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WEAKLY INSCRIBED POLYHEDRA

HAO CHEN AND JEAN-MARC SCHLENKER

Abstract. Motivated by an old question of Steiner, we study convex polyhe-
dra in RP3 with all their vertices on a sphere, but the polyhedra themselves do
not lie on one side the sphere. We give an explicit combinatorial description of
the possible combinatorics of such polyhedra. The proof uses a natural exten-
sion of the 3-dimensional hyperbolic space by the de Sitter space. Polyhedra
with their vertices on the sphere are interpreted as ideal polyhedra in this
extended space. We characterize the possible dihedral angles of those ideal
polyhedra, as well as the geometric structures induced on their boundaries,
which is composed of hyperbolic and de Sitter regions glued along their ideal
boundaries.
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1. Introduction

In 1832, Steiner [Ste32, Problem 77] asked the following questions1: Does ev-
ery polyhedron have a combinatorially equivalent realization that is inscribed to a
sphere, or to another quadratic surface? If not, which polyhedra have such real-
izations? In this paper, a polyhedron in R3 refers to the bounded intersection of
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finitely many half-spaces or, equivalently, the convex hull of a finitely many points.
Given a surface S, a polyhedron P is inscribed to S if all the vertices of P lie on S.
We say that a polyhedron is inscribable to S if it has a combinatorially equivalent
realization with all its vertices on S.

We use the preposition “to” rather than “in” to make it clear that we do not
require that the polyhedron is on one side of S. This is not required in Steiner’s
definition, either. In fact, since Steiner’s problem is obviously projectively invariant,
it is quite natural to consider it in projective space. It is then possible that a
polyhedron with vertices on the sphere does not lie inside the sphere.

Definition 1.1. In the projective space RP3, a polyhedron P inscribed to a quadric
S is strongly inscribed to S if the interior of P is disjoint from S, or weakly inscribed
to S otherwise.

Remark 1.2. Note in the definition above that weakly inscribed polyhedra exclude
those that are strongly inscribed.

Steiner also defined that a polyhedron is circumscribed to a surface if all its
facets are tangent to the surface. We will see that circumscription and inscription
are closely related through polarity, hence we only need to focus on one of them.

Steiner’s problem remained entirely open for nearly a century. There were even
beliefs [Brü00] that every simplicial polyhedron is strongly inscribable in a sphere.
The first polyhedra without any strongly inscribed realization were discovered in
1928 by Steinitz [Ste28]. It was realized much later that the cube with one vertex
truncated cannot be inscribed to any quadric. This follows from the well-known
fact that if seven vertices of a cube lie on a quadric, so does the eighth one [BS08,
Section 3.2]; see [CP17, Example 4.1] for a complete argument.

There are three quadrics in RP3 up to projective transformation: the sphere,
the one-sheeted hyperboloid, and the cylinder. Strong inscriptions to them are
essentially characterized in previous works of Hodgson–Rivin–Smith [HRS92] and
Danciger–Maloni–Schlenker [DMS20]. The current paper answers Steiner’s question
for polyhedra weakly inscribed to a sphere.

The projective space RP3 can be seen as a completion of the Euclidean space
R3 with a hyperplane at infinity. If the hyperplane at infinity is disjoint from
both the sphere and the inscribed polyhedron, then the inscription must be strong
(see [CP17]). Hence we focus on the situation where the hyperplane at infinity
intersects the sphere, but does not intersect the polyhedron. The sphere then ap-
pears in the Euclidean space as a two-sheeted hyperboloid, and the weakly inscribed
polyhedron has some vertices on one sheet, and other vertices on the other sheet.

Our main result is the following combinatorial characterization of polyhedra
weakly inscribed to a sphere.

1The original text in German is

77) Wenn irgend ein convexes Polyëder gegeben ist, lässt sich dann immer (oder
in welchen Fällen nur) irgend ein anderes, welches mit ihm in Hinsicht der Art
und der Zusammensetzung der Grenzflächen übereinstimmt (oder von gleicher
Gattung ist), in oder um eine Kugelfläche, oder in oder um irgend eine andere
Fläche zweiten Grades beschreiben (d. h. dass seine Ecken alle in dieser Fläche
liegen oder seine Grenzflächen alle diese Fläche berühren)?
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Theorem 1.3 (Combinatorial characterization). A 3-connected planar graph Γ =
(V,E) is the 1-skeleton of a polyhedron P ⊂ RP3 weakly inscribed to a sphere if
and only if

(C1) Γ admits a vertex-disjoint cycle cover consisting of two cycles
and, if we color the edges connecting vertices on the same cycle by red

(r), and those connecting vertices from different cycles by blue (b), then
(C2) there is a cycle visiting all the edges (repetition allowed) along which the

edge color has the pattern
• . . . bbrbbr. . . if the cycle cover contains a 1-cycle, or
• . . . brbr. . . otherwise.

Let us stress again that our definition of weakly inscribed polyhedra excludes
those that are strongly inscribed. Here, we abuse the terminology, and call a single
vertex 1-cycle, and a single edge 2-cycle. We will see that the two cycles in (C1)
correspond to vertices on the two sheets of the hyperboloid, and the edges are
colored blue if they are between the sheets, or red otherwise. If the cycle cover
contains a 1-cycle with a single vertex v, Condition (C2) has a much simpler
formulation, namely that v is connected to every other vertex. We decide to adopt
the current formulation for comparison with the other case.

Theorem 1.3 is remarkable because, unlike the characterization of strongly in-
scribed polyhedra [HRS92], it does not involve any feasibility problem. Despite
some efforts [DS96,Che03], no characterization as explicit as Theorem 1.3 has been
obtained for strong inscription.

In fact, Theorem 1.3 is a consequence of the following linear programming char-
acterization.

Theorem 1.4 (Linear programming characterization). A 3-connected planar graph
Γ = (V,E) is the 1-skeleton of a polyhedron P ⊂ RP3 weakly inscribed to a sphere
if and only if

(C1) Γ admits a vertex-disjoint cycle cover consisting of two cycles

and, if we color the edges connecting vertices on the same cycle by red, and
those connecting vertices from different cycles by blue, there is a weight function
w : E → R such that

(W1) w > 0 on red edges, and w < 0 on blue edges;
(W2) w sums up to 0 over the edges adjacent to a vertex v, except when v is the

only vertex in a 1-cycle, in which case w sums up to −2π over the edges
adjacent to v.

Recall that we consider a single vertex as a 1-cycle, and a single edge as a 2-cycle.
The feasibility problem involved here is visibly much simpler than that in [HRS92].
In particular, there is no inequality on the non-trivial cuts. Recall again that
strongly inscribed polyhedra are not weakly inscribed according to our definition.

In [HRS92], the sphere was seen as the ideal boundary of the projective model
of the hyperbolic space, so that strongly inscribed polyhedra were interpreted as
hyperbolic ideal polyhedra. The characterization is then formulated in terms of
hyperbolic exterior dihedral angles. More specifically, a polyhedron is strongly
inscribable in a sphere if and only if one can assign weights (angles) to the edges
subject to a family of equalities and inequalities. Hence strong inscribability in the
sphere can be determined by solving a feasibility problem.
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In [DMS20], polyhedra strongly inscribed in a one-sheeted hyperboloid (resp. a
cylinder) were seen as ideal polyhedra in the anti-de Sitter space (resp. the half-
pipe space [Dan14,Dan13]). Dihedral angles of the ideal polyhedra then lead to a
linear programming characterization in the same style of [HRS92].

Remark 1.5. The definition of strong inscription in [DMS20] is slightly stronger
than ours. They require that P ∩ S consists of exactly the vertices of P . The two
definitions are equivalent only when S is the sphere. Otherwise, it is possible that
some edges of P are contained in S.

Our proof to Theorem 1.4 follows a similar approach. Given a sphere S ⊂ RP3,
its interior (resp. exterior) is seen as the projective model for the 3-dimensional
hyperbolic space H3 (resp. de Sitter space dS3). In [Sch98, Sch01], H3 and dS3

together make up the hyperbolic-de Sitter space (HS space for short) which is de-
noted by HS3. Then a polyhedron P inscribed to S can be considered as an ideal
polyhedron in HS3. We say that P is strongly ideal if the interior of P is contained
in H3, or weakly ideal otherwise.

We will see in Section 8 that Theorem 1.4 follows from Theorem 3.2 below, which
describes the possible dihedral angles of convex polyhedra inHS3. More specifically,
the dihedral angles at the edges of P form a weight function θ satisfying all the
conditions of Theorem 1.4 and, additionally, that |θ| < π and the sum of θ over the
blue edges is bigger than −2π. These additional conditions are, however, redundant
in the linear programming characterization, as we will prove in Section 8.

Rivin [Riv94] also gave another characterization in terms of the metric induced
on the boundaries of ideal hyperbolic polyhedra. More specifically, every complete
hyperbolic metric of finite area on an n-times punctured sphere can be isomet-
rically embedded as the boundary of an n-vertices polyhedron strongly inscribed
to a sphere, viewed as an ideal hyperbolic polyhedron (possibly degenerate and
contained in a plane). Similarly, [DMS20] also characterized polyhedra strongly
inscribed in the one-sheeted hyperboloid in terms of the possible induced metrics
on the boundary of ideal polyhedra in the Anti-de Sitter space.

Extending these previous works, we also provide a characterization for the geo-
metric structure induced on the boundary of a weakly ideal polyhedron in HS3.
This geometric structure, as distinguished from that induced on a strongly ideal
polyhedron, contains a de Sitter part; that is, a part locally modeled on the de
Sitter plane. We call this induced data an “HS-structure”, since it is locally mod-
eled on HS

2, a natural extension of the hyperbolic plane by the de Sitter plane.
Relevant definitions in the following statement will be recalled in the next section.

Theorem 1.6 (Metric characterization). Let P be a weakly ideal polyhedron in
HS3 with n vertices. Then the induced HS-structure on ∂P is a complete, maximal
HS structure on the punctured sphere, obtained by gluing copies of H2 to a de Sitter
surface along their ideal boundaries by C1 piecewise projective maps such that, at
the “break points” where the maps fail to be projective, the second derivative has a
positive jump. Conversely, each HS structure of this type is induced on a unique
weakly ideal polyhedron in HS3.

Note that both the hyperbolic and de Sitter parts of the metric have a well-
defined real projective structure at infinity, so it is meaningful to ask for a piecewise
projective gluing map. More explanations on the statement of Theorem 1.6 can be
found in Section 3.3.
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Remark 1.7. For the interest of physics audience, weakly ideal polyhedra can be in-
terpreted as a description of interactions of “photons” in a 3-dimensional spacetime;
see [BBS11]. More specifically, HS

2 models the link of an event in a 3-dimensional
space-time. The vertices on different boundary components of the de Sitter sur-
face in Theorem 1.6, or, combinatorially, on different cycles in Condition (C1),
correspond to incoming and outgoing photons (depending on the direction of time)
involved in an interaction. A special case is the single vertex in a degenerate bound-
ary component, or, combinatorially, in a 1-cycle, which corresponds to an extreme
BTZ-like singularity.

Remark 1.8. The weak inscription, although covered by Steiner’s definition, seemed
forgotten and only revived recently. Schulte [Sch87] considered higher dimensional
generalizations of Steiner’s problem and defined a weaker notion following an idea
from [GS87]. However, since he worked in Euclidean space, his definition coincides
with the strong inscription. Padrol and the first author [CP17] extended Schulte’s
definitions into the projective space, and noticed polyhedra inscribed to the sphere
but not strongly inscribable.

The paper is organized as follows. The essential definitions are made in Section 2
in a general setting. Then we can view polyhedra weakly inscribed to the sphere
as ideal polyhedra in HS3. In Section 3, we announce characterizations for the
dihedral angles and induced metrics of weakly ideal polyhedra in HS3, which are
actually reformulations of Theorems 1.4 and 1.6. We also outline the proof strat-
egy, which is carried out in the following sections. In particular, there are some
technical challenges which were not encountered in the previous works on strong
inscription. For instance, the space of weakly inscribed polyhedra is not simply con-
nected. Finally, in Section 8, we deduce Theorem 1.3 from the linear programming
characterization of dihedral angles.

2. Definitions

We are mainly interested in three dimensional polyhedra. However, the defini-
tions in this section are more general than strictly necessary, and cover the anti-de
Sitter and half-pipe spaces that we hope to study in a further work. Lower dimen-
sional cases are used as examples.

2.1. The hyperbolic, anti-de Sitter and half-pipe spaces. The projective
space RPd is the set of linear 1-subspaces of Rd+1. An affine chart of RPd is an
affine hyperplane H ⊂ Rd+1 which is identified to the set of linear 1-dimensional
subspaces intersectingH. The linear hyperplane parallel toH is projectivized as the
hyperplane at infinity ; linear 1-dimensional subspaces contained in this hyperplane
have no representation in the affine chart H.

Let Rd+1
p,q denote Rd+1 equipped with an inner product 〈·, ·〉 of signature (p, q),

p+q ≤ d+1. We say that Rd+1
p,q is non-degenerate if p+q = d+1. For convenience,

we will assume that

〈x,y〉 :=
p−1∑
i=0

xiyi −
q−1∑
i=0

xd−iyd−i.

For p + q ≤ d + 1, we define H
d
p,q = {x ∈ R

d+1
p,q | 〈x,x〉 = −1} and S

d
p,q = {x ∈

Rd+1
p,q | 〈x,x〉 = 1}. Both Hd

p,q and Sdp,q are equipped with the metric induced by

the inner product. The metrics of Hd
p,q and Sdq,p differ only by a sign.
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Here and throughout this paper, if a space in Rd+1
p,q is denoted by a blackboard

boldface letter, we use the corresponding simple boldface letter to denote its pro-
jectivization in RPd

p,q. For example, Hd
p,q and Sd

p,q are the quotients of Hd
p,q and

Sdp,q by the antipodal map.

Example 2.1.

• Hd := Hd
d,1 is the projective model of the hyperbolic space;

• HP
d := Hd

d−1,1 is the half-pipe space, see [Dan13];

• AdSd := Hd
d−1,2 is the Anti-de Sitter space;

• S
d := S

d
d+1,0 is the spherical space;

• dSd := Sdd,1 is the de Sitter space.

We define HS
d
p,q = {x ∈ Rd+1

p,q | |〈x,x〉| = 1}. It is equipped with a complex-
valued “distance”, which restricts to each connected component as the natural
constant curvature metric, and can be defined in terms of the Hilbert metric of the
boundary quadric, see [Sch98]. If p and q are both non-zero, HS

d
p,q consists of a

copy of Hd
p,q and a copy of Sdp,q identified along their ideal boundaries.

Example 2.2.

• HS
d
d,1 consists of two copies of the hyperbolic space Hd and a copy of the de

Sitter space dSd; we call it the “hyperbolic-de Sitter space”, and simplify
the notation to HS

d.
• Another situation that concerns us in the future is HS

d
p,p, 2p ≤ d + 1,

consisting of two copies of Hd
p,p differing by the sign of the metric. We

denote it by 2Hd
p,p. In particular, HS

3
2,2 = 2AdS3.

• Up to a sign of metric, there are five possible HS
2
p,q metrics, namely HS

2
3,0(=

S2), HS
2
2,1(= HS

2), HS
2
2,0, HS

2
1,1(= 2HP

2) and HS
2
1,0.

• Up to a sign of metric, there are three possible HS
1
p,q metrics. We call a

1-subspace space-, light- or time-like if it is isometric to HS
1
1,1, HS

1
1,0 or

HS
1
2,0 respectively.

In an affine chart of RPd
p,q, the boundary ∂HSd

p,q := ∂Hd
p,q = ∂Sd

p,q appears as

a quadric in R
d.

Example 2.3.

• In the affine chart x3 = 1: H3 appears as a unit open ball; HP3 appears
as the interior of a circular cylinder; AdS3 appears as the simply connected
side of a one-sheeted hyperboloid.

• In the affine chart x2 = 1: H3 appears as the two components of the com-
plement of a two-sheeted hyperboloid that do not share a boundary; HP3

appears as two circular cones; AdS3 appears as the non-simply connected
side of a one-sheeted hyperboloid.

A totally geodesic subspace in HSd
p,q is given by a projective subspace L ⊂ RPd.

If L is of codimension k, then the induced metric on L is isometric to HSd
p′,q′ for

some p′ + q′ ≤ d− k and, by Cauchy’s interlacing theorem, we have 0 ≤ p− p′ ≤ k
and 0 ≤ q−q′ ≤ k. If HSd

p,q is non-degenerate, then there are three possible metrics
on a totally geodesic hyperplane H (codimension 1). We say that H is space-, time-

or light-like if it is isometric to HSd−1
p,q−1, HSd−1

p−1,q or HSd−1
p−1,q−1, respectively.



WEAKLY INSCRIBED POLYHEDRA 421

Example 2.4. In HSd, a hyperplane H is space-like if it is disjoint from the closure
of Hd, time-like if it intersects Hd, or light-like if it is tangent to the boundary of
Hd.

The polar of a set X ∈ Rd+1
p,q is defined by

X∗ = {x : 〈x, y〉 ≤ 0 for all y ∈ X}.
The polar of a subspace L ⊂ R

d+1
p,q is its orthogonal complement, i.e.

L
∗ = L

⊥ = {x : 〈x, y〉 = 0 for all y ∈ L}.
If HSd

p,q is non-degenerate, L ⊂ RPd is isometric to HSk
r,s and L⊥ to HSk′

r′,s′ , then
we have k + k′ = d − 1 and k − r − s = k′ − r′ − s′ = p − r − r′ = q − s − s′. In
particular, the polar of a hyperplane H is a point in Hd

p,q if H is space-like, in Sd
q,p

if H is time-like, or in ∂HSd
p,q if H is light-like.

2.2. Ideal polyhedra. A set X ⊂ RPd is convex if it is convex in some affine
chart H that contains it. If this is the case, X can be identified to a convex cone
K in Rd+1 that is pointed at the origin and intersects H in a convex set. Then
the projectivization of the polar cone K∗ is the polar of X, denoted again by X∗.
Equivalently [dGdV58], X ⊂ RPd is convex if for any two points p, q ∈ X, exactly
one of the two segments joining p and q is contained in X.

Example 2.5.

• Hd is convex;
• AdSd is not convex;
• HPd is convex, but its closure is not.

Two convex sets are consistent if some affine chart contains both of them, or
inconsistent otherwise.

A convex hull of a set X is a minimal convex set containing X. Note that there
is usually more than one convex hull. A convex polyhedron P is a convex hull of
finitely many points. A (closed) face of P is the intersection of P with a supporting
hyperplane, i.e. a hyperplane that intersects the boundary of P but disjoint from
the interior of P . The faces of P decompose the boundary ∂P into a cell complex,
giving a face lattice. Two polyhedra are combinatorially equivalent if they have the
same face lattice. The polar P ∗ is combinatorially dual to P , i.e. the face lattice
of P ∗ is obtained from P by reversing the inclusion relations. We recommend the
books [Grü03,Zie95] as general references for polyhedra (or polytopes) theory.

Definition 2.6. A convex polyhedron P ⊂ RPd is ideal to HSd
p,q if all its vertices

are on the boundary of HSd
p,q. An ideal polyhedron P is strongly ideal if the interior

of P is disjoint from ∂HSd
p,q , or weakly ideal otherwise.

In the case that P is (strongly) ideal to HSd
p,q, we also say that P is (strongly)

ideal to Hd
p,q or to Sd

p,q.
A (polyhedral) HS structure of a k-dimensional manifold is a triangulation of the

manifold together with an embedding of each k-simplex into RPk
p,q , p+ q ≤ k + 1,

such that the simplices, inheriting the HSk
p,q metric, are isometrically identified

on their common faces. A convex polyhedron P ⊂ RPd with n vertices naturally
induces an HS structure on the n-times punctured Sd−1 . If P is ideal to HSd

p,q,
then this metric is geodesically complete.
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In any affine chart, ∂HSd
p,q appears as a quadratic surface, and an ideal polyhe-

dron appears inscribed to this surface.
For Hd, an ideal polyhedron P is strongly ideal if and only if it is consistent with

Hd [CP17]. Polyhedra strongly ideal to H3 are then inscribed to a sphere. Their
combinatorics was characterized by Hodgson, Rivin and Smith [HRS92]. Polyhedra
strongly ideal to HP3 are inscribed to a circular cylinder. Polyhedra strongly ideal
to AdS3 are inscribed to and contained in a one-sheeted hyperboloid. Danciger,
Maloni and the second author [DMS20] have essentially provided characterizations
of the combinatoric types of these polyhedra.

We will focus on weakly ideal polyhedra, i.e. ideal polyhedra that are not strongly
ideal. We prefer affine charts that contain the polyhedron P ; such an affine chart
cannot contain H3, HP3 or AdS3 by the discussion above. Polyhedra weakly ideal
to H3 are then inscribed to a two-sheeted hyperboloid. Polyhedra weakly ideal to
HP3 are inscribed to a circular cone. And finally, polyhedra weakly ideal to AdS3

are inscribed to, but not contained in, a one-sheeted hyperboloid. This covers all
the quadratic surfaces, and characterizing the weakly ideal polyhedra in H3,HP3

and AdS3 would provide a complete answer to Steiner’s problem.

3. Overview

From now on, we will focus on projective polyhedra weakly inscribed to the
sphere, which is equivalent to projective polyhedra weakly ideal to H3, or Euclidean
polyhedra inscribed to the two-sheeted hyperboloid.

Recall that a polyhedron P weakly ideal to H3 is not consistent with H3. Since
we prefer affine charts containing P , H3 would appear, up to a projective transfor-
mation, as the set x2

0+x2
1 −x2

2 < −1 in such charts. This is projectively equivalent
to the Klein model. We use H3

+ and H3
− to denote the parts of H3 with x2 > 0

and x2 < 0, respectively. Moreover, the boundary ∂H3 appears as a two-sheeted
hyperboloid.

3.1. Ideal polyhedra. For a polyhedron P weakly ideal to H3, let V denote the
set of its vertices; then V ⊂ ∂H3 by definition. We write V + = V ∩ ∂H3

+ and
V − = V ∩ ∂H3

−, and say that P is (p, q)-ideal if |V +| = p and |V −| = q. P is
strongly ideal if p = 0 or q = 0; we only consider weakly ideal polyhedra, hence
p > 0 and q > 0. If p, q > 1, we orient the curves P ∩ ∂H3

± so that they are
homologous on ∂P . We then label the vertices of V + by 1+, . . . , p+, and vertices
of V − by 1−, . . . , q−, in the order compatible with the orientation.

Let Pn denote the space of labeled polyhedra with n ≥ 4 vertices that are
weakly ideal to H3, considered up to hyperbolic isometries, and Pp,q denote the
space of labeled (p, q)-ideal polyhedra, p+ q ≥ 4. Then Pn is the disjoint union of
Pp,q with p+ q = n. We only need to study connected components Pp,q , and may
assume p ≤ q without loss of generality. We usually distinguish two cases, namely
p < 2 < q and 2 ≤ p ≤ q. Note that we always assume that p ≥ 1 since we only
consider only weakly ideal polyhedra, so p < 2 below always means p = 1.

3.2. Admissible graphs. We define a weighted graph (or simply graph) on a set

of vertices V as a real valued function w defined on the unordered pairs
(|V |

2

)
. The

weight wv at a vertex v ∈ V is defined as the sum
∑

u w(u, v) over all u 
= v.
Unless stated otherwise, the support of w is understood as the set E of edges.

We can treat w as a usual graph with edge weights, and talk about notions such as



WEAKLY INSCRIBED POLYHEDRA 423

subgraph, planarity and connectedness. But we will also take the liberty to include
edges of zero weight, as long as it does not destroy the property in the center of
our interest. For example, graphs in this paper are used to describe the 1-skeleta
of polyhedra, i.e. 3-connected planar graphs. Hence whenever convenient, we will
consider maximal planar triangulations. If this is not the case with the support of
w, we just triangulate the non-triangle faces by including edges of zero weight.

The advantage of this unconventional definition is that graphs can be treated

as vectors in R(
|V |
2 ). Weighted graphs of a fixed combinatorics, together with their

subgraphs, then form a linear subspace. Graphs with a common subgraph corre-
spond to subspaces with non-trivial intersection. This makes it convenient to talk
about neighborhood, convergence, etc. For a fixed polyhedral combinatorics, our
main result implies that the set of weighted graphs forms (|E| − |V |)-dimensional
cell. Weighted graphs of a fixed number of vertices then form a cell complex of

dimension 2|V | − 6 in R(
|V |
2 ): The maximal cells correspond to triangulated (maxi-

mal) planar graphs, and they are glued along their faces corresponding to common
subgraphs.

Consider an edge e of an ideal polyhedron P . Then e is either a geodesic in H3,
or a time-like geodesic in dS3. In both cases, the faces bounded by e expand to
half-planes forming a hyperbolic exterior dihedral angle, denoted by ϑ. We assign
to e the HS exterior dihedral angle θ, which equals ϑ if e ⊂ H3, or −ϑ if e ⊂ dS3.
We will refer to θ as exterior angles, dihedral angles, or simply angles, and should
not cause any confusion.

This angle assignment induces a graph on V , also denoted by θ, supported by
the edges of P . We have thus obtained a function Θ that maps an ideal polyhedron
P to the graph θ of its angles. Obviously, Θ(P ) is polyhedral, i.e. 3-connected
planar. We will see that, if P is (p, q)-ideal, then

(C1) θ = Θ(P ) admits a vertex-disjoint cycle cover consisting of a p-cycle and a
q-cycle

and, if we color the edges connecting vertices on the same cycle by red, and those
connecting vertices from different cycles by blue, then

(A1) 0 < θ < π on red edges, and −π < θ < 0 on blue edges;
(A2) θv =

∑
u θ(u, v) = 0, with the exception when p < 2 < q, in which case

θv = −2π at the only vertex v in a 1-cycle;
(A3) The sum of θ over blue edges is ≤ −2π, and the equality only happens

when p < 2 < q.

Definition 3.1. A (p, q)-admissible graph is a weighted polyhedral graph satisfying
Conditions (C1) and (A1)–(A3).

Given a (p, q)-admissible graph drawn on the plane, we may orient the p-cycle
and the q-cycle so that they are homologous in the 1-point compactified plane.
Then we label the vertices on the p-cycle by 1+, . . . , p+, and vertices on the q-cycle
by 1−, . . . , q−, according to this orientation. Let Ap,q denote the space of labeled
(p, q)-admissible graphs with p + q ≥ 4. We use An, n ≥ 4, to denote the disjoint
union of Ap,q with p+q = n. Our main Theorem 1.4 is the consequence of Theorem
3.2:

Theorem 3.2. Θ is a homeomorphism from Pp,q to Ap,q.
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Note that Condition (A3) and some inequalities in Condition (A1) are not
present in Theorem 1.4. We will see that they are indeed redundant when formu-
lating a feasibility problem.

3.3. Admissible HS structures. Let Δ denote the function that maps an ideal
polyhedron to its induced HS structure. If P is (p, q)-ideal, it follows from the
definition that Δ(P ) is geodesically complete, and it is maximal in the sense that
it does not embed isometrically as a proper subset of another HS structure.

The part of ∂P in H3 has no interior vertex, hence is isometric to a disjoint
union of copies of H2. In the case 2 ≤ p ≤ q, we use H2

± to denote the copies
induced by ∂P ∩H3

±. If p < 2 < q, we have only H2
− = ∂P ∩H3

−. The part of ∂P
in dS3 has no interior vertex, neither, hence ∂P ∩ dS3 is isometric to a complete
de Sitter surface.

The intersection of ∂P with a space-like plane in dS3 is a simple polygonal closed
space-like curve in ∂P ∩dS3. If 2 ≤ p ≤ q, this polygonal curve can be deformed to
one of maximal length, say γ0, which is therefore geodesic in ∂P ∩dS3. Considered
as a polygonal curve in dS3, γ0 is then E-convex in the sense of [Sch98, Def 7.13], and
it follows that its length � is less than 2π, see [Sch98, Prop 7.14]. As a consequence,
γ0 is the unique simple closed space-like geodesic in ∂P ∩ dS3, because any other
simple closed space-like geodesic would need to cross γ0 at least twice (there is no de
Sitter annulus with space-like, geodesic boundary by the Gauss-Bonnet formula),
and two successive intersection points would be separated by a distance π, leading
to a contradiction. We denote the metric space ∂P ∩ dS3 by dS2� . dS2� has two
boundary components, both homeomorphic to a circle.

If p < 2 < q, then one boundary component of S degenerates to a point. In this
case, the metric space ∂P ∩ dS3 does not contain any closed space-like geodesic,
and we denote it by dS20.

Hence Δ(P ) is obtained by gluing one or two copies of H2 to the non-degenerate
boundary components of a de Sitter surface. Let γ± be the map that glues ∂H2

± to
∂dS2� . We will see that γ± are C1 piecewise projective maps (CPP maps for short).
More specifically, they are projective except at the vertices of P . The points where
the map is not projective are called break points. A break point is said to be positive
(resp. negative) if the jump in the second derivative at this point is positive (resp.
negative). We will see that the break points of γ± are all positive.

Definition 3.3. A (p, q)-admissible HS structure, p+ q ≥ 4, is obtained

In the case p < 2 < q: by gluing a copy of H2 to dS20 along the non-degenerate
ideal boundary by a CPP map with q positive break points.

In the case 2 ≤ p ≤ q: by gluing two copies of H2 to dS2� , 0 < � < 2π, along the
ideal boundaries through CPP maps with, respectively, p and q positive
break points.

In Figure 1 we sketch the situation of p = 2 and q = 3.
Given a (p, q)-admissible HS structure, we may label the break points in the

two boundary components of S by 1+, . . . , p+ and 1−, . . . , q−, respectively. Let
Mp,q denote the space of (p, q)-ideal HS structures up to isometries. Our main
Theorem 1.6 is the consequence of Theorem 3.4.

Theorem 3.4. Δ is a homeomorphism from Pp,q to Mp,q.
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Figure 1. A sketch of a (2, 3)-admissible HS structure. The
dashed segments indicate the gluing maps, including one that pro-
duces dS2� , and two CPP maps with two and three break points,
respectively.

3.4. Outline of proofs. We will prove that Θ and Δ are local immersions (Sec-
tion 6) with images in Ap,q (Section 4.2) and Mp,q (Section 4.3), respectively. They
are then local homeomorphisms because Pp,q , Ap,q and Mp,q have the same di-
mension 2(p+q−3) (Section 7). Moreover, they are proper maps (Section 5), hence
are covering maps. A difference from the previous works lies in the fact that Pp,q,
Ap,q and Mp,q are not simply connected if 2 ≤ p ≤ q. We will use open covers
and universal covers to conclude that the covering numbers of Θ and Δ are one
(Section 7).

4. Necessity

4.1. Combinatorial conditions. We first verify combinatorial Condition (C1).
For this we will need some lemmata about convex sets in RPd.

Lemma 4.1. Let A and B be two convex sets in RPd. If A and B are consis-
tent, then A ∩ B consists of at most one connected component. If A and B are
inconsistent, then A ∩B consists of exactly two connected components.

Proof. Consider an affine chart containing A. In this chart, B is either connected,
or composed of two connected components which are both convex. Each of those
connected components has an intersection with A which is either empty or convex.
Therefore, the intersection A ∩B has at most two connected components.

If A and B are consistent, we can regard them as convex sets in Euclidean space.
Hence they are either disjoint, or their intersection is convex, hence connected.

Suppose now that A is disjoint from B. They can then be lifted to disjoint convex
subsets A′ and B′ in Sd. By the spherical hyperplane separation theorem, there
exists a spherical hyperplane H ′ ⊂ Sd disjoint from A′ and B′. The projection H
from H ′ to RPd is then disjoint from A and B, and its complement is then an affine
chart containing A and B. This shows that A and B are consistent.

Finally suppose that A and B have a connected intersection, which we call C.
Since A and B are convex, C is then convex. We can then lift A,B and C to
subsets A′, B′ and C ′ of Sd, in such a way that A′ ∩ B′ = C ′. We claim that
A′ ∩ (−B′) = ∅. Indeed, let x′ ∈ C ′ = A′ ∩ B′, and suppose that there is another
point y′ ∈ A′ ∩ (−B′). Let x and y be the projections of x′ and y′ on RPd, so that
x, y ∈ C. Since C is convex, there is a segment, which we denote by [x, y], which
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connects x to y in C. We can lift this segment to C ′, so that y lifts to an inverse
image y′′ ∈ {y′,−y′} in C ′. Since y′ ∈ A′, −y′ 
∈ A′, and therefore −y′ 
∈ C ′,
and thus y′′ = y′. It follows that y′ ∈ B′, a contradiction. So A′ ∩ (−B′) = ∅, as
claimed.

We can now apply the spherical hyperplane separation theorem: there is a hy-
perplane H ′ ⊂ Sd which separates A′ from −B′. The projection H of H ′ to RPd is
then disjoint from A and from B, and the corresponding affine chart contains both
A and B.

It follows that if A∩B is connected, then A and B are consistent. Therefore, A
and B are consistent if and only if A ∩B is empty or connected. �

If A and B are two inconsistent convex regions in RP2, then ∂A∩∂B consists of
at most four connected components, at most two on the boundary of each connected
component of A ∩ B. Otherwise, either the interior or the closure of A ∩ B would
consist of more than two connected components, contradicting the lemma above.

A particular case is when A = H2 and B is a polygon, and their boundaries
intersect at the vertices of B, i.e. B is weakly ideal to HS2. In this case, Lemma 4.1
implies

Corollary 4.2.

• Any convex polygon strongly ideal to HS2 with at least three vertices is
disjoint from dS2.

• Any convex polygon ideal to HS2 with at least five vertices is strongly ideal
in HS2.

• A weakly ideal convex polygon P has three or four vertices, at most two in
each connected component of ∂P ∩H2.

A dual version of this corollary was proved in [CP17]. Notice that there is only
one possibility for a weakly ideal triangle; see Figure 2.

Figure 2

Moreover, it is known that every connected component of A∩B is convex [Tod10].

Lemma 4.3. Let A and B be two inconsistent convex sets in RPd, and C1, C2 be
the connected components of A∩B. Then ∂Ci ∩ ∂A and ∂Ci ∩ ∂B, i = 1, 2, are all
contractible.

Proof. We only need to argue for ∂C2 ∩ ∂B. The other cases follow similarly.
We work in an affine chart containing A; thus it does not contain B. Let p ∈

∂C1 ∩ ∂B. Then for any q ∈ ∂C2 ∩ ∂B, the bounded closed segment [pq] is disjoint
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from the interior of B, hence also from the interior of C2. On the other hand, any
q′ ∈ ∂C2 \ ∂B (if not empty) is in the interior of B, hence [pq′] must intersect the
interior of C2. In other words, ∂C2 ∩ ∂B is the part of ∂C2 “visible” from p, which
must be contractible as C2 is.

The proof for d = 2 is illustrated in Figure 3. �

Figure 3

We call an (open) face (that is vertex, edge or facet) F of P interior if F ⊂ H3,
or exterior if F ⊂ dS3. For example, every vertex of an ideal polyhedron is interior,
and every face of a strongly ideal polyhedron is interior. An edge of an ideal
polyhedron is either interior or exterior. Let I(P ) be the union of interior faces,
and E(P ) be the union of exterior faces.

Proposition 4.4 (Condition (C1) and more). Let P be a polyhedron weakly ideal
to H3. Then I(P ) consists of two connected components, both contractible. A
component is homeomorphic to a closed disk if it contains at least three vertices.
Vertices in each component induce an outerplanar graph. Moreover, E(P ) consists
of disjoint open segments; there is no exterior facet.

Proof. A triangular facet F that is not interior would be a weakly ideal in span(F ).
Hence P has no exterior facet. The only exterior faces are edges. Then we observe
from Figure 2 that, whenever F is not interior, F ∩ ∂H3 is an arc which is isotopic
to the unique interior edge of F . This isotopy induces a homotopy from ∂P ∩H3

to I(P ). The former is contractible by Lemma 4.3, hence so is I(P ).

The vertices of P are all on the boundaries of ∂P ∩ H3 (and of I(P )). Oth-

erwise, through a vertex in the interior of ∂P ∩ H3, we can find a hyperplane H
such that the intersection of H ∩ ∂P and H ∩ ∂H3 consists of more than two con-
nected components, contracting Lemma 4.1. Hence the vertices of each component
induce an outerplanar graph. If there are at least three vertices in this component,
the boundary edges form a Hamiltonian cycle (of the induced graph), so the out-
erplanar graph is 2-connected. We then conclude that the component of I(P ) is
homeomorphic to a disk. �

This proves the necessity of Condition (C1) since the boundary edges of the
2-connected outerplanar graphs form a cycle cover consisting of two cycles. In-
duction in higher dimensions yields that the union of interior faces consists of
two contractible components, and vertices and edges in each component form a
2-connected graph. However, it is possible that a component is not homeomorphic
to the (d− 1)-ball, as shown in the Example 4.5.
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Example 4.5. Consider the eight points [±
√
2,±1, 0, 0], [2(1 − ε + ε2), 0,±(1 −

ε),±ε], taking all possible combinations of ±. Their convex hull is a 4-dimensional
polyhedron weakly inscribed to the two-sheeted hyperboloid defined by the equation
−x2

0 + x2
1 + x2

2 + x2
3 = −1. If ε is sufficiently small, the polyhedron has two interior

facets in H4
+, whose intersection is a single edge connecting [

√
2,±1, 0, 0]. Hence

the union of interior faces is not homeomorphic to a 3-ball.

4.2. Angle conditions. We now prove that the conditions in Definition 3.1 are
necessarily satisfied by the graph induced by the angles of a (p, q)-ideal polyhedron..

Proposition 4.6.
Θ(Pp,q) ⊆ Ap,q.

For that, we need to verify all the conditions defining an admissible graph.
We color interior edges by red, and exterior edges by blue, and prove the angle

conditions with respect to this coloring. In the previous part we have seen that this
coloring coincides with the combinatorial description in Theorem 3.2.

Among the conditions that involve angles, Condition (A1) comes from the def-
inition of angle. To see Condition (A2) we need the vertex figures.

Recall that a horosphere in Hd based at an ideal point x ∈ ∂Hd is a hypersurface
that intersects orthogonally all the geodesics emerging from x. In the projective
model of H3, horospheres appear as flattened spheres tangent to the hyperbolic
boundary. Similarly, a horosphere in dSd based at x ∈ ∂dSd is a hypersurface that
intersects orthogonally all the geodesics emerging from x. Horospheres in Hd and
dSd are paired through polarity: the set in dSd polar to a horosphere in Hd is a
horosphere with the same base point, and vice versa. See Figure 4. In the following,
by a horosphere in HSd, we mean a horosphere in Hd or in dSd.

Figure 4. Horocycles in H2 (red) and in dS2 (blue). The black
circles are the boundaries of HS2.

Now consider an ideal polyhedron P . The vertex figure of P at a vertex v,
denoted by P/v, is the projection of P with respect to v. P/v is therefore a polygon
in RP2. A chart is provided by a horosphere in HS3 based at v. This chart sends
v⊥ to the line at infinity, hence does not contain P/v unless the neighborhood of v
in ∂P is contained in H3 or in dS3.

Figure 5 shows a typical situation of P/v not contained in the horosphere. The
vertices of the polygon P/v correspond to the edges of P adjacent to v. If one
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Figure 5. A typical vertex figure

walks along the polygon, it can be arranged (as in Figure 5) that he turns anti-
clockwise at the vertices corresponding to red edges, and clockwise at the vertices
corresponding to blue edges. Indeed, the turning direction switches when the walker
passes through infinity. The turning angles are then the dihedral angles θ at the
corresponding edges, taking anti-clockwise turns as positive, and clockwise turns
as negative. Condition (A2) then follows immediately.

We now verify the last angle condition.

Proposition 4.7 (Condition (A3)). If P is weakly ideal, then Θ(P ) sum up to at
least −2π over the blue edges, and −2π is achieved only when p < 2 < q.

Proof. It is clear from the vertex figure that the sum over blue edges is −2π when
p = 1. Hence we focus on the case 2 ≤ p ≤ q and prove that the sum over blue
edges is strictly larger than −2π.

If 2 ≤ p ≤ q, the polar P ∗ of P is a compact polyhedron in dS3. All its faces are
light-like (isotropic). The edges of P ∗ polar to the blue edges of P form a closed
space-like polygonal curve γ, whose vertices are polar to the non-interior facets of
P .

The polygonal curve γ is a T -geodesic for the induced HS-structure on P ∗; see
[Sch01, Definition 3.4]. It then follows from point C. in [Sch01, Theorem 1.5] that
γ has length strictly less than 2π. The proposition follows by polarity. �

4.3. Metric conditions. We show in this part that the conditions of Theorem 1.6
are necessary.

Theorem 4.8.

Δ(Pp,q) ⊆ Mp,q .

If P is (p, q)-ideal, we have argued that Δ(P ) consists of one or two copies of
H2 and a de Sitter surface. It remains to verify that the pieces are glued along
their ideal boundaries by CPP (C1 piecewise projective) maps with positive break
points at the vertices of P . We may focus on the boundary component of dS2� ,
� ≥ 0, consisting of q > 1 vertices of P . Let γ be the map that sends ∂H2 to this
boundary.

We can identify ∂H2 to the real projective line RP1. Let v0 < v1 < · · · < vp = v0,
in this order, be the p vertices of P . They divide RP1 into p segments [vi, vi+1].
Each segment corresponds to a segment of ∂HS2 in the interior of a face triangle
weakly ideal to HS2. Hence for each i, 0 ≤ i < p, the restriction γi = γ|[vi,vi+1] is
projective. This proves that γ is piecewise projective.

To study differentiabilities, we will follow the work of Martin [Mar05] on CPP
homeomorphisms of RP1. Note that ∂dS2� is not projectively equivalent to RP1.
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But our CPP maps are local homeomorphisms. Hence the definitions and many
results from [Mar05] remain valid for our case.

Definition 4.9 ([Mar05]). For x ∈ RP1, let γ←
x ∈ PSL(2,R) (resp. γ→

x ∈
PSL(2,R)) be the left (resp. right) germ of a piece-wise projective map γ. The
projective transformation Dxγ = (γ→

x )−1 ◦ γ←
x is called the shift of γ at x.

Note that in this definition, γ←
x and γ→

x depend on a local identification of the
target with RP1, but Dxγ = (γ→

x )−1 ◦ γ←
x does not.

The projective transformations γ←
x , γ→

x and Dxγ extend uniquely to isometries
of HS2. We abuse the same notations for these extensions. The shift Dxγ measures
how much γ fails to be projective at x. It can be understood as the holonomy of
the HS structure along a curve going around x. Lemma 4.10 reveals the relation
between the shift and the differentiability of γ.

Lemma 4.10. γ is C1 at x if and only if Dxγ preserves the horocycles based at x.

Proof. The proof of [Mar05, Proposition 2.3] can be used here, word by word, to
prove the “only if”. For the “if” part, assume x = 0. Note that u := D0γ : RP1 →
RP1 fixes 0. If (the extension of) u preserves the horocycles based at 0, it must be
of the form u(t) = t/(ct+ 1). Hence u′(0) = 1, therefore γ is C1. �

Then γ being C1 follows from Proposition 4.11.

Proposition 4.11. For any x ∈ ∂H2, Dxγ preserves the horocycles based at x.

Proof. As a measure of how much γ fails to be projective at x, Dxγ must be trivial
except at vertices of P . Let v ∈ V + be a vertex of P .

We first note that in a neighborhood of v, exactly two faces of ∂P , say F← and
F→, have non-empty intersections with ∂H3. This can be seen from the vertex
figure P/v. Recall that vertices (resp. edges) of P/v correspond to edges (resp.
faces) of P adjacent to v. In the affine chart of RP2 provided by a horosphere at v,
the tangent plane of ∂H3 at v is sent to infinity, and intersects P/v in exactly two
edges, corresponding to F← and F→. In particular, no vertex of P/v is at infinity;
otherwise such a vertex would correspond to an edge e of P tangent to the quartic
∂H3, and the other end of e cannot lie on the same quartic.

Our gluing map γ coincides with γ←
v on ∂HS3∩F←, and with γ→

v on ∂HS3∩F→.
F← and F→ extend to half-planes bounding a dihedral angle Φ containing P .

The boundary of Φ is isometric to HS2. Let h̃ be a horocycle in HS3 based at v.
Then the intersection h = ∂Φ ∩ h̃ gives a horocycle in HS2. On the other hand,
h′ = ∂P ∩ h̃ gives a horocycle in ∂P based at v. In a neighborhood of v, h′ lies
within F← and F→.

We then conclude that, for any horocycle h in HS2, we have h′ = γ←
x (h) =

γ→
x (h), i.e. Dxγ(h) = h. �

Proposition 4.11 can be interpreted as horocycles “closing up” after going around
a vertex. In Rivin’s characterization of polyhedra strongly inscribed in the sphere,
the same phenomenon is reflected by the shearing coordinates summing up to 0
around each vertex. We can do the same with a proper definition of shearing
coordinates.

Note that three vertices on ∂HS2 determine a unique strongly ideal (hyperbolic)
triangle – in other words, any three distinct points on the boundary circle of HS

2
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determine a unique triangle contained in the disk, corresponding here to the hy-
perbolic plane. Hence for a given ideal HS structure δ ∈ Mp,q , we can replace
every triangle in δ, if not already strongly ideal, by the unique hyperbolic triangle
with the same vertices. The result is a hyperbolic structure η (a triangulation with
hyperbolic simplices) of the n-times punctured S2 (not embedded). We define the
HS shearing (or simply shearing) along an edge of δ as the hyperbolic shearing (see
[Pen87,Pen12]) along the corresponding edge of η.

Shearing can be easily read from the vertex figures. First note that the vertex
figure of η at a vertex v can be obtained from that of δ by replacing the segments
through infinity by the unique other segments with the same vertices. For example,
Figure 6 is obtained from Figure 5. Let e be an edge of P adjacent to a vertex
v. The shearing along e then equals to the logarithm of the length ratio of the
segments adjacent to e in the vertex figure of η at v.

Figure 6. The vertex figure of the hyperbolic structure corre-
sponding to the vertex figure of the HS structure shown in Figure 5

Horocycles in η close up if and only if the hyperbolic shearings sum up to 0 over
the edges adjacent to v. Then we see from the vertex figure that the horocycles
in δ also “close up”. And by definition, the HS shearings of η must also sum up
to 0. Different triangulation of δ would yield a different hyperbolic metric η. But
for a fixed triangulation, it is well-known (see [Pen87,Pen12]) that the hyperbolic
shearing on the edges of η provide a coordinate system for the hyperbolic structure.
Hence the HS shearing on the edges of δ provides a coordinate system for the ideal
HS metrics.

Now back to the proof of necessity. Proposition 4.11 asserts that the Dxγ are
parabolic transformations for every x ∈ RP1. Consider the projective transforma-
tion ux : t �→ 1/(t− x) sending x to infinity. Then the conjugate uxDx(γ)u

−1
x is a

translation of the form t �→ t+ dx(γ). We have dx(γ) = 0 at projective points. At
break points:

Lemma 4.12. dx(γ) < 0 (resp. > 0) if x is a positive (resp. negative) break point.

Proof. We may assume x = 0, then u0 = 1/t. We already figured that D0(γ) is
of the form D0(γ) : t �→ t/(ct + 1). So the conjugate u0D0(γ)u

−1
0 has the form

t �→ t + c, i.e. d0(γ) = c. On the other hand, an elementary computation shows

that the second derivative d2

dt2 |t=0D0(γ) = −2c. �

In the half-space model of H2, let h be a horocycle based at x. Then dx(γ) < 0
(resp. > 0) if and only if Dxγ moves points on h in the clockwise (resp. anti-
clockwise) direction. We are now ready to prove that every break point of γ is
positive.

Proposition 4.13. dv(γ) < 0 at every vertex v of P .
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Proof. We keep the definitions and notations in the proof of Proposition 4.11. We
can recover P by truncating the dihedral angle Φ with planes through v. From the
vertex figure, we observe the effect of a truncation on a horocycle h based at v: it
replaces a segment of h with a shorter one. See Figure 7. HenceDvγ = (γ→

v )−1◦γ←
v

moves points on h in the clockwise direction, i.e. dv(γ) < 0. �

Figure 7. Each truncation replaces a horocyclic segment with a
shorter one

Remark 4.14. Lemma 6.5 of [Mar05] asserts that dx(γ) equals the change of length
of a well-chosen segment of horocycle based at x. Up to a scaling, this also suffices
for us to conclude that dv(γ) < 0.

5. Properness

Theorem 5.1 states that the maps Θ and Δ are proper.

Theorem 5.1. Consider a sequence of polyhedra (Pk)k∈N that exits every compact
in Pp,q, then θk = Θ(Pk) exits every compact in Ap,q and δk = Δ(Pk) exits every
compact in Mp,q.

Up to hyperbolic isometries, we may fix three vertices for every polyhedron in
(Pk). As ∂H3 is compact, we may assume that vertices of Pk have well-defined
limits by taking a subsequence. But the limit of Pk, denoted by P∞, is not a
(p, q)-ideal polyhedron, since the sequence exits every compact.

Hence in the limit, P∞ must fail to be strictly convex at some vertex v. Let P ′
∞

be the convex hull of all the other vertices. There are three possibilities, namely
that v is in the relative interior of a vertex, an edge or a facet of P ′

∞. But every
straight line intersect a quadratic surface in at most two points, hence an ideal
vertex cannot be in the relative interior of an edge. Thus we only need to consider
the remaining two possibilities.

Remark 5.2. For strongly ideal polyhedra, an ideal vertex cannot lie in the interior
of a facet. Hence there is only one possibility to consider. See [DMS20].

Proposition 5.3. If some vertices of (Pk)k∈N converge to the same vertex of P∞,
then the limit graph θ∞ violates Condition (A2) or (A3), and some break points
in δk merge into a single break point in the limit metric δ∞.

Proof. The divergence of the induced metrics follows immediately from the corre-
spondence between vertices of P and break points in Δ(P ). Hence we will focus on
the divergence of the admissible graphs.

Note that the ideal boundary of H3 can be seen as two copies of H2 identified
along their ideal boundaries. With our choice of affine chart for the projective
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model, the two copies of H2 appear as the two sheets of the hyperboloid x2
0 + x2

1 −
x2
2 = −1.
The vertex set of each Pk ∈ Pp,q then corresponds to two point sets V +

k and

V −
k in H2 of cardinality p and q respectively. They converge to two point sets

V +
∞ and V −

∞ of cardinality p′ and q′ respectively, corresponding to the vertices of
P∞. If some vertices of (Pk) converge to the same vertex of P∞, we must have
p′ + q′ < p + q. Up to hyperbolic isometries, we may assume three fixed vertices
shared by all Pk, hence 3 ≤ p′ + q′.

Consequently, the graph Θ(P∞) has at least three vertices, but strictly less
vertices than θ∞. In fact, it is obtained by contracting vertices of θ∞. Recall that

θk = Θ(Pk) and their limits θ∞ are vectors of dimension
(|V |

2

)
=

(
p+q
2

)
.

Assume that a set of vertices S ⊂ V is merged into a vertex of P∞. If S 
= V +

or V −, we have on the one hand∑
u/∈S,v∈S

θ∞(u, v) = 0.

On the other hand, as the limit of θk, Condition (A2) asserts that∑
u∈V

θ∞(u, v) = 0

for any v ∈ S. Comparing the two sums, we conclude that∑
u,v∈S

θ∞(u, v) = 0.

Now assume that θ∞ is (p, q)-admissible. Since S are vertices on the same polar
circle, θ∞(u, v) is non-negative, hence must be 0, if u, v ∈ S. In other words, S
induce an empty graph, contradicting the fact that vertices in S are consecutive in
a cycle.

If S = V + or V −, we must have p > 1. But it is easy to conclude that the sum
over negative weights in θ∞ is −2π, contradicting Condition (A3). �

Proposition 5.4. If a vertex v of Pk converges to a vertex of P∞ that is contained
in a unique supporting plane, then v is an isolated vertex in the limit graph θ∞,
and v is not a break point in the HS structure induced by δ∞.

Proof. Under the assumption of the proposition, every face of P∞ adjacent to v
must lie in this unique supporting plane. Otherwise, the supporting plane of the
face would be another supporting plane containing v. Then the dihedral angles
vanish on all the edges incident to v. Since v is in the interior of a weakly ideal HS
triangle, the gluing map is projective at v. �

A special case is of particular importance for us: If ∂Pk converges to a double
cover of a plane, then the limit polyhedron P∞ is equal to RP3. In this case, every
vertex is “flat”: θ∞ is identically 0 (empty graph), and δ∞ is the double cover of
HS2. We call this polyhedron a flat polyhedron.

Proposition 5.5. If two faces of P∞ intersect in their relative interiors and span
a plane, then P∞ is flat.

Proof. Under the assumption of the proposition, the only plane that avoids the
interior of P∞ is the plane spanned by the two intersecting faces. Hence every face
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admits this plane as the supporting plane. In other words, every face lies in this
plane. �

6. Rigidity

6.1. The infinitesimal Pogorelov map. We recall here the definition of the
infinitesimal Pogorelov map, as well as its key properties. We refer to [Sch98] for
the proofs, see in particular Définition 5.6 and Proposition 5.7 in [Sch98]. Other
relevant references are [Fil07, Izm09,LS00,Sch05].

With affine charts containing weakly ideal polyhedra, the hyperplane at infinity
H∞ is space-like. Apart from the HS metric and the usual Euclidean metric, the
affine charts can also carry the Minkowski metric. Then the point x0 = H⊥

∞ is
the “center” of the Minkowski space R

2,1. The set of light-like geodesics passing
through x0 is called the light cone at x0, denoted by C(x0).

Let U = RP3 \ H∞ be an affine chart, and ι : U → R2,1 be the projective
embedding into the Minkowski space. The infinitesimal Pogorelov map Υ is then
defined as the bundle map Υ : TU → TR2,1 over the inclusion ι : U ↪→ R

2,1 as
follows: Υ agrees with dι on Tx0

U . For any x ∈ U \C(x0), and any vector v ∈ TxU ,
write v = vr + v⊥, where vr is tangent to the radial geodesic passing through x0

and x, and v⊥ is orthogonal to this radial geodesic, and define

Υ(v) =

√
‖x̂‖2HS

‖dι(x̂)‖22,1
dι(vr) + dι(v⊥),

where the norm ‖ · ‖HS in the numerator of the first term is the HS metric, the
norm ‖ · ‖2,1 in the denominator is the Minkowski metric and x̂ is the normalized
radial vector (so ‖x̂‖22,1 = ±1).

The key property of the infinitesimal Pogorelov map is the following (the proof is
an easy computation in coordinates that can be adapted from [Fil11, Lemma 3.4]).

Lemma 6.1. Let Z be a vector field on U \ C(x0) ⊂ HS3. Then Z is a Killing
vector field if and only if Υ(Z) (wherever defined) is a Killing vector field for the
Minkowski metric on R2,1.

In fact, the lemma implies that the bundle map Υ, which so far has only been
defined over U \C(x0), has a continuous extension to all of U . The bundle map Υ
is called an infinitesimal Pogorelov map.

Next, the bundle map Ξ : TR2,1 → TR3 over the identity, which simply changes
the sign of the n-th coordinate of a given tangent vector, has the same property: it
sends Killing vector fields in R2,1 to Killing vector fields for the Euclidean metric
on R3. Hence the map Π = Ξ ◦Υ is a bundle map over the inclusion U ↪→ R3 with
the following property:

Lemma 6.2. Let Z be a vector field on U ⊂ HS3. Then Z is a Killing vector field
if and only if Π(Z) is a Killing vector field for the Euclidean metric on R3.

The bundle map Π is also called an infinitesimal Pogorelov map, since it is an
infinitesimal version of a remarkable map introduced by Pogorelov [Pog73] to handle
rigidity questions in spaces of constant curvature.
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6.2. Rigidity with respect to HS structures. Here, an infinitesimal deforma-
tion of P associates a vector tangent to ∂H3 to each vertex of P ; the infinitesimal
deformation is trivial if it is the restriction of a global Killing field of HS3.

Proposition 6.3. Let P ∈ Pp,q and Ṗ be an infinitesimal deformation of P within

Pp,q. If Ṗ does not change the HS structure Δ(P ) at first order, then Ṗ is trivial.

Proof. As always, we work in an affine chart containing P . Suppose that Ṗ is a
non-trivial infinitesimal deformation of P that does not change, at first order, the
HS metric induced on P . Then the induced HS metric on each facet is constant
at first order. Hence for each facet F , there is a Killing field κF such that the
restriction of κF to the vertices of F is equal to the restriction of Ṗ , and for two
facets F and G, κF and κG agree on the common edge of F and G.

Lemma 6.2 shows that κ̄F = Π(κF ) is the restriction of a Killing field of R3,
while it is clear that if F and G share an edge, then κ̄F and κ̄G agree on this edge.
Therefore the restriction of κ̄F to the vertices of P defines an isometric first-order
Euclidean deformation of P .

However, Alexandrov [Ale05] proved that convex polyhedra in R3 are infinitesi-
mally rigid: any first-order Euclidean isometric deformation must be the restriction
of a global Killing vector field of R3. So κ̄F must be the restriction of a global Killing
vector field κ̄. Lemma 6.2 therefore implies that κF are the restriction to the faces of
P of a global Killing vector field κ = Π−1(κ̄), which contradicts our hypothesis. �

6.3. Shape parameters associated to edges. We can identify ∂H3 with the
extended complex plane CP1, then vertices of an ideal polyhedron P can be de-
scribed by complex numbers. By subdividing non-triangular facets if necessary, we
may assume that facets of P are all triangles. Let z1z2z3 and z2z1z4 be two facets
of P oriented with outward pointing normal vectors. The shape parameter on the
common (oriented) edge z1z2 is the cross ratio

τ = [z1, z2; z3, z4] =
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
.

Recall that each triangular facet of P determines a strongly ideal triangle with
the same vertices. The two (oriented) hyperbolic triangles corresponding to z1z2z3
and z2z1z4 form a hyperbolic dihedral angle at their common edge z1z2. Let φ
denote the hyperbolic exterior angle at z1z2. Then the shape parameter τ has a
geometric interpretation: it can be written in the form of τ = exp(σ + iφ), where
σ is the shearing between the two hyperbolic triangles.

The angle φ can be read from the hyperbolic vertex figure (see Section 4.3).
If one walks along the polygonal curve, in the same direction as we specified for
reading θ (see Section 3), then φ is nothing but the turning angle at every vertex,
taking anti-clockwise turns as positive, and clockwise turns as negative.

Let v be a vertex of P , and let τ1, τ2, · · · , τk be the shape parameters associated
to the edges of P adjacent to v, in this cyclic order. The following relations, which
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hold for strongly inscribed polyhedra, also hold for the weakly inscribed P .

k∏
i=1

τi = 1,(1)

k∑
j=1

j∏
i=1

τi = 0.(2)

Both equations can be easily understood by considering the hyperbolic vertex figure
at v: (1) follows from the fact that

∑
σi = 0 while

∑
φi is a multiple of 2π. (2) is

just saying that the vertex figure, considered as a polygonal curve in the Euclidean
plane, closes up.

The shape parameters determine the local geometry (angle and shearing) at every
edge, hence completely describe the polyhedron. A small perturbation in the shape
parameter subject to (1) and (2) corresponds to a deformation of P into another
weakly ideal polyhedron. Indeed, the convexity is stable under a small perturbation,
then (1) and (2) guarantee that the hyperbolic vertex figures are closed polygonal
curves, hence they are vertex figures of a weakly inscribed polyhedron.

6.4. Rigidity with respect to dihedral angles. We now have the necessary
tools to prove the infinitesimal rigidity of weakly ideal polyhedra with respect to
their dihedral angles.

Proposition 6.4. Let P ∈ Pp,q and Ṗ be an infinitesimal deformation of P within

Pp,q. If Ṗ does not change the dihedral angles Θ(P ) at first order, then Ṗ is trivial.

Proof. Let Ṗ ∈ Cp+q be an infinitesimal deformation of P , represented by the
velocity of the vertices in CP1. Let τ̇ = (τ̇e)e∈E ∈ C|E| be the corresponding first-

order variation of the shape parameters associated to the edges. Suppose that Ṗ
does not change the dihedral angles of P (at first order). This means that for all
e ∈ E, τ̇e/τe is real, because the argument of τe is equal to the dihedral angle at
the corresponding edge.

Now consider the first-order variation iτ̇ = (iτ̇e)e∈E of the shape parameters. A
crucial observation is that, since the conditions (1) and (2) above are polynomial,

iτ̇ again corresponds to a first-order deformation of P , which we can call iṖ . Now
for all e ∈ E , iτ̇e/τe is imaginary. This means that in the first-order deformation

iṖ , the shear along the edges remains fixed (at first order). So iṖ does not change,
at first order, the HS-structure induced on P .

By Proposition 6.3, iṖ is trivial, and it follows that the infinitesimal deformation
Ṗ is also trivial. The result follows. �

7. Topology

7.1. Ideal polyhedra. In this section we will conclude that Θ and Δ are homeo-
morphisms. The first step is to prove that the domain Pp,q is connected.

We work in a projective chart inconsistent with H3, in which ∂H3 is the quadric
of equation x2 = f(x0, x1) = ±

√
x2
0 + x2

1 + 1. Lemma 7.1 allows us to place any
weakly (p, q)-ideal polyhedron in a convenient position.

Lemma 7.1. For any P ∈ Pp,q, there is an isometry T of H3 such that T (P )
contains the origin and the points (0, 0,±1).
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Proof. The proof uses the Hyperplane Separation Theorem for hyperbolic space.
We sketch here a quite standard proof in the spirit of [BV04], as some ingredient
in this proof would be useful for us.

Note that H3 ∩ P consists of two disjoint components, denoted by P+ and P−,
both are convex subsets of H3. Let u ∈ P+ and v ∈ P− such that the hyperbolic
distance between u and v achieves the minimum hyperbolic distance between P+

and P−. This distance is necessarily finite, hence u and v are necessarily on the
boundary ∂P . We claim that the hyperbolic plane H that perpendicularly bisects
the segment uv separates P+ and P−, i.e. P± are on different sides of H. To see
this, assume u′ ∈ P+ is on the same side of H as P−. Then a perturbation of u
towards u′ would be closer to v, contradicting our choice of u and v.

Now let T be the isometry of H3 that sends the separating plane H to infinity.
Then the polar point of H, which is contained in P , is sent to the origin in the
interior of T (P ). Moreover, the line through u and v is sent to the x2-axis. In
particular, the points (0, 0,±1) are also in the interior of T (P ). �
Proposition 7.2. Pp,q is connected.

Proof. Let P ∈ Pp,q. Thanks to the previous lemma, we may assume that P
contains the origin and the points (0, 0,±1). We now define a deformation of
P ∈ Pp,q .

If v ∈ V±, define vt, t > 1, as follows: vt = v if the x2-coordinate of v is
smaller than t; otherwise, vt is a point of height x2 = ±t obtained by moving
v along the gradient of f (for metric induced on the quadric by the Euclidean
metric dx2

0 + dx2
1 + dx2

2 in a chart) towards (0, 0,±1). We claim that the point
set Vt = {vt | v ∈ V+ ∪ V−} remains in convex position for all t > 1. If vt ∈ Vt

is at height x2 = ±t, vt is on the circle x2
0 + x2

1 = t2 − 1; the convexity at vt is
then immediate. Otherwise, vt coincides with a vertex v of P , and we claim that
a supporting hyperplane Hv of P at v is also a supporting hyperplane of Pt. This
can be seen by noting that, for any u ∈ ∂H3

± on the same side of Hv as (0, 0,±1),
as long as u is sufficiently close to Hv, the gradient of f at u points away from Hv.
Because (0, 0,±1) ∈ P and Hv is supporting, no vertex vt would move across Hv

as t decreases.
Define Pt as the convex hull of Vt. We see that Pt = P for t sufficiently large. As

t approaches 1, the vertices of Pt lie, eventually, on two horizontal planes x2 = ±t.
Now assume another polyhedra P ′ ∈ Pp,q, which also contains the origin and

the points (0, 0,±1). For t sufficiently close to 1, both Pt and P ′
t have vertices on

the horizontal planes x2 = ±t. Polyhedra with vertices on these two planes form
a connected subset of Pp,q; indeed, any choice of p and q ideal points on these
two planes determines uniquely such a polyhedra. Hence we find a continuous path
from between P and P ′, which proves the connectedness of Pp,q . �

Let Pi
p,q denote the open subset of Pp,q consisting of polyhedra with an edge

1+i−. {Pi
p,q | 1 ≤ i ≤ q} form an open cover of Pp,q . During the deformation Pt

in the previous proof, we may rotate V− around the x2-axis so that 1+i− remains
an edge. This shows that

Proposition 7.3. Pi
p,q is connected.

7.2. Admissible graphs. Correspondingly, let A i
p,q denote the open subset of

Ap,q consisting of graphs θ with 1+i− as an edge (recall the vertex labeling from
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Section 2). That is, either θ(1+i−) < 0, or θ(1+i−) = 0 but the graph remains
polyhedral if we include 1+i− as an edge. Then {A i

p,q | 1 ≤ i ≤ q} form an open
cover of Ap,q .

Proposition 7.4. For 1 ≤ i ≤ q, A i
p,q is homeomorphic to R

2(p+q−3).

We treat two cases separately.

Proof for the case p < 2 < q. We may take i = 1 without loss of generality. To
construct a graph θ ∈ A 1

p,q, we first assign positive weights and then negative
weights.

For the positive weights, our task is to find an outerplanar graph θ+ on the
vertices of the q-cycle with only positive edge weights. For the final result to be an
element of A 1

p,q, we need the support of θ+ to contain the q-cycle, and the sum of

the weights of θ+ to be π. This condition on the sum can be seen by adding up the
weight sum of θ around all the vertices of the q-cycle, and noticing that the edges
of θ+ are double counted. Let A + be the set of all θ+ satisfying those conditions.

Note that θ+ can be embedded in the plane in such a way that the q-cycle is
embedded as a q-gon, and the other edges are embedded as non-crossing diagonals of
the q-gon. Let A +

0 denote the set of positive graphs that are only supported on the
q-cycle, and A +

1 the set of positive graphs that are only supported on non-crossing
diagonals. Then any θ+ ∈ A + can be written in the form θ+ = (1 − t)θ+0 + tθ+1
where θ+0 ∈ A0, θ

+
1 ∈ A1, for some 0 ≤ t < 1 (note the strict inequality!).

It is easy to see that A +
0 is a (q − 1)-dimensional open simplex. Graphs in

A +
1 with the same combinatorics (that is, supported on the same diagonals) also

form an open simplex, whose dimension is the cardinality of their support minus
1. A +

1 is therefore a simplicial complex: The maximal simplices are of dimension
q − 4, corresponding to the maximal set of non-crossing diagonals, and they are
glued along their faces corresponding to common subsets. This simplicial complex
is well-known as the boundary of a polyhedron, namely the associahedron [Lee89].

Therefore, the closure of A + = (1− t)A +
0 + tA +

1 , 0 ≤ t < 1, is topologically the
join of a (q − 1)-ball and a (q − 4)-sphere, hence homeomorphic to a (2q − 4)-ball.
The openness of A + follows from the openness of A +

0 and the strict inequality
t < 1.

Once positive weights are assigned, the negative weights are uniquely determined
since p = 1 and all vertices of the q-cycle are connected to only one negatively
weighted edge. Hence A i

p,q is homeomorphic to R
2(p+q−3). �

We need more ingredients for the case 2 ≤ p ≤ q.
First, we claim that if a graph θ is admissible, and the negative weights of θ sum

up to −2ω > −2π, then for any 0 < t < π/ω, the scaled graph tθ is also admissible.
The claim follows from Lemma 7.5, which guarantees that Condition (A1) is not
violated after the scaling:

Lemma 7.5. Let −2ω > −2π be the sum of negative weights of θ. Then any
negative weight of θ is at least −ω.

Proof. We argue by contradiction and suppose that there is an edge e with negative
weight strictly less than −ω. Let v be an endpoint of e. The sum of the positive
weights on the red edges e1, · · · , ek adjacent to v is at least ω. Let v1, · · · , vk be
their endpoints different from v; e is not adjacent to any of them. Then the sum



WEAKLY INSCRIBED POLYHEDRA 439

of the negative weights over the blue edges adjacent to v1, · · · , vk must be strictly
less than −ω. We then conclude that the sum of negative weights is not −2ω as
assumed, but strictly less. �

This lemma also proves the redundancy of Condition (A3) and part of Con-
dition (A1). Any weight function that satisfies Conditions (W1) and (W2) can
be normalized to satisfy Conditions (A1)–(A3). Hence these conditions are not
present in the main Theorem 1.4.

Proof for the case 2 ≤ p ≤ q. We may take i = 1 without loss of generality. Fix a
number 0 < ω < π. We will prove that the set of admissible graphs in A 1

p,q with

negative weights summing up to −2ω is homeomorphic to R2(p+q)−7. To construct
such a graph θ, we follow the same strategy as before. That is, first assign positive
weights and then negative weights.

For the positive weights, we need to find θ+ that is the disjoint union of two
outerplanar graphs, one on the vertices of the p-cycle, and the other on the vertices
of the q-cycle, with only positive edge weights. Moreover, we need the sum of the
weights of each disjoint component to be ω. Hence each component can be obtained
by taking the θ+ constructed for the case p < 2 < q, and multiplying its weights
by a constant ω/π. The space of such θ+ is then homeomorphic to R2(p+q−4).

We then propose an algorithm that assigns weights to negative edges and outputs
an admissible graph in A 1

p,q . This algorithm depends on one parameter taken in a
segment, hence proves the proposition.

Recall that vertices are labeled by 1+, . . . , p+ and 1−, . . . , q− respectively, fol-
lowing the boundary of the outerplanar subgraphs in a compatible direction. Also
recall that the weight wv of a vertex v is the sum of weights θ(u, v) over all other
vertices u. The vertex weights change as we update the edge weights. Before we
proceed, the weights are positive on every vertex, because only positive weights are
assigned. Our goal is to cancel them with negative weights. We also keep track
of two indices i and j, initially both 1. At each step, we assign a negative weight
to the edge i+j−. Moreover, the graph will be embedded in S2 throughout the
algorithm.

We start with an embedding of θ+ in S
2, such that the two outerplanar compo-

nents are embedded as two disjoint polygons with non-crossing diagonals. Interiors
of the two polygons are declared as forbidden area: during our construction, no
new edge is allowed to intersect this area. In other words, we are only allowed to
draw edges within a belt.

For the first step, we draw a curve connecting 1+ and 1−, to which we are free to
assign any non-positive weight ranging from −min(w1+ , w1−) to 0. We also have
the freedom to choose a sign σ = ±, and increment i if σ = +, increment j if σ = −.

In the following steps, we adopt a greedy strategy. We draw a curve connecting
i+ and j−, to which we assign the weight −min(wi+ , wj−). After this assignment,
the face bounded by i+j− and the previously assigned edge is considered as a
forbidden area for later construction: no new edge is allowed to intersect this area.
Then we increment i if wi+ = 0, and increment j if wj− = 0. If both weights vanish,
we increment both indices.

Eventually, we will have i = p + 1 and j = q + 1, and the weights vanish at all
vertices. Then the algorithm stops. The result is by construction the embedding
of a (p, q)-admissible graph.
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In this algorithm, being greedy is not only good, but also necessary. Note that the
weights between vertices of smaller indices are already fixed. If we choose any bigger
negative weight for the edge i+j−, then both wi+ and wj− remain positive. They
both need to be connected to a vertex with larger index to cancel the weight. This
is however not possible, since neighborhoods of these vertices have been declared
as forbidden area.

The algorithm is parametrized only by the two choices at the first step: a non-
positive weight and a sign. The space of parameters is therefore homeomorphic to
a segment. �

We have Θ−1(A i
p,q) ⊆ Pi

p,q. Let Θi denote the restriction of Θ on Pi
p,q; it is a

covering map with images in A i
p,q . Since Pi

p,q is connected and A i
p,q simply con-

nected, we conclude that Θi
p,q is a homeomorphism. This proves that the covering

number of Θ is 1, i.e. Θ is a homeomorphism.

7.3. Admissible HS structures. Let H2
� denote the complete, simply connected

hyperbolic surface with one cone singularity of angle �. We extend this notation,
and use H2

0 for the hyperbolic surface with one cusp. A non-degenerate boundary
component of dS2� can be identified to the boundary of H2

� .
Let B be a subset of p points on ∂H2, considered up to isometries of H2. Let

GB,� be the space of CPP maps from ∂H2 to ∂H2
� , 0 < � < 2π, up to isometries of

both H2 and H2
� , with positive break point set B. We denote by GB the union of

GB,� for 0 < � < 2π, i.e. set of all CPP maps on ∂H2 with positive break point set
B, up to isometries.

A horocyclic p-gon is the intersection of p horodisks in H2. Figure 8 shows a
horocyclic 3-gon and a horocyclic 4-gon.

Figure 8. The horocyclic 3-gon on the left, together with the
horocycle h4, represents a point in ∂GB with B = {b1, b2, b3, b4}.
Shrinking h4 truncates the 3-gon into the 4-gon on the right. We
also sketch a scaling of the 4-gon, which is the key in the proof of
Proposition 7.10.

The key observation is the following homeomorphism η from GB to the space of
horocyclic p-gons bounded by horocycles based at B.
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Label the elements of B as b1, . . . , bp = b0 in the clockwise order in the disk
model. They are the vertices of an ideal p-gon P ⊂ H2. Consider a map γ ∈ GB,�.
It maps P to an ideal p-gon P ′ ⊂ H2

� with a cone singularity of angle � in its
interior. The vertices of P ′ are γ(bi).

We then obtain a horocyclic p-gon η(γ) as follows. Cut P ′ into p triangles by
the geodesics from γ(bi) to s, the cone singularity of H2

� . Then fold each triangle
γ(bi)sγ(bi+1) inward, isometrically, into the triangle bisibi+1 in H2. Let hi be
the horocycle based at bi passing through si. Then η(γ) is the intersection of the
horodisks bounded by the hi’s.

Since γ preserves horocycles, si−1 must also lie on hi. Hence the horocyclic
segments sisi+1 form a piecewise horocyclic closed curve, denoted by h.

Lemma 7.6. h is embedded as the boundary of η(γ).

Proof. Since bi are positive break points of γ, the triangles bisibi+1 and bi−1si−1bi
must overlap; see Proposition 4.13 and Remark 4.14. In other words, the points bi,
si−1 and si are placed on hi in the clockwise order. See Figure 8 for examples.

For x ∈ ∂H2 and y ∈ H2, we use ξ(x, y) to denote the other ideal end of the
geodesic that emerges from x and passes through y. Define a map g : ∂H2 → ∂H2

such that g−1(bi) = {ξ(bi, y) | y ∈ hi ∩ h} and, for some x between bi and bi+1,
g−1(x) = ξ(x, si). The map g is continuous and monotone, and has the property
that x /∈ g−1(x), hence its degree must be 1. This proves that h is embedded, hence
the boundary of η(γ). �

Conversely, given a horocyclic polygon bounded by horocycles hi based at bi ∈ B,
let si ∈ hi ∩ hi+1 be its vertices. Then we can glue the triangles bisibi+1 into an
ideal p-gon with a cone singularity of angle �. More specifically, � is the sum of the
angles ∠bisibi+1. This proves that η is a homeomorphism.

Remark 7.7. It is interesting to note from the horocyclic polygons that � < 2π. Let
s be a point in the interior of the horocyclic polygon. We then have ∠bisibi+1 <
∠bisbi+1 for all i. Yet the sum of ∠bisbi+1 is equal to 2π.

Proposition 7.8. GB is homeomorphic to R|B|.

Proof. The proof is by induction on the cardinality p = |B|. Up to isometries of
H2, we may consider B fixed.

For p = 2, a horocyclic 2-gon P2 is bounded by two horocycles. It is determined
by the position of an intersection point of the two horocycles. This point can be
chosen arbitrarily in H2, proving the statement for p = 2.

Now consider a horocyclic (p− 1)-gon Pp−1 bounded by horocycles h1, . . . , hp−1

based at b1, . . . , bp−1 ∈ B, and let si ∈ hi ∩ hi+1 and sp−1 ∈ hp−1 ∩ h1 denote the
vertices of Pp−1. We now construct a horocyclic p-gon P bounded by horocycles
with bases in B. For this, it suffices to choose a horocycle hp that truncates the
vertex sp−1 of Pp−1. This can be done by taking the horocycle hp at bp passing
through sp−1, then shrinking it. On the left of Figure 8 we illustrate a truncation
of a 3-gon into a 4-gon. We can continue to shrink hp until it hits another vertex
of Pp−1.

Hence GB is homeomorphic to GB\{bp} × R, which is R|B| by induction. �
In the following we will consider the closures of GB . The boundary ∂GB consists

of three parts, namely GB,0, GB,2π, and ∂GB,�, 0 < � < 2π. We now define and
describe these spaces.
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We use the notation GB,0 for the space of CPP maps from ∂H2 to ∂H2
0, up to

isometries of both H2 and H2
0, with positive break point set B. As before, we can

interpret a map γ ∈ Gp,0 as gluing the boundary of an ideal p-gon P ⊂ H2 to the
boundary of an ideal p-gon P ′ ⊂ H2

0, where P ′ contains a cusp s. We triangulate
P ′ by connecting its vertices to s, and triangulate P arbitrarily, and glue them
through γ to obtain a triangulation T of the 2-sphere. The shearing coordinates on
the p−3 interior edges of P are determined by the positions of the break points. The
shearing coordinates on the remaining 2p edges of T are governed by the condition
that the shearing around each vertex of T should sum up to 0. Since T has p + 1
vertices, we conclude that GB,0 is homeomorphic to R

p−1 = R
|B|−1.

The part ∂GB,�, 0 < � < 2π, consists of CPP maps from ∂H2 to ∂H2
� up to

isometries of both H2 and H2
� , with break point set B′ ⊂ B and marked projective

point set B \ B′. The homeomorphism η extends continuously to this boundary.
More specifically, let p = |B| and p′ = |B′|. Then for γ ∈ ∂GB,�, η(γ) is a horocyclic
p′-gons P ′ bounded by horocycles with bases in B′, together with p− p′ additional
horocycles with bases in B \ B′ “supporting” P ′ (that is, they intersect ∂P ′ but
disjoint from the interior of P ′). The left side of Figure 8 is an example with p = 4
and p′ = 3.

We also abuse the notation Gp,2π for the space of projective homeomorphisms
from ∂H2 to itself up to isometries of H2, with a set of marked points B. In fact,
the marking here is superficial; hence Gp,2π consists of a single element.

Let δi denote the distance from si to the geodesic bibi+1. The hyperbolic triangle
formula shows that αi and δi are related by the formula cosh δi sinαi/2 = 1. We
now deform the horocyclic p-gon by moving every si, simultaneously, along the
geodesic perpendicular to bibi+1, to a new position s′i. Lemma 7.9 is the crucial
observation for the proof that follows later.

Lemma 7.9. If the deformation is performed in such a way that the ratio
cosh δi/ cosh δ

′
i is the same for every i, then there is a horocycle h′

i passing through
every adjacent pair s′i−1 and s′i.

Proof. Let k be the common ratio of cosh δi/ cosh δ
′
i. We use the half-plane model

of H2, and assume that bi = ∞. The situation is illustrated in Figure 9. Let ψi be
the (Euclidean) angle ∠sibi+1bi−1 and ψi−1 be the angle ∠si−1bi−1bi+1. Then for
j = i or i− 1, we can calculate the distances (see for instance [And05, §3.5])

δj = ln |cscψj + cotψj | = arccosh cscψj .

This is particularly convenient because we have cosh δj sinψj = 1. Hence
cosh δj/ cosh δ

′
j = k implies that sinψj/ sinψ

′
j = 1/k for every i. In the half-

plane model, si and si−1 are moving along the circles centered at bi+1 and bi−1,
respectively, such that their heights are both scaled by 1/k. Therefore, their new
positions s′i−1 and s′i are again at the same height, hence on the same horocycle h′

i

based at bi = ∞. �
This deformation is sketched on the right side of Figure 8. We see from Figure 9

that, by moving sj ’s outwards the horocyclic polygon, one can multiply cosh(δi)
by an arbitrarily large constant. However, if we move sj ’s inwards the horocyclic
polygon, si and si−1 would eventually merge.

Proposition 7.10. GB,�, 0 ≤ � ≤ 2π, are contractible, and homeomorphic to

R|B|−1 if � < 2π.



WEAKLY INSCRIBED POLYHEDRA 443

Figure 9. Proof of Lemma 7.9

Proof. Through any given point γ ∈ GB, the deformation described above defines
a continuous path with monotonically changing cone angle �. We use � as the
parameter and denote this path by cγ(�). See Figure 10 for an illustration.

To decrease �, one needs to move the vertices outwards the horocyclic polygon.
We have seen that, in this direction, one can travel along cγ(�) until hitting GB,0.

To increase �, one needs to move the vertices inwards the horocyclic polygon.
In this direction, however, the path cγ(�) would in general hit some γ′ ∈ ∂GB,� for
some � < 2π, as shown in Figure 10. Further movement of the vertices in the same
direction would destroy the p-gon. However, we can continue deforming γ′ as a
gluing map in GB′ for some B′ ⊂ B. Hence cγ(�) is extended into the closure of
GB, along which one can increase � up to 2π; see Figure 10.

This path is uniquely defined through every γ ∈ G B, and two paths do not
intersect inside GB; intersection is only possible on the boundary. For 0 ≤ � 
=
�′ ≤ 2π, let f�,�′ : GB,� → GB,�′ be the continuous map that sends γ ∈ GB,� to
γ′ = cγ(�

′) ∈ GB,�′ . Then f�,�′ and f�′,� define a homotopy equivalence between

G B,� and G B,�′ . Consequently, G B,� are all of the same homotopy type. We have
seen that GB,0 and GB,2π are contractible, and so must be GB,� for 0 < � < 2π.

In general, f�,�′ and f�′,� are not inverse to each other. However, if the path
emerging from γ ∈ GB,� arrives at γ

′ = f�,�′(γ) ∈ GB,�′ without hitting the boundary
of GB, then one can travel backwards along the same path. The reversed path
defines f�′,�, hence we have f�′,� ◦ f�,�′(γ) = f�′,�(γ

′) = γ.
This is the case, in particular, when � > �′ and γ ∈ GB,�. Then f�,�′ defines a

homeomorphism between GB,� and its image f�,�′(GB,�) ⊂ GB,�′ . We finally conclude
that GB,�, 0 < � < 2π, by its continuity in �, are all homeomorphic to GB,0, thus to

R|B|−1. �

It is now clear that GB is foliated by GB,�, 0 < � < 2π, as illustrated in Figure 10.
An admissible HS structure is obtained by gluing copies of H2 to the ideal

boundary components of dS2� . We now conclude on the topology of Mp,q , and
prove Theorem 3.4.

If p < 2 < q, an element of M1,q can be constructed by first choosing a set of q
points B ⊂ ∂H2 up to isometries, and then a gluing map γ ∈ GB,0. For the first
step, we may fix three points up to hyperbolic isometry, hence the space of B is
homeomorphic Rq−3. In the second step, we have seen that GB,0 is homeomorphic

to Rq−1. Hence M1,q is homeomorphic to R2q−4 = R2(p+q−3). Theorem 3.4 follows
since both Gp,0 and Pp,0 are contractible.
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Figure 10. The structure of GB showing a path cγ

If 2 ≤ p ≤ q, we first count the dimension. For the gluing map on one boundary
of dS�, we need to choose a set B of p break points, then pick a gluing map from GB.
Up to isometries, the space of this gluing map is of dimension 2p − 3. Similarly,
the gluing map on the other boundary contributes 2q − 3 dimensions. The two
gluing maps have the same cone angle, removing one degree of freedom. But we
can also rotate the break points on ∂H2, corresponding to translations in RP1.
This contributes another dimension, hence the dimension of Mp,q is 2(p+ q − 3).

The rotation of ∂H2 generates the non-trivial fundamental group of Mp,q. To

prove that the map Δ is a homeomorphism, we lift it to a map Δ̃ between the
universal covers P̃p,q and M̃p,q. A point in P̃p,q corresponds to a (p, q)-ideal
polyhedron equipped with a path (defined up to homotopy) connecting vertices 1+

and 1−. A point in M̃p,q corresponds to a (p, q)-admissible HS structure with a

path (up to homotopy) connecting 1+ and 1− in dS2� . Hence Δ̃ is a homeomorphism
between marked (p, q)-ideal polyhedra and marked (p, q)-admissible HS structures.
This proves that the covering number of Δ is 1.

8. Combinatorics

It remains to prove Theorem 1.3 from Theorem 1.4. In other terms, assume that
a graph Γ = (V,E) satisfies Condition (C1) and the edges are colored as specified
in Theorem 1.4. We need to prove that Condition (C2) implies the existence of a
weight function w : E → R satisfying Conditions (W1) and (W2) and, conversely,
existence of such a weight function implies Condition (C2).

We consider two cases.

Case p < 2 < q. In this case, the cycle cover contains a 1-cycle, say with vertex
set V + = {v0}. The other vertices V − induce a 2-connected outerplanar subgraph.
We color the edges adjacent to v0 by blue, and other edges by red.

Theorem 1.3 requires a cycle visiting all the edges along which the edge color
has the pattern . . . -blue-blue-red-. . . . This is actually equivalent to a much simpler
condition:

Lemma 8.1. In the case of p < 2 < q, Condition (C2) is equivalent to

(C’2) v0 is connected to every vertex in V −.

Proof.

(C’2) =⇒ (C2): Immediate.
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(C2) =⇒ (C’2): If some v ∈ V − is not connected to v0, then the edges adjacent
to v cannot belong to a cycle as required in Condition (C2).

�

Proof of Theorem 1.3 when p < 2 < q.

(C2) =⇒ (W1) ∧ (W2): Suppose a cycle c specified by Condition (C2). Let
n be its length; n is necessarily a multiple of 3. Let ne be the number of
times that c visits e. Assign to e the weight ne if e is red, or the weight
−ne if e is blue. After normalization by a factor 3π/n, we obtain a graph
that satisfies Conditions (W1) and (W2).

(W1) ∧ (W2) =⇒ (C’2): Assume a graph function satisfying Condition (W1).
If some vertex v ∈ V − is not connected to v0, then the edges adjacent to v
are all of positive weight. This violates Condition (W2).

�

Case 2 ≤ p ≤ q. Condition (C2) requires a cycle with alternating colors; we call
such a cycle an alternating cycle. As in the previous case, the existence of an
alternating cycle that visits every edge implies that every vertex is adjacent to a
blue edge, but the converse is not true. However, we have the following equivalence,
which does not depend on Condition (C1).

Proposition 8.2. If the edges of a graph are colored in blue and red, then Condi-
tion (C2) is equivalent to

(C”2) Every edge belongs to an alternating cycle (which does not necessarily visit
every edge).

The proof is immediate from the composition and decomposition of cycles.

Proof of Theorem 1.3 when 2 ≤ p ≤ q.

(C2) =⇒ (W1) ∧ (W2): Suppose a cycle c specified by Condition (C2). Let
ne be the number of times that c visits e. Assign to e the weight ne if
e is red, or the weight −ne if e is blue. We obtain a graph that satisfies
Conditions (W1) and (W2).

(W1) ∧ (W2) =⇒ (C”2): Let w be a graph satisfying Conditions (W1) and
(W2).

If w has an alternating cycle c, the number of visits defines a graph sup-
ported on the edges of c, which we denote by wc. We can choose a positive
number α such that w′ = w − αwc is supported on a proper subgraph of
w, but still satisfy Condition (W1) on other edges. Most importantly, w′

satisfies Condition (W2) because both w and wc do. The cycle c no longer
exists in w′. We repeat this operation if there are other alternating cycles.
Since the graph is finite, we will obtain a graph w̃ with no alternating cycle
in finitely many steps.

If an edge e0 of w does not belong to any alternating cycle, it must also
be an edge of w̃. But we prove in the following that this is not possible.

Assume that e0 is red and let v+0 and v−0 be its vertices. Condition (W2)
guarantees that v+0 is adjacent to a blue edge, e1, whose other vertex is
denoted by v+1 . The same argument continues and we obtain an alternating
path e0, e1, e2, . . . .
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Since the graph is finite, this path will eventually intersect itself. That
is, v+i = v+i′ for some 0 ≤ i′ < i (note that we don’t consider v−0 as visited
by e0). If ei and ei′ are of the same color, ei′+1, . . . , ei form an alternating
cycle, contradicting our assumption. Hence ei and ei′ must have different
colors.

The same argument applies on the other vertex v−0 of e0. We obtain an
alternating path e0, e−1, e−2, . . . . Let v

−
j denote the common vertex of e−j

and e−j−1. This path eventually intersects itself, i.e. v−j = v−j′ for some

0 ≤ j′ < j (this time we don’t consider v+0 as visited by e0). Again, e−j

and e−j′ must have different colors.
But then, e0, . . . , ei, ei′ , . . . , e0, . . . , e−j , e−j′ , . . . , e0 form an alternating

cycle; see Figure 11. This contradicts our assumption.

�

Figure 11. The alternating cycle in the last step in the proof of Theorem 1.3

Remark 8.3. The feasibility region specified in Theorem 1.4 is a polyhedral cone.
The proof above shows that the extreme rays of this cone correspond to the minimal
alternating cycles in the graph.

Example 8.4. The example in Figure 12 shows that Condition (C2) is essential.
This graph is not the 1-skeleton of any weakly ideal polyhedron with the inner
square in H3

+ and the outer square in H3
−. A fairly elementary argument, left to

the reader, shows that there is no alternating cycle containing edge e. This can
also be shown using Theorem 1.4, since if a graph w satisfies Conditions (W1)

Figure 12. This graph is not the 1-skeleton of any weakly ideal polyhedron
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and (W2), we would have

w(a) + w(b) < w(a′) + w(b′) ,

w(c) + w(d) < w(c′) + w(d′) ,

w(b) + w(c) > w(b′) + w(c′) ,

w(d) + w(a) > w(d′) + w(a′) ,

from which a contradiction immediately follows.

Remark 8.5. Given a graph G with edges colored in blue and red, we define a
directed graph G̃ as follows:

• Each vertex v of G lifts to two vertices v+ and v− in G̃.

• Each red edge uv of G lifts to two oriented edges u−v+ and v−u+ in G̃.

• Each blue edge uv of G lifts to two oriented edges u+v− and v+u− in G̃.

It is quite clear from the definition that an alternating cycle in G lifts to two
oriented cycles in G̃, and any oriented cycle in G̃ projects to an alternating cycle
in G. Hence finding an alternating cycle in G is equivalent to finding an oriented
cycle in G̃. The latter can be solved by a simple depth- or breath-first search.
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geometry (Siófok, 1985), Colloq. Math. Soc. János Bolyai, vol. 48, North-Holland, Am-
sterdam, 1987, pp. 503–516. MR910731

[Sch98] Jean-Marc Schlenker, Métriques sur les polyèdres hyperboliques convexes (French, with
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