−ε/2

, Gi is (ε/8, p/3, n/3)-typical for each i = 1, 2, 3. Thus (i) holds with

probability at least 1− 9e−n1−ε/2

.
Property (ii) follows from Chernoff’s bound. Fix a vertex v ∈ V (H). Then every

y ∈ NH(v) ∩ V (G) is in NCi∪C0
(v) ∩ Vj independently with probability ≥ 1/9.

Indeed, if c(vy) �∈ C(G) this happens when y ∈ Vj which has probability 1/3.
When c(vy) ∈ C(G), then this happens when both y ∈ Vj and c(vy) ∈ Ci which
has probability 1/9. So we get E[|NCi∪C0

(v) ∩ Vj |] ≥ pn/30. So by Chernoff’s

bound, the probability that |NCi∪C0
(v)∩ Vj |] < pn/40 is less than e−pn/960. Thus,

with probability at least 1− 9n−1e−pn/960, (ii) holds. �

Claim 4.3. For each i = 1, 2, 3, there is a rainbow matching Mi in Gi such that the
following hold:

(a) |Mi| ≥ n/3− n1−γ .
(b) For every set of d large colours D, define Di to be the subgraph induced

by edges on Vi which have colours from D. Then the pair (Di,Mi) is a
(d, q−4, q, n/3)-expander.

Proof. Fix i = 1, 2, 3. Let D be a set of d large colours. By the pigeonhole principle
there exists some j ∈ {1, 2, 3} such that |D ∩ Cj | ≥ d/3. Since Gi,j is coloured
(ε/8, p/3, n/3)-typical it follows from Lemma 2.8 that Gi,j [D ∩ Cj ] has at most
32(p/3)−2(n/3)/(d/3) = 96(p/3)−2(n/3)/d vertices of degree ≤ (p/3)(d/3)/2 =
pd/18, which implies that so does Di (note that Di potentially has more colours
but that can only increase the degrees of vertices). Therefore by Lemma 3.2 (applied

to D and Gi) with probability at least 1− 2e−n1−ε/8

(i) and (ii) hold with respect
to Di. Thus, by the union bound, the probability that |Mi| < n/3− n1−γ or there

exists some Di which is not (d, q−4, q, n/3)-expander is at most
(|C(G)|

d

)
2e−n1−ε/8 ≤

(n+ n1−ε)d · 2e−n1−ε/8 � 1. �

LetM = M1∪M2∪M3. We claim thatM can be “extended” to a perfect rainbow
matching M ′ of H using colours of C0 ∪ (C(G) \ C(M)) such that |M ′�M | ≤
98n1−γ log n

log d . Indeed, pick r largest such that |M ′| = |M | + r, M ′ is rainbow and

|M ′�M | ≤ 49r logn
log d . If M ′ is not a perfect matching, then there exist vertices

x0 ∈ X, y0 ∈ Y outside of M ′. From Claim 4.3 (a), we have |M | ≥ 3(n/3 − n1−γ)
which gives r ≤ 3n1−γ .

First of all, note that M must be missing at least 6d many large colours (since
there are at least n + 6d large colours in total). For j = 1, 2, . . . , 6, let Dj be
disjoint collections of such large colours each of size d. Note that since these colours
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are large, Claim 4.3 tells us that for every i = 1, 2, 3 and j = 1, 2, . . . , 6 the pair
(Dj

i ,Mi) is a (d, q−4, q, n/3)-expander.
Denote M ′

i := Mi ∩ M ′, for all i = 1, 2, 3. Note that |M ′
i�Mi| ≤ |M ′�M | ≤

147n1−γ log n
log d ≤ qn/30d2. It follows that by Lemma 3.13, for every i = 1, 2, 3 and

j = 1, 2, . . . , 6 the pair (Dj
i ,M

′
i) is a (d, q−4, 2q, n/3)-expander.

Setting A = q−4, ε′ = 2q, � = 8
⌈

log(n/3)
log(d/4A)

⌉
≤ 16 logn

log d notice that we have

4d−1/2 ≤ A−1 ≤ ε′/100 � 1 and d log d ≥ 8A2 log(n/3). So by Lemma 3.12,
for each i = 1, 2, 3 there is a subset Ji ⊆ V (Gi) of size at most 4n/q4d such that for
all x, y ∈ Vi \ Ji lying in different parts of the bipartition of Gi, there is a rainbow
(D2i−1

i ∪ D2i
i )-(M ′

i)-alternating path of length at most � from x to y in V (Gi).
To finish the proof we need the following two simple claims, whose statements are
illustrated by Figure 1.

Claim 4.4. There is an edge x1y
′
1 ∈ M ′

1 such that x1, y
′
1 �∈ J1 and x0y

′
1 ∈ E(H)

such that either c(x0y
′
1) �∈ C(M ′) or there exists an edge x2y2 ∈ M ′

2 such that
c(x0y

′
1) = c(x2y2) with x2, y2 �∈ J2.

Proof. Recall that |NC2∪C0
(x0) ∩ V1| ≥ pn/40 and so we have one of the following

two options:

(i) |NC0
(x0) ∩ V1| ≥ pn/80,

(ii) |NC2
(x0) ∩ V1| ≥ pn/80.

Case 1. Let F (x0) be the set of vertices y′1 ∈ V1 satisfying one of the “forbidden”
properties below.

(F1) y′1 ∈ NC0∪C2
(x0) ∩ V1 \ V (M ′

1). The number of these is at most

|V1\V (M ′
1)| ≤ |V1\V (M1)|+2|M1�M ′

1| ≤ n1−ε/8

3 +n1−γ+294n1−γ logn
log d �

pn/80.
(F2) y′1 ∈ J1 or the vertex that y1 is matched to in M ′

1 is in J1. The number of
these is at most |J1| ≤ 4n/q4d � pn/80.

(F3) y′1 ∈ V1 such that c(x0y1) ∈ C0 ∩ C(M ′). Notice that this is possible as
when we extended M to M ′ we potentially used some of the colours in C0.
However, the number of these is at most |M ′\M | ≤ 147n1−γ logn

log d � pn/80.

Since |F (x0)| � |NC0
(x0) ∩ V1| we can pick a vertex y1 ∈ NC0

(x0) ∩ V1 not
satisfying (F1)–(F3). Let x1 be the vertex that is matched to y′1 in M1. It is easy
to check that the following hold: c(x0y

′
1) ∈ C0 \ C(M ′), x1, y

′
1 /∈ J1.

Case 2. In this case F (x0) will include the vertices y′1 satisfying (F1) or (F2) and
additionally the properties below.

(F4) y′1 ∈ NC2
(x0) ∩ V1 such that c(x0y

′
1) ∈ C2 \ C(M ′

2). The number of these

is at most |C2 \ C(M ′
2)| ≤ |C2 \ C(M2)| + |M2�M ′

2| ≤ n1−ε/8

3 + n1−γ +

147n1−γ logn
log d � pn/80.

(F5) y′1 ∈ NC2
(x0) ∩ V1 such that c(x0y

′
1) ∈ C(M ′

2) but if we look at the edge
x2y2 of M ′

2 which has colour c(x0y
′
1) either x2 ∈ J2 or y2 ∈ J2. The number

of these is at most |J2| ≤ 4n/q4d � pn/80.

Since |F (x0)| � |NC2
(x0) ∩ V1| we can pick a vertex y′1 ∈ NC2

(x0) ∩ V1 not
satisfying (F1), (F2), (F4), (F5). Let x1 be the vertex that is matched to y′1 in
M1 and let x2y2 be the edge in M ′

2 of colour c(x0y1) (by the choice of y′1 such an
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Figure 1. The alternating path P1 ∪ {x1y
′
1, x

′
1y1, x0y

′
1, y0x

′
1} and

alternating cycles P2 ∪ {x2y2} and P3 ∪ {x3y3}. The dashed edges
denote edges of M ′ which are removed from the matching. The
solid edges denote edges of colours in ∪6

j=1D
j∪C0 which are added

to the matching.

edge exists). Additionally, it is easy to check that the following hold: x1, y
′
1 /∈ J1,

x2, y2 /∈ J2. �

Claim 4.5. There is an edge x′
1y1 ∈ M ′

1 such that x′
1 �= x1, y1 �= y′1 and x′

1, y1 �∈ J1
and y0x

′
1 ∈ E(H) such that c(y0x

′
1) �= c(x0y

′
1) and either c(y0x

′
1) �∈ C(M ′) or there

exists an edge x3y3 ∈ M ′
3 such that c(y0x

′
1) = c(x3y3) with x3, y3 �∈ J2.

Proof. The proof is identical to the proof of Claim 4.4, with extra conditions
x′
1 �= x1,y

′
1 �= y1, c(y0x

′
1) �= c(x0y

′
1) which affect the calculations on F (y0) only

by negligible amount. So we omit the proof. �

We may assume both Claim 4.4 and Claim 4.5 hold with the second outcome, as
otherwise the proof is even simpler (in that case P2 or P3 can be taken as empty,
in the proof below). Let x1, y1, x

′
1, y

′
1, x2, y2, x3, y3 be as in the claims. For each

i = 1, 2, 3 there is a rainbow (D2i−1 ∪ D2i)-M
′
i -alternating path Pi of length at

most � from xi to yi in Vi. Note that the paths P1, P2, P3 don’t share any vertices
or colours. Finally let M ′′ be obtained from M ′ by switching the matching edges
along alternating cycles P2 ∪ {x2y2} and P3 ∪ {x3y3}, and by switching along the
alternating path P1 ∪ {x0y

′
1, x1y

′
1, x

′
1y0, x

′
1y1} (see Figure 1). It is not hard to see

that this is a rainbow matching with |M ′′| = |M ′|+ 1 = |M |+ r+ 1 and such that

|M ′′�M | ≤ |M ′�M |+ 3�+ 6 ≤ 49r
log n

log d
+ 48

log n

log d
+ 6 ≤ 49(r + 1)

logn

log d
.

This contradicts the maximality of M ′; therefore M ′ must have been a perfect
rainbow matching of H. �

As a corollary of the above theorem, coloured typical graphs have rainbow match-
ings covering all but at most O(logn/ log log n) vertices.

Corollary 4.6. Let n−1 � k−1 � p ≤ 1, n−1 � ε < 1 and fix d = k logn
log logn . Let

G be coloured (ε, p, n)-typical bipartite graph with parts of size ≥ n and at least n
colours. Then G has a rainbow matching of size n− 6d.

Proof. Let X,Y be the parts of the bipartition of G. By the assumptions, we have
n ≤ |X|, |Y | ≤ n+ n1−ε. Fix n′ = n− 6d, and delete vertices from each part of G
to get a balanced bipartite graph G′ with parts of size n′.
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Notice that the number of vertices deleted from each part of G is between 6d
and n1−ε + 6d � n′1−ε/2. We claim that G′ is (ε/2, p, n′)-typical. Indeed, for
every vertex v ∈ V (G′), pn(1 − n−ε) − n1−ε − 6d ≤ dG′(v) ≤ pn(1 + n−ε), thus
dG′(v) = pn′(1 ± n′−ε/2). Similarly, it can be shown that for any u, v ∈ V (G′),
dG′(u, v) = p2n′(1±n′−ε/2), and that for every colours c, c′ we have eG′(c), eG′(c′) =

pn′(1±n′−ε/2
) and |VG′(c)∩VG′(c′)∩X|, |VG′(c)∩VG′(c′)∩Y | = p2n′(1±n′−ε/2

).
This implies that G′ is (ε/2, p, n′)-typical and has at least n = n′ + 6d colours.

Thus the assumptions of Theorem 4.1 are satisfied with H and G being the
same graph, G′. It follows that G′ has a perfect rainbow matching, which induces
a rainbow matching of size n′ = n− 6d in G, as required. �

We are now ready to reduce the proof of one of our main results from Corol-
lary 4.6.

Proof of Theorems 1.2 and 1.6. As mentioned in Section 1.1, Theorems 1.2 and 1.6
are equivalent. So we will just prove Theorem 1.6.

We may assume n ≥ n0 for some implicit n0 sufficiently large, as otherwise
the theorem is vacuously true for k = n0 log logn0

logn0
. So we choose k such that 1 �

k � n0. Let Kn,n be properly n-edge-coloured. Since every colour forms a perfect
matching, we have that Kn,n is coloured (1, 1, n)-typical with ε = 1 � 1/n0. Thus,
we can apply Corollary 4.6 to this Kn,n and obtain a rainbow matching of size
n− k log n/ log log n, as desired. �

5. Transversals in generalized latin squares

In this section we prove Theorem 1.3. We will use the following result of
Pokrovskiy, Montgomery and Sudakov [22].

Theorem 5.1. There exists α > 0 such that for all n−α/α < ε < 1 the following
holds. If Kn,n is properly edge-coloured graph with at most (1− ε)n colours having
more than (1 − ε)n edges then Kn,n has (1 − ε)n edge disjoint perfect rainbow
matchings.

We’ll also use Lemma 5.2 giving small rainbow matchings in coloured bipartite
graphs.

Lemma 5.2. Let G be a properly edge-coloured balanced bipartite graph with δ(G) ≥
d, parts of size n, with every colour appearing at most n/12 times and such that
n ≥ 3d+ 12. Then G has a rainbow matching of size at least 3d/2.

Proof. Let the parts of G be A,B with |A| = |B| = n. Let M1 be a maximum
rainbow matching inG. For contradiction, assume |M1| < 3d/2. Let A1 := V (M1)∩
A, B1 := V (M1) ∩B, let A0 := A \A1 and B0 := B \B1.

Let B′
1 be the set of vertices in B1 which have at least two edges of unused colours

going to A0. Similarly define A′
1. Note that if there is any edge ab ∈ M1 such that

a ∈ A′
1 and b ∈ B′

1 then we can get a larger matching by replacing ab by different
coloured edges from a to B0 and b to A0, thus contradicting the maximality of
M1. It follows that |M1| ≥ |A′

1|+ |B′
1|. By the minimum degree condition we have

eG(A0, B) ≥ d|A0|. Note also that all edges of unused colours must be adjacent to
A1 or B1. Let ẽG(A0, B1) be the number of edges going from A0 to B1 using only
unused colours. Using that every colour occurs ≤ n/12 times and |M1| = |B1|, we
have

ẽG(A0, B1) ≥ eG(A0, B)− |M1|n/12 ≥ d|A0| − |B1|n/12.
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On the other hand, from the definition of B′
1,

ẽG(A0, B1) ≤ |A0||B′
1|+ |B1|.

Thus, we get that |B′
1| ≥ d − |B1|

|A0| (1 + n/12) ≥ 3d/4 (using |B1| ≤ 3d/2, and

|A0| ≥ n − 3d/2 and n ≥ 3d + 12). Similarly, |A′
1| ≥ 3d/4. Therefore we get that

|M1| ≥ |A′
1|+ |B′

1| ≥ 3d/2. �
Before proving Theorem 1.7 we explain main ideas. The basic idea is to employ

Theorem 4.1. Given a proper edge-colouring of Kn,n with roughly n log n/ log log n
many colours, by Theorem 5.1, we may assume that at least n − o(n) colours
appear n − o(n) times. Call these colours large. The rest of the colours will be
so-called small colours. Note that small colours might even appear only once in
the entire graph Kn,n. However, since there are many of them, that is, roughly
of order n log n/ log log n, we can greedily select a rainbow matching M0 of size at

least O( log n
log logn ) + t containing only small colours (this is done in Claim 5.3). Now

look at the graph obtained from Kn,n by keeping only the edges of large colours
and deleting the vertices of M0 (note that in particular we exclude all the colours
appearing on M0). This graph might have some bad vertices of low degree, since
they were adjacent to many edges of small colours in Kn,n. However, using the
property that large colours appear n− o(n) times and there are n− o(n) many of
them one can prove that there are only few such bad vertices. So we can delete
them as well and call the remaining graph G. We show that G is coloured typical.
Also note that G contains n− t = n− |M0|+O( log n

log log n ) large colours. Finally let

H to be the original Kn,n minus the vertices and colours of M0 removed. After
checking that the graphs H and G satisfy all the conditions of Theorem 4.1 we
obtain a rainbow matching M in H of size |V (H)| = n− |M0|. Then M0 ∪M is a
rainbow matching of size exactly n in Kn,n.

Proof of Theorem 1.7. We may assume n ≥ n0 for some sufficiently large n0. As
otherwise the theorem is true vacuously for k0 = n0 log log n0

logn0

. Choose k such that

1 � k � n0. Let α be derived from Theorem 5.1. Fix d = k logn
72 log log n and ε0 :=

n−α/2.
Let Kn,n be properly coloured with at least 72nd colours. By Theorem 5.1, we

may assume that more than (1− ε0)n colours have more than (1− ε0)n edges. We
call such colours large. If a colour has less than (1− ε0)n edges we call it small.

Choose t, so that the number of large colours is n − t. If the number of large
colours is > n, then we instead fix t = 0. This way 0 ≤ t ≤ n1−α/2 always holds.

Claim 5.3. There exists a rainbow matching of small colour edges of size t+ 6d.

Proof. If a small colour appears less than n/12 times we call it tiny, otherwise
medium. Let m be the number of medium colours.

If m ≥ t+ 6d, then, using that n/12 ≥ 3(t+ 6d), we can greedily pick one edge
per medium colour and obtain a rainbow matching of size t+6d. So we may assume
the number of medium colours is less than t + 6d. As the total number of edges
is n2, the number of large colours must be less than (1 + 2ε0)n. Thus there are
at least kn log n/ log log n− (1 + 2ε0)n− t− 6d ≥ kn log n/2 log log n tiny colours.
Furthermore, we may assume m < t− 12d. Indeed, we can greedily pick a rainbow
matching Mtiny of tiny colours of size 18d. We can do this because each edge in
Mtiny forbids 2n edges which intersect it, so it forbids at most 2n tiny colours, but
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the number of available tiny colours is at least kn log n/2 log log n = 36dn. Thus, if
m ≥ t− 12d, then we can find a rainbow matching Mmedium of medium colours of
size t− 12d greedily in Kn,n \V (Mtiny), since each medium colour appears at least
n/12 ≥ 3(t + 6d) times. Then Mmedium ∪Mtiny is a matching of small colours of
size t+ 6d.

So we may assume m < t − 12d. Let G be the subgraph of Kn,n induced by
tiny colours. Note that, by definition of t, every vertex is incident to at least t
edges of small colours. Since there are m medium colours, we obtain that δ(G) ≥
t−m ≥ 12d. We can apply Lemma 5.2 to G and obtain a rainbow matching Mtiny

of tiny colours of size at least 3(t−m)/2 > t−m+ 6d, since m < t − 12d. Again
in Kn,n \ V (Mtiny) we can greedily pick a rainbow matching Mmedium of size m of
medium colours, since each one of these colours appears at least n/12 ≥ 3(t+ 6d)
times. Taking Mmedium ∪Mtiny finishes the proof. �

Let M0 be a rainbow matching of size t + 6d from the above claim. Let Vsmall

be the set of vertices that are incident to more than 2
√
ε0n small-coloured edges.

Note that |Vsmall| ≤ 2
√
ε0n (otherwise, we would get more that 2ε0n

2 small colour
edges in the graph, contradicting “more than (1 − ε0)n colours have more than
(1 − ε0)n edges”). Let G be obtained from Kn,n by removing all edges of small
colours and all vertices from V (M0) ∪ Vsmall. Let H be Kn,n with all colours and
vertices of M0 removed. It is easy to see that G ⊂ H. Next we check that we can
apply Theorem 4.1 to G and H.

Notice that H is balanced bipartite with parts of size n′ = n−t−6d. Notice that
the parts in G have size ≥ n′−|Vsmall | ≥ n′−2

√
ε0n = n′−2n1−α/4 ≥ n′(1−n′−α/5)

and also that the number of colours in G is ≥ (1 − ε0)n ≥ n′(1 − n′−α/5). Every
vertex v ∈ V (H) satisfies |NH(v) ∩ V (G)| ≥ n − 2|M0| − |Vsmall| ≥ n − 2

√
ε0n −

2(t+ 6d) ≥ 0.3n′.
Next we show that G is coloured (α/5, 1, n′)-typical. Using the fact that G

consists of edges of only large colours and that vertices in G are adjacent to at most
2
√
ε0n small coloured edges in the original graph Kn,n, we get that the following

is true for any u, v ∈ V (G) on the same side of G and colours c, c′ ∈ C(G).

dG(v) ≥ n− 2
√
ε0n− |Vsmall| − 2|M0| ≥ (1− n′−α/5)n′

dG(u, v) ≥ n− 4
√
ε0n− |Vsmall| − 2|M0| ≥ (1− n′−α/5)n′

|EG(c)| ≥ (1− ε0)n− |Vsmall| − 2|M0| ≥ (1− n′−α/5)n′

|VG(c) ∩ VG(c
′) ∩X| ≥ (1− 2ε0)n− |Vsmall| − |M0)| ≥ (1− n′−α/5)n′

|VG(c) ∩ VG(c
′) ∩ Y | ≥ (1− 2ε0)n− |Vsmall| − |M0| ≥ (1− n′−α/5)n′

Note that this is enough to conclude that all three graphs G, GX,C and GY,C are
(uncoloured) (α/5, 1, n′)-typical. Finally G contains n− t = n′ + 6d large colours.
So G and H satisfy all the assumptions of Theorem 4.1, therefore we obtain a
perfect rainbow matching M in H (whose colours, by definition, are disjoint from
M0). Finally, M ∪M0 is a perfect rainbow matching in Kn,n. �

6. Large matchings in Steiner systems

In this section we improve the bound on Brouwer’s conjecture about matchings
in Steiner triple systems.
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Proof of Theorem 1.5. We may assume n ≥ n0 for n0 sufficiently large. Choose
n0

−1 � k−1 � 1 and fix d = k log n
6 log logn . We assume V (S) = {x1, x2, . . . , xn}. In a

Steiner triple system we have n ≡ 1 or 3 (mod 6). We’ll first prove the result when
n ≡ 3 (mod 6). In the other case, the same proof works if we apply it to a subgraph
of S formed by deleting a vertex. Let G be an auxiliary bipartite simple graph with
bipartition X = Y = V (S), colour set V (S), and edge ab having colour c whenever
{a, b, c} ∈ E(S). Using that S is a Steiner triple system, notice that G is properly
n-edge-coloured Kn,n minus a perfect rainbow matching. It has codegrees n − 2
and hence it is in particular coloured (1− o(1), 1, n)-typical.

We randomly construct a bipartite graph H as follows. Partition [n] into three
disjoint sets IX , IY , IC by putting independently every i in one of the sets IX , IY , IC
with probability 1/3. Let A = {xi : i ∈ IX}, B = {xi : i ∈ IY }, C = {xi : i ∈ IC}.
Let H be the subgraph of G consisting of edges from A to B having a colour in C.
We claim that the following simultaneously hold with positive probability:

(P1) H is properly coloured (1/8, 1/3, n/3)-typical.
(P2) |A| = |B| = |C| = n/3.

We show that (P1) holds with high probability and (P2) holds with positive
probability; thus the claim will follow.

(P1) holds with probability at least 1− o(n−3).
We can apply Lemma 2.6 to H as it is easy to check that it satisfies the assump-

tions in (b) with q2.6 = 1/3, ε2.6 = 1−o(1), p2.6 = 1. Indeed, since S is 3-uniform,
we have that for every edge e ∈ G going through xi ∈ X, xj ∈ Y, x� ∈ C(G)
the indices i, j, � are distinct. Thus Property (i) holds with probability at least

1− e−n1−ε/2 ≥ 1− o(n−3).
(P2) holds with probability at least n−3.
Notice that out of all the possible outcomes of the random variables |A|, |B|, |C|,

the outcome |A| = |B| = |C| = n/3 is the most likely one which happens with
probability at least 1/n3. (The outcome |A| = a, |B| = b, |C| = c has probability
1
3n

(
n

a,b,c

)
. For n ≡ 0 (mod 3) the multinomial coefficient

(
n

a,b,c

)
is maximized when

a = b = c).
Now we are ready to apply Corollary 4.6 to H. We obtain a rainbow matching

M in H of size at least n/3 − 6d = n/3 − k log n/ log log n. Now it easy to see
that the triples MS = {(a, b, c(ab))|ab ∈ M} induce a hypergraph matching in S
of the same size. Indeed, the fact that (a, b, c(ab)) is an edge of S for all ab ∈ M
follows by definition of G. To see that MS is a matching notice that for distinct
edges a1b1, a2b2 ∈ M , all four endpoints a1, a2, b1, b2 correspond to four distinct
vertices in S because (A,B,C) induce a partition of V (S) and M is a matching.
Finally c(a1b1) �= c(a2b2) since M is rainbow and c(a1b1), c(a2b2) are distinct from
a1, a2, b1, b2 since (A,B,C) induce a partition of V (S). �

7. Concluding remarks

A far reaching generalisation of the Ryser-Brualdi-Stein conjecture was proposed
in 1975 by Stein [27]. He defined an equi-n-square as an n × n array filled with n
symbols such that every symbol appears exactly n times. Notice that Latin squares
are equi-n-squares, but there are many equi-n-squares which are not Latin. Stein
[27] conjectured that all equi-n-squares contain a transversal of size n− 1. If true,
this would imply that Latin squares have size n− 1 transversals.
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Recently, the second and third author [23] disproved Stein’s conjecture by con-
structing equi-n-squares without transversals of size n − log n/42. On the other
hand, our Theorem 1.2 gives transversals in Latin squares of size at least n −
O(logn/ log log n). Thus, combining these two results, we obtain a full separation
between Latin and equi-n-squares.

Despite being false, Stein’s conjecture remains one of the outstanding problems
in the area. In particular it would be very interesting to determine whether it is
true asymptotically i.e. is it true that every equi-n-square has a transversal of size
n− o(n). Here, the best currently known result is due to Aharoni, Berger, Kotlar,
and Ziv [1], who used topological methods, to show that equi-n-squares always have
a transversal of size at least 2n/3.

All our results can be rephrased as results about finding large matchings in 3-
uniform hypergraphs. Here the results are about linear 3-uniform hypergraphs i.e.
ones where every pair of vertices are contained in at most one edge. As mentioned
in the introduction, n × n Latin squares correspond to linear n-regular, 3-partite,
3-uniform hypergraphs with n vertices in each part. Using the technique of Rödl’s
nibble, there have been general results proved about finding large matchings in
linear regular (and nearly-regular) hypergraphs. In particular Alon, Kim, and
Spencer [3] showed that linear 3-uniform, pn-regular hypergraphs of order n have

matchings of size n − O(n1/2 log3/2 n). Our results show that if additionally a
certain graph associated with the hypergraph is pseudorandom, then the matching
can cover all but O(log / log log n) vertices. Specifically, for a 3-uniform hypergraph
H, define its shadow ∂H to be the graph formed by replacing every edge of H by a
triangle. Then Corollary 4.6 is equivalent to the following.

Theorem 7.1. Let n−1 � k−1 � p ≤ 1, n−1 � ε < 1. Let H be a 3-uniform,
tripartite linear hypergraph with partition (V1, V2, V3), |V1| = |V2| = |V3| = n.
Suppose that for all i �= j, the induced subgraph ∂H[Vi ∪ Vj ] of the shadow between

Vi and Vj is (ε, p, n)-typical. Then H has a matching of size n− k logn
log logn .

If we only assume (ε, p, n)-regularity rather than (ε, p, n)-typicality then the hy-
pergraph above is nearly pn-regular and is only known to have a matching of size
n − n1−γ (e.g. from Lemma 2.5). With the added typicality condition we get a
much larger matching. For non-tripartite hypergraphs we can prove the following
analogue.

Theorem 7.2. Let n−1 � k−1 � p ≤ 1, n−1 � ε < 1. Let H be a 3-uniform linear
hypergraph on n vertices. Suppose that for vertex v we have |N∂H(v)| = (1±n−ε)pn
and for every pair of vertices u, v, |N∂H(v)| = (1±n−ε)pn and |N∂H(u)∩N∂H(v)| =
(1± n−ε)p2n. Then H has a matching of size n− k log n

log log n .

This theorem is proved identically to Theorem 1.5. Indeed, the only change that
needs to be made is to observe that the graph G constructed in that proof will
be (ε, p, n)-typical (rather than (1− o(1), 1, n)-typical as in Theorem 1.5). Due to
applications to Latin squares and Steiner triple systems, it is worthwhile to study
further the hypergraphs appearing in Theorems 7.1 and 7.2. In particular it would
be interesting to determine if they always have matchings of size n− O(1) or not.



320 P. KEEVASH, A. POKROVSKIY, B. SUDAKOV, AND L. YEPREMYAN

Acknowledgments

We’d like to thank a referee for a careful reading of the paper and for many
suggestions that improved the presentation. Part of this research was done when
the third author visited London School of Economics. He wants to thank LSE for
its hospitality and for creating a stimulating research environment.

References

[1] Ron Aharoni, Eli Berger, Dani Kotlar, and Ran Ziv, On a conjecture of Stein, Abh. Math.
Semin. Univ. Hambg. 87 (2017), no. 2, 203–211, DOI 10.1007/s12188-016-0160-3. MR3696146

[2] Saieed Akbari and Alireza Alipour, Transversals and multicolored matchings, J. Combin.
Des. 12 (2004), no. 5, 325–332, DOI 10.1002/jcd.20014. MR2079255

[3] Noga Alon, Jeong-Han Kim, and Joel Spencer, Nearly perfect matchings in regular simple
hypergraphs, Israel J. Math. 100 (1997), 171–187, DOI 10.1007/BF02773639. MR1469109

[4] Noga Alon, Michael Krivelevich, and Benny Sudakov, List coloring of random and pseudo-
random graphs, Combinatorica 19 (1999), no. 4, 453–472, DOI 10.1007/s004939970001.
MR1773652

[5] Kazuoki Azuma, Weighted sums of certain dependent random variables, Tohoku Math. J. (2)
19 (1967), 357–367, DOI 10.2748/tmj/1178243286. MR221571
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