
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY, SERIES B
Volume 9, Pages 395–414 (May 23, 2022)
https://doi.org/10.1090/btran/111

QUANTITATIVE STABILITY FOR MINIMIZING

YAMABE METRICS

MAX ENGELSTEIN, ROBIN NEUMAYER, AND LUCA SPOLAOR

Abstract. On any closed Riemannian manifold of dimension n ≥ 3, we prove
that if a function nearly minimizes the Yamabe energy, then the correspond-
ing conformal metric is close, in a quantitative sense, to a minimizing Yamabe
metric in the conformal class. Generically, this distance is controlled quadrati-
cally by the Yamabe energy deficit. Finally, we produce an example for which
this quadratic estimate is false.

1. Introduction

Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 3. The Yamabe
problem consists of finding a metric g̃, conformal to g, such that the scalar curvature
of g̃ is constant. Given a metric g̃ conformal to g, i.e. g̃ = u4/(n−2)g for a smooth
positive function u on M , the scalar curvature, Rg̃, of g̃ is given in terms of u and
the scalar curvature, Rg, of g by

(1) Rg̃ = u1−2∗ (−cnΔu+Rgu) ,

where 2∗ = 2n/(n − 2) and cn = 4(n − 1)/(n − 2). In particular, a metric g̃ =
u4/(n−2)g is a solution to the Yamabe problem if and only if u is a smooth positive
critical point of the associated energy functional

(2) Q(u) =

∫
M

cn|∇u|2 +Rgu
2 dvolg(∫

M
u2∗ dvolg

)2/2∗ =

∫
M

Rg̃ dvolg̃

volg̃(M)2/2∗
.

The solution to the Yamabe problem was given by the combined works of Yamabe
[53], Trudinger [52], Aubin [4], and Schoen [47] (see also the survey paper [39]),
which established the existence of a smooth positive minimizer of (2), i.e. a positive
function u ∈ C∞(M) with Q(u) = Y (M, [g]), where we define the Yamabe constant
of (M, g) by

Y (M, [g]) = inf{Q(u) : u ∈ W 1,2(M) , u ≥ 0}.
Here [g] denotes the conformal class of g. Sometimes, when it won’t cause confusion,
we will omit the dependence on M and [g].

The Yamabe constant, Y (Sn, [g0]), on the round sphere plays an important
role in the solution to the Yamabe problem on a general manifold, Mn. When
Y (Mn, [g]) < Y (Sn, [g0]), the existence of a minimizer can be established through
analytic methods, either by approximating the Euler-Lagrange equation associated
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to (2) by subcritical equations ([39,52]), or via concentration compactness methods
(see [41] or Uhlenbeck, cf. [39]). On the other hand, Aubin [4] and Schoen [47]
showed that Y (Mn, [g]) < Y (Sn, [g0]) for any closed Riemannian manifold, (Mn, g),
that is not conformally equivalent to the round sphere.

In the case of the round sphere, the class of minimizers M(Sn,g0) of (2) were
explicitly characterized by Aubin [5] and Talenti [51] (see also Obata [44]): after
composing with a stereographic projection, which maps the problem to Euclidean
space, the set of minimizers is exactly the function v0 = (1 + |x|2)(2−n)/2, along
with its translations, dilations, and constant multiples on Rn.

In [15], Brezis and Lieb raised the question of quantitative stability for mini-
mizers of the Yamabe functional on the sphere, asking whether the energy deficit
Q(Sn,g0)(u)− Y (Sn, [g0]) of a given function u ∈ W 1,2(Sn) controls its distance to
the family of minimizers M(Sn,g0). An optimal solution was given in [7], where
Bianchi and Egnell showed that there exists a dimensional constant c such that

(3) Q(Sn,g0)(u)− Y (Sn, [g0]) ≥ c

(
inf

{
‖u− v‖W 1,2(Sn) | v ∈ M(Sn,g0)

}
‖u‖W 1,2(Sn)

)2

for any non-negative u ∈ W 1,2(Sn).1 This result is sharp in the sense that the
exponent 2 cannot be replaced by a smaller one and the W 1,2 norm measuring the
distance of u to the family of minimizers cannot be replaced by a stronger norm.

In this paper, we address this question of Brezis and Lieb in the setting of the
Yamabe functional on any smooth closed Riemannian n-manifold (Mn, g), with
n ≥ 3. In contrast to the case of the round sphere, the minimizers for a general
manifold are not known in any explicit form.

Fix a closed Riemannian manifold, (Mn, g), of dimension n ≥ 3, and let M ⊂
W 1,2(M) denote the set of all minimizers of Q(u). Define

(4) d(u,M) =
inf

{
‖u− v‖W 1,2(M) | v ∈ M

}
‖u‖W 1,2(M)

.

Notice that the normalization in this definition guarantees that d(u,M) ≤ 1 for
any u ∈ W 1,2(M). Our first main result is a quantitative stability estimate for
minimizers of the Yamabe functional.

Theorem 1.1 (Quantitative stability for minimizers). Let (Mn, g) be a C∞ closed
Riemannian manifold of dimension n ≥ 3 that is not conformally equivalent to the
round sphere. There exist constants c > 0 and γ ≥ 0, depending on (M, g), such
that

(5) Q(u)− Y (M, [g]) ≥ c d(u,M)2+γ ∀u ∈ W 1,2(M ;R+) .

Moreover, there exists an open dense subset G in the C2 topology on the space of
C∞-conformal classes of metrics on M such that if [g] ∈ G, we may take γ = 0.

From a geometric point of view, one drawback of Theorem 1.1 is that the dis-
tance, d(u,M), depends on the choice of background metric, g ∈ [g]. However, as a
consequence of Theorem 1.1, we obtain the following conformally invariant stability

1We note that question of Brezis and Lieb and the result in [7] are stated on Euclidean space,
but the form (3) follows after composition with stereographic projection and integration by parts.
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estimate. Define the following conformally invariant distance between two metrics
in a conformal class:

‖gu − gv‖ =

(∫
M

|u− v|2∗ dvolg
)1/2∗

,

where here and in the sequel we will freely make the identification of a conformal
metric gu = u4/(n−2)g and its conformal factor u. Although ‖−‖ is defined with re-
spect to a fixed conformal representative g ∈ [g], we will show that it is independent
of this choice. Similarly, in the case when Y = Y (M, [g]) ≥ 0, may define

‖gu − gv‖∗ =

(∫
M

cn|∇u−∇v|2 + Y (u− v)2 dvolg

)1/2

for any g ∈ M(M, g) with volg(M) = 1. Again, although ‖ − ‖∗ is defined with re-
spect to a fixed conformal representative, we show that the definition is independent
of this choice.

Corollary 1.2 (Conformal quantitative stability). Let (Mn, g) be a C∞ closed
Riemannian manifold of dimension n ≥ 3. There exist constants c > 0 and γ ≥ 0,
depending on M and [g], such that

(6) Rg − Y (M, [g]) ≥ c

(
inf{‖g − g̃‖ : g̃ ∈ M}

volg(M)1/2∗

)2+γ

∀g ∈ [g] .

Here Rg = volg(M)−2/2∗
∫
M

Rg dvolg is the volume-normalized total scalar curva-
ture of g. When Y = Y (M, [g]) ≥ 0 and Rg − Y (M, [g]) ≤ 1, there exist constants
c > 0 and γ ≥ 0 depending on M and [g] such that

(7) Rg − Y (M, [g]) ≥ c

(
inf{‖g − g̃‖∗ : g̃ ∈ M}

volg(M)1/2∗

)2+γ

∀g ∈ [g] .

Moreover, for an open dense subset in the C2 topology on the space of conformal
classes of C∞ metrics on M , we may take γ = 0.

Remark 1.3. Observe that the denominator in (4) is the W 1,2 norm of u, not the
L2∗ norm of u. This normalization is due to the different scalings of the left- and
right-hand sides of (5) when γ > 0. Correspondingly, (7) holds only when the
deficit is not too large, since we have chosen to normalize the right-hand side by
the geometric quantity volg(M)1/2

∗
. We thank Rupert Frank for bringing this to

our attention.

Notice that in Theorem 1.1 and Corollary 1.2, we obtain a quadratic stability
estimate only for a generic set of metrics. This result is in fact sharp. Indeed, adapt-
ing an example of Schoen [49] (see also [17]), we show that there exist manifolds
for which γ > 0 in (5), thus proving the optimality of the result.

Theorem 1.4 (Super quadratic growth). Let n ≥ 3. There exist γ > 1, a closed
Riemannian manifold with analytic metric, (Mn, g), a unique minimizer of the
Yamabe energy Q on (Mn, g), which we set equal to 1 (by a conformal change),
and a sequence of ui ∈ W 1,2(M) with ui → 1 in W 1,2 such that

(8) lim
i→∞

Q(ui)− Y (M, [g])

‖ui − 1‖2+γ
W 1,2(M)

= 0.
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In fact, adapting the aforementioned examples from [17,49], we will produce an
example such that (8) holds for any γ < 2. It is an interesting question whether
for every γ > 0 one can find a metric gγ which satisfies (8), as in the case of the
quantitative isoperimetric inequality on a Riemannian manifold, [18].

1.1. Background on quantitative stability and the Yamabe functional.
The problem of establishing quantitative stability estimates for functional and geo-
metric inequalities has been a topic of extensive study in recent years. For instance,
sharp quantitative estimates have been established for the isoperimetric inequality
on Euclidean space [20, 29, 34], the round sphere [8], hyperbolic space [9], and
on arbitrary Riemannian manifolds [18]. Closely related to the Yamabe problem,
quantitative stability estimates for Sobolev inequalities on Euclidean space have
been studied, in addition to the aforementioned result of [7], in [19, 30–32, 36, 43].
In a slightly different direction, quantitative stability estimates for critical points
have been addressed for the isoperimetric inequality on Euclidean space [23, 38]
and for the Sobolev inequality [22,28]. Quantitative stability estimates have wide-
ranging applications to contexts including characterization of minimizers in varia-
tional problems [21], rates of convergence of PDE [16], regularity of interfaces in
free boundary problems [2], and even data science [35]. Apart from [18], all of these
results make crucial use of the explicit form of minimizers and critical points or of
the symmetries of the ambient space. See [33] for a survey of quantitative stability
results for functional and geometric inequalities.

Critical points of the volume-normalized Einstein-Hilbert action functional,
R(g) = volg(M)−2/2∗

∫
M

Rg dvolg, are Einstein metrics, i.e. metrics g satisfying
Ricg = λg for some λ ∈ R where Ricg is the Ricci curvature tensor of g. The Yam-
abe functional Q defined in (2) is the restriction of this functional (and thus the
corresponding variational problem) to a given conformal class [g]. If Y (M, [g]) ≤ 0,
then the Euler-Lagrange equation corresponding to the Yamabe functional (2) (see
(9)) satisfies the maximum principle and thus there is a unique critical Yamabe
metric. Similarly, if the conformal class [g] has a representative that is an Einstein
metric and is not conformal to the round sphere, then this metric is the unique
critical Yamabe metric thanks to a theorem of Obata [44]. On the round sphere
(Sn, g0), the family of minimizing Yamabe metrics is noncompact, though for any
closed Riemannian manifold that is not conformal to the round sphere, the family
of unit-volume minimizers is compact in the C2 topology (see Lemma 4.1). In fact,
Anderson [3] showed that for an open dense set in the space of conformal classes, [g]
has a unique (unit volume) minimizing Yamabe metric. In general, however, min-
imizing Yamabe metrics are non-unique; see [48, 49]. Pollack [45, 46] showed that,
for any N ∈ N, the set of conformal classes containing at least N critical Yamabe
metrics is dense in the C0 norm on the space of conformal classes with positive
Yamabe constant. Suitably normalized families of critical points of Q are compact
in the C2 topology for n ≤ 24 [24,37,40,49], while compactness may fail for n ≥ 25
[12, 13] or when the metrics are non-smooth [6]. Further related areas of study
include the Yamabe problem on compact manifolds with boundary [26,27] and the
Yamabe flow [10,11,17]. For further literature review on the Yamabe problem, we
refer the reader to [14, 25].

1.2. Description of the proof. The proof of Theorem 1.1 makes use of the so-
called �Lojasiewicz inequality, while the generic statement follows from the fact that
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for generic conformal classes of metric on a given manifold critical points of the Yam-
abe functional are non-degenerate. By non-degenerate, we mean that the second
variation of the Yamabe functional has trivial kernel. The (distance) �Lojasiewicz
inequality originates in real analytic geometry, and roughly says that a real analytic
function q : Rk → R grows at least like a power of the distance to the nearest crit-
ical point (or to a given level set) of q; see Lemma 3.2. We apply the �Lojasiewicz
inequality to the restriction of the Yamabe energy Q to the kernel of the second
variation. In doing so are able to show that in a neighborhood of v, the Yamabe
energy grows away from M at least like a power of the distance d(u,M). The con-
nection between the �Lojasiewicz inequality and quantitative stability inequalities
was first introduced in [18] for the isoperimetric problem.

We remark that, in contrast to [18], our main theorems do not require the ana-
lyticity of the metric. This distinction arises from the difference between the area
functional considered in [18] and the Yamabe functional considered here, namely,
that on any closed Riemannian manifold (M, g), the Yamabe functional is an an-
alytic map with respect to u ∈ W 1,2(M) in the sense of [54, Definition 8.8]; see
[17, Lemma 6]. This analyticity allows us to apply the �Lojasiewicz inequality. While
the “gradient-�Lojasiewicz” inequality has been used before to study Yamabe flows
(cf. [10, 17]), our paper is the first use of the “distance-�Lojasiewicz” inequality in
the Yamabe literature of which we are aware.

The proof of Theorem 1.4 exploits ideas of Adam-Simon [1], where the notion
of Adam-Simon condition of order p was introduced, together with the examples
constructed in [17].

2. Properties of the Yamabe Energy and Lyapunov-Schmidt reduction

Throughout, we fix a background metric g ∈ [g]. This conformal representative
g is implicit in the definition of the Sobolev function spaces. However, as we saw
in Section 1, our end results in Corollary 1.2 will be independent of the choice of
conformal representative.

Recall the Yamabe energy:

Q(u) =

∫
M

cn|∇u|2 +Rgu
2 dvolg

‖u‖2
L2∗ (M)

.

A non-negative critical point u of Q is a non-negative smooth solution of the non-
linear eigenvalue problem

(9) −cnΔu+Ru = λu2∗−1,

where the value of λ is given by λ = Q(u)‖u‖2−2∗

L2∗ (M)
. We will denote by CSC([g]) ⊂

W 1,2(M) the set of all critical points in a given conformal class [g], i.e. solutions to
(9) for some λ ∈ R. As usual, we will omit the dependence on the conformal class
when clear from the context.

Although Q(cu) = Q(u) for any c > 0, it will often be easier to work with
functions that have L2∗ norm equal to 1. To that end we introduce the following
Banach manifold:

(10) B =

{
u ∈ W 1,2(M ;R+) |

∫
M

u2∗ dvolg = 1

}
.
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Note that the collection of metrics represented by (10) is conformally invariant;
this can be seen in the equivalent condition that the metric gu = u4/(n−2)g has unit
volume.

Lemma 2.1 (Banach manifold of metrics of volume 1). The set B ⊂ W 1,2(M) is
a Banach manifold, and for every v ∈ B the tangent space to B is given by

TvB =

{
u ∈ W 1,2(M) |

∫
M

v2
∗−1u dvolg = 0

}
.

We will denote by πTvB the L2-orthogonal projection onto TvB. In particular, for
every u ∈ B the second variation of Q on B is given by

(11)

1

2
∇2

BQ(u)[ϕ, η] =

∫
M

{cn ∇πTuBϕ · ∇πTuBη +Rg (πTuBϕ) (πTuBη)} dvolg

−(2∗ − 1)Q(u)

∫
M

u2∗−2 (πTuBϕ) (πTuBη) dvolg,

for all ϕ, η ∈ W 1,2(M). We will often omit the projection maps when we are doing
computations with ∇2

BQ.
In the special case that g is a metric of constant curvature with volume 1 and

u = 1 we have the formula (omitting the projection maps):

(12)
1

2
∇2

BQ(1)[ϕ, η] =
4

n− 2

∫
−(n− 1)(Δϕ)η −Rgϕη dvolg.

Moreover, the following properties hold.

(1) The function w 
→ ∇2
BQ(w)[η,−]
‖η‖C2,α

is a continuous function from C2,α ∩ B →
C0,α with a modulus of continuity uniform over η ∈ C2,α.

(2) The function w 
→ ∇2
BQ(w)[η,ξ]

‖η‖W1,2‖ξ‖W1,2
is a continuous function from B → R

with modulus of continuity uniform over ξ, η ∈ W 1,2.

Proof. Since W 1,2(M) is separable, to check that B is a Banach submanifold of
W 1,2(M), it suffices to check that the function G : W 1,2(M) → R defined by
G(u) :=

∫
M

u2∗ dvolg − 1 is a submersion in a neighborhood of every point v ∈
W 1,2(M). This is an easy exercise, since we have

DG(v)[ϕ] :=

∫
M

v2
∗−1ϕdvolg ∀ϕ ∈ W 1,2(M) ,

so that choosing ϕ = v (or ϕ = 1 since v > 0 anyway) we get DG(v)[ϕ] = 1 �= 0.
In the sequel, given v ∈ B, we will denote by Lv the linear (continuous) operator
on W 1,2 defined by Lv := DG(v) and by TvB the tangent space to B at v, which is
a codimension 1 subspace of W 1,2 defined by

TvB =
{
u ∈ W 1,2(M) | Lvu = 0

}
.

Define the orthogonal projection πTvB : W 1,2(M) → TvB ⊂ W 1,2(M) by

πTvBu = u−
(∫

v2
∗−1u

)
v .

Let us denote

E(u) :=
∫
M

cn|∇u|2 +Rgu
2 dvolg ,
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and observe that if u ∈ B, then E(u) = Q(u). For u ∈ B and ϕ ∈ W 1,2(M), we can
compute the first variation of Q at points of B to be:
(13)

∇Q(u)[φ] :=
d

dt
(Q(u+ tφ))

∣∣∣
t=0

=

(
[vol(M, gu+tφ)]

−2/2∗ 2

[∫
M

(cn(∇u · ∇φ+
t

2
|∇φ|2) +Rg(uφ+

t

2
φ2)) dvolg

]

−2 [vol(M, gu+tφ)]
−(2+2∗)/2∗

[∫
M

(u+ tφ)2
∗−1 φ dvolg

]
E(u+ tφ)

) ∣∣∣
t=0

= 2

∫
M

(
−cnΔu+Rgu−Q(u)u2∗−1

)
φ dvolg ,

so that in particular, when restricted to the tangent space of B, we have

∇BQ(u)[ϕ] = 2

∫
M

(−cnΔu+Rgu)πTuBϕdvolg .

Differentiating (13) we obtain
(14)

∇2Q(u)[φ, φ] :=
d2

dt2
(Q(u+ tφ))

∣∣∣
t=0

= 2

∫
M

(
cn |∇φ|2 +Rg φ

2
)
dvolg − 2 (2∗ − 1)Q(u)

∫
M

u2∗−2 φ2 dvolg

+

(∫
M

u2∗−1 φ dvolg

)
· G(u, φ) ,

for some smooth function G. Restricting to TuB so that
∫
M

u2∗−1 φ dvolg = 0, we
exactly obtain (11). After observing that Q(1) = Rg (which is constant) when g
is a metric of constant curvature and volume equal to 1, (12) follows from some
arithmetic.

To conclude the proof, let Luϕ = −cnΔϕ + Rgϕ − (2∗ − 1)Q(u)u2∗−2ϕ. Then
we can see that

‖Luϕ− Lvϕ‖X ≤ C
(
‖u2∗−2ϕ‖X |Q(u)−Q(v)|+ ‖ϕ|u2∗−2 − v2

∗−2|‖X
)
,

where X is either the C0,α or H−1 norm. If X = C0,α, then we recall the continuity
of Q(−) in C2,α and note that x 
→ x2∗−2 is continuous to get that

‖Luϕ− Lvϕ‖C0,α ≤ ω(‖u− v‖C2,α)‖ϕ‖C2,α ,

for some modulus of continuity ω.
Similarly if X = H−1 we observe that Q(−) is continuous with respect to u ∈

W 1,2. Furthermore ‖u2∗−2ϕ‖H−1 ≤ ‖u2∗−2‖Ln/2‖ϕ‖L2∗ ≤ C(‖u‖L2∗ )‖ϕ‖W 1,2 and
similarly

‖|u2∗−2 − v2
∗−2|ϕ‖H−1 ≤ ‖u2∗−2 − v2

∗−2‖Ln/2‖ϕ‖L2∗ ≤ ω(‖u− v‖W 1,2)‖ϕ‖W 1,2 ,

for some modulus of continuity ω.
Thus to finish the proof of the result, it suffices to show that the map w 
→ πTwB

is a continuous function from C2,α ∩ B → B(C2,α, C2,α) (or that it is a continuous
function from B → B(W 1,2,W 1,2)).
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The triangle inequality shows that∣∣∣∣
∫
M

u2∗−1η dvolg −
∫
M

w2∗−1η dvolg

∣∣∣∣ ≤ C‖η‖C2,α‖w − u‖C0,α(M).

Thus the projection has the desired continuity in the Hölder setting.
Similarly, Hölder’s inequality and the Sobolev embedding W 1,2 ↪→ L2∗ imply

that u 
→ Lu is a continuous function from W 1,2 → (W 1,2)∗, which implies that the
projection has the desired continuity in the Sobolev setting. �

It will be useful to have two additional definitions. First, given a function v ∈ B,
we let B(v, δ) denote the W 1,2(M) ball of radius δ centered at v inside of B, i.e.

(15) B(v, δ) = {u ∈ B | ‖u− v‖W 1,2(M) ≤ δ}.

Second, we let M1 := M ∩ B and CSC1 := CSC ∩ B, that is respectively the
minimizers and critical points to the Yamabe functional with 2∗-norm equal to one.

2.1. Lyapunov-Schmidt reduction. The following technical result will be key to
proving Proposition 3.1. Briefly, Lemma 2.2, called a Lyapunov-Schmidt reduction,
see e.g. [50], splits any perturbation of a critical point into a portion that quanti-
tatively changes the energy to second order and a portion that lies inside of a finite
dimensional subspace (which can be dealt with using the �Lojasiewicz inequalities
[42]).

Given v ∈ M1, we let K = ker∇2
BQ(v)[−,−] ⊂ TvB, thinking of the latter as an

operator from TvB ⊂ W 1,2(M) → H−1(M). Since ∇2
B is generated by an elliptic

operator on a compact manifold we know dimK := l < ∞. We let K⊥ denote the
orthogonal complement of K in W 1,2(M) with respect to the L2 inner product.

Lemma 2.2 (Lyapunov-Schmidt reduction). Let (M, g) be a closed Riemannian
manifold with g ∈ C3 and fix v ∈ M1. There is an open neighborhood U ⊂ K of 0
in K and a map

F : U → K⊥

with F (0) = 0 and ∇F (0) = 0 satisfying the following properties.

(1) Let q : U → R be the function defined by q(ϕ) = Q(v + ϕ + F (ϕ)). Then
we have

(16) L := {v + ϕ+ F (ϕ) | ϕ ∈ U} ⊂ B

and

∇BQ(v + ϕ+ F (ϕ)) = πK∇BQ(v + ϕ+ F (ϕ))

= ∇q(ϕ).
(17)

Furthermore, ϕ 
→ q(ϕ) is real analytic.
(2) There exists δ > 0 depending on v such that for any u ∈ B(v, δ), we have

πK(u− v) ∈ U . Furthermore, if u ∈ CSC1 ∩ B(v, δ), then

(18) u = v + πK(u− v) + F (πK(u− v)).

(3) There exists C such that for all ϕ ∈ U and η ∈ K, we have

‖∇F (ϕ)[η]‖C2,α ≤ C‖η‖C0,α .(19)
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Lyapunov-Schmidt reductions have been already performed for the Yamabe func-
tional in a variety of contexts (see, e.g. [17, Proposition 7]). However, since our
audience may be less familiar with the construction (which is a consequence of the
inverse function theorem), we include the proof in Appendix A.

Associated to the Lyapunov-Schmidt reduction is the notion of integrability (see
for instance [1, 17]), which roughly states that all the elements in the kernel corre-
spond to one-parameter families of critical points.

Definition 2.3 (Integrability). A function v ∈ CSC1 is said to be integrable if for
all ϕ ∈ ker∇2

BQ(v) there exists a one-parameter family of functions (vt)t∈(−δ,δ),

with v0 = v, ∂
∂t

∣∣
t=0

vt = ϕ and vt ∈ CSC1 for all t sufficiently small.

Lemma 2.4 (Q in the integrable setting). Let (M, g) be a closed Riemannian
manifold and let v ∈ M. Then v is integrable if and only if q is constant in a
neighborhood of 0 ∈ K. In particular, if v ∈ M1 is an integrable minimizer, then

(20) M1 ∩ B(v, δ) = L ,

where L is as in Lemma 2.2, Condition 1.

Proof. Suppose that v is integrable. We claim that q is constant in a neighborhood
of 0 ∈ K. We abuse notation and let ϕ refer to a point in K ∼= R	. Suppose to the
contrary that q is non-constant. Considering a Taylor expansion of this analytic
function, we express q as

q(ϕ) = q(0) + qk0
(ϕ) + qR(ϕ),

where qk0
is a degree k0 homogeneous polynomial, the first non-vanishing term

in the Taylor expansion, and qR is the sum of homogenous polynomials of degree
k > k0. Since qk0

is non-constant, we may find some ϕ ∈ K such that

(21) ∇qk0
(ϕ) �= 0.

For this choice of ϕ, we let us = v+ψs ∈ B be the one-parameter family of critical
points generated by ϕ, whose existence is guaranteed by the integrability of v,
satisfying ψs = 0, d

ds |s=0ψs = ϕ, and

(22) ∇BQ(v + ψs) = 0.

By (18), all critical points of Q in a W 1,2 neighborhood of v are contained in L,
and so for each s we may express ψs as

ψs = ϕs + F (ϕs)

where ϕs ∈ K and ϕs

s → ϕ as s → 0. (This latter fact follows because ψs/s → ϕ as
s → 0 and ∇F (0) = 0 by Lemma 2.2). Note that by (17) of Lemma 2.2 and (22)
we have ∇q(ϕs) = 0. So, we have

0 = ∇BQ(v + ψs) = ∇q(ϕs)

= ∇qk0
(ϕs) +∇qR(ϕs)

= |ϕs|k0−1∇qk0

(
ϕs

|ϕs|

)
+ o(|ϕs|k0−1).

Dividing through by |ϕs|k0−1 and letting s tend to zero, we reach a contradiction
to (21) and conclude that q is constant.

Now we establish the opposite implication. Suppose that q ≡ q(0) in a neighbor-
hood of 0, and thus ∇q ≡ 0 in a neighborhood of 0. Choose any ϕ ∈ K. We claim
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that ϕ generates a one-parameter family of critical points, which will show that v
is integrable. Indeed, set

ψs = sϕ+ F (sϕ).

We can see directly from Lemma 2.2 that

∇BQ(v + ψs) = ∇q(sϕ) = 0,

and so ψs is a family of critical points and v is integrable.
Finally, we show (20). One containment in (20) is precisely (18), as M1 ⊂ CSC1.

The opposite containment holds in the case that v is integrable, as we have just
shown that q is constant on all of L , and thus all these points are minimizers as
well. �

3. Local Quantitative Stability of Minimizers

In this section, we establish the local version of Theorem 1.1, that is Proposition
3.1. For this we need a localized measure of how far u is from being a minimizer
that is close to some given minimizer v.

Given δ > 0 and v ∈ M1, we let

dδ(u,M1) =
inf

{
‖u− ṽ‖W 1,2(M) | ṽ ∈ M1 ∩ B(v, δ)

}
‖u‖W 1,2(M)

.

Proposition 3.1 (Local stability estimate). Let (M, g) be a closed Riemannian
manifold, and let v ∈ M1. Then there exist constants c, γ and δ depending on v
such that

(23) Q(u)− Y (M) ≥ c dδ(u,M1)
2+γ for all u ∈ B(v, δ).

If v is integrable or non-degenerate, then we may take γ = 0.

We recall that v is called non-degenerate if the kernel K = ker∇2
BQ(v)[−,−] ⊂

TvB of the second variation (as in the discussion preceding Lemma 2.2) is trivial.
We also recall that the definition of integrability was given in Definition 2.3.

Proof of Proposition 3.1. Given v ∈ M1, let F be the Lyapunov-Schmidt reduction
adapted to v as in Lemma 2.2, and letK be the kernel of∇2

BQ(v) (see the discussion
before Lemma 2.2). By Lemma 2.2(2), for any u ∈ B(v, δ), we may define the
Lyanpunov-Schmidt “projection” uL of u by

(24) uL = v + πK(u− v) + F (πK(u− v)).

Note that, thanks to Lemma 2.2 (2) and (3), for any ε > 0, we may take δ > 0
small enough in Lemma 2.2 such that

‖uL − v‖W 1,2(M) ≤ ε,(25)

‖uL − u‖W 1,2(M) ≤ ε.(26)

We can write

(27) Q(u)− Y = Q(u)−Q(uL)︸ ︷︷ ︸
I

+Q(uL)− Y︸ ︷︷ ︸
II

and estimate these two terms separately.
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Term I: It will be useful for us to write u = uL + u⊥. Using the notation intro-
duction before Lemma 2.2 we note that u⊥ ∈ K⊥. To estimate I, we use Taylor’s
theorem and see that

(28) Q(u)−Q(uL) = ∇BQ(uL)[u
⊥] +

1

2
∇2

BQ(ζ)[u⊥, u⊥],

for some ζ on a geodesic in B between u and uL. Observe that ∇BQ(uL)[u
⊥] = 0

by Lemma 2.2 and the fact that u⊥ ∈ K⊥. Furthermore, using the continuity of
∇2

BQ(−) established in Lemma 2.1 and (26), we can write

(29) Q(u)−Q(uL) =
1

2
∇2

BQ(v)[u⊥, u⊥] + o(1)‖u⊥‖2W 1,2 ,

where o(1) represents a term that goes to zero as ‖u− v‖W 1,2 → 0. Let λ1 > 0 be
the smallest non-zero eigenvalue of ∇2

BQ(v). It then follows that, picking δ > 0 in
the statement small enough,

(30) Q(u)−Q(uL) ≥
1

2
λ1‖u⊥‖2W 1,2 + o(1)‖u⊥‖2W 1,2 ≥ 1

4
λ1‖u⊥‖2W 1,2 .

Term II: It will be useful to separate out three cases for estimating term II.

v is non-degenerate. This is the easiest case, since then uL = v and then (30)
concludes the proof.

v is integrable. By Lemma 2.4 we have that Q(uL) = q(πK(u−v)) = q(0) = Q(v).
So the proposition follows from (30).

v is nonintegrable. Let ϕ = πK(u− v) and recall that Q(uL) = q(ϕ). We know
that ϕ 
→ q(ϕ) is an analytic function R	 → R where � = dimK. Thus we can
apply the �Lojasiewicz inequality [42]:

Lemma 3.2 (�Lojasiewicz “distance” inequality). Let q : R	 → R be a real analytic

function and assume that ∇q(0) = 0. Then there exist δ̃ > 0, c > 0 and γ > 0 (all

of which depend on q and on the critical point 0) such that for all ϕ ∈ B(0, δ̃),

(31) |q(ϕ)− q(0)| ≥ c inf
{
|ϕ− ϕ̄| : ϕ̄ ∈ B(0, δ̃), ∇q(ϕ̄) = 0

}2+γ

.

Appealing to the definition of q in Lemma 2.2 and the �Lojasiewicz inequality in
Lemma 3.2, we see that

Q(uL)− Y = q(ϕ)− q(0)

≥ c inf{|ϕ− ϕ̂| : ϕ̂ ∈ K ∩B(0, δ),∇q(ϕ) = 0}2+γ .
(32)

Notice further that

inf{|ϕ− ϕ̄| : ϕ̄ ∈ K ∩B(0, δ),∇q(ϕ) = 0}
≥ c inf{‖uL − v̂‖W 1,2(M) : v̂ ∈ M1 ∩ B(v, δ)}

because for any v̂ ∈ M ∩ B(v, δ), we may write v̂ = v + ϕ̂ + F (ϕ̂) for some ϕ̂ ∈
K ∩B(0, δ) with ∇q(ϕ) = 0, and

‖uL − v̂‖W 1,2(M) = ‖πK(u− v) + F (πK(u− v))− ϕ̂− F (ϕ̂)‖W 1,2(M)

≤ ‖πK(u− v)− ϕ̂‖W 1,2(M) + ‖F (πK(u− v))− F (ϕ̂)‖W 1,2(M)

≤ ‖πK(u− v)− ϕ̂‖W 1,2(M) + C‖πK(u− v)− ϕ̂‖C0,α(M)

≤ C‖πK(u− v)− ϕ̂‖W 1,2(M),
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where in the penultimate inequality we have used Lemma 2.2(3). Together with
(32), this implies that

(33) Q(uL)− Y ≥ c inf{‖uL − v̂‖W 1,2(M) : v̂ ∈ M1 ∩ B(v, δ)}2+γ .

Combining (33) with (30) yields the result in this third and final setting. �

4. Proofs of Theorems 1.1 and 1.4 and Corollary 1.2

In this section we conclude the proofs of the main results, that is, Theorems 1.1
and 1.4 and Corollary 1.2. Theorem 1.1 will be a consequence of the local quanti-
tative stability in Proposition 3.1 and a compactness argument, while Theorem 1.4
will follow from an example of [17].

4.1. Proof of Theorem 1.1. In the proof of Theorem 1.1, we will make use of
the following compactness result for minimizing sequences, which is proven, for
instance, in [41, Theorem 4.1].

Lemma 4.1. Let (M, g) be a smooth Riemannian manifold of dimension n ≥ 3
and let (ui) ⊂ B be a sequence such that Q(ui) → Y . Then, up to a subsequence,
ui converges strongly in W 1,2(M) to some v ∈ M1.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Since both sides of (5) are zero-homogeneous in u and be-
cause inf{‖u− v‖W 1,2(M) : v ∈ M1} ≥ d(u,M), we may work in B without loss of
generality.

Given v ∈ M1, let δ(v), γ(v), and c(v) be the constants given in Proposition 3.1.
Since the set M1 = {v ∈ M : ‖v‖L2∗ (M) = 1} is compact in W 1,2 by Lemma 4.1, we

may cover M1 by balls B(v, δ(v)/2) and take a finite subcover {B(vi, δ(vi)/2)}i∈I.
Then we define

δ0 = min
i∈I

δ(vi)/2 > 0,

γ0 = max
i∈I

γ(vi) < ∞,

c0 = min
i∈I

c(vi) > 0.

Let u ∈ B be such that d(u,M1) < δ0/4. There exists a i ∈ I such that
‖u− vi‖W 1,2 < δi/2. If ṽ is the closest element of M1 to u the triangle inequality
implies that ‖ṽ − vi‖W 1,2 < δi. Thus we may apply Proposition 3.1 to see that

Q(u)− Y (M, [g]) ≥ c(vi)dδi(u,M1)
2+γi ≥ c0d(u,M1)

2+γ0 ,

which is the desired result.
We are left with the case that d(u,M1) > δ0/4. Note since ‖u‖L2∗ = 1 we have

d(u,M) > δ0/16 by the triangle inequality. Thanks to Lemma 4.1 and the triangle
inequality, there exists a ε > 0 such that

Q(u)− Y (M, [g]) < ε ⇒ d(u,M) < δ0/16.

Thus, when d(u,M1) > δ0/4 we have that Q(u)−Y (M, [g]) > ε. Moreover, observe
that by definition, d(u,M) ≤ 1. Letting c = min {c0, ε} we have proven the stability
estimate (5) for all u ∈ B.

Finally, we show the generic statement. By work of Schoen [49] (see also Ander-
son [3]), generically (that is for an open and dense subset of the set of equivalence
classes of C∞ metrics on a given compact manifold M in the C2 topology), there
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are finitely many critical points of Q and each one is non-degenerate. Therefore
the proof follows straightforwardly from the local version of Proposition 3.1 in the
non-degenerate case, that is with γ = 0. �

4.2. Proof of Corollary 1.2. Corollary 1.2 is a direct consequence of Theorem 1.1,
up to showing that the distances defined there are conformally invariant.

Proof of Corollary 1.2. Let g = φ4/(n−2)ĝ. Note that Qĝ(u) = Q(φu) and Mg =
{v ∈ W 1,2(M) : Qg(v) = Y } = {v ∈ W 1,2(M) : φv ∈ Mĝ}. So, consider the metric

g̃ given by g̃ = u4/(n−2)g = (uφ)4/(n−2)ĝ. We directly compute that

inf
v∈Mg

∫
M

|u− v|2∗dvolg = inf
v∈Mg

∫
M

|φ(u− v)|2∗dvolĝ = inf
w∈Mĝ

∫
M

|φu− w|2∗dvolĝ,

which proves that ‖ · ‖ is conformally invariant. So, applying Theorem 1.1 and the

Sobolev inequality on (M, g), with g̃ = u
4

n−2 g, we have

Rg̃ − Y = Qg(u)− Y ≥ c

(
infv∈M ‖u− v‖W 1,2(M)

‖u‖W 1,2(M)

)2+γ

≥ c

(
infv∈M ‖u−v‖L2∗ (M)

‖u‖L2∗ (M)

)2+γ

= c

(
infg∈M ‖g̃−g‖
volg̃(M)1/2∗

)2+γ

.

To see the second inequality above, first note that in the case when d(u,M) ≤ δ0,
the denominators are comparable. On the other hand, when d(u,M) > δ0, we
observe that the quantity infv∈M ‖u− v‖L2∗ (M)/‖u‖L2∗ (M) is bounded above by 1

and so the inequality follows by choosing c sufficiently small. This establishes (6).
Next, suppose that Y > 0 and g ∈ M1, and recall that

‖gu − gv‖∗ =

(∫
M

cn|∇(u− v)|2 +Rg(u− v)2 dvolg

)1/2

.

Again as a consequence of Theorem 1.1 and the assumption that Rg−Y , we obtain

Rg − Y ≥ c

(
inf g̃∈M ‖g − g̃‖∗
volg(M)1/2∗

)2+γ

.

where we used that g ∈ M, Y > 0 and, consequently, that Rg > 0 is constant.
To conclude, it suffices to prove that ‖gu − gv‖∗ does not depend on the choice
of g. Suppose that g, ĝ ∈ M1 with g = φ4/(n−2)ĝ. Then if gu = u4/(n−2)g =
(φu)4/(n−2)ĝ = ĝφu and gv = v4/(n−2)g = (φv)4/(n−2)ĝ = ĝφv, we have

‖gu − gv‖∗ =

∫
M

cn|∇g(u− v)|2 +Rg(u− v)2 dvolg

=

∫
M

(u− v) (−cnΔg(u− v) +Rg(u− v)) dvolg.

Recall that −cnΔg +Rg ≡ Lg is the conformal Laplacian and we have

Lgψ =φ1−2∗Lĝ(φψ)

Lgψ dvolg =φLĝ(φψ) dvolĝ.
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Plugging this into the above we get that

‖gu − gv‖∗ =

∫
M

(u− v)Lg(u− v) dvolg

=

∫
M

(φu− φv)Lĝ(φu− φv) dvolĝ = ‖ĝφu − ĝφv‖∗.

This concludes the proof of (7). �

4.3. Proof of Theorem 1.4. Suppose that u0 ∈ M is nonintegrable. Let q : U →
R where U ⊂ ker∇2

BQ(v) ∼= R	 be the function defined in Lemma 2.2; since q is
analytic we can expand it in a power series

q(x) = q(0) +
∑
j≥p

qj(x)

where each qj is a degree j homogeneous polynomial and p is chosen so that qp(0) �=
0. As in [17], we will call p the order of integrability of u0. Next we recall the notion
of Adams-Simon positivity condition:

Definition 4.2 (ASp condition). We say that u0 satisfies the Adams–Simon posi-
tivity condition of order p, ASp for short, if p is the order of integrability of u0 and
qp|S�−1 attains a positive maximum for some v ∈ S

	−1.

Proposition 4.3 is immediate from the definitions.

Proposition 4.3 (ASp implies γ > 0). Fix a closed Riemannian manifold of di-
mension n ≥ 3 and fix p ≥ 3. Let u0 be a nonintegrable critical point of the Yamabe
energy and suppose that it satisfies the Adams–Simon positivity condition of order
p. Then there exists a sequence of ui ∈ W 1,2(M) with ui → u0 in W 1,2 but

(34) lim
i→∞

Q(ui)− Y (M, g)

‖ui − u0‖p−α
W 1,2

= 0 , ∀α > 0.

Proof. Let v ∈ S
	−1 be the maximum of qp as in Definition 4.2. For t ∈ [0, 1] let

ût := tv, and consider the family of functions (ut)t ⊂ W 1,2(M) defined by

ut := u0 + ût + F (ût) t ∈ (0, 1) ,

where F is the function defined in Lemma 2.2. By definition of ut and the properties
of F , we have

‖ut − u0‖W 1,2 ∼ t ,

and moreover, by definition of q, we have

Q(ut)−Q(u0) = q(ût)− q(0) =
∑
j≥p

qj(ût) .

Since u0 satisfies ASp, we conclude

|Q(ut)−Q(u0)| ≤ Ctpqp(v)

for t sufficiently small, which implies the desired conclusion. �

We are now ready to conclude the proof of Theorem 1.4.

Proof of Theorem 1.4. By Proposition 4.3, it is enough to prove the existence of
compact manifolds (M, g), with g a minimizer of the Yamabe energy, satisfying the
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ASp condition for p ≥ 3. This has been done in [17] (see also [49]), and we recall
them here for completeness.

(i) Fix integers n,m > 1 and a closed m-dimensional Riemannian manifold
(Mm, gM ) with constant scalar curvature RgM = 4(n + 1)(m + n − 1).
Let (Pn, gFS) be the complex projective space equipped with the Fubini-
Study metric, where the normalization of gFS is fixed so that S2n+1(1) →
(Pn, gFS) is a Riemannian submersion. Then the product metric Mm ×
Pn, gM

⊕
gFS) is a degenerate critical point satisfying ASp, p = 3.

(ii) The product metric on S1(1/
√
n− 2)×Sn−1(1) is a nonintegrable minimizer

of the Yamabe energy satisfying ASp for some p ≥ 4 (cf. [17, Proposition
4]).

In particular (ii) provides the desired example, being a minimizer. �

Appendix

Appendix A. Proof of the Lyapunov-Schmidt Reduction (Lemma 2.2)

Proof of Lemma 2.2. Fix v ∈ M1 and let K,K⊥ be as in the discussion preceding
the statement of Lemma 2.2. We proceed in several steps.

Step 1 (Step 1: Defining the map F .). We obtain the map F using the inverse
function theorem in the following way. Let us consider the map N : C2,α ∩ B →
C0,α(M) ∩ TvB defined by

N (w) = πK(w − v) + πK⊥∇BQ(w).

This map satisfies N (v) = 0 and, if wt is smooth curve in C2,α ∩ B with w0 = v
and ∂t|t=0wt = ζ, then

∇BN (v)[ζ] =
d

dt
|t=0 N (wt) = πKζ + πK⊥∇2

BQ(v)[ζ,−]

= πKζ +∇2
BQ(v)[ζ,−].

(35)

Note that this is well defined for any ζ ∈ C2,α(M)∩ TvB. The last identity follows
because ∇2

BQ(v)[ζ] ∈ K⊥ for any ζ ∈ W 1,2(M) ∩ TvB; indeed, for any ϕ ∈ K we
have 0 = 〈∇2

BQ(v)[ϕ], ζ〉L2 = 〈ϕ,∇2
BQ(v)[ζ]〉L2 .

In particular, (35) shows that the kernel of ∇BN (v) is trivial, because for any
ζ �= 0, either πKζ �= 0 or ζ ∈ K⊥, and thus ∇2

BQ(v)[ζ,−] is non-vanishing by
definition.

Furthermore, because the operator ζ 
→ Lζ := ∇2
BQ(v)[ζ,−] is uniformly elliptic,

Schauder estimates ensure that ∇BN (v) is an isomorphism from C2,α(M) ∩ TvB
to C0,α(M) ∩ TvB. Thus, we may apply the inverse function theorem to obtain an

inverse N−1 defined on an open neighborhood Û ⊂ C0,α(M) ∩ TvB containing 0.

Set U = K ∩ Û ⊂ K and define the map F : U → K⊥ by

F (ϕ) = πK⊥(N−1(ϕ)− v).

Step 2 (Step 2: Basic observations about the map F .). Let us make some initial
observations that will be useful for proving the claimed properties of F . For any
ϕ ∈ U , from the definition of N we have

ϕ = N (N−1(ϕ))

= πK(N−1(ϕ)− v) + πK⊥∇BQ(N−1(ϕ)).
(36)
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(Recall that the image of N−1 is contained in C2,α(M) ∩ B so (36) makes sense).
Taking πK of both sides of (36), we see that ϕ = πK(N−1(ϕ) − v). So, along

with the definition of F , this implies that

(37) N−1(ϕ) = ϕ+ F (ϕ) + v for all ϕ ∈ U.

Differentiating (37), we find that for any ϕ ∈ U and η ∈ K, we have

πK⊥∇N−1(ϕ)[η] = ∇F (ϕ)[η],

πK∇N−1(ϕ)[η] = η.
(38)

Notice that in (38) we can write ∇ instead of ∇B, since ϕ ∈ C2,α(M) ∩ TvB. We
will do this several time in what follows.

Step 3 (Step 3: Verifying properties of F .). We now check that this map F satisfies
the desired properties in the statement of Lemma 2.2. It is clear that F (0) = 0
since N (0) = 0. To see that ∇F (0) = 0, we appeal to (38) with ϕ = 0 and see that
it suffices to show that πK⊥∇N−1(0)[η] = 0 for any η ∈ K. And indeed, by (35),
we see that ∇BN (v) maps K to K and that ∇BN (v)|K = (∇N−1(0))−1|K = Id.
Thus ∇F (0) = 0.

Next, we prove property (1). First note that N is analytic in w ∈ B as long as
w 
→ Q(w) is analytic in w ∈ B. First note that N is analytic in w ∈ B in the
sense of [54, Definition 8.8] because πK , πK⊥ are linear and w 
→ Q(w) is analytic
in w ∈ B; see [17, Lemma 6]. It then follows by the inverse function theorem that
F , and therefore q, are analytic functions over K ∼= R	 (see [54, Theorem 4.H]).

To see (16), recall (37), that N−1(ϕ) = v + ϕ + F (ϕ). But we know that the
domain of N is B ∩ C2,α(M) so it must be that the range of N−1 is contained in
B.

The first equality in (17) follows directly from taking πK⊥ of both sides of (36)
and recalling (37). To see the second equality in (17), by the chain rule for any
ϕ ∈ U and η ∈ K we have

d

dt
q(ϕ+ tη)|t=0 = 〈∇q(ϕ), η〉 = ∇BQ(v + ϕ+ F (ϕ))[η +∇F (ϕ)[η]]

= ∇BQ (v + ϕ+ F (ϕ)) [η],

with the latter term vanishing in the second equality because ∇F (ϕ)[η] ∈ K⊥ by
(38).

To see property (2), note that U contains a C0,α ball of radius ε in K for ε
sufficiently small. Since all norms are equivalent in the finite dimensional space K,
we see that U contains an L2 ball of radius ε′ in K for some ε′ depending on ε.
Now, since the L2 norm is nonincreasing under the L2 projection πK , we have

‖πK(u− v)‖L2(M) ≤ ‖u− v‖L2(M) ≤ ‖u− v‖W 1,2(M).

So, provided δ ≤ ε′, we have that the first claim of property (2) holds. Next,
basic elliptic regularity estimates show that if u ∈ CSC1 ∩ B(v, δ), we may take
‖u−v‖C2,α(M) as small as desired by choosing δ to be sufficiently small; in particular,
for δ sufficiently small, u− v is contained in the neighborhood in which the map N
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is invertible. So, letting w = u− v. we have

u = N−1(Nu) = N−1(πKw + πK⊥∇BQ(u))

= N−1(πKw)

= v + πKw + F (πKw),

where we have used (37) in the final equality. This proves (18).
Now we show property (3). To verify the estimate (19), we first apply Schauder

estimates to find

(39) ‖∇F (ϕ)[η]‖C2,α(M) ≤ C
∥∥∇2

BQ(v) [∇F (ϕ)[η]]
∥∥
C0,α(M)

.

From the second identity in (38), we find that

∇2
BQ(v) [∇F (ϕ)[η]] = ∇2

BQ(v)
[
πK⊥∇N−1(ϕ)[η]

]
= πK⊥∇2

BQ(v)
[
∇N−1(ϕ)[η]

]
.

(40)

The second equality follows because ∇2
BQ(v) commutes with πK⊥ . The reason for

this is, as we’ve seen above, that ∇2
BQ(v)[w] ∈ K⊥ for any w ∈ W 1,2(M).

So, from (39) and (40), we find that

(41) ‖∇F (ϕ)[η]‖C2,α(M) ≤
∥∥πK⊥∇2Q(v)

[
∇N−1(ϕ)[η]

]∥∥
C0,α(M)

.

Next, we claim that

(42)
∥∥πK⊥∇2Q(v)

[
∇N−1(ϕ)[η]

]∥∥
C0,α(M)

≤ ε‖∇N−1(ϕ)[η]‖C2,α .

To this end, we first note that differentiating (36) in the direction η ∈ K, we have

η = πK∇N−1(ϕ)[η] + πK⊥∇2Q(N−1(ϕ))[∇N−1(ϕ)[η]].

So, by taking πK⊥ of both sides, we determine that

(43) πK⊥∇2Q(N−1(ϕ))[∇N−1(ϕ)[η]] = 0.

So, we can write∥∥πK⊥∇2Q(v)[∇N−1(ϕ)[η]]
∥∥
C0,α

=
∥∥πK⊥

((
∇2Q(v)−∇2Q(N−1(ϕ))

)
[∇N−1(ϕ)[η]]

) ∥∥
C0,α

≤ ε‖∇N−1(ϕ)[η]‖C2,α .

The final inequality follows because Lemma 2.1 implies that, for a modulus of
continuity, ω (which may change from line to line):

‖
(
∇2Q(v)−∇2Q(N−1(ϕ))

)
‖C2,α→C0,α ≤ ω

(
‖v −N−1ϕ‖C2,α

)
≤ ω(‖ϕ‖C0,α) ≤ ω̃(‖ϕ‖W 1,2).

(44)

The penultimate inequality follows by the continuity of N−1 from C0,α → C2,α.
The last inequality follows provided that ‖ϕ‖W 1,2 is sufficiently small (recall that
ϕ ∈ K and all the norms are equivalent on K). This establishes (42).

Thus far, from (41) and (42), we have shown that

‖∇F (ϕ)[η]‖C2,α(M) ≤ ε‖∇N−1(ϕ)[η]‖C2,α

Now, writing ∇N−1(ϕ)[η] = η +∇F (ϕ)[η] by (37), we see that

‖∇F (ϕ)[η]‖C2,α(M) ≤ ε (‖η‖C2,α + ‖∇F (ϕ)[η]‖C2,α) .

Absorbing the second term into the left-hand side, and recalling that all norms are
equivalent on K, we establish (19). This concludes the proof of the lemma. �
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