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GLOBAL REGULARITY OF THREE-DIMENSIONAL RICCI

LIMIT SPACES

ANDREW D. MCLEOD AND PETER M. TOPPING

Abstract. Miles Simon and the second author, in their recent work [Geom.
Topol. 25 (2021), pp. 913–948], established a local bi-Hölder correspon-
dence between weakly noncollapsed Ricci limit spaces in three dimensions and
smooth manifolds. In particular, any open ball of finite radius in such a limit
space must be bi-Hölder homeomorphic to some open subset of a complete
smooth Riemannian three-manifold. In this work we build on the technology
from Simon and the second author in [J. Differential Geometry, to appear]
and [Geom. Topol. 25, (2021), pp. 913–948] to improve this local correspon-
dence to a global-local correspondence. That is, we construct a smooth three-
manifoldM, and prove that the entire (weakly) noncollapsed three-dimensional
Ricci limit space is homeomorphic to M via a globally-defined homeomorphism
that is bi-Hölder once restricted to any compact subset. Here the bi-Hölder

regularity is with respect to the distance dg on M, where g is any smooth
complete metric on M .

A key step in our proof is the construction of local pyramid Ricci flows, ex-
isting on uniform regions of spacetime, that are inspired by Hochard’s partial
Ricci flows in the paper by Raphaël Hochard [Short-time existence of the Ricci

flow on complete, non-collapsed 3-manifolds with Ricci curvature bounded
from below, https://arxiv.org/abs/1603.08726, 2016]. Suppose (M, g0, x0) is a
complete smooth pointed Riemannian three-manifold that is (weakly) noncol-
lapsed and satisfies a lower Ricci bound. Then, given any k ∈ N, we construct
a smooth Ricci flow g(t) living on a subset of spacetime that contains, for each
j ∈ {1, . . . , k}, a cylinder Bg0 (x0, j) × [0, Tj ], where Tj is dependent only on
the Ricci lower bound, the (weakly) noncollapsed volume lower bound and the
radius j (in particular independent of k) and with the property that g(0) = g0
throughout Bg0 (x0, k).
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1. Introduction

Given a sequence of n-dimensional complete, smooth, pointed Riemannian mani-
folds (Mi, gi, xi) , for which Ricgi ≥ −α0 for some given α0, Gromov’s compactness
theorem, see [Che01] for instance, tells us that, after passing to a subsequence,
there exists a locally compact complete pointed metric space (X, dX , x0) for which
(Mi, dgi , xi) → (X, dX , x0) in the pointed Gromov-Hausdorff sense; the relevant
definition of pointed Gromov-Hausdorff convergence may be found in, for example,
either [BBI01] or [Che01]. It is a natural question to ask about the regularity of
the limit space (X, dX), continuing a long tradition of such results that originates
with the study of limit spaces of manifolds with uniform lower sectional curvature
bounds (see e.g. [BBI01] as a starting point). In this paper we consider the weakly
noncollapsed setting, that is with the added assumption that VolBgi(xi, 1) ≥ v0 > 0.
We refer to this setting as weakly noncollapsed since we only require a single unit
ball Bgi(xi, 1) to have a specified uniform lower volume bound as opposed to the
stronger globally noncollapsed condition in which we require all balls Bgi(x, 1) to
have the uniform lower volume bound. This stronger globally noncollapsed hy-
pothesis can be handled using Ricci flow techniques that are far simpler than those
required in this paper.

Pioneering regularity results were obtained for the limit spaces (X, dX , x0) of
sequences of n-dimensional manifolds with uniform lower Ricci bounds by Cheeger-
Colding, see [Che01], as we now describe. In the weakly noncollapsed setting the
‘regular set’ R of X is the set of points in X at which all tangent cones are isometric
to n-dimensional Euclidean space; see [Che01]. Cheeger-Colding [CC97] proved that
while the Hausdorff dimension of X is n, the singular set S := X \R has Hausdorff
dimension no larger than n− 2, and the regular set is contained within an open set
that is locally bi-Hölder homeomorphic to a smooth manifold.

Recently, Miles Simon and the second author obtained improved regularity in
dimension three; in [ST17] it is proved that weakly noncollapsed Ricci limit spaces
in dimension three are topological manifolds throughout the entire limit space,
irrespective of singularities. In fact, given any point x ∈ X, including any singular
point, there is a neighbourhood of x that is bi-Hölder homeomorphic to a ball in
R

3. Moreover, the theory in that paper establishes that for any r > 0, the ball
BdX

(x0, r) is bi-Hölder homeomorphic to an open subset in a complete smooth
Riemannian manifold. See [ST17, Theorem 1.4 and Corollary 1.5] for full details.
In this paper we use all the technology from [ST17] and key results and ideas from
[ST16,Hoc16] in order to prove directly the following result.

Theorem 1.1 (Ricci limit spaces are globally smooth manifolds). Suppose that(
M3

i , gi, xi

)
is a sequence of complete, smooth, pointed Riemannian three-manifolds

such that for some α0 > 0 and v0 > 0, and for all i ∈ N, we have Ricgi ≥ −α0

throughout Mi, and VolBgi(xi, 1) ≥ v0 > 0.
Then there exist a smooth manifold M , a point x0 ∈ M , and a complete distance

metric d : M × M → [0,∞) generating the same topology as M such that after
passing to a subsequence in i we have(

M3
i , dgi , xi

)
→ (M,d, x0) ,

in the pointed Gromov-Hausdorff sense, and if g is any smooth complete Riemann-
ian metric on M then the identity map (M,d) → (M,dg) is locally bi-Hölder.
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A key part of [ST17] is the use of Ricci flow to ‘mollify’ the Riemannian manifolds
(Mi, gi) in the spirit of early work of Simon e.g. [Sim02, Sim12]. However, it is
not expected that there exists any traditional smooth Ricci flow that starts from
a general limit space (X, dX), or even from a general smooth three-manifold with
Ricci curvature bounded below [Top14], so in [ST17] a notion of local Ricci flow is
used, which automatically generates not just a Ricci flow, but also the underlying
smooth manifold for the flow, see e.g. [ST17, Theorem 1.1]. This Ricci flow is
posed within a class of flows with good estimates, and it is not reasonable to ask
for uniqueness of solutions. A consequence of this is that if one takes a second
local Ricci flow on a larger local region of the limit space, then restricts to the
original local region, there is no guarantee that the natural identification of the two
resulting smooth underlying manifolds will be smooth. Consequently, Theorem 1.1
of this paper does not immediately follow.

These considerations encourage us to look again at the idea of trying to imagine
a Ricci flow starting from the entire Ricci limit space (X, dX). We have already
pointed out that this should be impossible in the traditional manner, but it is
instructive to imagine why we cannot construct such a Ricci flow as a limit of local
Ricci flows that exist on larger and larger balls Bgi(xi, i). The problem is that the
degree of noncollapsing of such balls typically degenerates as i → ∞, and therefore
the existence time of the corresponding local Ricci flows must necessarily degenerate
to zero.

The solution to these problems, refining an approach of Hochard [Hoc16], is to
consider Ricci flows that live on a subset of spacetime that is not simply a para-
bolic cylinder M × [0, T ]. Given a smooth, complete Riemannian three-manifold
(M, g0, x0) satisfying the above Ricci lower bound and weakly noncollapsed con-
dition, then for any k ∈ N, we prove the existence of a smooth Ricci flow gk(t)
that is defined on a subset of spacetime that contains, for each m ∈ {1, . . . , k} , the
cylinder Bg0(x0,m)× [0, Tm] , where crucially Tm > 0 depends only on α0, v0 and
m, and in particular not on k. Further, the flow enjoys local curvature bounds on
the set Bg0(x0,m)× (0, Tm], which again depend only on α0, v0 and m.

Theorem 1.2 (Pyramid Ricci flow construction). Suppose that
(
M3, g0

)
is a com-

plete smooth Riemannian three-manifold and x0 ∈ M . Assume that for given
α0, v0 > 0 we have both Ricg0 ≥ −α0 throughout M, and VolBg0(x0, 1) ≥ v0 > 0.

Then there exist increasing sequences Ck ≥ 1 and αk > 0, and a decreasing
sequence Tk > 0, all defined for k ∈ N, and depending only on α0 and v0, such that
the following is true.

For any k ∈ N there exists a smooth Ricci flow solution gk(t), defined on a subset
Dk of spacetime given by

Dk :=
k⋃

m=1

Bg0(x0,m)× [0, Tm] ,

with gk(0) = g0 on Bg0(x0, k), and satisfying, for each m ∈ {1, . . . , k},

(1.1)

{
Ricgk(t) ≥ −αm on Bg0(x0,m)× [0, Tm]

|Rm|gk(t) ≤
Cm

t on Bg0(x0,m)× (0, Tm] .

The domain of definition Dk of the Ricci flow gk(t) has a pyramid structure,
as illustrated in the following figure, and throughout this work we shall term such
Ricci flows as ‘Pyramid Ricci flows.’.
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As the distance from the central point x0 increases, not only does the existence
time of the flow decrease, but the C/t curvature decay estimate worsens. This is in
contrast to the partial Ricci flow construction of Hochard, and is essential to obtain
the uniform estimates on the domain of existence. Another distinction to partial
Ricci flows is that by virtue of the theory of Miles Simon and the second author in
[ST16, ST17], in particular the so-called Double Bootstrap lemma, our flows have
lower Ricci bounds that do not degenerate as t ↓ 0. These uniform lower Ricci
bounds will be crucial for obtaining our bi-Hölder estimates in Theorem 1.1, and to
make the application to Ricci limit spaces, thanks to the bi-Hölder regularity from
[ST17, Lemma 3.1] (see Lemma A.7 of this paper).

Although we do not need it to prove Theorem 1.1, we record now that our
pyramid Ricci flows constructed in Theorem 1.2 allow us to prove the following
hybrid of the local and global existence results from [ST17].

Theorem 1.3 (Global-Local Ricci flows). Suppose that (M, g0, x0) is a complete,
smooth, pointed, Riemannian three-manifold and, for given α0, v0 > 0, we have
both Ricg0 ≥ −α0 throughout M, and VolBg0(x0, 1) ≥ v0 > 0. Then there exist
increasing sequences Cj ≥ 1 and αj > 0 and a decreasing sequence Tj > 0, all
defined for j ∈ N, and depending only on α0 and v0, for which the following is true.

There exists a smooth Ricci flow g(t), defined on a subset of spacetime that
contains, for each j ∈ N, the cylinder Bg0(x0, j)× [0, Tj ] , satisfying that g(0) = g0
throughout M , and further that, again for each j ∈ N,

(1.2)

{
Ricg(t) ≥ −αj on Bg0(x0, j)× [0, Tj ]

|Rm|g(t) ≤
Cj

t on Bg0(x0, j)× (0, Tj ] .

To reiterate, in this result we only assume weak noncollapsing, and thus we must
not expect global existence for positive times.

Analogously to [ST17, Theorem 1.8], we can obtain this sort of global-local
existence starting also from a weakly noncollapsed Ricci limit space, and in doing
so we establish most of Theorem 1.1.

Theorem 1.4 (Ricci flow from a weakly noncollapsed 3D Ricci limit space). Sup-
pose that

(
M3

i , gi, xi

)
is a sequence of complete, smooth, pointed Riemannian three-

manifolds such that for given α0, v0 > 0 we have Ricgi ≥ −α0 throughout Mi, and
VolBgi(xi, 1) ≥ v0 > 0, for each i ∈ N.

Then there exist increasing sequences Ck ≥ 1 and αk > 0 and a decreasing
sequence Tk > 0, all defined for k ∈ N, and depending only on α0 and v0, for which
the following holds.
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There exist a smooth three-manifold M, a point x0 ∈ M, a complete distance
metric d : M × M → [0,∞) generating the same topology as we already have on
M, and a smooth Ricci flow g(t) defined on a subset of spacetime M × (0,∞) that
contains Bd(x0, k) × (0, Tk] for each k ∈ N, with dg(t) → d locally uniformly on M
as t ↓ 0, and after passing to a subsequence in i we have that (Mi, dgi , xi) converges
in the pointed Gromov-Hausdorff sense to (M,d, x0). Moreover, for any k ∈ N,

(1.3)

{
Ricg(t) ≥ −αk on Bd(x0, k)× (0, Tk]

|Rm|g(t) ≤ Ck

t on Bd(x0, k)× (0, Tk] .

This theorem will be a special case of the more elaborate Theorem 5.1 that will
explicitly arrive at g(t) as a limit of pyramid Ricci flows via pull-back by diffeomor-
phisms generated by a local form of Hamilton-Cheeger-Gromov compactness that
we give in Lemma B.3. A further special case of Theorem 5.1 will be Theorem 1.1,
and the following stronger assertion.

Theorem 1.5 (Regular GH approximations). In the setting of Theorem 1.1, we
may assume the following additional conclusions:

There exists a sequence of smooth maps ϕi : Bd(x0, i) → Mi, diffeomorphic onto
their images, and mapping x0 to xi such that for any R>0 we have dgi(ϕi(x), ϕi(y))
→ d(x, y) uniformly for x, y ∈ Bd(x0, R) as i → ∞.

Moreover, for sufficiently large i, ϕi|Bd(x0,R) is bi-Hölder with Hölder exponent
depending only on α0, v0 and R.

Finally, for any r ∈ (0, R), and for sufficiently large i, ϕi|Bd(x0,R) maps onto
Bgi(xi, r).

Thus, not only do we have the pointed Gromov-Hausdorff convergence of Theo-
rem 1.1, we can also find Gromov-Hausdorff approximations that are smooth and
bi-Hölder (neglecting a thin boundary layer) cf. [ST17, Theorem 1.4].

In this paper we utilise numerous results, and mild variants of results, from
[ST16] and [ST17]. For convenience we collect all such material in Appendix A.
There are also several substantial deviations from existing theory. The main nov-
elty is the new pyramid extension lemma 2.1. This result asserts that it is not
just possible to construct a local Ricci flow with good estimates, but that we can
additionally assume that this local flow extends a given Ricci flow defined for a
shorter time on a larger domain. The estimates, and their constants, are handled
with sufficient care that the pyramid extension lemma can be iterated, in Section
3, to construct the pyramid Ricci flows of Theorem 1.2. Another notable difference
between our work and existing theory arises in the Ricci flow compactness of Sec-
tion 5. For compactness of pyramid flows we must appeal to compactness of the
flows not at one time slice, as in the traditional theory, but at countably many time
slices. The resulting Theorem 5.1 in turn establishes Theorems 1.1, 1.5 and 1.4.

2. The pyramid extension lemma

The following result interpolates between the local existence theorem (Theorem
1.6) and the extension lemma (Lemma 4.4) of Simon-Topping [ST17], and is the
major ingredient in constructing pyramid Ricci flows.

Lemma 2.1 (Pyramid extension lemma). Suppose (M, g0, x0) is a pointed com-
plete Riemannian 3-manifold satisfying Ricg0 ≥ −α0 < 0 throughout M, and
VolBg0(x0, 1) ≥ v0 > 0. Then there exist increasing sequences Ck ≥ 1 and αk > 0,
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and a decreasing sequence Sk > 0, all defined for k ∈ N and depending only on α0

and v0, with the following properties.
First, for each k ∈ N there exists a Ricci flow g(t) on Bg0(x0, k) for t ∈ [0, Sk]

such that g(0) = g0 where defined and so that |Rm|g(t) ≤ Ck/t for all t ∈ (0, Sk]
and Ricg(t) ≥ −αk for all t ∈ [0, Sk].

Moreover, given any Ricci flow g̃(t) on Bg0(x0, k + 1) over a time interval t ∈
[0, S] with g̃(0) = g0 where defined, and with |Rm|g̃(t) ≤ c0/t for some c0 > 0 and

all t ∈ (0, S], there exists S̃k > 0 depending on k, α0, v0 and c0 only, such that
we may choose the Ricci flow g(t) above to agree with the restriction of g̃(t) to

Bg0(x0, k) for times t ∈ [0,min{S, S̃k, Sk}].

Proof of Lemma 2.1. By making a uniform parabolic rescaling (scaling distances
by a factor of 14), it suffices to prove the lemma under the apparently stronger
hypothesis that g̃(t) is assumed to be defined not just on Bg0(x0, k+ 1) but on the
larger ball Bg0(x0, k + 14), still satisfying the curvature decay |Rm|g̃(t) ≤ c0/t.

By Bishop-Gromov, for all k ∈ N, there exists vk > 0 depending only on k, α0

and v0 such that if x ∈ Bg0(x0, k + 14) and r ∈ (0, 1] then VolBg0(x, r) ≥ vkr
3.

The first part of the lemma, giving the initial existence statement for g(t), follows
immediately by the local existence theorem A.3 for some Ck ≥ 1, αk > 0 and
Sk > 0 depending only on α0 and vk, i.e. on α0, k and v0. We will allow ourselves
to increase Ck and αk, and decrease Sk, in order to establish the remaining claims
of the lemma.

We increase each Ck to be at least as large as the constant C0 retrieved from
Lemma A.1 with v0 there equal to vk here. Note that we are not actually applying
Lemma A.1, but simply retrieving a constant in preparation for its future appli-
cation. By inductively replacing Ck by max{Ck, Ck−1} for k = 2, 3, . . ., we can
additionally assume that Ck is an increasing sequence. Thus Ck still depends only
on k, α0 and v0, and in particular, not on c0, and can be fixed for the remainder of
the proof.

Suppose now that we would like to extend a Ricci flow g̃(t). Appealing to the
double bootstrap lemma A.2 centred at each x ∈ Bg0(x0, k + 12), there exists

Ŝ > 0 depending only on c0 and α0 so that for all t ∈ [0,min{S, Ŝ}] we have
Ricg̃(t) ≥ −100α0c0 throughout Bg0(x0, k + 12). (In due course, we will require a

lower Ricci bound that does not depend on c0.) In addition, after reducing Ŝ > 0,
still depending only on c0 and α0, the shrinking balls lemma A.5 tells us that for
all x ∈ Bg0(x0, k + 10) we have Bg̃(t)(x, 1) ⊂ Bg0(x, 2) ⊂ Bg0(x0, k + 12) where the

Ricci curvature is controlled, for all t ∈ [0,min{S, Ŝ}].
Thus, for x ∈ Bg0(x0, k+10) we can apply Lemma A.1 to deduce that |Rm|g̃(t)(x)

≤ Ck/t for all t ∈ (0,min{S, S̃k}], for some S̃k ∈ (0, Ŝ] depending only on vk, α0

and c0, i.e only on k, c0, v0 and α0.
Now we have a curvature decay estimate that does not depend on c0 (albeit

for a time depending on c0) we can return to the double bootstrap lemma A.2,
which then tells us that on the smaller ball Bg0(x0, k + 8) we have Ricg̃(t) ≥ −αk

for t ∈ [0,min{S, S̃k}], where αk is increased to be at least 100α0Ck and will be
increased once more below (but only ever depending on k, α0 and v0) and where

we have reduced S̃k > 0 without adding any additional dependencies.
We can also exploit these new estimates to get better volume bounds via Lemma

A.4. We apply that result with R = k+8 to obtain that for every t ∈ [0,min{S, S̃k}],
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where we have reduced S̃k > 0 again without adding any additional dependencies,
we have Bg̃(t)(x0, k+7) ⊂ Bg0(x0, k+8), and for every x ∈ Bg̃(t)(x0, k+6), we have
VolBg̃(t)(x, 1) ≥ εk > 0, where εk depends only on v0, k, and α0.

We need one final reduction of S̃k > 0 in order to ensure appropriate nesting of
balls defined at different times. By the expanding balls lemma A.6, exploiting our
lower Ricci bounds (even the weaker bound suffices here) we deduce that

(2.1)

{
Bg0(x0, k + 4) ⊂ Bg̃(t)(x0, k + 5)

Bg0(x0, k + 2) ⊂ Bg̃(t)(x0, k + 3)
for all t ∈ [0,min{S, S̃k}],

with S̃k > 0 reduced appropriately, without additional dependencies.
At this point we can fix S̃k and try to find our desired extension g(t) of g̃(t) by

considering g̃(τ ) for τ := min{S, S̃k} and restarting the flow from there. We cannot
restart the flow using any variant of Shi’s existence theorem (as was done in the
extension lemma from [ST17], for example) since we would not have appropriate
control on the existence time. Instead, we appeal to the local existence theorem
A.3. In order to do so, note that g̃(τ ) satisfies the estimates Ricg̃(τ) ≥ −αk on
Bg̃(τ)(x0, k + 7) ⊂⊂ Bg0(x0, k + 14), and VolBg̃(τ)(x, 1) ≥ εk > 0 for each x ∈
Bg̃(τ)(x0, k + 6).

The output of the local existence theorem A.3, applied with M there equal to
Bg0(x0, k + 14) here, with g0 there equal to g̃(τ ) here, and with s0 = k + 7, is that
after reducing the Sk > 0 that we happened to find at the start of the proof, still
depending only on α0, k and v0, there exists a Ricci flow h(t) on Bg̃(τ)(x0, k + 5)
for t ∈ [0, Sk], with h(0) = g̃(τ ) where defined, and such that Rich(t) ≥ −αk (after
possibly increasing αk, still depending only on α0, k and v0) and |Rm|h(t) ≤ ck/t,
where ck depends only on α0, k and v0. By the first inclusion of (2.1), this flow is
defined throughout Bg0(x0, k + 4).

Define a concatenated Ricci flow on Bg̃(τ)(x0, k + 5) ⊃ Bg0(x0, k + 4) for t ∈
[0, τ + Sk] by

(2.2) g(t) :=

{
g̃(t) 0 ≤ t ≤ τ

h (t− τ ) τ < t ≤ τ + Sk.

This already satisfies the required lower Ricci bound Ricg(t) ≥ −αk.
We claim that after possibly reducing Sk, without further dependencies, we have

that for all x ∈ Bg0(x0, k+2), there holds the inclusion Bg(t)(x, 1) ⊂⊂ Bg̃(τ)(x0, k+
5) where the flow is defined, for all t ∈ [0, τ + Sk]. But we already arranged that
for x ∈ Bg0(x0, k + 2) ⊂ Bg0(x0, k + 10) we have Bg̃(t)(x, 1) ⊂ Bg0(x, 2), which in
turn is compactly contained in Bg0(x0, k+4) ⊂ Bg̃(τ)(x0, k+5), so the claim holds
up until time τ .

Thus to prove the claim it remains to show that for all x ∈ Bg0(x0, k+ 2), there
holds the inclusion Bh(t)(x, 1) ⊂⊂ Bh(0)(x0, k + 5) for all t ∈ [0, Sk], and by the
second inclusion of (2.1), it suffices to prove this for each x ∈ Bh(0)(x0, k+ 3). But
by the shrinking balls lemma A.5, after reducing Sk depending on ck, and thus on
α0, k and v0, we can deduce that Bh(t)(x, 1) ⊂ Bh(0)(x, 2) ⊂⊂ Bh(0)(x0, k + 5) as
required, thus proving the claim.

At this point we truncate the flow g(t) to live only on the time interval [0, Sk]
(i.e. we chop off an interval of length τ from the end, not the beginning). The flow
now lives on a time interval of length independent of c0 and S.
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The main final step is to apply Lemma A.1 once more, with M there equal to
Bg̃(τ)(x0, k + 5) here. Using the claim we just proved, for every x ∈ Bg0(x0, k + 2),
after a possible further reduction of Sk > 0, and with Ck as fixed earlier, the local
lemma A.1 tells us that |Rm|g(t)(x) ≤ Ck/t for all t ∈ (0, Sk]. We finally have
a sequence Sk that does what the lemma asks of it, except for being decreasing.
The monotonicity of Sk and αk can be arranged by iteratively replacing Sk by
min{Sk, Sk−1}, and αk by max{αk, αk−1}, for k = 2, 3, . . ..

By restricting g(t) to Bg0(x0, k) we are done. �

3. Pyramid Ricci flow construction—Proof of Theorem 1.2

Proof of Theorem 1.2. For our given constants α0 and v0, we appeal to Lemma 2.1
for increasing sequences Ck ≥ 1 and αk > 0, and a decreasing sequence Sk > 0,
all defined for k ∈ N and depending only on α0 and v0. Moreover, we construct a
sequence S̃k as follows. For each k ∈ N, we appeal to Lemma 2.1 with our given
constants α0 and v0 and with c0 = Ck+1. The sequences Ck ≥ 1 and αk > 0 are
suitable for the sequences required by the theorem.

An induction argument is required to get the constants Tk. We begin by setting
T1 to be S1. The inductive step is as follows: Suppose we have picked T1, . . . Tk−1

for any integer k ≥ 2. Then we set Tk to be the minimum of Sk, S̃k−1 and Tk−1.
Note that when we pick Tk, it depends on Sk, i.e. on k, α0 and v0, and it also

depends on S̃k−1, i.e. additionally on Ck, but that itself only depends on k, α0 and
v0.

Fix l ∈ N. To construct gl(t), we appeal to Lemma 2.1 l times.
First we use the first part of that lemma with k = l. This initial flow lives on

Bg0(x0, l) for a time Sl, and thus certainly for Tl.

Since Tl ≤ S̃l−1, we can appeal a second time to the lemma, this time with
k = l − 1, in order to extend the flow gl(t) to the longer time interval [0, Tl−1],
albeit on the smaller ball Bg0(x0, l − 1).

We repeat this process inductively for the remaining values of k down until it is
finally repeated for k = 1. The resulting smooth Ricci flow gl(t) is now defined, for
each m ∈ {1, . . . , l} , on Bg0 (x0,m) over the time interval t ∈ [0, Tm] , still satisfying
that gl(0) = g0 where defined. Moreover, our repeated applications of Lemma 2.1
provide the estimates

(3.1)

{
Ricgl(t) ≥ −αm on Bg0 (x0,m)× [0, Tm]

|Rm|gl(t) ≤ Cm

t on Bg0 (x0,m)× (0, Tm]

for each m ∈ {1, . . . , l}, which completes the proof. �

4. Global-local mollification

Proof of Theorem 1.3. For the α0 and v0 of the theorem, we begin by retrieving
sequences Cj , αj and Tj from Theorem 1.2. Our first step is to modify them by
throwing away the first two terms of each, i.e. replacing the three sequences by
Cj+2, αj+2 and Tj+2.

With a view to later applying the shrinking balls lemma A.5 for each j ∈ N we
reduce Tj , without additional dependencies; with hindsight, it will suffice to ensure
that

(4.1) Tj <
1

4β2Cj
,
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where β ≥ 1 is the universal constant arising in the shrinking balls lemma A.5.
For each i ∈ N let gi(t) denote the pyramid Ricci flow obtained in Theorem 1.2

defined on a subset Di ⊂ M × [0,∞) that now contains Bg0(x0, l + 2) × [0, Tl] for
each l ∈ {1, . . . , i}, having deleted the first two terms of the sequences Cj , αj and
Tj . If we fix j ∈ N, then for i ≥ j the estimates of (1.1) hold for gi(t) on the g0
ball of radius j + 2. Consider an arbitrary point y ∈ Bg0(x0, j + 1). We have the

curvature estimate |Rm|gi(t) ≤ Cj

t throughout Bg0(y, 1) × (0, Tj ]. The shrinking

balls lemma A.5 tells us that Bgi(t)

(
y, 1

2

)
⊂ Bg0

(
y, 1

2 + β
√
CjTj

)
⊂⊂ Bg0(y, 1) for

any t ∈ [0, Tj ], provided
1
2 + β

√
CjTj < 1. The restriction (4.1) ensures this is

the case, and hence we establish the curvature bound |Rm|gi(t) ≤ Cj

t throughout

Bgi(t)

(
y, 1

2

)
for any t ∈ (0, Tj ].

These estimates allow us to repeat the argument of Miles Simon and the second
author in [ST17, Theorem 1.7] and deduce that after passing to a subsequence in
i, we have smooth convergence gi(t) → g(t), for some smooth Ricci flow g(t) on
Bg0(x0, j), defined for t ∈ [0, Tj ] , with g(0) = g0 on Bg0(x0, j), and satisfying the
curvature estimates

(4.2)

{
Ricg(t) ≥ −αj on Bg0(x0, j)× [0, Tj ]

|Rm|g(t) ≤
Cj

t on Bg0(x0, j)× (0, Tj ] .

We can now repeat this process for each j = 1, 2, . . . and take a diagonal subsequence
to obtain a smooth limit Ricci flow g(t) on a subset of spacetime that contains
Bg0(x0, j) × [0, Tj ] for each j ∈ N, with g(0) = g0 throughout M , and satisfying
(4.2) for every j ∈ N. �

5. Pyramid Ricci flow compactness theorem

The following overarching theorem effectively includes Theorems 1.1, 1.4 and 1.5.
The Ricci flows gk(t) arising here are pyramid Ricci flows coming from Theorem
1.2.

Theorem 5.1. In the setting of Theorem 1.4, in addition to the conclusions of
that theorem, including the existence of M , x0, d, g(t) and the sequences Ck, αk

and Tk, we may assume also that the following holds.
For each k ∈ N, there exist Ricci flows gk(t) defined on the subset of Mk× [0,∞)

defined by

Dk :=
k⋃

m=1

Bgk(xk,m+ 2)× [0, Tm] ,

with the properties that gk(0) = gk on Bgk(xk, k + 2) and

(5.1)

{
Ricgk(t) ≥ −αm on Bgk(xk,m+ 2)× [0, Tm]

|Rm|gk(t) ≤
Cm

t on Bgk(xk,m+ 2)× (0, Tm] ,

for each m ∈ {1, . . . , k}.
Moreover, for each m ∈ N, the flows gk(t) converge to (Bd(x0,m), g(t)) for

t ∈ (0, Tm], in the following sense: There exists a sequence of smooth maps fm
k :

Bd(x0,m) → Bgk(xk,m+1) ⊂ Mk, mapping x0 to xk, such that for each δ ∈ (0, Tm)
we have (fm

k )∗[gk(·)] → g(·) smoothly uniformly on Bd(x0,m)× [δ, Tm].
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Moreover, there exists a sequence of smooth maps ϕk : Bd(x0, k) → Bgk(xk, k +
1) ⊂ Mk, diffeomorphic onto their images, mapping x0 to xk, such that, for any
R > 0, as k → ∞ we have the convergence

dgk(ϕk(x), ϕk(y)) → d(x, y)

uniformly as x, y vary over Bd(x0, R), and for sufficiently large k, ϕk|Bd(x0,R) is
bi-Hölder with Hölder exponent depending only on α0, v0 and R. Moreover, for
any r ∈ (0, R), and for sufficiently large k, ϕk|Bd(x0,R) maps onto Bgk(xk, r).

Finally, if g is any smooth complete Riemannian metric on M then the identity
map (M,d) → (M,dg) is locally bi-Hölder.

To clarify, by smooth uniform convergence, we mean uniform Cl convergence for
arbitrary l ∈ N. We remark that the bi-Hölder assertion for the maps ϕk in this
theorem can be taken with respect to the distance metrics d and dgk , although one
could replace gk by any complete smooth metric.

Proof of Theorem 5.1. For the α0 and v0 of the theorem (as in Theorem 1.4) we
begin by retrieving sequences Cj , αj and Tj from Theorem 1.2.

Throughout the proof η := 1
10 will be fixed. With a view to later applying

Lemma A.7 and both the expanding and shrinking balls lemmas, for each j ∈ N

we reduce Tj , without additional dependencies, and with hindsight it will suffice to
ensure that
(5.2)⎧⎨
⎩(i) (4j + 8)(1− e−αjTj ) < 1− 8β

√
CjTj (in particular β

√
CjTj <

1

8
) and

(ii) (j + 1)(eαjTj − 1) ≤ η,

where β ≥ 1 is the universal constant arising in the shrinking balls lemma A.5. For

j = 2, 3, . . ., if necessary we inductively replace Tj by min
{
Tj , Tj−1,

1
j

}
to ensure

the monotonicity of the sequence Tj remains, and to force Tj ↓ 0 as j → ∞.
We modify these sequences further by dropping the first two terms, i.e. by

replacing each Cj , αj and Tj by Cj+2, αj+2 and Tj+2 respectively. This does not
affect the monotonicity or dependencies. We may fix the values Cj ≥ 1 and αj > 0
for each j ∈ N for the remainder of the proof. Before fixing Tj , we (potentially)
reduce the value further.

With a view to appealing to Cheeger-Gromov-Hamilton compactness via Lemma
B.3, we reduce Tj , without additional dependencies, so that the conclusions of
Lemma B.3 for hypotheses R = j + 1, η = 1

10 , n = 3, v = v0, α = αj and c0 = Cj

are valid for all times t ∈ (0, Tj ]. As above, we may assume that Tj remains
monotonically decreasing. After these reductions, we can now fix the value of Tj

for each j ∈ N for the remainder of the proof.
For each k ∈ N let gk(t) denote the smooth pyramid Ricci flow, defined on the

subset Dk ⊂ Mk × [0,∞) obtained via Theorem 1.2. That is

(5.3) Dk =

k⋃
m=1

Bgk(xk,m+ 2)× [0, Tm] .

(Recall that we have dropped the first two terms of the sequences, so we can work
on a radius m+2 rather than m.) In particular, we have gk(0) = gk where defined
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and for each m ∈ {1, . . . , k} we have

(5.4)

{
Ricgk(t) ≥ −αm on Bgk(xk,m+ 2)× [0, Tm]

|Rm|gk(t) ≤ Cm

t on Bgk(xk,m+ 2)× (0, Tm] .

Fix m ∈ N. For every k ≥ m the flow gk(t) is defined throughout Bgk(xk,m +
2)× [0, Tm]. Combining (5.4) with VolBgk(xk,m+ 1) ≥ v0 > 0 allows us to appeal
to Lemma B.3 with R = m + 1, η = 1

10 , n = 3, v = v0, α = αm and c0 = Cm to
deduce that, after passing to a subsequence in k, we obtain a smooth three-manifold
Nm, a point xm

∞ ∈ Nm and a smooth Ricci flow ĝm(t) on Nm × (0, Tm] with the
following properties. First, for any t ∈ (0, Tm] we have the inclusion

(5.5) Bĝm(t) (x
m
∞,m+ 1− η) ⊂⊂ Nm.

Second, we have

(5.6) Bĝm(t) (x
m
∞,m+ 1− 2η) ⊂ Mm,

for all t ∈ (0, Tm], where Mm is the connected component of the interior of

(5.7)
⋂

s∈(0,Tm]

Bĝm(s) (x
m
∞,m+ 1− η) ⊂ Nm

that contains xm
∞. Combining (5.5) and (5.7) allows us to conclude that

(5.8) Mm ⊂⊂ Nm.

Moreover, Lemma B.3 gives us a sequence of smooth maps Fm
k : Mm → Bgk(xk,m+

1) ⊂ Mk, for k ≥ m, mapping xm
∞ to xk, diffeomorphic onto their images and such

that (Fm
k )∗gk(t) → ĝm(t) smoothly uniformly on Mm× [δ, Tm] as k → ∞, for every

δ ∈ (0, Tm). Finally, we have

(5.9)

{
Ricĝm(t) ≥ −αm on Mm × (0, Tm]

|Rm|ĝm(t) ≤ Cm

t on Mm × (0, Tm] .

By taking an appropriate diagonal subsequence in k, we can be sure that these
limits exist for every m ∈ N.

We now wish to relate the limit flows ĝm(t) that we have constructed, for different
m. Let us fixm. Then ĝm(Tm+1) is a smooth limit of the metrics gk(Tm+1) (modulo
the diffeomorphisms Fm

k ) defined on Mm. On the other hand, ĝm+1(Tm+1) is a

smooth limit of the metrics gk(Tm+1) (modulo the diffeomorphisms Fm+1
k ) defined

on Mm+1. Intuitively, Mm+1 should be “bigger” than Mm since it arises from the
compactness of the metrics on larger radius balls. This intuition is made precise in
the following claim.

Claim 5.2. For sufficiently large k we have

(5.10) Fm
k (Mm) ⊂ Fm+1

k (Mm+1).

Indeed, we have the stronger inclusion that for any t ∈ (0, Tm+1] and sufficiently
large k, depending on t,

(5.11) Fm
k (Mm) ⊂ Fm+1

k

(
Bĝm+1(t)

(
xm+1
∞ ,m+ 2− 2η

))
which immediately yields (5.10) via (5.6) by fixing t = Tm+1.
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Proof of Claim 5.2. Recall that by definition of Fm
k , for all k ≥ m ∈ N we have

Fm
k (Mm) ⊂ Bgk(xk,m+ 1).

For each t ∈ (0, Tm+1], and sufficiently large k, depending on t, we may appeal
to Part 2 of Lemma A.8, with 2r = m + 2 − 2η, b = 2r, a = m + 2 − 3η,
x0 = xm+1

∞ , (N , ĝ) = (Mm+1, ĝm+1(t)) and the sequence {ϕi} being the sequence
{Fm+1

k }k≥m+1, to deduce that Fm+1
k (Bĝm+1(t)(x

m+1
∞ ,m+2−2η)) ⊃ Bgk(t)(xk,m+

2− 3η). Thus, in order to prove (5.11), it suffices to prove that

(5.12) Bgk(xk,m+ 1) ⊂ Bgk(t)(xk,m+ 2− 3η).

We prove this through a combination of the shrinking and expanding balls lemmas.
Recall from (5.4) we know that Ricgk(t) ≥ −αm throughout Bgk(xk,m + 2) ×

[0, Tm] and |Rm|gk(t) ≤ Cm

t throughout Bgk(xk,m+ 2)× (0, Tm]. Therefore we can
appeal to the shrinking balls lemma A.5 to deduce that Bgk(t)(xk,m + 2 − 3η) ⊂
Bgk(xk,m + 2) provided m + 2 − 3η ≤ m + 2 − β

√
Cmt, which will be the case if

β
√
CmTm+1 ≤ 3η, since t ≤ Tm+1. But (i) in (5.2) tells us that β

√
CmTm < 1

8 ,
which is slightly stronger than required (recalling the monotonicity of the sequence
Tj).

Thus we may conclude that Ricgk(t) ≥ −αm throughout Bgk(t)(xk,m+2− 3η)×
[0, Tm+1]. The expanding balls lemma A.6 then tells us that Bgk(t)(xk,m+1+η) ⊃
Bgk(xk,m + 1), provided (m + 1 + η)e−αmt ≥ m + 1, which will itself be true if
(m+ 1)(eαmTm+1 − 1) ≤ η. Since Tm ≥ Tm+1 we observe that (ii) of (5.2) ensures
this is the case. But this inclusion is stronger than the inclusion (5.12) that we
need. This completes the proof of Claim 5.2 �

By the uniqueness of smooth limits the metrics must agree in the sense that
there is a smooth map ψm : Mm → Mm+1 that is an isometry when domain and
target are given the metrics ĝm(Tm+1) and ĝm+1(Tm+1) respectively, and which
sends xm

∞ to xm+1
∞ . Indeed, after passing to another subsequence, we could see

ψm as a smooth limit, as k → ∞, of maps (Fm+1
k )−1 ◦ Fm

k , which are well-defined
because of the claim, and which are independent of time, and it is apparent that
in fact ψm is an isometry also when domain and target are given the metrics ĝm(t)
and ĝm+1(t) respectively, for any t ∈ (0, Tm+1]. For details of such an argument
one can refer to the proof of [Top10, Lemma B.3].

Moreover seeing ψm as such a limit and appealing to (5.11) allows us to conclude
that

(5.13) ψm(Mm) ⊂ Bĝm+1(t)

(
xm+1
∞ ,m+ 2− 2η

)
for any t ∈ (0, Tm+1].

At this point we can already define a smooth extension of ĝm+1(t) to the longer
time interval t ∈ (0, Tm], albeit on the smaller region ψm(Mm), by taking
(ψ−1

m )∗(ĝm(t)). However we would like to make such an extension for each m,
and we must pause to construct the manifold on which this final flow will live.

The maps ψm : Mm → Mm+1 allow us to apply Theorem C.1 to the collection
{Mm}m∈N. Doing so gives a smooth three-manifold M, a point x0 ∈ M, and
smooth maps θm : Mm → M, mapping xm

∞ to x0, diffeomorphic onto their images,
satisfying θm(Mm) ⊂ θm+1(Mm+1) and θ−1

m+1 ◦ θm = ψm, and such that

(5.14) M =
⋃
m∈N

θm(Mm).
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In a moment, we will strengthen the inclusion θm(Mm) ⊂ θm+1(Mm+1) to assert
that the images of Mm are contained within bounded subsets of M .

We can thus consider pull-back Ricci flows (θ−1
m )∗ĝm(t) on θm(Mm) ⊂ M for

each m, and because ψm is an isometry, these pull-backs agree where they overlap.
The combination of the pull-backs we call g(t). Moreover, the curvature estimates
of (5.9) immediately give that for each m ∈ N we have

(5.15)

{
Ricg(t) ≥ −αm on θm(Mm)× (0, Tm]

|Rm|g(t) ≤ Cm

t on θm(Mm)× (0, Tm] .

Furthermore, from (5.6) and (5.8) we have that

(5.16) Bg(s)(x0,m+ 1− 3η) = θm(Bĝm(s)(x
m
∞,m+ 1− 3η)) ⊂⊂ θm(Mm)

for any 0 < s ≤ Tm.
Since θ−1

m+1◦θm≡ψm, (5.13) implies θ−1
m+1 (θm(Mm))⊂Bĝm+1(t)

(
xm+1
∞ ,m+2−2η

)
⊂ Mm+1 for any t ∈ (0, Tm+1]. Therefore we can strengthen the inclusion θm(Mm)
⊂ θm+1(Mm+1) to

(5.17) θm(Mm) ⊂ Bg(t)(x0,m+ 2− 2η) ⊂ θm+1(Mm+1)

for any t ∈ (0, Tm+1].
For each m ∈ N we have a sequence

fm
k : θm(Mm) → Bgk(xk,m+ 1) ⊂ Mk

of smooth maps, for k ≥ m, defined by fm
k := Fm

k ◦ θ−1
m , that map x0 to xk and

are diffeomorphic onto their images. Moreover, from the choice of our diagonal
subsequence, for any δ ∈ (0, Tm) we have

(5.18) (fm
k )

∗
gk(t) → g(t)

smoothly uniformly on θm(Mm)× [δ, Tm] as k → ∞.
The obvious idea for constructing a distance metric d on M is to define d :=

limt↓0 dg(t), if we can be sure that this limit exists. The existence is a consequence

of Lemma A.7, which may be applied with r = m
2 + 1

4 , α = αm, c0 = Cm and
T = Tm, which is possible due to the curvature estimates of (5.15), and the fact
that from (5.16) we have Bg(s)(x0,m+ 1− 3η) ⊂⊂ θm(Mm) for any 0 < s ≤ Tm.

The result is a distance metric d on Σm :=
⋂

t∈(0,Tm] Bg(t)

(
x0,

m
2 + 1

4

)
arising as

the uniform limit of dg(t) as t ↓ 0. Moreover, for any x, y ∈ Σm and any 0 < s ≤ Tm

we have

(5.19) d(x, y)− β
√
Cms ≤ dg(s)(x, y) ≤ eαmsd(x, y)

and

(5.20) κm(m,α0, v0) [d(x, y)]
1+4Cm ≤ dg(s)(x, y),

where κm > 0. As stated in Lemma A.7, these estimates ensure d generates the
same topology as we already have on Σm.

If we can estimate the R0 from (A.14) by R0 > m
2 + 1

8 , then (A.14) gives that
for any t ∈ (0, Tm] we have

(5.21) Bd

(
x0,

m

2
+

1

8

)
⊂⊂ Om and Bg(t)

(
x0,

m

2
+

1

8

)
⊂⊂ Σm,

where Om is the connected component of the interior of Σm that contains x0. This
lower bound for R0 is true provided

(
m
2 + 1

4

)
e−αmTm − β

√
CmTm > m

2 + 1
8 , i.e.
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if 1 − 8β
√
CmTm > (4m + 2)(1 − e−αmTm). Restriction (i) in (5.2) implies this

inequality and hence the inclusions of (5.21) are valid.
A particular consequence of the first of these inclusions, via (5.19) and (5.20), is

that for any x, y ∈ Bd(x0,
m
2 ) and any 0 < s ≤ Tm we have

(5.22) d(x, y)− β
√
Cms ≤ dg(s)(x, y) ≤ eαmsd(x, y)

and

(5.23) κm(m,α0, v0) [d(x, y)]
1+4Cm ≤ dg(s)(x, y).

The natural idea for extending d to the entirety of M is to repeat this procedure
for all m ∈ N. Of course this will require the sets {Σm}m∈N to exhaust M . That
this is indeed the case is a consequence of the following claim.

Claim 5.3. For every m ∈ N we have θm(Mm) ⊂⊂ Σ2m+4.

Proof of Claim 5.3. Recall from (5.17) we know that θm(Mm) ⊂ Bg(t)(x0,m+ 2−
2η) for any t ∈ (0, Tm+1]. Moreover (5.21) gives that for any t ∈ (0, T2m+4] we have
Bg(t)(x0,m + 2) ⊂⊂ Σ2m+4. Working with t = T2m+4 in both of these inclusions
gives the desired inclusion. This completes the proof of Claim 5.3 �

Knowing that the collection {Σm}m∈N exhausts M allows us to repeat for all
m ∈ N and extend d to the entirety of M whilst ensuring d generates the same
topology as we already have on M .

Moreover, it is clear that (M,d) is a complete metric space. To elaborate, con-
sider a Cauchy sequence in M with respect to d. This sequence must be bounded
and so contained within Bd

(
x0,

m
2

)
for some m ∈ N. The first inclusion of (5.21)

tells us that the closure of this ball is compact, so we may pass to a convergent
subsequence. By virtue of the sequence being Cauchy, this establishes the sequence
itself is convergent.

The estimates (5.22) and (5.23) give the local bi-Hölder regularity of the iden-
tity map on M that is claimed at the end of Theorem 5.1, as we now explain.
Let m ∈ N and consider Bd

(
x0,

m
2

)
⊂⊂ M . For our arbitrary complete met-

ric g on M , the distance metric dg is bi-Lipschitz equivalent to dg(Tm) once re-

stricted to Bd

(
x0,

m
2

)
. The estimates (5.22) and (5.23) tell us that the identity

map
(
Bd

(
x0,

m
2

)
, d
)
→
(
Bd

(
x0,

m
2

)
, dg(Tm)

)
is Lipschitz continuous, whilst the

identity map
(
Bd

(
x0,

m
2

)
, dg(Tm)

)
→
(
Bd

(
x0,

m
2

)
, d
)
is Hölder continuous, with

Lipschitz constant and Hölder exponent depending only on α0, v0 and m. The
arbitrariness of m ∈ N gives the desired local bi-Hölder regularity of the identity
map (M,d) → (M,dg).

Having d defined globally on M allows us to simplify several of the techniques
utilised in [ST17]. For example, given m ∈ N the local uniform convergence of dg(t)
to d as t ↓ 0 tells us that for some t0 > 0 we have Bd(x0,m) ⊂ Bg(t)

(
x0,m+ 1

2

)
for

every t ∈ (0,min{t0, Tm}]. Hence from (5.16) (recalling the definition of η)

(5.24) Bd(x0,m) ⊂⊂ θm(Mm)

and so the estimates of (5.15) are valid on Bd(x0,m)× (0, Tm]. In fact, this estab-
lishes that the flow g(t) lives where specified by the theorem.

We now turn our attention to defining the smooth maps ϕi. For each m ∈ N, by
(5.16) and (5.18) we have (fm

k )∗ gk(Tm) → g(Tm) smoothly on
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Bg(Tm) (x0,m+ 1− 4η) and so, by appealing to Lemma A.8, we may choose K(m)
such that for all k ≥ K(m) we have

(5.25)
∣∣dgk(Tm) (f

m
k (x), fm

k (y))− dg(Tm)(x, y)
∣∣ ≤ 1

m
,

(5.26)(
1 +

1

m

)−1

dg(Tm)(x, y) ≤ dgk(Tm) (f
m
k (x), fm

k (y)) ≤
(
1 +

1

m

)
dg(Tm)(x, y)

for all x, y ∈ Bg(Tm)

(
x0,

m
2 + 1

4

)
, and

(5.27) fm
k

(
Bg(Tm)

(
x0,

m

2
− 1

2

))
⊃⊃ Bgk(Tm)

(
xk,

m

2
− 3

4

)
,

where (5.27) will be required later to ensure the image of the (not yet defined)
map ϕi is large enough. We may assume that K(m) is strictly increasing in m,
otherwise we can fix K(1), and then inductively replace K(m) for m = 2, 3, . . .
by the maximum of K(m) and K(m − 1) + 1. Pass to a further subsequence in k
by selecting the entries K(1),K(2),K(3), . . ., so estimates (5.25), (5.26) and (5.27)
now hold for all k ≥ m.

For each i ∈ N we define a map ϕi : θi(Mi) → Bgi(xi, i + 1) ⊂ Mi by ϕi := f i
i .

In particular, each ϕi is defined throughout Bd(x0, i) thanks to (5.24). These are
diffeomorphisms onto their images, map x0 to xi and satisfy versions of the above
estimates. Namely

(5.28)
∣∣dgi(Ti) (ϕi(x), ϕi(y))− dg(Ti)(x, y)

∣∣ ≤ 1

i
,

(5.29)

(
1 +

1

i

)−1

dg(Ti)(x, y) ≤ dgi(Ti) (ϕi(x), ϕi(y)) ≤
(
1 +

1

i

)
dg(Ti)(x, y)

for all x, y ∈ Bg(Ti)

(
x0,

i
2 + 1

4

)
, and

(5.30) ϕi

(
Bg(Ti)

(
x0,

i

2
− 1

2

))
⊃⊃ Bgi(Ti)

(
xi,

i

2
− 3

4

)
.

In what follows we will fix some i0 ∈ N and consider the maps ϕi for i ≥ i0 restricted
to the ball Bd(x0, i0). With this in mind we record the following observations.

Given a fixed i0 ∈ N, restriction (ii) in (5.2) (recalling the definition of η) ensures
that i0e

αi0
Ti0 < i0+

1
2 . Hence (5.22) and the monotonicity of the sequence Ti imply

that for all i ≥ i0 we have the inclusion

(5.31) Bd

(
x0,

i0
2

)
⊂ Bg(Ti)

(
x0,

i0
2
+

1

4

)
.

This inclusion implies that for i ≥ i0 both (5.28) and (5.29) are valid for all x, y ∈
Bd

(
x0,

i0
2

)
. Moreover, restriction (i) in (5.2) ensures that β

√
CiTi < 1

8 , and so

(5.19) and (5.21) (with i here being used as the m there) yields that Bd

(
x0,

i
2

)
⊃

Bg(Ti)

(
x0,

i
2 − 1

2

)
. Hence (5.30) implies ϕi

(
Bd

(
x0,

i
2

))
⊃ Bgi(Ti)

(
xi,

i
2 − 3

4

)
.

Now we restrict ϕi to the ball Bd(x0, i). Above we have shown that for any i ∈ N

we have

(5.32) ϕi

(
Bd

(
x0,

i

2

))
⊃⊃ Bgi(Ti)

(
xi,

i

2
− 3

4

)
.
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Moreover, given i0 ∈ N we have shown that for all i ≥ i0 we have

(5.33)
∣∣dgi(Ti) (ϕi(x), ϕi(y))− dg(Ti)(x, y)

∣∣ ≤ 1

i
,

(5.34)

(
1 +

1

i

)−1

dg(Ti)(x, y) ≤ dgi(Ti) (ϕi(x), ϕi(y)) ≤
(
1 +

1

i

)
dg(Ti)(x, y)

for all x, y ∈ Bd

(
x0,

i0
2

)
.

We now turn our attention to the properties of these maps restricted to balls
of the form Bd(x0, R). We first establish the uniform convergence and bi-Hölder
regularity claims. For this purpose we take i0 to be i0 := 2 (
R�+ 1) ∈ N.

For i ≥ i0 the pyramid Ricci flow gi(t) is defined on Di (recall (5.3)), and in
particular (5.4) gives that Ricgi(t) ≥ −αi0 throughout Bgi(xi, i0 + 2)× [0, Ti0 ] and

|Rm|gi(t) ≤
Ci0

t throughout Bgi(xi, i0+2)× (0, Ti0 ]. But restriction (i) of (5.2) tells

us that β
√
Ci0Ti0 < 1

8 , so the shrinking balls lemma A.5 gives that

Bgi(s)

(
xi, i0 + 2− 1

8

)
⊂ Bgi

(
xi, i0 + 2− 1

8
+ β
√
Ci0Ti0

)
⊂⊂ Bgi(xi, i0 + 2)

for any s ∈ [0, Ti0 ]. These estimates allow us to apply Lemma A.7 to the flow gi(t)
with r = i0

2 +1− 1
16 , n = 3, α = αi0 , c0 = Ci0 and T = Ti0 to quantify the uniform

convergence of dgi(s) to dgi as s ↓ 0 on Ωi0
i :=

⋂
0<t≤Ti0

Bgi(t)

(
xi,

i0
2 + 1− 1

16

)
. For

any z, w ∈ Ωi0
i and any 0 < s ≤ Ti0 we have

(5.35) dgi(z, w)− β
√
Ci0s ≤ dgi(s)(z, w) ≤ eαi0

sdgi(z, w)

and

(5.36) γ(i0, α0, v0) [dgi(z, w)]
1+4Ci0 ≤ dgi(s)(z, w),

where γ > 0.
If we can estimate the R0 from (A.14) by R0 > i0

2 + 1
2 , then (A.14) gives that

(5.37) Bgi(s)

(
xi,

i0
2
+

1

2

)
⊂⊂ Ωi0

i

for any 0 ≤ s ≤ Ti0 , recalling that gi(0) = gi on Bgi(xi, i + 2). This lower bound

for R0 will be true provided
(
i0
2 + 1− 1

16

)
e−αi0

Ti0 − β
√
Ci0Ti0 > i0

2 + 1
2 . This

inequality is itself true if 7
2 −8β

√
Ci0Ti0 >

(
4i0 + 8− 1

2

)
(1−e−αi0

Ti0 ). Restriction
(i) in (5.2) implies this latter inequality, and so the inclusions of (5.37) are valid.

We are now ready to establish the claimed uniform convergence. To do so we
closely follow the argument of Miles Simon and the second author utilised in the
proof of [ST17, Theorem 1.4].

Claim 5.4. As i → ∞, we have convergence

(5.38) dgi(ϕi(x), ϕi(y)) → d(x, y)

uniformly as x, y vary over Bd

(
x0,

i0
2

)
.

Proof of Claim 5.4. Let ε > 0. We must make sure that for sufficiently large i,
depending on ε, we have

(5.39) |dgi(ϕi(x), ϕi(y))− d(x, y)| < ε
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for all x, y ∈ Bd

(
x0,

i0
2

)
. By the distance estimates (5.35) and the inclusions of

(5.37) there exists a τ1 > 0, depending only on ε, i0, α0 and v0, such that for all
i ≥ i0 and any s ∈ (0,min{τ1, Ti0}] we have

(5.40) |dgi(z, w)− dgi(s)(z, w)| <
ε

3

whenever there exists t ∈ [0, Ti0 ] such that z, w ∈ Bgi(t)

(
xi,

i0
2 + 1

2

)
.

By the distance estimates (5.22) (for m = i0) there exists a τ2 > 0, depending
only on ε, i0, α0 and v0, such that for any s ∈ (0,min{τ2, Ti0}] we have

(5.41) |d(x, y)− dg(s)(x, y)| <
ε

3

for all x, y ∈ Bd

(
x0,

i0
2

)
.

Let τ := min{τ1, τ2} > 0 (though we could have naturally picked the same τ1
and τ2 to begin with) and choose i1 ∈ N such that for all i ≥ i1 we have Ti < τ ;
this is possible since Ti ↓ 0 as i → ∞. Therefore for i ≥ max{i0, i1} both (5.40)
and (5.41) hold for s = Ti.

From (5.33), for all i ≥ max
{
i0,

3
ε

}
we have

(5.42)
∣∣dgi(Ti) (ϕi(x), ϕi(y))− dg(Ti)(x, y)

∣∣ < 1

i
<

ε

3

for all x, y ∈ Bd

(
x0,

i0
2

)
.

Let x, y ∈ Bd

(
x0,

i0
2

)
and let i ≥ max

{
i0, i1,

3
ε , 5
}
. Appealing to (5.31) gives

x, y ∈ Bg(Ti)

(
x0,

i0
2 + 1

4

)
, thus (5.42) tells us that

ϕi(x), ϕi(y) ∈ Bgi(Ti)

(
xi,

i0
2
+

1

4
+

1

i

)
.

Since i ≥ 5 this tells us that (5.40) is valid for z = ϕi(x) and w = ϕi(y). Combining
(5.40), (5.41) and (5.42) establishes (5.39) and completes the proof of Claim 5.4. �

The uniform convergence on Bd

(
x0,

i0
2

)
immediately gives uniform convergence

on Bd(x0, R) since i0
2 ≥ R.

The bi-Hölder estimates for ϕi|Bd(x0,R) are an easy consequence of those we

have already obtained. If x, y ∈ Bd

(
x0,

i0
2

)
then for i ≥ i0 (5.31) yields that

x, y ∈ Bg(Ti)

(
x0,

i0
2 + 1

4

)
. Then (5.33) gives ϕi(x), ϕi(y) ∈ Bgi(Ti)

(
xi,

i0
2 + 1

4 + 1
i

)
.

Thus for i ≥ max{i0, 5} we have ϕi(x), ϕi(y) ∈ Bgi(Ti)

(
xi,

i0
2 + 1

2

)
. Therefore by

(5.37) both the estimates (5.35) and (5.36) are valid for z = ϕi(x) and w = ϕi(y).
As a first consequence, we can deduce that for all x, y ∈ Bd

(
x0,

i0
2

)
and all

i ≥ max{i0, 5} we have

d(x, y)
(5.23)

≤
[

1

κi0(i0, α0, v0)
dg(Ti)(x, y)

] 1
1+4Ci0

(5.34)

≤
[ (

1 + 1
i

)
κi0(i0, α0, v0)

dgi(Ti)(ϕi(x), ϕi(y))

] 1
1+4Ci0

(5.35)

≤
[(

1 + 1
i

)
eαi0

Ti

κi0(i0, α0, v0)
dgi(ϕi(x), ϕi(y))

] 1
1+4Ci0

.
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The monotonicity of the sequence Ti allows us to define

B(i0, α0, v0) :=

[
2eαi0

Ti0

κi0(i0, α0, v0)

] 1
1+4Ci0

> 0

and conclude that for all i ≥ max{i0, 5} we have

(5.43) d(x, y) ≤ B(i0, α0, v0) [dgi(ϕi(x), ϕi(y))]
1

1+4Ci0 .

Similarly, a second consequence is that for all x, y ∈ Bd

(
x0,

i0
2

)
and all i ≥

max{i0, 5} we have

dgi(ϕi(x), ϕi(y))
(5.36)

≤
[

1

γ(i0, α0, v0)
dgi(Ti)(ϕi(x), ϕi(y))

] 1
1+4Ci0

(5.34)

≤
[ (

1 + 1
i

)
γ(i0, α0, v0)

dg(Ti)(x, y)

] 1
1+4Ci0

(5.22)

≤
[(

1 + 1
i

)
eαi0

Ti

γ(i0, α0, v0)
d(x, y)

] 1
1+4Ci0

.

The monotonicity of the sequence Ti allows us to define A(i0, α0, v0) :=
[

2e
αi0

Ti0

γ(i0,α0,v0)

]
> 0 and conclude that for all i ≥ max{i0, 5} we have

(5.44) dgi(ϕi(x), ϕi(y)) ≤ A(i0, α0, v0)
1

1+4Ci0 [d(x, y)]
1

1+4Ci0 .

Combining (5.43) and (5.44) yields that for all x, y ∈ Bd

(
x0,

i0
2

)
and all i ≥

max{i0, 5}

(5.45)

1

A(i0, α0, v0)
[dgi(ϕi(x), ϕi(y))]

1+4Ci0

≤ d(x, y) ≤ B(i0, α0, v0) [dgi(ϕi(x), ϕi(y))]
1

1+4Ci0 .

This establishes that for all i ≥ max{i0, 5} the restriction of ϕi to Bd

(
x0,

i0
2

)
is

bi-Hölder with Hölder exponent depending only on i0, α0 and v0. Since i0
2 ≥ R

and i0 is determined by R, we deduce from (5.45) that, for all i ≥ max{i0, 5}, the
restriction of ϕi to Bd(x0, R) is bi-Hölder with Hölder exponent depending only on
α0, v0 and R as desired.

Next we turn our attention to the claim that the image of Bd(x0, R) under ϕi is
eventually arbitrarily close to being the whole of Bgi(xi, R). We know ϕi

(
Bd

(
x0,

i
2

))
⊃Bgi(Ti)

(
xi,

i
2−

3
4

)
from (5.32). We claim that Bgi(Ti)

(
xi,

i
2 − 3

4

)
⊃ Bgi

(
xi,

i
2−1

)
.

To begin with we can appeal to the shrinking balls lemma A.5 to deduce that

Bgi(Ti)

(
xi,

i

2
− 3

4

)
⊂ Bgi

(
xi,

i

2
− 3

4
+

1

8

)
⊂⊂ Bgi(xi, i+ 2)

since 1 − 8β
√
CiTi > 0. This inclusion implies that Ricgi(t) ≥ −αi throughout

Bgi(Ti)

(
xi,

i
2 − 3

4

)
× [0, Ti]. The expanding balls lemma A.6 now gives our desired

inclusion provided
(
i
2 − 3

4

)
e−αiTi ≥ i

2 − 1, that is if
(
i− 3

2

)
(1 − e−αiTi) ≤ 1

2 .
However this is guaranteed to be true by (ii) in (5.2), which imposed the stronger
condition (i+ 1)(eαiTi − 1) ≤ η. Therefore for all i ≥ 2(R+ 1) we have that

(5.46) ϕi

(
Bd (x0, i)

)
⊃ ϕi

(
Bd(x0,

i

2
)

)
⊃ Bgi(xi, R).
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Now suppose r ∈ (0, R) as in the theorem. By the uniform convergence claim (5.38),
we know that for sufficiently large i, let’s say for i ≥ i2, we have
|dgi(ϕi(x), ϕi(y))− d(x, y)| < R−r

2 for all x, y ∈ Bd(x0, R), and in particular,

(5.47) d(x0, y) < dgi(xi, ϕi(y)) +
R − r

2
for all y ∈ Bd(x0, R).

We claim that this implies our desired inclusion

(5.48) Bgi(xi, r) ⊂ ϕi(Bd(x0, R)) for i ≥ i2.

If not, then, keeping in mind (5.46), there exists z ∈ Bgi(xi, r) such that y :=

ϕ−1
i (z) /∈ Bd(x0, R). Because we have d(x0, y) > R, we can move a point ẑ along

a minimising geodesic from xi to z until the first time that d(x0, ϕ
−1
i (ẑ)) = R,

then replace z by ẑ. This guarantees that additionally we have d(x0, y) = R and

y ∈ Bd(x0, R). But then by (5.47) we have

(5.49)

R = d(x0, y) < dgi(xi, z) +
R− r

2

< r +
R− r

2
< R,

a contradiction. Thus (5.48) holds as desired.
Finally we observe that, for sufficiently large i ∈ N, slight modifications of the

maps ϕi give ε-Gromov-Hausdorff approximations Bd(x0, R) to Bgi(xi, R). Since
R > 0 is arbitrary, we deduce that (Mi, dgi , xi) → (M,d, x0) in the pointed
Gromov-Hausdorff sense as i → ∞. �

Appendix A. Results from Simon-Topping papers

Here we collect statements of the various results from [ST16] and [ST17] that
we require. We first record a scaled variant of [ST17, Lemma 4.1], where we have
weakened the required Ricci lower bound to −γ rather than −1. Lemma 4.1 in
[ST17] corresponds to the γ = 1 case. The same statement is actually given as
[ST16, Lemma 2.1], but with less good dependencies given for the curvature esti-
mates achieved. The following result makes explicit ideas that are implicit in [ST16]
and [ST17].

Lemma A.1 (Variant of the local lemma 4.1 in [ST17]). Given any v0 > 0, there
exists C0 = C0(v0) ≥ 1 such that the following is true. Let

(
M3, g(t)

)
, for 0 ≤ t ≤

T, be a smooth Ricci flow such that for some fixed x ∈ M we have Bg(t)(x, 1) ⊂⊂ M

for all 0 ≤ t ≤ T, and so that for any 0 < r ≤ 1, VolBg(0)(x, r) ≥ v0r
3 and

Ricg(t) ≥ −γ on Bg(t)(x, 1) for some γ > 0 and all 0 ≤ t ≤ T . Then there exists
S = S (v0, γ) > 0 such that for all 0 < t ≤ min {T, S} we have both

(A.1) |Rm|g(t)(x) ≤
C0

t
and injg(t)(x) ≥

√
t

C0
.

Proof. Without loss of generality we assume that γ ≥ 1; if 0 < γ < 1 then we could
replace γ by 1 since Ricg(t) ≥ −γ would give that Ricg(t) ≥ −1. Then consider the

rescaled flow gp(t) := γg
(

t
γ

)
for times 0 ≤ t ≤ γT . We first observe that

(A.2) VolBgp(0) (x, 1) = γ
3
2 VolBg(0)

(
x,

1
√
γ

)
≥ γ

3
2 γ− 3

2 v0 = v0.
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Moreover, for any 0 ≤ t ≤ γT we have both

(A.3) Bgp(t)(x, 1) = Bg( t
γ )

(
x,

1
√
γ

)
⊂⊂ M

and for any z ∈ Bgp(t)(x, 1)

(A.4) Ricgp(t)(z) = Ricγg( t
γ )
(z) ≥ −1

since z ∈ Bg( t
γ )
(x, 1). Therefore, by combining (A.2), (A.3) and (A.4) we have the

hypotheses to be able to apply Lemma 4.1 from [ST17]. Doing so gives us constants
C0 = C0(v0) ≥ 1 and S0 = S0(v0) > 0 such that for all 0 < t ≤ min {γT, S0} we
have both

(A.5) |Rm|gp(t)(x) ≤
C0

t
and injgp(t)(x) ≥

√
t

C0
.

Both the estimates in (A.5) are preserved under rescaling back to the original flow
g(t). Then, by taking S := S0

γ > 0, which does indeed depend only on v0 and γ,

we deduce (A.5) for the flow g(t) itself and for all times 0 < t ≤ min {T, S}. �

Lemma A.2 (Double bootstrap lemma 4.2 in [ST17] or Lemma 9.1 in [ST16]).
Let

(
M3, g(t)

)
be a smooth Ricci flow, for 0 ≤ t ≤ T, such that for some x ∈ M we

have Bg(0)(x, 2) ⊂⊂ M, and so that

• |Rm|g(t) ≤ c0
t on Bg(0)(x, 2)× (0, T ] for some c0 ≥ 1 and

• Ricg(0) ≥ −δ0 on Bg(0)(x, 2) for some δ0 > 0.

Then there exists S = S(c0, δ0) > 0 such that for all 0 < t ≤ min {T, S} we have

(A.6) Ricg(t)(x) ≥ −100δ0c0.

Theorem A.3 (Local existence theorem 1.6 in [ST17]). Suppose s0 ≥ 4. Suppose(
M3, g0

)
is a Riemannian manifold, x0 ∈ M,Bg0(x0, s0) ⊂⊂ M and Ricg0 ≥ −α0

on Bg0(x0, s0) and VolBg0(x, 1) ≥ v0 > 0 for all x ∈ Bg0(x0, s0 − 1). Then there
exist constants T = T (α0, v0) > 0, α = α(α0, v0) > 0, c0 = c0(α0, v0) > 0 and a
Ricci flow g(t) defined for 0 ≤ t ≤ T on Bg0(x0, s0 − 2), with g(0) = g0 where
defined, such that for all 0 < t ≤ T we have

• Ricg(t) ≥ −α on Bg0(x0, s0 − 2) and
• |Rm|g(t) ≤ c0

t on Bg0(x0, s0 − 2).

The following is a variant of [ST16, Lemma 2.3]. We replace the required com-
pactness of a time t ball by compactness of a time 0 ball. Moreover, we now obtain
volume estimates for unit balls within a later time t ball, rather than just for a
single fixed unit ball at later times t. Again this makes explicit ideas implicitly
used in both [ST16] and [ST17].

Lemma A.4 (Variant of lower volume control lemma 2.3 in [ST16]). Suppose that
(Mn, g(t)) is a smooth Ricci flow over the time interval t ∈ [0, T ) and that for some
R ≥ 2 we have that Bg(0)(x0, R) ⊂⊂ M for some x0 ∈ M . Moreover assume that

• Ricg(t) ≥ −K on Bg(0)(x0, R), for some K > 0 and all t ∈ [0, T ) ,
• |Rm|g(t) ≤ c0

t on Bg(0)(x0, R), for some c0 > 0 and all t ∈ (0, T ) ,
• VolBg(0)(x0, 1) ≥ v0 > 0.
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Then there exist εR = εR (v0,K,R, n) > 0 and T̂ = T̂ (v0, c0,K, n,R) > 0 such that

for all t ∈ [0, T ) ∩
[
0, T̂
)
we have Bg(t)(x0, R − 1) ⊂ Bg(0)(x0, R), and that for all

x ∈ Bg(t)(x0, R− 2), we have VolBg(t)(x, 1) ≥ εR.

Proof. Lemma A.5 yields a β = β(n) ≥ 1 for which Bg(0)(x0, R) ⊃ Bg(t)(x0, R −
β
√
c0t) for all t ∈ [0, T ). Therefore, for 0 ≤ t ≤ min

{
T, 1

β2c0

}
we have Bg(t)(x0, R−

1) ⊂ Bg(0)(x0, R), so Bg(t)(x0, R − 1) ⊂⊂ M and the assumed curvature estimates
hold on Bg(t)(x0, R−1) for all such times t. Lemma 2.3 in [ST16] with γ = 1 yields

ε0 = ε0 (v0,K, n) > 0 and T̃ = T̃ (v0, c0,K, n) > 0 such that VolBg(t) (x0, 1) ≥
ε0 > 0 for all times 0 ≤ t ≤ min

{
T, 1

β2c0
, T̃
}
. Set T̂ := min

{
T̃ , 1

β2c0

}
> 0,

which depends only on v0, K, c0, n and R. Given any t ∈ [0,min{T, T̂}], the
Ricci lower bound Ricg(t) ≥ −K throughout Bg(t) (x0, R− 1) allows us, via Bishop-
Gromov, to reduce ε0 to a constant εR = εR (v0,K, n,R) > 0 such that for all
x ∈ Bg(t) (x0, R− 2) , we have VolBg(t)(x, 1) ≥ εR > 0. �
Lemma A.5 (The shrinking balls lemma; [ST16, Corollary 3.3]). Suppose (Mn, g(t))
is a Ricci flow for 0 ≤ t ≤ T on an n-dimensional manifold M . Then there exists
a β = β(n) ≥ 1 such that the following is true.

Suppose x0 ∈ M and that Bg(0)(x0, r) ⊂⊂ M for some r > 0, and |Rm|g(t) ≤ c0
t ,

or more generally Ricg(t) ≤ (n−1) c0t , on Bg(0)(x0, r)∩Bg(t)(x0, r−β
√
c0t) for each

t ∈ (0, T ] and some c0 > 0. Then for all 0 ≤ t ≤ T

(A.7) Bg(t)

(
x0, r − β

√
c0t
)
⊂ Bg(0)(x0, r).

More generally, for 0 ≤ s ≤ t ≤ T, we have

(A.8) Bg(t)

(
x0, r − β

√
c0t
)
⊂ Bg(s) (x0, r − β

√
c0s) .

Lemma A.6 (The expanding balls lemma; see [ST16, Lemma 3.1] and [ST17,
Lemma 2.1]). Suppose K > 0 and (M, g(t)) is a Ricci flow for t ∈ [−T, 0], T > 0, on
a manifold M of any dimension. Suppose x0 ∈ M and that Bg(0)(x0, R) ⊂⊂ M and

Ricg(t) ≥ −K on Bg(0)(x0, R)∩Bg(t)

(
x0, ReKt

)
⊂ Bg(t) (x0, R) for each t ∈ [−T, 0].

Then for all t ∈ [−T, 0]

(A.9) Bg(0) (x0, R) ⊃ Bg(t)

(
x0, ReKt

)
.

Lemma A.7 (Bi-Hölder distance estimates; [ST17, Lemma 3.1]). Suppose (Mn, g(t))
is a Ricci flow for t ∈ (0, T ], not necessarily complete, such that for some x0 ∈ M,
and all t ∈ (0, T ], we have Bg(t)(x0, 2r) ⊂⊂ M . Suppose further that for some
c0, α > 0, and for each t ∈ (0, T ], we have

(A.10) −α ≤ Ricg(t) ≤
(n− 1)c0

t

throughout Bg(t)(x0, 2r). Define ΩT :=
⋂

0<t≤T Bg(t)(x0, r). Then for any x, y ∈ ΩT

the distance dg(t)(x, y) is unambigious for all t ∈ (0, T ] and must be realised by a
minimising geodesic lying within Bg(t)(x0, 2r). Then, for any 0 < t1 ≤ t2 ≤ T, we
have

(A.11) dg(t1)(x, y)− β
√
c0
(√

t2 −
√
t1
)
≤ dg(t2)(x, y) ≤ eα(t2−t1)dg(t1)(x, y),

where β = β(n) > 0. In particular, dg(t) converges uniformly to a distance metric
d0 on ΩT as t ↓ 0, and

(A.12) d0(x, y)− β
√
c0t ≤ dg(t)(x, y) ≤ eαtd0(x, y),
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for all t ∈ (0, T ]. Moreover, there exists γ > 0, depending only on n, c0 and upper
bounds for T and r, such that

(A.13) dg(t)(x, y) ≥ γ [d0(x, y)]
1+2(n−1)c0

for all t ∈ (0, T ]. Finally, for all t ∈ (0, T ] and R < R0 := re−αT − β
√
c0T < r, we

have

(A.14) Bg(t)(x0, R0) ⊂ ΩT and Bd0
(x0, R) ⊂⊂ O,

where O is the component of Interior (ΩT ) containing x0.

Lemma A.8 (Distance function convergence under local convergence; [ST17,
Lemma 6.1]). Suppose (Mi, gi) is a sequence of smooth n−dimensional Riemann-
ian manifolds, possibly incomplete, and xi ∈ Mi for each i. Suppose there exist
a smooth, possibly incomplete n−dimensional Riemannian manifold (N , ĝ) and a
point x0 ∈ N with Bĝ(x0, 2r) ⊂⊂ N for some r > 0, and a sequence of smooth
maps ϕi : N → Mi, diffeomorphic onto their images, with ϕi(x0) = xi, such that

ϕ∗
i gi → ĝ smoothly on Bĝ(x0, 2r). Then

1. If 0 < a ≤ 2r, and a < b, then ϕi (Bĝ (x0, a)) ⊂ Bgi (xi, b) for sufficiently
large i.

2. If 0 < a < b ≤ 2r, then Bgi(xi, a) ⊂⊂ ϕi (Bĝ (x0, b)) for sufficiently large
i.

3. For every s ∈ (0, r), we have

dgi (ϕi(x), ϕi(y)) → dĝ(x, y)

as i → ∞, uniformly for x and y in Bĝ(x0, s).

Appendix B. Shi’s estimates and compactness

A useful variant of Shi’s derivative estimates, that is implicit in [ST17, Section
5], is the following result.

Lemma B.1 (Local Shi decay). Let (Mn, g(t)) be a smooth Ricci flow for t ∈ [0, T ] ,
and assume for some R > 0 and x0 ∈ M that Bg(0)(x0, R) ⊂⊂ M . Moreover,
suppose that for all 0 < t ≤ T we have |Rm|g(t) ≤ c0

t throughout Bg(0)(x0, R) for

some c0 > 0. Then for any ε ∈ (0, R) , there exists T̂ = T̂ (c0, n, ε) > 0 and, for

l ∈ N, there exists Cl = Cl (l, c0, n, ε) > 0 such that if 0 < τ ≤ min{T, T̂} then we
have Bg(τ)(x0, R− ε) ⊂ Bg(0)(x0, R) and

(B.1)
∣∣∇lRm

∣∣
g(t)

≤ Cl

t1+
l
2

throughout Bg(τ)(x0, R− ε)× (0, τ ].

Proof of Lemma B.1. Let β = β(n) ≥ 1 be the constant arising in the shrinking

balls lemma A.5. Define T̂ := min
{
c0,

ε2

9β2c0

}
> 0 and let 0 < τ ≤ min{T, T̂}. The

c0/t curvature bound means that from Lemma A.5 we deduce that Bg(τ)(x0, R−ε) ⊂
Bg(0)

(
x0, R− 2ε

3

)
⊂ Bg(0)(x0, R).

Let x ∈ Bg(τ) (x0, R− ε) , t ∈ (0, τ ], and consider Bg( t
2 )
(
x, ε

3

)
. We have x ∈

Bg(0)

(
x0, R− 2ε

3

)
, as we have just shown, hence via the shrinking balls lemma A.5

we have Bg( t
2 )
(
x, ε

3

)
⊂ Bg(0)(x,

2ε
3 ) ⊂ Bg(0)(x0, R) ⊂⊂ M .
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Thus Bg( t
2 )
(
x, ε

4

)
⊂⊂ Bg( t

2 )
(
x, ε

3

)
and |Rm|g(s) ≤ 2c0

t throughout Bg( t
2 )
(
x, ε

3

)
for all s ∈

[
t
2 , t
]
. We can apply [Cho08, Theorem 14.14] to the Ricci flow s �→

g(s+ t/2) for s ∈ [0, t/2], with r := ε
4 , K := 2c0

t ≥ 1 and α := c0 to deduce that for
a constant C = C (l, c0, n, ε) > 0 we have

(B.2)
∣∣∇lRm

∣∣
g(s+ t

2 )
(x) ≤ 2c0C

s
l
2 t

for all s ∈
(
0, t

2

]
. Here we have used the observation in [ST17] that if K ≥ 1 then,

at the central point x, the constant C (α,K, r,m, n) arising in [Cho08, Theorem
14.14] can be written in the form C (α, r,m, n)K. Restricting to s = t/2 then gives
(B.1) as required. �

Lemma B.2 localises the well-known Hamilton-Cheeger-Gromov compactness
lemma. The proof carries over more or less verbatim, and details can be found
in [McL18].

Lemma B.2 (Local compactness). Suppose (Mi, gi) is a sequence of smooth n-
dimensional Riemannian manifolds, not necessarily complete, and that xi ∈ Mi

for each i. Suppose that, for some R, v > 0, we have Bgi(xi, R) ⊂⊂ Mi and
VolBgi(xi, R) ≥ v for each i, and that (for each l) we have |∇lRm|gi ≤ C throughout
Bgi(xi, R), where C is independent of i, but allowed to depend on l.

Then after passing to an appropriate subsequence in i, there exist a smooth,
typically incomplete n-dimensional Riemannian manifold (N , g∞), a point x0 ∈ N
with Bg∞(x0, r) ⊂⊂ N for every r ∈ (0, R), and a sequence of smooth maps ϕi :
Bg∞(x0,

i
i+1R) → Mi, diffeomorphic onto their images and mapping x0 to xi, such

that ϕ∗
i gi → g∞ smoothly locally on Bg∞(x0, R).

The local version of Hamilton-Cheeger-Gromov compactness for flows, which is
already implicit in [ST17], is the following.

Lemma B.3 (Local Ricci flow compactness). Suppose (Mi, gi(t)) is a sequence
of smooth n-dimensional Ricci flows, not necessarily complete, each defined for
t ∈ [0, T ], and that xi ∈ Mi for each i. Suppose that, for some R > 0, we have
Bgi(0)(xi, R) ⊂⊂ Mi for each i, that VolBgi(0)(xi, R) ≥ v > 0, and throughout
Bgi(0)(xi, R) that Ricgi(t) ≥ −α < 0 for all t ∈ [0, T ] and |Rm|gi(t) ≤ c0/t for all
t ∈ (0, T ], for positive constants v, α and c0 that are independent of i.

Then for all η ∈ (0, R/2), there exists S > 0 depending only on R, n, v, α,
c0 and η such that after passing to an appropriate subsequence in i, there exist a
smooth n-dimensional manifold N , a point x0 ∈ N and a Ricci flow g(t) on N for
t ∈ (0, τ ], where τ := min{T, S}, with the following properties.

First, Bg(t)(x0, R − η) ⊂⊂ N for all t ∈ (0, τ ]. Second, if we define Ω to be the
connected component of the interior of⋂

s∈(0,τ ]

Bg(s)(x0, R− η) ⊂ N

containing x0, then for all t ∈ (0, τ ] we have Bg(t)(x0, R − 2η) ⊂ Ω. Third, there
exists a sequence of smooth maps ϕi : Ω → Bgi(0)(xi, R) ⊂ Mi, diffeomorphic onto
their images and mapping x0 to xi, such that ϕ∗

i gi(t) → g(t) smoothly uniformly
on Ω× [δ, τ ] for every δ ∈ (0, τ ).

Finally, throughout Ω we have Ricg(t) ≥ −α and |Rm|g(t) ≤ c0/t for all t ∈ (0, τ ].
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Proof. We begin by applying the local Shi decay lemma B.1 to each gi(t), with
ε := η/3. This ensures that there exists S > 0 depending only on n, c0 and η such
that for 0 < t ≤ min{T, S} we have Bgi(t) (xi, R − ε) ⊂ Bgi(0) (xi, R) and that for
0 < t ≤ τ ≤ min{T, S} we have

(B.3)
∣∣∇lRm

∣∣
gi(t)

≤ Cl

t1+
l
2

throughout Bgi(τ) (xi, R− ε), where Cl depends on l, c0, n and η. Next with a
view to later applying the expanding and shrinking balls lemmas, we reduce S > 0
further, depending now also on α, so that

(B.4) R(1− e−αS) < ε and S ≤ η2

β2c0
,

where β = β(n) ≥ 1 comes from Lemma A.5. A final reduction of S > 0, depending
now also on v, ensures that by [ST16, Lemma 2.3] (which is in a more appropriate
form than the variant Lemma A.4) and Bishop-Gromov, we have VolBgi(s)(xi, R−
ε) ≥ ṽ > 0 for all s ∈ [0,min{T, S}], where ṽ depends only on v, α,R and n.

At this point we fix S, and the corresponding τ := min{T, S}, and apply the
local compactness lemma B.2 to the sequence gi(τ ) with R there equal to R − ε
here. The conclusion is that after passing to an appropriate subsequence in i,
there exist a smooth n-dimensional Riemannian manifold (N , g∞), a point x0 ∈ N
with Bg∞(x0, r) ⊂⊂ N for every r ∈ (0, R − ε), and a sequence of smooth maps
ϕi : Bg∞(x0,

i
i+1 (R − ε)) → Mi, diffeomorphic onto their images and mapping x0

to xi, such that ϕ∗
i gi(τ ) → g∞ smoothly locally on Bg∞(x0, R− ε).

By Part 1 of Lemma A.8, applied with gi and ĝ there equal to gi(τ ) and g∞
here, respectively, and with a = 2r and b there equal to R − 2ε and R − ε here,
respectively, we find that after dropping finitely many terms, we have

ϕi (Bg∞ (x0, R− 2ε)) ⊂ Bgi(τ) (xi, R− ε) ⊂ Bgi(0) (xi, R)

for every i (where the second inclusion here was established at the beginning of the
proof).

By Hamilton’s original argument [Ham95] we can pass to a further subsequence
and find a Ricci flow g(t) on Bg∞(x0, R − ε), t ∈ (0, τ ] so that g(τ ) = g∞ on
Bg∞(x0, R−ε) and so that ϕ∗

i gi(t) → g(t) smoothly locally on Bg∞(x0, R−ε)×(0, τ ]
as i → ∞. In particular, we can pass our curvature hypotheses to the limit to
obtain that Ricg(t) ≥ −α and |Rm|g(t) ≤ c0/t, for all t ∈ (0, τ ] and throughout
Bg∞(x0, R− 2ε).

Next, our constraint (B.4) implies that (R−2ε)(1−e−αS) < ε, i.e. that R−3ε <
(R − 2ε)e−αS , and hence by the expanding balls lemma A.6, we know that for all
t ∈ (0, τ ] we have

N ⊃⊃ Bg(τ)(x0, R− 2ε) ⊃ Bg(t)(x0, (R− 2ε)eα(t−τ))

⊃ Bg(t)(x0, (R− 2ε)e−αS) ⊃ Bg(t)(x0, R− 3ε),

and hence (recalling that ε = η/3) we have Bg(t)(x0, R− η) ⊂ Bg(τ)(x0, R− 2ε) ⊂⊂
N as required. One consequence is that our curvature bounds hold within each
Bg(t)(x0, R−η), for all t ∈ (0, τ ]. Moreover, if we reduce N to Bg∞(x0, R−ε) ⊂ N ,
then we still have Bg(t)(x0, R − η) ⊂⊂ N for all t ∈ (0, τ ], and now the Ricci flow
is defined throughout N .
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It remains to show that Bg(t)(x0, R − 2η) ⊂ Ω, and for that it suffices to prove
that

(B.5) Bg(t)(x0, R− 2η) ⊂ Bg(s)(x0, R− η) for each s, t ∈ (0, τ ].

In the case s < t this follows from the shrinking balls lemma A.5 applied with time
zero there equal to time s here, and r there equal to R− η here. That lemma tells
us that Bg(t)(x0, R− η − β

√
c0(t− s)) ⊂ Bg(s)(x0, R− η), by (A.7) not (A.8), and

because β
√
c0(t− s) ≤ β

√
c0S ≤ η, by (B.4), this implies (B.5).

Meanwhile, in the case s > t, (B.5) follows from the expanding balls lemma A.6
applied with time zero there equal to time s here, and R there equal to R− η here.
That lemma tells us that Bg(s)(x0, R−η) ⊃ Bg(t)(x0, (R−η)eα(t−s)), and so we will

have proved (B.5) if we can prove that (R− η)eα(t−s) ≥ R− 2η, or more generally
that (R− η)e−αS ≥ R − 2η, which is equivalent to (R− η)(1− e−αS) ≤ η. This is
turn follows from the first part of (B.4). �

Appendix C. Smooth manifold construction

Theorem C.1 (Smooth manifold construction). Assume that for each i ∈ N we
have a smooth n-manifold Mi and a point xi ∈ Mi, and that each Mi is contained in
the next in the sense that for each i ∈ N there exists a smooth map ψi : Mi → Mi+1,
mapping xi to xi+1 and diffeomorphic onto its image. Then there exists a smooth
n-manifold M, containing a point x0, and there exist smooth maps θi : Mi → M,
all mapping xi to x0, diffeomorphic onto their image, and satisfying that θi(Mi) ⊂
θi+1(Mi+1), and further that

(C.1) M =

∞⋃
i=1

θi(Mi).

Moreover, we have that

(C.2) ψi = θ−1
i+1 ◦ θi : Mi → Mi+1.

Proof. Define M :=
⊔∞

i=1 Mi

/
∼, equipped with the quotient topology, where ∼

is the equivalence relation generated by identifying points x and y if y = ψi(x)
for some i ∈ N. Let x0 ∈ M be the equivalence class generated by the points
xi ∈ Mi. For each i ∈ N define θi : Mi → M to be the map sending a point x to
the equivalence class [x]. Thus θi(xi) = x0, and θi is a homeomorphism onto its
image, while M =

⋃∞
i=1 θi(Mi) which is (C.1). Moreover, for each x ∈ Mi we have

θi(x) = [x] = [ψi(x)] = θi+1(ψi(x)), which gives (C.2). Since ψi is a diffeomorphism
onto its image, (C.2) allows us to combine the smooth atlases for each Mi into a
smooth atlas for M by composing with the maps θ−1

i . Hence we simultaneously
establish both that M is a smooth n-manifold, and that each θi is a diffeomorphism
onto its image as claimed. �

Added in proof: Between acceptance and final publication of this paper, generali-
sations of our results to higher dimensions have been published in [MT20].
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