SMALL DEVIATIONS AND CHUNG'S LAW OF ITERATED LOGARITHM FOR A HYPOELLIPTIC BROWNIAN MOTION ON THE HEISENBERG GROUP

MARCO CARFAGNINI AND MARIA GORDINA

Abstract

A small ball problem and Chung's law of iterated logarithm for a hypoelliptic Brownian motion in Heisenberg group are proven. In addition, bounds on the limit in Chung's law are established.

Contents

1. Introduction
2. Hypoelliptic Brownian motion on the Heisenberg group
3. Main results
4. Preliminary estimates 328
5. Proof of the main results 331
References

1. Introduction

Let E be a topological space and $\left\{X_{t}\right\}_{0 \leqslant t \leqslant 1}$ be an E-valued stochastic process with continuous paths such that $X_{0}=x_{0} \in E$ a.s. Denote by $W_{x_{0}}(E)$ the space of E-valued continuous functions on $[0,1]$ starting at x_{0}, then we can view X_{t} as a $W_{x_{0}}(E)$-valued random variable. Given a norm $\|\cdot\|$ on $W_{x_{0}}(E)$, the small ball problem for X_{t} consists in finding the rate of explosion of

$$
-\log \mathbb{P}(\|X\|<\varepsilon)
$$

as $\varepsilon \rightarrow 0$. More precisely, a process X_{t} is said to satisfy a small deviation principle with rates α and β if there exist a constant $c>0$ such that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}-\varepsilon^{\alpha}|\log \varepsilon|^{\beta} \log \mathbb{P}(\|X\|<\varepsilon)=c . \tag{1.1}
\end{equation*}
$$

The values of α, β and c depend on the process X_{t} and on the chosen norm on $W_{x_{0}}(E)$. Small deviation principles have many applications including metric entropy estimates and Chung's law of the iterated logarithm. We refer to the survey paper [15] for more details. In our paper we are mostly interested in connections of a small deviation principle to Chung's law of the iterated logarithm.

[^0]We say that a process X_{t} satisfies Chung's law of the iterated logarithm with rate $a \in \mathbb{R}_{+}$if there exists a constant C such that

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}\left(\frac{\log \log t}{t}\right)^{a} \max _{0 \leqslant s \leqslant t}\left|X_{s}\right|=C . \tag{1.2}
\end{equation*}
$$

When X_{t} is a Brownian motion, it was proven in a famous paper by K.-L. Chung in 1948 that (1.2) holds with $a=\frac{1}{2}$ and $C=\frac{\pi}{\sqrt{8}}$. If $W_{x_{0}}(E)$ is a Banach space, and the law μ of X_{t} is a Gaussian measure on $W_{x_{0}}(E)$, then one can use a scaling property of the process X_{t} to prove Chung's law of the iterated logarithm from a small deviation principle.

Small deviation principle for a Brownian motion and related processes have been extensively studied, we mention only a few most relevant to our results. In [2] the authors considered the case of a one-dimensional Brownian motion and Hölder norms, in 14 a Brownian sheet in Hölder norms has been considered, 13] studied the integrated Brownian motion in the uniform norm, and [6] the m-fold integrated Brownian motion in both the uniform and L^{2}-norm. In 18 a small deviation principle and Chung's law of iterated logarithm are proven for some stochastic integrals and in particular for Lévy's stochastic area.

In the current paper we consider a hypoelliptic Brownian motion g_{t} on the Heisenberg group \mathbb{H} starting at the identity e in \mathbb{H}. The group \mathbb{H} is the simplest example of a sub-Riemannian manifold, and it comes with a natural left-invariant distance, the Carnot-Carathéodory distance $d_{c c}$. We then consider the uniform norm

$$
\|g\|_{W_{0}(\mathbb{H})}:=\max _{0 \leqslant t \leqslant 1}\left|g_{t}\right|
$$

on the path space $W_{0}(\mathbb{H})$ of \mathbb{H}-valued continuous curves starting at the identity, where $|\cdot|$ is a norm on \mathbb{H} equivalent to the Carnot-Carathéodory distance $d_{c c}$. We refer for details to Section 2,

Our main results include Theorem [3.2] where we prove Chung's law of the iterated logarithm with $a=\frac{1}{2}$ for a hypoelliptic Brownian motion g_{t}. As a consequence of Theorem [3.2 we prove Theorem 3.4 which represents a small deviation principle for the hypoelliptic diffusion g_{t} with respect to the norm $\|\cdot\|_{W_{0}(\mathbb{H})}$. More precisely, we prove that there exists a finite positive constant c such that (1.1) holds with $\alpha=2$ and $\beta=0$, and we provide a lower and upper bound on c. Note that finding the constant c explicitly is difficult even in more studied cases, see for example [13, Remark 2.2].

Let us explain now how our setting differs from known results. First observe that the hypoelliptic Brownian motion g_{t} is an \mathbb{R}^{3}-valued stochastic process, but it is not a Gaussian process. Therefore we cannot rely on the properties of Gaussian measures on Banach spaces, such as log-concavity and Anderson's inequality which are common tools in the subject. We refer to [1,5 for more details about Gaussian measures on Banach spaces. These properties have been used to show the existence of a small deviations principle for some processes such as an integrated Brownian motion in [13], and a Brownian motion with values in a finite dimensional Banach space in [7].

Generally, if a small deviation principle is known, then it can be used together with scaling properties of the process to show Chung's law of the iterated logarithm. For example, in [18] a small deviation principle for Lévy's stochastic area A_{t} is first proven and then, using that $A_{\varepsilon t} \stackrel{(d)}{=} \varepsilon A_{t}$ for any t and $\varepsilon>0$, Chung's law of the
iterated logarithm for the process A_{t} follows. For related work we also refer to [8]. It is also possible to prove the converse. In [13] the authors first prove Chung's law of the iterated logarithm for the integrated one-dimensional Brownian motion $\int_{0}^{t} b_{s} d s$. Then, using the scaling property $\int_{0}^{\varepsilon t} b_{s} d s \stackrel{(d)}{=} \varepsilon^{\frac{3}{2}} \int_{0}^{t} b_{s} d s$, a small deviation principle for $\int_{0}^{t} b_{s} d s$ is shown.

Most relevant to our work is [13, where the existence of the limit (1.1) for $X_{t}:=\int_{0}^{t} b_{s} d s$ follows from Anderson's inequality for Gaussian measures. Chung's law of the iterated logarithm is then used to prove that the limit is finite. This method cannot be used directly in our setting since the hypoelliptic Brownian motion g_{t} is not a Gaussian process, and therefore we cannot rely on Anderson's inequality. In our case we first prove in Proposition 4.3 that if the limit (1.1) exists then it is strictly positive and finite. We then prove Chung's law of the iterated logarithm for g_{t} and use it in place of Anderson's inequality to show the existence of the limit (1.1). As a by-product we have bounds on this limit in terms of the lowest Dirichlet eigenvalues as given in Theorem 5.6. The mathematical literature on the subject is vast, and we mention only the most relevant in terms of the techniques and results. In particular, a similar state space is considered in [16, 17] though the results are different.

The paper is organized as follows. In Section 2 we describe the Heisenberg group \mathbb{H} and the corresponding sub-Laplacian and hypoelliptic Brownian motion. In Section 3 we state the main results of this paper, namely Chung's law of the iterated logarithm in Theorem 3.2 and a small deviation principle in Theorem 3.4 Section 4 contains estimates that are needed to prove Theorem 3.2 and Theorem 3.4. We conclude Section 5 with the proof of the main results.

2. Hypoelliptic Brownian motion on the Heisenberg group

2.1. Heisenberg group as Lie group. The Heisenberg group \mathbb{H} as a set is $\mathbb{R}^{3} \cong$ $\mathbb{R}^{2} \times \mathbb{R}$ with the group multiplication given by

$$
\begin{aligned}
& \left(\mathbf{v}_{1}, z_{1}\right) \cdot\left(\mathbf{v}_{2}, z_{2}\right):=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+\frac{1}{2} \omega\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)\right) \\
& \text { where } \mathbf{v}_{1}=\left(x_{1}, y_{1}\right), \mathbf{v}_{2}=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}, \\
& \omega: \mathbb{R}^{2} \times \mathbb{R}^{2} \longrightarrow \mathbb{R} \\
& \omega\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right):=x_{1} y_{2}-x_{2} y_{1}
\end{aligned}
$$

is the standard symplectic form on \mathbb{R}^{2}. The identity in \mathbb{H} is $e=(0,0,0)$ and the inverse is given by $(\mathbf{v}, z)^{-1}=(-\mathbf{v},-z)$.

The Lie algebra of \mathbb{H} can be identified with the space $\mathbb{R}^{3} \cong \mathbb{R}^{2} \times \mathbb{R}$ with the Lie bracket defined by

$$
\left[\left(\mathbf{a}_{1}, c_{1}\right),\left(\mathbf{a}_{2}, c_{2}\right)\right]=\left(0, \omega\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)\right) .
$$

The set $\mathbb{R}^{3} \cong \mathbb{R}^{2} \times \mathbb{R}$ with this Lie algebra structure will be denoted by \mathfrak{h}.
Let us now recall some basic notation for Lie groups. Suppose G is a Lie group, then the left and right multiplication by an element $k \in G$ are denoted by

$$
\begin{array}{lr}
L_{k}: G \longrightarrow G, & g \longmapsto k^{-1} g, \\
R_{k}: G \longrightarrow G, & g \longmapsto g k .
\end{array}
$$

Recall that the tangent space $T_{e} G$ can be identified with the Lie algebra \mathfrak{g} of leftinvariant vector fields on G, that is, vector fields X on G such that $d L_{k} \circ X=X \circ L_{k}$, where $d L_{k}$ is the differential of L_{k}. More precisely, if A is a vector in $T_{e} G$, then we denote by $\tilde{A} \in \mathfrak{g}$ the (unique) left-invariant vector field such that $\tilde{A}(e)=A$. A left-invariant vector field is determined by its value at the identity, namely, $\tilde{A}(k)=d L_{k} \circ \tilde{A}(e)$.

For the Heisenberg group the differential of left and right multiplication can be described explicitly as follows.

Proposition 2.1. Let $k=\left(k_{1}, k_{2}, k_{3}\right)=\left(\mathbf{k}, k_{3}\right)$ and $g=\left(g_{1}, g_{2}, g_{3}\right)=\left(\mathbf{g}, g_{3}\right)$ be two elements in \mathbb{H}. Then, for every $v=\left(v_{1}, v_{2}, v_{3}\right)=\left(\mathbf{v}, v_{3}\right)$ in $T_{g} \mathbb{H}$, the differentials (pushforward) of the left and right multiplication are given by

$$
\begin{align*}
d L_{k} & =L_{k *}: T_{g} \mathbb{H} \longrightarrow T_{k^{-1} g} \mathbb{H}, \\
d R_{k} & =R_{k *}: T_{g} \mathbb{H} \longrightarrow T_{g k} \mathbb{H}, \\
d L_{k}(v) & =\left(v_{1}, v_{2}, v_{3}+\frac{1}{2} \omega(\mathbf{v}, \mathbf{k})\right), \\
d R_{k}(v) & =\left(v_{1}, v_{2}, v_{3}+\frac{1}{2} \omega(\mathbf{v}, \mathbf{k})\right) . \tag{2.1}
\end{align*}
$$

2.2. Heisenberg group as a sub-Riemannian manifold. The Heisenberg group \mathbb{H} is the simplest non-trivial example of a sub-Riemannian manifold. We define X, Y and Z as the unique left-invariant vector fields satisfying $X_{e}=\partial_{x}, Y_{e}=\partial_{y}$ and $Z_{e}=\partial_{z}$ which are given by

$$
\begin{aligned}
X & =\partial_{x}-\frac{1}{2} y \partial_{z}, \\
Y & =\partial_{y}+\frac{1}{2} x \partial_{z}, \\
Z & =\partial_{z} .
\end{aligned}
$$

Note that the only non-zero Lie bracket for these left-invariant vector fields is $[X, Y]=Z$, so the vector fields $\{X, Y\}$ satisfy Hörmander's condition. We define the horizontal distribution as $\mathcal{H}:=\operatorname{span}\{X, Y\}$ fiberwise, thus making \mathcal{H} a subbundle in the tangent bundle $T \mathbb{H}$. To finish the description of the Heisenberg group as a sub-Riemannian manifold we need to equip the horizontal distribution \mathcal{H} with an inner product. For any $p \in \mathbb{H}$ we define the inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}_{p}}$ on \mathcal{H}_{p} so that $\{X(p), Y(p)\}$ is an orthonormal (horizontal) frame at any $p \in \mathbb{H}$. Vectors in \mathcal{H}_{p} will be called horizontal, and the corresponding norm is denoted by $\|\cdot\|_{\mathcal{H}_{p}}$.

In addition, Hörmander's condition ensures that a natural sub-Laplacian on the Heisenberg group

$$
\begin{equation*}
\Delta_{\mathcal{H}}=X^{2}+Y^{2} \tag{2.2}
\end{equation*}
$$

is a hypoelliptic operator by [10].
We recall now another notion in sub-Riemannian geometry, namely, of horizontal curves. Suppose $\gamma(t)=(x(t), y(t), z(t))=(\mathbf{x}(t), z(t))$ is an absolutely continuous curve with values in \mathbb{H}, and the corresponding tangent vector $\gamma^{\prime}(t)$ in $T \mathbb{H}_{\gamma(t)}$ is

$$
\gamma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)=\left(\boldsymbol{x}^{\prime}(t), z^{\prime}(t)\right) .
$$

We denote by c_{g} the Maurer-Cartan form on \mathbb{H}, i.e. the \mathfrak{h}-valued 1 -form on \mathbb{H} defined by $c_{g}(v)=d L_{g} v, v \in T_{g} \mathbb{H}$. Note that the pushforward of a vector in $T_{g} \mathbb{H}$
along the left translation can be found explicitly. Namely for $\gamma(t)=(\mathbf{x}(t), z(t))$ the Maurer-Cartan form is

$$
\begin{align*}
c_{\gamma}(t)=c(t) & =d L_{\gamma(t)}\left(\gamma^{\prime}(t)\right) \tag{2.3}\\
& =\left(\mathbf{x}^{\prime}(t), z^{\prime}(t)-\frac{1}{2} \omega\left(\mathbf{x}(t), \mathbf{x}^{\prime}(t)\right)\right),
\end{align*}
$$

where we used Proposition 2.1
Definition 2.2. An absolutely continuous curve $t \longmapsto \gamma(t) \in \mathbb{H}, t \in[0,1]$ is said to be horizontal if $\gamma^{\prime}(t) \in \mathcal{H}_{\gamma(t)}$ for a.e. t, that is, the tangent vector to $\gamma(t)$ is horizontal for a.e. t. Equivalently we can say that γ is horizontal if $c_{\gamma}(t) \in \mathcal{H}_{e}$ for a.e. t.

Equation (2.3) can be used to characterize horizontal curves in terms of the components as follows. An absolutely continuous curve γ is horizontal if and only if

$$
\begin{equation*}
\left.z^{\prime}(t)-\frac{1}{2} \omega\left(\mathbf{x}(t), \mathbf{x}^{\prime}(t)\right)\right)=0 \text { a.e. } t . \tag{2.4}
\end{equation*}
$$

The horizontal length is defined as

$$
L_{\mathcal{H}}(\gamma):=\int_{0}^{1}\left|c_{\gamma}(s)\right|_{\mathcal{H}_{e}} d s
$$

where we set $L_{\mathcal{H}}(\gamma)=\infty$ if γ is not horizontal. The Heisenberg group as a subRiemannian manifold comes with a natural left-invariant distance.

Definition 2.3. For any $g_{1}, g_{2} \in \mathbb{H}$ the Carnot-Carathéodory distance is defined as

$$
d_{c c}\left(g_{1}, g_{2}\right):=\inf \left\{L(\gamma), \gamma:[0,1] \longrightarrow \mathbb{H}, \gamma(0)=g_{1}, \gamma(1)=g_{2}\right\}
$$

Another consequence of Hörmander's condition for left-invariant vector fields X, Y and Z is that by the Chow-Rashevskii theorem there exists a horizontal curve connecting any two points in \mathbb{H}, and therefore the Carnot-Carathéodory distance is finite on \mathbb{H}.

In addition to the Carnot-Carathéodory distance on the Heisenberg group, we will use the following homogeneous distance

$$
\begin{equation*}
\rho\left(g_{1}, g_{2}\right):=\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{\mathbb{R}^{2}}^{4}+\left|z_{1}-z_{2}+\omega\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|^{2}\right)^{\frac{1}{4}} \tag{2.5}
\end{equation*}
$$

which is equivalent to the Carnot-Carathéodory distance, that is, there exist two positive constants c and C such that

$$
\begin{equation*}
c \rho\left(g_{1}, g_{2}\right) \leqslant d_{c c}\left(g_{1}, g_{2}\right) \leqslant C \rho\left(g_{1}, g_{2}\right) \tag{2.6}
\end{equation*}
$$

for all $g_{1}, g_{2} \in \mathbb{H}$. We denote by $|\cdot|$ the norm on \mathbb{H} induced by ρ, that is, $|g|=\rho(g, e)$ for all $g \in \mathbb{H}$. In particular, by the left-invariance of ρ we have that for any $g_{1}, g_{2} \in \mathbb{H}$

$$
\begin{equation*}
\left|g_{2}^{-1} g_{1}\right|=\rho\left(g_{2}^{-1} g_{1}, e\right)=\rho\left(g_{1}, g_{2}\right) \leqslant \rho\left(g_{1}, e\right)+\rho\left(g_{2}, e\right)=\left|g_{1}\right|+\left|g_{2}\right| . \tag{2.7}
\end{equation*}
$$

This is discussed in a more general setting in [4, Proposition 5.1.4].
Finally, we need to describe a hypoelliptic Brownian motion with values in \mathbb{H}. This is a stochastic process whose generator is the sub-Laplacian $\frac{1}{2} \Delta_{\mathcal{H}}$ defined by Equation (2.2).

Notation 2.4. Throughout the paper we use the following notation. Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ be a filtered probability space. We denote the expectation under \mathbb{P} by \mathbb{E}.

By a standard real-valued Brownian motion $\left\{B_{t}\right\}_{t \geqslant 0}$ we mean a continuous adapted \mathbb{R}-valued stochastic process on $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ such that for all $0 \leqslant s \leqslant t$ the increment $B_{t}-B_{s}$ is independent of \mathcal{F}_{s} and has a normal distribution with mean 0 and the variance $t-s$.

Definition 2.5. Let $W_{t}=\left(W_{1}(t), W_{2}(t), 0\right)$ be an \mathfrak{h}-valued stochastic process, where $\boldsymbol{W}_{t}:=\left(W_{1}(t), W_{2}(t)\right)$ is a standard two-dimensional Brownian motion. A hypoelliptic Brownian motion $g_{t}=\left(g_{1}(t), g_{2}(t), g_{3}(t)\right)$ on \mathbb{H} is the continuous \mathbb{H} valued process defined by

$$
\begin{equation*}
g_{t}:=\left(\boldsymbol{W}_{t}, A_{t}\right), \tag{2.8}
\end{equation*}
$$

where $A_{t}:=\frac{1}{2} \int_{0}^{t} \omega\left(\boldsymbol{W}_{s}, d \boldsymbol{W}_{s}\right)$ is Lévy's stochastic area.
Note that we used Itô's integral in this definition rather than Stratonovich' integral. However, these two integrals are equal in our setting since the symplectic form ω is skew-symmetric, and therefore Lévy's stochastic area functional is the same for both integrals as was observed in [9, Remark 4.3].

One can also write a stochastic differential equation for $g_{t}=\left(x_{t}, y_{t}, z_{t}\right), g_{0}=$ $(0,0,0)=e \in \mathbb{H}$ as a stochastic differential equation for a Lie group-valued Brownian motion

$$
\begin{align*}
L_{g_{t} *}\left(d g_{t}\right) & =g_{t}^{-1} d g_{t}=d W_{t}, \tag{2.9}\\
g_{0} & =e
\end{align*}
$$

Equation (2.8) gives an explicit solution to this stochastic differential equation for the Heisenberg group.

3. Main Results

Notation 3.1. Let X_{t} be a stochastic process with values in a metric space (\mathfrak{X}, d) with $X_{0}=x \in \mathfrak{X}$, then X_{t}^{*} denotes the process defined by

$$
X_{t}^{*}:=\max _{0 \leqslant s \leqslant t} d\left(X_{s}, X_{0}\right)
$$

For $\mathfrak{X}=\mathbb{H}$ we use the homogeneous distance ρ with $X_{0}=e$, and on $\mathfrak{X}=\mathbb{R}^{n}$ we consider the standard Euclidean norm. Before formulating Chung's law of iterated logarithm for the hypoelliptic Brownian motion g_{t} we introduce the notation

$$
\phi(t):=\sqrt{\frac{\log \log t}{t}} .
$$

Theorem 3.2 (Chung's law of iterated logarithm). Let g_{t} be the hypoelliptic Brownian motion on the Heisenberg group \mathbb{H} defined by (2.8). Then there exists a constant $c \in(0, \infty)$ such that

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \phi(t) g_{t}^{*}=c \quad \text { a.s. } \tag{3.1}
\end{equation*}
$$

Remark 3.3. Note that the hypoelliptic Brownian motion g_{t} has the same scaling property with respect to the norm induced by the homogeneous norm ρ as a
standard Brownian motion in a Euclidean space. Indeed,

$$
\begin{aligned}
\left|g_{\varepsilon t}\right| & :=\rho\left(g_{t \varepsilon}, e\right)=\sqrt[4]{\left|B_{t \varepsilon}\right|^{4}+A_{t \varepsilon}^{2}} \\
& \stackrel{(d)}{=} \sqrt[4]{\left|\sqrt{\varepsilon} B_{t}\right|^{4}+\left(\varepsilon A_{t}\right)^{2}}=\sqrt{\varepsilon} \rho\left(g_{t}, e\right)=\sqrt{\varepsilon}\left|g_{t}\right|
\end{aligned}
$$

Therefore it is not surprising that the process g_{t} and the standard Brownian motion have the same rate $\phi(t)$ in Chung's law of iterated logarithm.

As a consequence of Theorem 3.2 we can prove a small deviation principle for g_{t}.

Theorem 3.4 (Small deviation principle). The limit

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}-\varepsilon^{2} \log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right)=c^{2} \tag{3.2}
\end{equation*}
$$

exists with constant c being defined by (3.1).
Remark 3.5. Using scaling properties of g_{t} we can formulate a small deviation principle over an interval $[0, T]$. Let $T>0$ be fixed, then by Theorem 3.4 and Remark 3.3 we have that

$$
\lim _{\varepsilon \rightarrow 0}-\varepsilon^{2} \log \mathbb{P}\left(g_{T}^{*}<\varepsilon\right)=c^{2} T
$$

Indeed,

$$
\lim _{\varepsilon \rightarrow 0}-\frac{\varepsilon^{2}}{T} \log \mathbb{P}\left(g_{T}^{*}<\varepsilon\right)=\lim _{\varepsilon \rightarrow 0}-\frac{\varepsilon^{2}}{T} \log \mathbb{P}\left(g_{1}^{*}<\frac{\varepsilon}{\sqrt{T}}\right)=c^{2}
$$

Remark 3.6. One might expect that the value of the limit, c, is the first Dirichlet eigenvalue for the hypoelliptic generator of the Brownian motion g_{t} in the unit ball with respect to the homogeneous norm. Equivalently this constant can be expected to be described by the first exit time from this ball. This is a delicate issue since the infinitesimal generator is a hypoelliptic operator and the ball has a non-smooth boundary. We will address this problem in a forthcoming paper. Note that if the constant c is indeed the first Dirichlet eigenvalue for the hypoelliptic operator in this set, then Theorem 5.6 gives bounds for its value.

4. Preliminary estimates

We collect here several preliminary estimates that will be used throughout the paper.

Proposition 4.1. Let Y_{t} be a positive real-valued process and assume there exist two finite positive constants $0<a \leqslant b<\infty$ such that

$$
\begin{align*}
& \liminf _{t \rightarrow \infty}-\frac{1}{t} \log \mathbb{P}\left(Y_{t}<1\right) \geqslant a \tag{4.1}\\
& \limsup _{t \rightarrow \infty}-\frac{1}{t} \log \mathbb{P}\left(Y_{t}<1\right) \leqslant b \tag{4.2}
\end{align*}
$$

Let c, x and y be real numbers such that $c>1$, and $0<x<a \leqslant b<y$, then there exists an $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \mathbb{P}\left(Y_{s_{n}}<1\right)<\infty \tag{4.3}
\end{equation*}
$$

where $s_{n}:=\frac{1}{x} \log \log c^{n}$, and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \mathbb{P}\left(Y_{v_{n}}<1\right)=\infty \tag{4.4}
\end{equation*}
$$

where v_{n} is any positive sequence such that $v_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and $v_{n} \leqslant$ $\frac{1}{y} \log \log n^{n}$ for all $n \geqslant n_{0}$.
Proof. Let us first show (4.3). By (4.1) we have

$$
\mathbb{P}\left(Y_{t}<1\right) \leqslant e^{-a t}
$$

for all large enough t. Therefore there exists an $n_{1} \in \mathbb{N}$ such that

$$
\begin{aligned}
\sum_{n=n_{1}}^{\infty} \mathbb{P}\left(Y_{s_{n}}<1\right) & \leqslant \sum_{n=n_{1}}^{\infty} e^{-a s_{n}} \\
& =\sum_{n=n_{1}}^{\infty} e^{-\frac{a}{x} \log \log c^{n}}=\sum_{n=n_{1}}^{\infty}\left(\frac{1}{n \log c}\right)^{\frac{a}{x}}
\end{aligned}
$$

which is a convergent series since $x<a$.
Let us now show (4.4). By (4.1) we have that

$$
\mathbb{P}\left(Y_{t}<1\right) \geqslant e^{-b t}
$$

for all large enough t, and hence there exists an $n_{2} \in \mathbb{N}$ such that

$$
\begin{aligned}
\sum_{n=n_{2}}^{\infty} \mathbb{P}\left(Y_{v_{n}}<1\right) & \geqslant \sum_{n=n_{2}}^{\infty} e^{-b v_{n}} \\
& \geqslant \sum_{n=n_{2}}^{\infty} e^{-\frac{b}{y} \log \log n^{n}}=\sum_{n=n_{2}}^{\infty}\left(\frac{1}{n \log n}\right)^{\frac{b}{y}}
\end{aligned}
$$

which is divergent since $b<y$. The proof is then completed by taking $n_{0}:=$ $\max \left(n_{1}, n_{2}\right)$.

We first prove a weaker version of Theorem (3.4) namely that if the limit in (3.2) exists, then it is finite and strictly positive. The estimates in Proposition 4.3 will be used in the proof of Chung's law of iterated logarithm. First we introduce the following notation.

Notation 4.2 (Dirichlet eigenvalues in \mathbb{R}^{n}). We denote by $\lambda_{1}^{(n)}$ the lowest Dirichlet eigenvalue of $-\frac{1}{2} \Delta_{\mathbb{R}^{n}}$ on the unit ball in \mathbb{R}^{n}, where $0<\lambda_{1}^{(n)} \leqslant \lambda_{2}^{(n)} \leqslant \ldots$ are Dirichlet eigenvalues for the Laplacian $-\frac{1}{2} \Delta_{\mathbb{R}^{n}}$ in the unit ball $D:=\left\{x \in \mathbb{R}^{n},|x|<1\right\}$.

Recall that the lowest Dirichlet eigenvalues appear in a small deviation principle for a Brownian motion in \mathbb{R}^{n}, see e.g. [11, Lemma 8.1]. Namely, suppose b_{t} is a standard Brownian motion in \mathbb{R}^{n}, then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}-\varepsilon^{2} \log \mathbb{P}\left(b_{1}^{*}<\varepsilon\right)=\lambda_{1}^{(n)} \tag{4.5}
\end{equation*}
$$

where $\lambda_{1}^{(n)}$ is as in Notation 4.2, and

$$
b_{1}^{*}:=\max _{0 \leqslant t \leqslant 1}\left|b_{t}\right|_{\mathbb{R}^{n}} .
$$

Proposition 4.3. Let g_{t} be the hypoelliptic Brownian motion on the Heisenberg group \mathbb{H}. Set

$$
\begin{aligned}
& c_{-}:=\liminf _{\varepsilon \rightarrow 0}-\varepsilon^{2} \log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right), \\
& c_{+}:=\limsup _{\varepsilon \rightarrow 0}-\varepsilon^{2} \log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\lambda_{1}^{(2)} \leqslant c_{-} \leqslant c_{+} \leqslant c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right) \tag{4.6}
\end{equation*}
$$

where

$$
\begin{gathered}
c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right):=f\left(x^{*}\right)=\inf _{x \in(0,1)} f(x) \\
f(x)=\frac{\lambda_{1}^{(2)}}{\sqrt{1-x}}+\frac{\lambda_{1}^{(1)} \sqrt{1-x}}{4 x} \\
x^{*}=\frac{\sqrt{\left(\lambda_{1}^{(1)}\right)^{2}+32 \lambda_{1}^{(1)} \lambda_{1}^{(2)}}-3 \lambda_{1}^{(1)}}{2\left(4 \lambda_{1}^{(2)}-\lambda_{1}^{(1)}\right)},
\end{gathered}
$$

and $\lambda_{1}^{(n)}$ are the lowest Dirichlet eigenvalues on the unit ball as defined in Notation 4.2 .

Proof. The lower bound in (4.6) follows from the small deviation principle 4.5 for \mathbb{R}^{n}-valued Brownian motion and the fact that $\mathbb{P}\left(g_{1}^{*}<\varepsilon\right) \leqslant \mathbb{P}\left(B_{1}^{*}<\varepsilon\right)$.

Let us prove now the upper bound. For any $x \in(0,1)$ we have

$$
\begin{aligned}
\mathbb{P}\left(g_{1}^{*}<\varepsilon\right) & =\mathbb{P}\left(\max _{0 \leqslant s \leqslant 1}\left(\left|B_{s}\right|_{\mathbb{R}^{2}}^{4}+\left|A_{s}\right|_{\mathbb{R}}^{2}\right)<\varepsilon^{4}\right) \\
& \geqslant \mathbb{P}\left(B_{1}^{*}<(1-x)^{\frac{1}{4}} \varepsilon, A_{1}^{*}<\sqrt{x} \varepsilon^{2}\right) .
\end{aligned}
$$

It is well-known that $A_{t}=b_{\tau(t)}$ where b_{t} is a one-dimensional Brownian motion independent of B_{t}, and $\tau(t)=\frac{1}{4} \int_{0}^{t}\left|B_{s}\right|_{\mathbb{R}^{2}}^{2} d s$, see for example [11, Chapter 7, Section 6, Example 6.1]. Therefore we have

$$
\begin{aligned}
& \mathbb{P}\left(B_{1}^{*}<\varepsilon(1-x)^{\frac{1}{4}}, \sup _{0 \leqslant t \leqslant 1}\left|b_{\tau(t)}\right|_{\mathbb{R}}<\varepsilon^{2} \sqrt{x}\right) \\
& \quad=\mathbb{P}\left(B_{1}^{*}<\varepsilon(1-x)^{\frac{1}{4}}, \sup _{0 \leqslant t \leqslant \tau(1)}\left|b_{t}\right|_{\mathbb{R}}<\varepsilon^{2} \sqrt{x}\right) \\
& \quad \geqslant \mathbb{P}\left(B_{1}^{*}<\varepsilon(1-x)^{\frac{1}{4}}, \sup _{0 \leqslant t \leqslant \frac{\varepsilon^{2}}{4}(1-x)^{\frac{1}{2}}}\left|b_{t}\right|_{\mathbb{R}}<\varepsilon^{2} \sqrt{x}\right) \\
& \quad=\mathbb{P}\left(B_{1}^{*}<\varepsilon(1-x)^{\frac{1}{4}}, b_{1}^{*}<\frac{2 \varepsilon \sqrt{x}}{(1-x)^{\frac{1}{4}}}\right) \\
& \quad=\mathbb{P}\left(B_{1}^{*}<\varepsilon(1-x)^{\frac{1}{4}}\right) \mathbb{P}\left(b_{1}^{*}<\frac{2 \varepsilon \sqrt{x}}{(1-x)^{\frac{1}{4}}}\right) .
\end{aligned}
$$

Thus

$$
\log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right) \geqslant \log \mathbb{P}\left(B_{1}^{*}<\varepsilon(1-x)^{\frac{1}{4}}\right)+\log \mathbb{P}\left(b_{1}^{*}<\frac{2 \varepsilon \sqrt{x}}{(1-x)^{\frac{1}{4}}}\right)
$$

and hence

$$
\begin{aligned}
-\varepsilon^{2} \log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right) \leqslant & -\varepsilon^{2}(1-x)^{\frac{1}{2}} \log \mathbb{P}\left(B_{1}^{*}<\varepsilon(1-x)^{\frac{1}{4}}\right) \frac{1}{(1-x)^{\frac{1}{2}}} \\
& -\varepsilon^{2} \frac{4 x}{(1-x)^{\frac{1}{2}}} \log \mathbb{P}\left(b_{1}^{*}<\frac{2 \sqrt{x}}{(1-x)^{\frac{1}{4}}} \varepsilon\right) \frac{(1-x)^{\frac{1}{2}}}{4 x}
\end{aligned}
$$

From the small deviation principle (4.5) for a \mathbb{R}^{n}-valued Brownian motion applied to B_{t} and b_{t} it follows that

$$
\limsup _{\varepsilon \rightarrow 0}-\varepsilon^{2} \log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right) \leqslant \frac{\lambda_{1}^{(2)}}{\sqrt{1-x}}+\frac{\lambda_{1}^{(1)} \sqrt{1-x}}{4 x}
$$

for all x in $(0,1)$. Note that

$$
f(x):=\frac{\lambda_{1}^{(2)}}{\sqrt{1-x}}+\frac{\lambda_{1}^{(1)} \sqrt{1-x}}{4 x}>0 \text { for all } x \in(0,1)
$$

always has a local minimum over $(0,1)$ even if we do not rely on the known values of the eigenvalues $\lambda_{1}^{(2)}$ and $\lambda_{1}^{(1)}$. It is easy to see that this minimum is achieved at

$$
x^{*}=\frac{\sqrt{\left(\lambda_{1}^{(1)}\right)^{2}+32 \lambda_{1}^{(1)} \lambda_{1}^{(2)}}-3 \lambda_{1}^{(1)}}{2\left(4 \lambda_{1}^{(2)}-\lambda_{1}^{(1)}\right)} \in(0,1)
$$

which gives Equation (4.6).

5. Proof of the main results

5.1. Chung's law of iterated logarithm for g_{t}. The goal of this section is to prove Theorem 3.2. Later in Proposition 5.5] we prove that $c:=\liminf _{t \rightarrow \infty} \phi(t) g_{t}^{*}$ is constant a.s., where $\phi(t):=\sqrt{\frac{\log \log t}{t}}$. For now c is a random variable for which we first show lower and upper bounds in Proposition 5.1 and Proposition 5.3 ,

Proposition 5.1 (Lower bound). For the lowest eigenvalue $\lambda_{1}^{(2)}$ as introduced in Notation 4.2 we have

$$
c=\liminf _{t \rightarrow \infty} \phi(t) g_{t}^{*} \geqslant \sqrt{\lambda_{1}^{(2)}} \quad \text { a.s. }
$$

Proof. While this proof is motivated by [18, we provide a detailed argument for completeness. Let $r>0$ be such that $0<r<\sqrt{\lambda_{1}^{(2)}}$. Then we can find a constant $M>1$ such that $r M<\sqrt{\lambda_{1}^{(2)}}$. We will show that

$$
\mathbb{P}(c<r)=0 \text { for all } 0<r<\sqrt{\lambda_{1}^{(2)}}
$$

We have

$$
\begin{aligned}
\mathbb{P}(c<r) & =\mathbb{P}\left(\liminf _{t \rightarrow \infty} \phi(t) g_{t}^{*}<r\right) \\
& \leqslant \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\inf _{M^{n} \leqslant t \leqslant M^{n+2}} \phi(t) g_{t}^{*}<r\right\}\right) \\
& \leqslant \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\frac{1}{M} \phi\left(M^{n}\right) g_{M^{n}}^{*}<r\right\}\right) \\
& =\mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{g^{*}\left(\frac{M^{n-2}}{r^{2}} \phi\left(M^{n}\right)^{2}\right)<1\right\}\right),
\end{aligned}
$$

where $g^{*}\left(\frac{M^{n-2}}{r^{2}} \phi\left(M^{n}\right)^{2}\right):=g_{\frac{M^{n-2}}{r^{2}} \phi\left(M^{n}\right)^{2}}^{*}$. Here we used that

$$
\inf _{a \leqslant t \leqslant b} \phi(t) g_{t}^{*} \geqslant \frac{\sqrt{a}}{\sqrt{b}} \phi(a) g_{a}^{*}
$$

for any $0<a<b<\infty$. It is enough to show that

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(g^{*}\left(\frac{M^{n-2}}{r^{2}} \phi\left(M^{n}\right)^{2}\right)<1\right)<\infty
$$

and then the result follows from the Borel-Cantelli Lemma. By (4.6) and the scaling property of g_{t}, it follows that

$$
\begin{aligned}
\lambda_{1}^{(2)} & \leqslant \liminf _{\varepsilon \rightarrow 0}-\varepsilon^{2} \mathbb{P}\left(g_{1}^{*}<\varepsilon\right)=\liminf _{\varepsilon \rightarrow 0}-\varepsilon^{2} \mathbb{P}\left(\max _{0 \leqslant s \leqslant 1}\left|g_{\frac{1}{\varepsilon^{2}} s}\right|<1\right) \\
& =\liminf _{t \rightarrow \infty}-\frac{1}{t} \mathbb{P}\left(\max _{0 \leqslant s \leqslant t}\left|g_{s}\right|<1\right)=\liminf _{t \rightarrow \infty}-\frac{1}{t} \mathbb{P}\left(g_{t}^{*}<1\right) .
\end{aligned}
$$

Moreover,

$$
\frac{M^{n-2}}{r^{2}} \phi\left(M^{n}\right)^{2}=\frac{1}{M^{2} r^{2}} \log \log M^{n}
$$

and hence we can apply Proposition 4.1 with $Y_{t}=g_{t}^{*}, a=\lambda_{1}^{(2)}, s_{n}=\frac{1}{x} \log \log M^{n}$, and $x=M^{2} r^{2}$, since $M^{2} r^{2}<\lambda_{1}^{(2)}$.

Our next step is to show that c is finite almost surely. To do so, we need Lemma 5.2 .

Lemma 5.2. Set $t_{n}=n^{n}$. Then for every $\varepsilon>0$

$$
\begin{equation*}
\mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) g_{t_{n-1}}^{*}>\varepsilon\right\}\right)=0 \tag{5.1}
\end{equation*}
$$

Proof. It is enough to show that for any $\varepsilon>0$

$$
\begin{align*}
& \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) B_{t_{n-1}}^{*}>\varepsilon\right\}\right)=0 \text { and } \tag{5.2}\\
& \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right)^{2} A_{t_{n-1}}^{*}>\varepsilon\right\}\right)=0 . \tag{5.3}
\end{align*}
$$

Indeed,

$$
\begin{aligned}
& \left\{\phi\left(t_{n}\right) g_{t_{n-1}}^{*}>\varepsilon\right\}=\left\{\phi\left(t_{n}\right)^{4} \max _{0 \leqslant s \leqslant t_{n-1}}\left(\left|B_{s}\right|_{\mathbb{R}^{2}}^{4}+\left|A_{s}\right|^{2}\right)>\varepsilon^{4}\right\} \\
& \subset\left\{B_{t_{n-1}}^{*}>\frac{\varepsilon}{\sqrt[4]{2} \phi\left(t_{n}\right)}\right\} \cup\left\{A_{t_{n-1}}^{*}>\frac{\varepsilon^{2}}{\sqrt{2} \phi\left(t_{n}\right)^{2}}\right\},
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) g_{t_{n-1}}^{*}>\varepsilon\right\}\right) \\
& \leqslant \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) B_{t_{n-1}}^{*}>\frac{\varepsilon}{\sqrt[4]{2}}\right\}\right) \\
& +\mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right)^{2} A_{t_{n-1}}^{*}>\frac{\varepsilon^{2}}{\sqrt{2}}\right\}\right) .
\end{aligned}
$$

Let us first prove (5.2). For every ε fixed we have that

$$
\begin{aligned}
& \left\{\omega: \limsup _{n \rightarrow \infty} \phi\left(t_{n}\right) \max _{0 \leqslant s \leqslant t_{n-1}}\left|B_{s}(\omega)\right|_{\mathbb{R}^{2}}=0\right\} \\
& \subset \bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{\omega: \phi\left(t_{n}\right) \max _{0 \leqslant s \leqslant t_{n-1}}\left|B_{s}(\omega)\right|_{\mathbb{R}^{2}}<\varepsilon\right\}
\end{aligned}
$$

Moreover, by [12, Lemma 1] we have that for $t_{n}=n^{n}$

$$
\limsup _{n \rightarrow \infty} \phi\left(t_{n}\right) \max _{0 \leqslant s \leqslant t_{n-1}}\left|B_{s}\right|_{\mathbb{R}^{2}}=0 \quad \text { a.s.. }
$$

Combining everything together we have that for $t_{n}=n^{n}$

$$
\begin{aligned}
1 & =\mathbb{P}\left(\limsup _{n \rightarrow \infty} \phi\left(t_{n}\right) \max _{0 \leqslant s \leqslant t_{n-1}}\left|B_{s}\right|_{\mathbb{R}^{2}}=0\right) \\
& \leqslant \mathbb{P}\left(\bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{\phi\left(t_{n}\right) \max _{0 \leqslant s \leqslant t_{n-1}}\left|B_{s}(\omega)\right|_{\mathbb{R}^{2}}<\varepsilon\right\}\right),
\end{aligned}
$$

and (5.2) is proven since

$$
\begin{aligned}
& \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) B_{t_{n-1}}^{*}>\varepsilon\right\}\right) \\
& \quad=1-\mathbb{P}\left(\bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{\phi\left(t_{n}\right) \max _{0 \leqslant s \leqslant t_{n-1}}\left|B_{s}(\omega)\right|_{\mathbb{R}^{2}}<\varepsilon\right\}\right)
\end{aligned}
$$

Let us now prove (5.3). It follows from [3, Example on pp. 449-451] that there exists a finite constant $d>0$ such that with probability one we have $A_{t_{n-1}}^{*} \leqslant$ $d t_{n-1}^{2} \phi\left(t_{n-1}\right)^{2}$ eventually, that is,

$$
\mathbb{P}\left(\bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{A_{t_{n-1}}^{*} \leqslant d t_{n-1}^{2} \phi\left(t_{n-1}\right)^{2}\right\}\right)=1
$$

For any $\varepsilon>0$ there exists an N_{ε} such that for any $n \geqslant N_{\varepsilon}$ we have that

$$
d t_{n-1}^{2} \phi\left(t_{n-1}\right)^{2} \phi\left(t_{n}\right)^{2} \leqslant \varepsilon
$$

Set

$$
E_{k}:=\bigcap_{n \geqslant k}\left\{\phi\left(t_{n}\right)^{2} A_{t_{n-1}}^{*} \leqslant d t_{n-1}^{2} \phi\left(t_{n-1}\right)^{2} \phi\left(t_{n}\right)^{2}\right\} .
$$

Then the family E_{k} is an increasing sequence of sets, and it the follows that

$$
\begin{aligned}
& \bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{A_{t_{n-1}}^{*} \leqslant d t_{n-1}^{2} \phi\left(t_{n-1}\right)^{2}\right\}=\bigcup_{k \geqslant 1} E_{k} \subset \bigcup_{k \geqslant N_{\varepsilon}} E_{k} \\
& \quad=\bigcup_{k \geqslant N_{\varepsilon}} \bigcap_{n \geqslant k}\left\{\phi\left(t_{n}\right)^{2} A_{t_{n-1}}^{*} \leqslant d t_{n-1}^{2} \phi\left(t_{n-1}\right)^{2} \phi\left(t_{n}\right)^{2}\right\} \\
& \quad \subset \bigcup_{k \geqslant N_{\varepsilon}} \bigcap_{n \geqslant k}\left\{\phi\left(t_{n}\right)^{2} A_{t_{n-1}}^{*} \leqslant \varepsilon\right\} \subset \bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{\phi\left(t_{n}\right)^{2} A_{t_{n-1}}^{*} \leqslant \varepsilon\right\} .
\end{aligned}
$$

Therefore for any $\varepsilon>0$ we have that

$$
\mathbb{P}\left(\bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{\phi\left(t_{n}\right)^{2} A_{t_{n-1}}^{*} \leqslant \varepsilon\right\}\right)=1,
$$

and so (5.3) is proven.
Proposition 5.3 (Upper bound). Let $c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right)$ be as in Proposition 4.3, then

$$
c=\liminf _{t \rightarrow \infty} \phi(t) g_{t}^{*} \leqslant \sqrt{c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right)} \quad \text { a.s. }
$$

Proof. Set $t_{n}=n^{n}$. We will show that $\mathbb{P}(c>r)=0$ for any $r>\sqrt{c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right)}$. Since

$$
\begin{aligned}
\mathbb{P}\left(\lim _{t} \inf \phi(t) g_{t}^{*}>r\right) & \leqslant \mathbb{P}\left(\bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{\phi\left(t_{n}\right) g_{t_{n}}^{*}>r\right\}\right) \\
& =1-\mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) g_{t_{n}}^{*} \leqslant r\right\}\right)
\end{aligned}
$$

it is sufficient to show that for any $r>\sqrt{c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right)}$

$$
\begin{equation*}
\mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) g_{t_{n}}^{*} \leqslant r\right\}\right)=1 \tag{5.4}
\end{equation*}
$$

Fix $r>\sqrt{c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right)}$ and choose r_{1} such that $\sqrt{c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right)}<r_{1}<r$. Let us define the events

$$
\begin{aligned}
A_{n} & :=\left\{\phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right|<r_{1}\right\}, \\
B_{n} & :=\left\{\phi\left(t_{n}\right) g_{t_{n-1}}^{*}<\frac{r-r_{1}}{2}\right\} .
\end{aligned}
$$

Then by (2.7) on the event $A_{n} \cap B_{n}$ we have

$$
\begin{aligned}
\phi\left(t_{n}\right) g_{t_{n}}^{*} & \leqslant \phi\left(t_{n}\right) g_{t_{n-1}}^{*}+\phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}} g_{t_{n-1}}^{-1} g_{s}\right| \\
& \leqslant \phi\left(t_{n}\right) g_{t_{n-1}}^{*}+\phi\left(t_{n}\right)\left|g_{t_{n-1}}\right|+\phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right| \\
& \leqslant \frac{r-r_{1}}{2}+\frac{r-r_{1}}{2}+r_{1}=r
\end{aligned}
$$

and hence

$$
\mathbb{P}\left(A_{n} \cap B_{n}\right) \leqslant \mathbb{P}\left(\phi\left(t_{n}\right) g_{t_{n}}^{*} \leqslant r\right)
$$

By Lemma 5.2 we have $\mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k} B_{n}^{c}\right)=0$, and therefore

$$
\begin{aligned}
& \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) \max _{0 \leqslant s \leqslant t_{n}-t_{n-1}}\left|g_{t_{n-1}}^{-1} g_{s+t_{n-1}}\right|<r_{1}\right\}\right) \\
& \quad=\mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k} A_{n}\right)=\mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left(A_{n} \cap B_{n}\right)\right) \\
& \quad \leqslant \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) g^{*}\left(t_{n}\right) \leqslant r\right\}\right) .
\end{aligned}
$$

Equation (5.4) holds if we can show that

$$
\mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{\phi\left(t_{n}\right) \max _{0 \leqslant s \leqslant t_{n}-t_{n-1}}\left|g_{t_{n-1}}^{-1} g_{s+t_{n-1}}\right|<r_{1}\right\}\right)=1
$$

Note that $g_{t_{n-1}}^{-1} g_{s+t_{n-1}} \stackrel{(d)}{=} g_{s}$ and it is independent of $\mathcal{F}_{t_{n-1}}$. Indeed,

$$
\begin{align*}
& g_{t_{n-1}-1}^{-1} g_{s+t_{n-1}} \\
& \quad=\left(B_{s+t_{n-1}}-B_{t_{n-1}}, \frac{1}{2} \int_{t_{n-1}}^{s+t_{n-1}} \omega\left(B_{u}, d B_{u}\right)+\frac{1}{2} \omega\left(B_{s+t_{n-1}}, B_{t_{n-1}}\right)\right) \tag{5.5}\\
& \quad \stackrel{(d)}{=}\left(B_{s}, \frac{1}{2} \int_{0}^{s} \omega\left(B_{u}, d B_{u}\right)\right)=g_{s} .
\end{align*}
$$

The assumptions of the Borel-Cantelli Lemma are satisfied, therefore we only need to show that the series with the term

$$
\mathbb{P}\left(\phi\left(t_{n}\right) \max _{0 \leqslant s \leqslant t_{n}-t_{n-1}}\left|g_{t_{n-1}}^{-1} g_{s+t_{n-1}}\right|<r_{1}\right)
$$

diverges. We have

$$
\begin{aligned}
& \mathbb{P}\left(\phi\left(t_{n}\right)_{0 \leqslant s \leqslant t_{n}-t_{n-1}}\left|g_{t_{n-1}}^{-1} g_{s+t_{n-1}}\right|<r_{1}\right) \\
& =\mathbb{P}\left(\max _{0 \leqslant s t_{n}-t_{n-1}} \frac{\phi\left(t_{n}\right)}{r_{1}}\left|g_{s}\right|<1\right) \\
& =\mathbb{P}\left(g^{*}\left(\frac{t_{n}-t_{n-1}}{r_{1}^{2}} \phi\left(t_{n}\right)^{2}\right)<1\right),
\end{aligned}
$$

where $g^{*}\left(\frac{t_{n}-t_{n-1}}{r_{1}^{2}} \phi\left(t_{n}\right)^{2}\right):=g_{\frac{t_{n-t_{n-1}}}{r_{1}^{2}} \phi\left(t_{n}\right)^{2}}^{*}$.
By (4.6) and the scaling property of g_{t} it follows that

$$
\begin{aligned}
& c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right) \geqslant \limsup _{\varepsilon \rightarrow 0}-\varepsilon^{2} \mathbb{P}\left(g_{1}^{*}<\varepsilon\right)=\limsup _{\varepsilon \rightarrow 0}-\varepsilon^{2} \mathbb{P}\left(\max _{0 \leqslant s \leqslant 1}\left|g_{\frac{1}{\varepsilon^{2}} s}\right|<1\right) \\
& =\limsup _{t \rightarrow \infty}-\frac{1}{t} \mathbb{P}\left(\max _{0 \leqslant s \leqslant t}\left|g_{s}\right|<1\right)=\limsup _{t \rightarrow \infty}-\frac{1}{t} \mathbb{P}\left(g_{t}^{*}<1\right) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\frac{t_{n}-t_{n-1}}{r_{1}^{2}} \phi\left(t_{n}\right)^{2} & =\frac{1}{r_{1}^{2}} \frac{t_{n}-t_{n-1}}{t_{n}} \log \log t_{n} \\
& \leqslant \frac{1}{r_{1}^{2}} \log \log t_{n}=\frac{1}{r_{1}^{2}} \log \log n^{n}
\end{aligned}
$$

and hence we can apply Proposition 4.1 with $Y_{t}=g_{t}^{*}, b=c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right), v_{n}=$ $\frac{1}{y} \log \log n^{n}$, and $y=r_{1}^{2}$, since $r_{1}^{2}>c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right)$.

Remark 5.4. In the proof of Proposition 5.3 we used left increments $g_{t_{n-1}}^{-1} g_{s+t_{n-1}}$. It is easy to check that the argument does not work if one considers the right
increments $g_{s+t_{n-1}} g_{t_{n-1}}^{-1}$ instead. Indeed,

$$
\begin{aligned}
g_{s+t_{n-1}} & g_{t_{n-1}}^{-1} \\
= & \left(B_{s+t_{n-1}}-B_{t_{n-1}}, \frac{1}{2} \int_{t_{n-1}}^{s+t_{n-1}} \omega\left(B_{u}, d B_{u}\right)-\frac{1}{2} \omega\left(B_{s+t_{n-1}}, B_{t_{n-1}}\right)\right) \\
= & \left(B_{s+t_{n-1}}-B_{t_{n-1}}, \frac{1}{2} \int_{0}^{s} \omega\left(B_{u+t_{n-1}}-B_{t_{n-1}}, d B_{u+t_{n-1}}\right)\right. \\
& \left.+\frac{1}{2} \int_{0}^{s} \omega\left(B_{t_{n-1}}, d B_{u+t_{n-1}}\right)-\frac{1}{2} \omega\left(B_{s+t_{n-1}}, B_{t_{n-1}}\right)\right) \\
= & \left(B_{s+t_{n-1}}-B_{t_{n-1}}, \frac{1}{2} \int_{0}^{s} \omega\left(B_{u+t_{n-1}}-B_{t_{n-1}}, d B_{u+t_{n-1}}\right)\right. \\
& \left.+\frac{1}{2} \omega\left(B_{t_{n-1}}, B_{s+t_{n-1}}-B_{t_{n-1}}\right)-\frac{1}{2} \omega\left(B_{s+t_{n-1}}, B_{t_{n-1}}\right)\right) \\
= & \left(B_{s+t_{n-1}}-B_{t_{n-1}}, \frac{1}{2} \int_{0}^{s} \omega\left(B_{u+t_{n-1}}-B_{t_{n-1}}, d B_{u+t_{n-1}}\right)\right. \\
& \left.+\omega\left(B_{t_{n-1}}, B_{s+t_{n-1}}-B_{t_{n-1}}\right)\right) \\
\stackrel{(d)}{=} & \left(B_{s}, \frac{1}{2} \int_{0}^{s} \omega\left(B_{u}, d B_{u}\right)+\omega\left(B_{t_{n-1}}, B_{s}\right)\right) \\
\neq & \left(B_{s}, \frac{1}{2} \int_{0}^{s} \omega\left(B_{u}, d B_{u}\right)\right)=g_{s} .
\end{aligned}
$$

This is a consequence of our choice of the (left) Brownian motion g_{t} defined by the left translation in (2.9).

The next statement completes the proof of Theorem 3.2
Proposition 5.5. Let c be the random variable defined by (3.1), then c is constant a.s.

Proof. Let $\mathcal{T}_{u}:=\sigma\left\{B_{r}, r \geqslant u\right\}$, and $\mathcal{T}:=\cap_{u>0} \mathcal{T}_{u}$ be the tail σ-algebra generated by the Brownian motion, which is trivial by Kolmogorov's $0-1$ law. We will show that

$$
\begin{equation*}
c^{4}=\liminf _{t \rightarrow \infty} \phi(t)^{4} \max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(\frac{1}{2} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right)^{2}\right] . \tag{5.6}
\end{equation*}
$$

This means that the random variable c is \mathcal{T}_{u}-measurable for every u and hence \mathcal{T}-measurable. Since \mathcal{T} is trivial, then c is constant a.s. because \mathcal{T} is trivial. Let us now prove (5.6). Suppose u is fixed, and note that

$$
\begin{equation*}
c=\liminf _{t \rightarrow \infty} \phi(t) \max _{u \leqslant s \leqslant t}\left|g_{s}\right| . \tag{5.7}
\end{equation*}
$$

Indeed,

$$
\max _{u \leqslant s \leqslant t}\left|g_{s}\right| \leqslant \max _{0 \leqslant s \leqslant t}\left|g_{s}\right| \leqslant \max _{u \leqslant s \leqslant t}\left|g_{s}\right|+\max _{0 \leqslant s \leqslant u}\left|g_{s}\right|,
$$

and (5.7) follows from the fact that $\lim _{t \rightarrow \infty} \phi(t)=0$. Using the triangular inequality one can show that

$$
\begin{aligned}
& \max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(\frac{1}{2} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right)^{2}\right]-A_{u}^{2}-2\left|A_{u}\right| \max _{0 \leqslant s \leqslant t}\left|A_{s}\right| \\
& \quad \leqslant \max _{u \leqslant s \leqslant t}\left|g_{s}\right|^{4} \\
& \quad \leqslant \max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(\frac{1}{2} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right)^{2}\right]+2 A_{u}^{2}+\left|A_{u}\right| \max _{0 \leqslant s \leqslant t}\left|A_{s}\right|
\end{aligned}
$$

Indeed,

$$
\begin{aligned}
& \max _{u \leqslant s \leqslant t}\left|g_{s}\right|^{4}=\max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+A_{s}^{2}\right] \\
& \quad=\max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(\frac{1}{2} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)+A_{u}\right)^{2}\right] \\
& \quad=\max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(\frac{1}{2} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right)^{2}+A_{u}^{2}+A_{u} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right] \\
& \quad \leqslant \max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(\frac{1}{2} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right)^{2}\right]+A_{u}^{2}+\left|A_{u}\right| \max _{u \leqslant s \leqslant t}\left|\int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right| \\
& \quad=\max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(\frac{1}{2} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right)^{2}\right]+A_{u}^{2}+\left|A_{u}\right| \max _{u \leqslant s \leqslant t}\left|A_{s}-A_{u}\right| \\
& \quad \leqslant \max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(\frac{1}{2} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right)^{2}\right]+2 A_{u}^{2}+\left|A_{u}\right| \max _{0 \leqslant s \leqslant t}\left|A_{s}\right|,
\end{aligned}
$$

and the upper bound in (5.8) is proven. Let us now show the lower bound. We have that

$$
\begin{aligned}
& \max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(\frac{1}{2} \int_{u}^{s} \omega\left(B_{v}, d B_{v}\right)\right)^{2}\right]=\max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+\left(A_{s}-A_{u}\right)^{2}\right] \\
& \quad=\max _{u \leqslant s \leqslant t}\left[\left|B_{s}\right|^{4}+A_{s}^{2}+A_{u}^{2}-2 A_{u} A_{s}\right] \leqslant \max _{u \leqslant s \leqslant t}\left|g_{s}\right|^{4}+A_{u}^{2}+2 \max _{u \leqslant s t}\left(-A_{u} A_{s}\right) \\
& \quad \leqslant \max _{u \leqslant s \leqslant t}\left|g_{s}\right|^{4}+A_{u}^{2}+2\left|A_{u}\right| \max _{0 \leqslant s \leqslant t}\left|A_{s}\right|,
\end{aligned}
$$

and the lower bound is also proven.
Before finishing the proof we recall that by [18, Theorem 1]

$$
\liminf _{t \rightarrow \infty} \phi(t)^{2} \max _{0 \leqslant s \leqslant t}\left|A_{s}\right|=\frac{\pi}{4} \text { a.s. }
$$

Then (5.6) follows by (5.8) and the fact that $\lim _{t \rightarrow \infty} \phi(t)=0$.
We have actually proven a more quantitative version of Theorem 3.2 as follows.
Theorem 5.6 (Chung's law of iterated logarithm with bounds). The constant $c=\liminf _{t \rightarrow \infty} \phi(t) g_{t}^{*}$ in Theorem 3.2 satisfies

$$
\sqrt{\lambda_{1}^{(2)}} \leqslant c \leqslant \sqrt{c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right)}
$$

where $\lambda_{1}^{(2)}$ is defined in Notation 4.2, and $c\left(\lambda_{1}^{(1)}, \lambda_{1}^{(2)}\right)$ is defined in Proposition 4.3.
5.2. Small deviations for g_{t}. We are now ready to prove Theorem 3.4 that is, the small deviation principle for the hypoelliptic Brownian motion g_{t}.

Proof of Theorem 3.4. We recall the notation

$$
\begin{aligned}
& c_{-}:=\liminf _{\varepsilon \rightarrow 0}-\varepsilon^{2} \log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right), \\
& c_{+}:=\underset{\varepsilon \rightarrow 0}{\limsup }-\varepsilon^{2} \log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right),
\end{aligned}
$$

and

$$
c:=\liminf _{t \rightarrow \infty} \phi(t) g_{t}^{*}
$$

We first show that

$$
\begin{equation*}
c_{+} \leqslant c^{2} \tag{5.9}
\end{equation*}
$$

Let $k \in\left(0, c_{+}\right)$be a fixed number, that is, $k \leqslant \lim \sup _{\varepsilon \rightarrow 0}-\varepsilon^{2} \log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right)$. This means that there exists an $\varepsilon(k)$ such that

$$
\begin{equation*}
\mathbb{P}\left(g_{1}^{*}<\varepsilon\right) \leqslant \exp \left(-\frac{k}{\varepsilon^{2}}\right) \tag{5.10}
\end{equation*}
$$

for any $\varepsilon \leqslant \varepsilon(k)$.
Now fix $R>1$ and a number γ such that $0<R \gamma<k$. Define $t_{n}=R^{n}>1$, and $\varepsilon_{n}=\varepsilon_{n}(k, \gamma, R):=\frac{\sqrt{\gamma}}{\phi\left(t_{n+1}\right) \sqrt{t_{n}}}$. Note that ε_{n} goes to zero as n goes to infinity, and hence there exists an $N=N(k, \gamma, R)$ such that $\varepsilon_{n} \leqslant \varepsilon(k)$ for any $n \geqslant N(k, \gamma, R)$. Then we have that

$$
\begin{aligned}
& \mathbb{P}\left(g_{t_{n}}^{*}<\frac{\sqrt{\gamma}}{\phi\left(t_{n+1}\right)}\right)=\mathbb{P}\left(g_{1}^{*}<\frac{\sqrt{\gamma}}{\phi\left(t_{n+1}\right) \sqrt{t_{n}}}\right)=\mathbb{P}\left(g_{1}^{*}<\varepsilon_{n}\right) \\
& \quad \leqslant \exp \left(-\frac{k}{\varepsilon_{n}^{2}}\right)=\exp \left(-\frac{k}{\gamma} \phi\left(t_{n+1}\right)^{2} t_{n}\right)=\exp \left(-\frac{k}{\gamma} \frac{t_{n}}{t_{n+1}} \log \log t_{n+1}\right) \\
& \quad=\exp \left(-\frac{k}{R \gamma} \log \log R^{n+1}\right)=\left(\frac{1}{(n+1) \log R}\right)^{\frac{k}{R \gamma}},
\end{aligned}
$$

for all $n \geqslant N(k, \gamma, R)$, which is a term of a convergent series since $R \gamma<k$. Therefore for any $0<k<c_{+}, R>1,0<R \gamma<k$, and $t_{n}=R^{n}$ we have that

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(g_{t_{n}}^{*}<\frac{\sqrt{\gamma}}{\phi\left(t_{n+1}\right)}\right)<\infty
$$

Hence by the Borel-Cantelli Lemma we have

$$
\begin{aligned}
& \mathbb{P}\left(\bigcap_{k \geqslant 1} \bigcup_{n \geqslant k}\left\{g_{t_{n}}^{*}<\frac{\sqrt{\gamma}}{\phi\left(t_{n+1}\right)}\right\}\right)=0, \text { that is, } \\
& \mathbb{P}\left(\bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{g_{t_{n}}^{*} \geqslant \frac{\sqrt{\gamma}}{\phi\left(t_{n+1}\right)}\right\}\right)=1 .
\end{aligned}
$$

Therefore almost surely for all large $n, g_{t_{n}}^{*} \geqslant \frac{\sqrt{\gamma}}{\phi\left(t_{n+1}\right)}$. The function $\phi(t)$ is decreasing for $t>1$, therefore $t \in\left[t_{n}, t_{n+1}\right]$ we have

$$
g_{t}^{*} \geqslant g_{t_{n}}^{*} \geqslant \frac{\sqrt{\gamma}}{\phi\left(t_{n+1}\right)} \geqslant \frac{\sqrt{\gamma}}{\phi(t)}
$$

which yields

$$
c:=\liminf _{t \rightarrow \infty} \phi(t) g_{t}^{*} \geqslant \sqrt{\gamma} \quad \text { a.s. }
$$

for any $\gamma<\frac{k}{R}<\frac{c_{+}}{R}$, and hence (5.9) is proven by letting first R go to 1 , and then k to c_{+}.

Let us now show that

$$
\begin{equation*}
c^{2} \leqslant c_{-} \tag{5.11}
\end{equation*}
$$

Suppose $k>c_{-}$, then $k \geqslant \liminf _{\varepsilon \rightarrow 0}-\varepsilon^{2} \log \mathbb{P}\left(g_{1}^{*}<\varepsilon\right)$. Therefore there exists an $\varepsilon^{\prime}(k)$ such that

$$
\begin{equation*}
\mathbb{P}\left(g_{1}^{*}<\varepsilon\right) \geqslant \exp \left(-\frac{k}{\varepsilon^{2}}\right) \tag{5.12}
\end{equation*}
$$

for any $\varepsilon \leqslant \varepsilon^{\prime}(k)$. Now set $t_{n}=n^{n}$ and define

$$
\begin{aligned}
\varepsilon_{n}=\varepsilon_{n}(k) & :=\frac{k}{\sqrt{c_{-}}} \frac{1}{\sqrt{t_{n}-t_{n-1}} \phi\left(t_{n}\right)}, \\
E_{n}^{k} & :=\left\{\max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right|<\frac{k}{\sqrt{c_{-}}} \frac{1}{\phi\left(t_{n}\right)}\right\} .
\end{aligned}
$$

Note that ε_{n} goes to zero as n goes to infinity, and hence there exists an $N(k)$ such that $\varepsilon_{n} \leqslant \varepsilon^{\prime}(k)$ for any $n \geqslant N(k)$. We claim that, for any $k>c_{-}, \sum_{n=1}^{\infty} \mathbb{P}\left(E_{n}^{k}\right)=$ ∞. Indeed, since by (5.5) the left increment $g_{t_{n-1}}^{-1} g_{s+t_{n-1}} \stackrel{(d)}{=} g_{t}$, we can use (5.12) to see that for $n \geqslant N(k)$

$$
\begin{aligned}
\mathbb{P}\left(E_{n}^{k}\right) & =\mathbb{P}\left(\max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right|<\frac{k}{\sqrt{c_{-}}} \frac{1}{\phi\left(t_{n}\right)}\right) \\
& =\mathbb{P}\left(\max _{0 \leqslant s \leqslant t_{n}-t_{n-1}}\left|g_{t_{n-1}}^{-1} g_{s+t_{n-1}}\right|<\frac{k}{\sqrt{c_{-}}} \frac{1}{\phi\left(t_{n}\right)}\right) \\
& =\mathbb{P}\left(\max _{0 \leqslant s \leqslant t_{n}-t_{n-1}}\left|g_{s}\right|<\frac{k}{\sqrt{c_{-}}} \frac{1}{\phi\left(t_{n}\right)}\right) \\
& =\mathbb{P}\left(g_{1}^{*}<\varepsilon_{n}\right) \geqslant \exp \left(-\frac{k}{\varepsilon_{n}^{2}}\right)=\exp \left(-\frac{c_{-}}{k} \frac{t_{n}-t_{n-1}}{t_{n}} \log \log t_{n}\right) \\
& \geqslant \exp \left(-\frac{c_{-}}{k} \log \log t_{n}\right)=\left(\frac{1}{n \log n}\right)^{\frac{c_{-}}{k}} .
\end{aligned}
$$

This yields $\sum_{n=1}^{\infty} \mathbb{P}\left(E_{n}^{k}\right)=\infty$ since $k>c_{-}$. Note that the events E_{n} are independent because the increments are independent and

$$
\max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right|=\max _{0 \leqslant s \leqslant t_{n}-t_{n-1}}\left|g_{t_{n-1}}^{-1} g_{s+t_{n-1}}\right|
$$

and $g_{t_{n-1}}^{-1} g_{s+t_{n-1}}$ is independent of $\mathcal{F}_{t_{n-1}}$ as shown in the proof of Proposition5.3, Hence by the Borel-Cantelli Lemma we have that

$$
\mathbb{P}\left(\limsup _{n \rightarrow \infty} E_{n}^{k}\right)=\mathbb{P}\left(\bigcap \bigcup_{j \geqslant 1} \bigcup_{n \geqslant j}\left\{\phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right|<\frac{k}{\sqrt{c_{-}}}\right\}\right)=1,
$$

which yields

$$
\liminf _{n \rightarrow \infty} \phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right|<\frac{k}{\sqrt{c_{-}}} \quad \text { a.s. for all } k>c_{-},
$$

and hence

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right| \leqslant \sqrt{c_{-}} \quad \text { a.s. } \tag{5.13}
\end{equation*}
$$

We will show later in the proof that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(t_{n}\right) g_{t_{n-1}}^{*}=0 \quad \text { a.s. } \tag{5.14}
\end{equation*}
$$

Assume (5.14) for now, we can use (2.7) to see that

$$
\begin{aligned}
\phi\left(t_{n}\right) g_{t_{n}}^{*} & \leqslant \phi\left(t_{n}\right) g_{t_{n-1}}^{*}+\phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{s}\right| \\
& \leqslant \phi\left(t_{n}\right) g_{t_{n-1}}^{*}+\phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right|+\phi\left(t_{n}\right)\left|g_{t_{n-1}}\right| \\
& \leqslant 2 \phi\left(t_{n}\right) g_{t_{n-1}}^{*}+\phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{t_{n-1}}^{-1} g_{s}\right| .
\end{aligned}
$$

Therefore by (5.13) and (5.14) we have that

$$
\begin{aligned}
c & :=\liminf _{t \rightarrow \infty} \phi(t) g_{t}^{*} \leqslant \liminf _{n \rightarrow \infty} \phi\left(t_{n}\right) g_{t_{n}}^{*} \\
& \leqslant \liminf _{n \rightarrow \infty}\left(2 \phi\left(t_{n}\right) g_{t_{n-1}}^{*}+\phi\left(t_{n}\right) \max _{t_{n-1} \leqslant s \leqslant t_{n}}\left|g_{s} g_{t_{n-1}}^{-1}\right|\right) \leqslant \sqrt{c_{-}} \quad \text { a.s. }
\end{aligned}
$$

which proves (5.11). Let us now show (5.14). By Lemma 5.2 we have that for any $\varepsilon>0$

$$
1=\mathbb{P}\left(\bigcup_{k \geqslant 1} \bigcap_{n \geqslant k}\left\{\phi\left(t_{n}\right) g_{t_{n-1}}^{*}<\varepsilon\right\}\right) \leqslant \mathbb{P}\left(\limsup _{n \rightarrow \infty} \phi\left(t_{n}\right) g_{t_{n-1}}^{*}<\varepsilon\right) .
$$

So for every ε we have that

$$
\limsup _{n \rightarrow \infty} \phi\left(t_{n}\right) g_{t_{n-1}}^{*}<\varepsilon \quad \text { a.s. }
$$

and hence $\lim \sup _{n \rightarrow \infty} \phi\left(t_{n}\right) g_{t_{n-1}}^{*}=0$ a.s., which implies (5.14).

References

[1] T. W. Anderson, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc. 6 (1955), 170-176, DOI 10.2307/2032333. MR69229
[2] P. Baldi and B. Roynette, Some exact equivalents for the Brownian motion in Hölder norm, Probab. Theory Related Fields 93 (1992), no. 4, 457-484, DOI 10.1007/BF01192717. MR 1183887
[3] Paolo Baldi, Large deviations and functional iterated logarithm law for diffusion processes, Probab. Theory Relat. Fields 71 (1986), no. 3, 435-453, DOI 10.1007/BF01000215. MR824713
[4] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR2363343
[5] Christer Borell, Gaussian Radon measures on locally convex spaces, Math. Scand. 38 (1976), no. 2, 265-284, DOI 10.7146/math.scand.a-11634. MR436303
[6] Xia Chen and Wenbo V. Li, Quadratic functionals and small ball probabilities for the m-fold integrated Brownian motion, Ann. Probab. 31 (2003), no. 2, 1052-1077, DOI 10.1214/aop/1048516545. MR1964958
[7] Alejandro de Acosta, Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm, Ann. Probab. 11 (1983), no. 1, 78-101. MR682802
[8] Daniel Dobbs and Tai Melcher, Small deviations for time-changed Brownian motions and applications to second-order chaos, Electron. J. Probab. 19 (2014), no. 85, 23, DOI 10.1214/EJP.v19-2993. MR3263642
[9] Bruce K. Driver and Maria Gordina, Heat kernel analysis on infinite-dimensional Heisenberg groups, J. Funct. Anal. 255 (2008), no. 9, 2395-2461, DOI 10.1016/j.jfa.2008.06.021. MR2473262
[10] Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171, DOI 10.1007/BF02392081. MR 222474
[11] Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
[12] Naresh C. Jain and William E. Pruitt, The other law of the iterated logarithm, Ann. Probability 3 (1975), no. 6, 1046-1049, DOI 10.1214/aop/1176996232. MR397845
[13] Davar Khoshnevisan and Zhan Shi, Chung's law for integrated Brownian motion, Trans. Amer. Math. Soc. 350 (1998), no. 10, 4253-4264, DOI 10.1090/S0002-9947-98-02011-X. MR 1443196
[14] James Kuelbs and Wenbo V. Li, Small ball estimates for Brownian motion and the Brownian sheet, J. Theoret. Probab. 6 (1993), no. 3, 547-577, DOI 10.1007/BF01066717. MR 1230346
[15] W. V. Li and Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, Stochastic processes: theory and methods, Handbook of Statist., vol. 19, NorthHolland, Amsterdam, 2001, pp. 533-597, DOI 10.1016/S0169-7161(01)19019-X. MR 1861734
[16] Jin V. Liu, On Chung's law of the iterated logarithm for the Brownian time Lévy's area process, Statist. Probab. Lett. 83 (2013), no. 5, 1404-1410, DOI 10.1016/j.spl.2013.02.002. MR3041289
[17] D. Neuenschwander, On Chung's law of large numbers on simply connected step 2-nilpotent Lie groups, J. Math. Sci. (N.Y.) 196 (2014), no. 1, 75-77, DOI 10.1007/s10958-013-1638-5. MR3160352
[18] Bruno Rémillard, On Chung's law of the iterated logarithm for some stochastic integrals, Ann. Probab. 22 (1994), no. 4, 1794-1802. MR 1331204

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269 Email address: marco.carfagnini@uconn.edu
URL: https://marcocarfagnini.wordpress.com
Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
Email address: maria.gordina@uconn.edu

[^0]: Received by the editors December 29, 2020, and, in revised form, July 16, 2021.
 2020 Mathematics Subject Classification. Primary 60F17; Secondary 60F15, 60G51, $60 J 65$.
 Key words and phrases. Diffusion processes, Heisenberg group, functional limit laws.
 This research was supported in part by NSF Grants DMS-1712427 and DMS-1954264.

